CN115245556B - 蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途 - Google Patents
蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途 Download PDFInfo
- Publication number
- CN115245556B CN115245556B CN202110460520.0A CN202110460520A CN115245556B CN 115245556 B CN115245556 B CN 115245556B CN 202110460520 A CN202110460520 A CN 202110460520A CN 115245556 B CN115245556 B CN 115245556B
- Authority
- CN
- China
- Prior art keywords
- diabetes
- insulin resistance
- type
- ixazomib
- sha
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/05—Dipeptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Diabetes (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Endocrinology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Zoology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明属于生物医药技术领域,涉及蛋白酶体抑制剂伊沙佐米在制药中新的用途,具体涉及蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途,所述的药物类别是改善2型糖尿病胰岛素抵抗、降低空腹血糖、降低随机血糖、降低糖化血红蛋白、降低血脂或者提高糖耐量的药物。本发明还提供了体外细胞改善胰岛素抵抗的方法,以伊沙佐米为活性成分的糖尿病药物,为糖尿病的治疗提供了新的工具和途径。本发明中伊沙佐米处理后的组织芯片,提供了一系列与糖尿病相关的基因靶标,为后续研究和药物筛选提供了基础。
Description
技术领域
本发明属于生物技术领域,涉及伊沙佐米在制备治疗糖尿病药物中的应用,具体涉及蛋白酶体抑制剂伊沙佐米在制备代谢性炎症及胰岛素抵抗药物中的用途。
背景技术
现有技术公开了,据2019年IDF全球糖尿病地图显示,全球糖尿病的患病率已升至9.3%,其中超过90%是2型糖尿病,且2型糖尿病患者主要集中在亚太地区,其中包括中国,据统计,目前中国糖尿病的患者总数约占全球四分之一[1]。糖尿病及其并发症极大地加剧了全球范围内的死亡和残疾负担,2013年全球疾病负担研究显示糖尿病已经成为缩短预期寿命的第九个主要原因,2016年研究显示美国人均寿命缩短8年与2型糖尿病密切相关[2]。
研究显示,胰岛素抵抗和胰岛素分泌不足是2型糖尿病发病的两个关键因素,但具体机制尚未完全阐明,越来越多的证据表明2型糖尿病是一种慢性低度炎症性疾病[3],这种炎症称为代谢性炎症,是营养和能量过剩所促发的一系列由传统炎性分子及其相关信号通路所介导的慢性炎症状态[4]。有横断面研究发现2型糖尿病患者血清TNF-α、CRP、IL-6和SAA等炎症标记物较非糖尿病健康者明显升高[5,6]。不仅如此,前瞻性研究发现血清CRP、IL-6高的非糖尿病健康者发生2型糖尿病的风险分别是对照人群的4倍和2倍[7],血清IL-1β和IL-6同时升高发生2型糖尿病的风险是对照人群的3倍[8],以上证据充分说明炎症参与了2型糖尿病的发生。除了血清中TNF-α、IL-6、IL-1β等炎症因子水平增高,2型糖尿病患者肝脏、脂肪[9]、肌肉[10]、胰岛[11]等局部的TNF-α等促炎因子水平也明显升高,同时巨噬细胞浸润增加。综上所述,业内共识,2型糖尿病本质上是一种慢性低度炎症性疾病。
有研究探讨了代谢性炎症是如何启动的,虽然脂肪细胞和胰岛β细胞等本身也可合成分泌炎症因子,但2型糖尿病患者体内炎症因子的增高主要来源于脂肪、肝脏、肌肉、胰岛中浸润的M1型巨噬细胞[3],以脂肪和肝脏为主。能量摄入过多,导致机体脂肪堆积,游离脂肪酸增加,游离脂肪酸和巨噬细胞表面Toll样受体2或4(TLR2/TLR4)结合,使巨噬细胞向促炎型M1型极化[12],合成分泌TNF-α、IL-1β等促炎因子,炎症因子进一步与脂肪细胞、肝细胞等胰岛素敏感细胞表面相应抗体结合,使细胞产生胰岛素抵抗,IL-1β还可与胰岛β细胞结合,诱导细胞凋亡,导致胰岛素分泌不足。同时炎症因子可进一步促进脂肪细胞、巨噬细胞等分泌单核细胞趋化蛋白1(MCP-1)等趋化因子,趋化单核细胞、T淋巴细胞等浸润脂肪,进一步扩大炎症,脂肪中巨噬细胞浸润程度与肥胖程度成正相关[13]。同时,饮食结构及生活方式的改变还可导致人体肠道菌群紊乱,革兰氏阳性菌数量下降,阴性菌数目增长,同时肠道上皮细胞间通透性增加,从而引起血清LPS升高,LPS与脂肪、肝脏等部位的巨噬细胞表面TLR4结合,激活巨噬细胞[14-16],也可启动代谢性炎症。
还有研究炎症公开了导致2型糖尿病患者发生胰岛素抵抗结果,胰岛素通过激活胰岛素信号通路发挥作用,胰岛素识别并结合细胞膜上的胰岛素受体IR,使IR的酪氨酸激酶活性活化,促使IR自身的酪氨酸位点磷酸化,磷酸化的IR可募集胰岛素受体底物IRS并促使其发生酪氨酸磷酸化,进一步激活其下游AKT等信号通路,抑制糖异生,促进糖酵解及糖原合成[17],降低血糖。各类炎症因子导致胰岛素抵抗的具体分子机制主要是通过激活IKK-β/NFκB[18]和JNK(Jun N-terminal kinases)炎症信号通路,这两种炎症通路分别通过以下两种不同的方式干扰胰岛素信号通路。大量临床试验和动物实验证实抑制IKK-β可降低核因子κB(NFκB)磷酸化水平,改善胰岛素抵抗[18-20],NFκB是最重要的核转录因子之一,正常情况下,NF-κB与其抑制因子κBα(IκBα)蛋白结合游离于细胞质中,炎症因子、游离脂肪酸或LPS刺激后,IκBα蛋白激酶(IKK)被激活,从而磷酸化IκBα的丝氨酸位点,使其进一步泛素化被蛋白酶体降解,NFκB的核定位序列得以释放,转移至核内作为转录因子参与TNF-α、IL-6等促炎因子转录[21],炎症因子进一步激活IKK-β/NFκB和JNK信号通路,导致胰岛素抵抗。与IKK-β/NFκB不同,JNK则是通过直接磷酸化IRS1的丝氨酸位点,抑制IRS1酪氨酸磷酸化,丝氨酸磷酸化的IRS1会进一步泛素化从而被蛋白酶体降解,阻断胰岛素信号通路,导致胰岛素抵抗[22]。
研究证实2型糖尿病、动脉粥样硬化、肥胖及非酒精性脂肪肝均与慢性低度炎症密切相关的代谢性炎症性疾病,有研究者提出了代谢性炎症综合征的新概念:患者患有上述4个代谢性中的2个即可诊断代谢性炎症综合征(metabolic inflammatory syndrome MIS)。[23-24]此概念有利于异病同治和异病同防。有临床研究采用抗炎治疗治疗2型糖尿病并获得了初步结果,如非甾体类抗炎药可降低2型糖尿病及肥胖患者的血糖,但其降糖所需剂量远超临床常用剂量约10倍,同时高剂量还会导致很多严重的不良反应,如水杨酸导致肝功能损伤、耳聋,阿司匹林导致肝功能损伤、凝血功能障碍等[25]。因而,临床上这些常用的抗炎药尚不能用于治疗2型糖尿病。除了非甾体类抗炎药,也有研究提出有关炎症因子的特异性抑制剂,如抗TNFα单克隆抗体、抗IL1β单克隆抗体和IL-1受体拮抗剂,但临床试验显示降糖效果微弱[26],究其原因,可能是由于单独抑制某个炎症因子尚不足以完全改善代谢性炎症,因此,有必要寻找新的抗炎靶点用于治疗2型糖尿病及相关代谢性疾病(MIS)。
通过炎症导致胰岛素抵抗的机制不难看出,蛋白酶体在其中发挥了至关重要的作用,不仅可以降解泛素化的IκBα从而激活NFκB,促进炎症因子转录,导致胰岛素抵抗,同时可降解泛素化的IRS1,阻断胰岛素信号通路,导致胰岛素抵抗,使用蛋白酶体抑制剂能否逆转2型糖尿病的代谢性炎症及胰岛素抵抗成为业内的研究关注点。
蛋白酶体是有核细胞内蛋白质降解经典途径泛素蛋白酶体途径的重要组成部分,它是一种由多个亚基组成的多聚体,包括一个桶状的20s核心颗粒和上下两个19s调节亚基,核心颗粒由4个轴向堆积的异庚烷环(两个外α环和两个内β环)组成,每个环又由7个亚基连接而成,其中β环的β1、β2和β5亚基分别含肽基谷氨酰水解酶、类胰蛋白酶和类糜蛋白酶活性,蛋白质便是在此处被降解成小分子多肽,调节亚基也是由多个亚基组成,具有识别、结合底物上的泛素,并转运底物至核心颗粒的功能[27]。蛋白酶体参与调控机体内细胞凋亡、增殖等过程,蛋白酶体抑制剂已作为一种有效的抗多发性骨髓瘤药物在临床使用,但近10年,越来越多的研究发现蛋白酶体还参与了抗原递呈、炎症反应及代谢调控[28],那么2型糖尿病作为一种代谢性炎症性疾病,蛋白酶体抑制剂可否作为新型抗炎药物来治疗2型糖尿病?已知的相关研究多集中在用蛋白酶体抑制剂治疗慢性炎症性疾病,包括关节炎、脑脊髓炎和红斑狼疮等[30],与糖尿病相关的数篇研究结果不一致,有报道称蛋白酶体抑制剂硼替佐米可预防NOD小鼠发生1型糖尿病,但用药一周未能降低已发病NOD小鼠的血糖[30],中药姜黄的提取物姜黄素可通过抑制蛋白酶体活性降低db/db小鼠的血糖[31],降糖药罗格列酮可抑制蛋白酶体活性[33],Aghdam等还发现蛋白酶体抑制剂可改善糖尿病肾病[33],但亦有报道指出蛋白酶体抑制剂增加了肝细胞的内质网应激、降低了AKT磷酸化水平[34]。但迄今尚未见蛋白酶体抑制剂可改善2型糖尿病的代谢性炎症及胰岛素抵抗尚的直接证据,且间接证据结论不一致。
基于现有技术的基础及现状,本申请的发明人拟提供一种新的治疗糖尿病的药物,涉及伊沙佐米在制备治疗糖尿病药物中的应用,尤其是蛋白酶体抑制剂伊沙佐米在制备代谢性炎症及胰岛素抵抗药物中的用途。
与本发明相关的参考文献有,
1.International Diabetes Federation.IDF Diabetes Atlas,9thedn.Brussels,Belgium:2019.Available at:https://www.diabetesatlas.org
2.Yan Zheng,Ley Sylvia-H,Hu Frank-B.Global aetiology and epidemiologyof type 2 diabetes mellitus and its complications[J].NATURE REVIEWSENDOCRINOLOGY,2018,14(2):88-98.
3.Marc-Y Donath,Shoelson Steven-E.Type 2 diabetes as an inflammatorydisease[J].NATURE REVIEWS IMMUNOLOGY,2011,11(2):98-107.
4.Goekhan-S Hotamisligil.Inflammation and metabolic disorders[J].NATURE,2006,444(7121):860-867.
5.J-C Pickup,Chusney G-D,Thomas S-M,et al.Plasma interleukin-6,tumournecrosis factor alpha and blood cytokine production in type 2 diabetes[J].LIFE SCIENCES,2000,67(3):291-300.
6.E Leinonen,Hurt-Camejo E,Wiklund O,et al.Insulin resistance andadiposity correlate with acute-phase reaction and soluble cell adhesionmolecules in type 2 diabetes[J].ATHEROSCLEROSIS,2003,166(PII S0021-9150(02)00371-42):387-394.
7.A-D Pradhan,Manson J-E,Rifai N,et al.C-reactive protein,interleukin6,and risk of developing type 2 diabetes mellitus[J].JAMA,2001,286(3):327-334.
8.J Spranger,Kroke A,Mohlig M,et al.Inflammatory cytokines and therisk to develop type 2 diabetes-Results of the prospective population-basedEuropean Prospective Investigation into Cancer and Nutrition(EPIC)-Potsdamstudy[J].DIABETES,2003,52(3):812-817.
9.Katherine Samaras,Botelho Natalia-K,Chisholm Donald-J,etal.Subcutaneous and Visceral Adipose Tissue Gene Expression of SerumAdipokines That Predict Type 2 Diabetes[J].OBESITY,2010,18(5):884-889.
10.P Plomgaard,Nielsen A-R,Fischer C-P,et al.Associations betweeninsulin resistance and TNF-alpha in plasma,skeletal muscle and adipose tissuein humans with and without type 2 diabetes[J].DIABETOLOGIA,2007,50(12):2562-2571.
11.Jan-A Ehses,Perren Aurel,Eppler Elisabeth,et al.Increased numberof islet-associated macrophages in type 2 diabetes[J].DIABETES,2007,56(9):2356-2370.
12.C-N Lumeng,Bodzin J-L,Saltiel A-R.Obesity induces a phenotypicswitch in adipose tissue macrophage polarization[J].J Clin Invest,2007,117(1):175-184.
13.S-P Weisberg,McCann D,Desai M,et al.Obesity is associated withmacrophage accumulation in adipose tissue[J].JOURNAL OF CLINICALINVESTIGATION,2003,112(12):1796-1808.
14.P-D Cani,Osto M,Geurts L,et al.Involvement of gut microbiota inthe development of low-grade inflammation and type 2 diabetes associated withobesity[J].Gut Microbes,2012,3(4):279-288.
15.M-J Saad,Santos A,Prada P-O.Linking Gut Microbiota andInflammation to Obesity and Insulin Resistance[J].Physiology(Bethesda),2016,31(4):283-293.
16.X Chen,Devaraj S.Gut Microbiome in Obesity,Metabolic Syndrome,andDiabetes[J].Curr Diab Rep,2018,18(12):129.
17.A Forand,Koumakis E,Rousseau A,et al.Disruption of the PhosphateTransporter Pit1 in Hepatocytes Improves Glucose Metabolism and InsulinSignaling by Modulating the USP7/IRS1 Interaction[J].Cell Rep,2016,16(10):2736-2748.
18.M-S Yuan,Konstantopoulos N,Lee J-S,et al.Reversal of obesity-anddiet-induced insulin resistance with salicylates or targeted disruption ofIKK beta[J].SCIENCE,2001,293(5535):1673-1677.
19.Amy Fleischman,Shoelson Steven-E,Bernier Raquel,et al.SalsalateImproves Glycemia and Inflammatory Parameters in Obese Young Adults[J].DIABETES CARE,2008,31(2):289-294.
20.Allison-B Goldfine,Fonseca Vivian,Jablonski Kathleen-A,et al.TheEffects of Salsalate on Glycemic Control in Patients With Type 2 Diabetes ARandomized Trial[J].ANNALS OF INTERNAL MEDICINE,2010,152(6):346.
21.Hadi Khodabandehloo,Gorgani-Firuzjaee Sattar,Panahi Ghodratollah,et al.Molecular and cellular mechanisms linking inflammation to insulinresistance and beta-cell dysfunction[J].TRANSLATIONAL RESEARCH,2016,167(1):228-256.
22.V Aguirre,Uchida T,Yenush L,et al.The c-Jun NH(2)-terminal kinasepromotes insulin resistance during association with insulin receptorsubstrate-1 and phosphorylation of Ser(307)[J].J Biol Chem,2000,275(12):9047-9054.
23.Hu R,Xie Y,Lu B,et al.Metabolic inflammatory syndrome:a novelconcept of holistic integrative medicine for management metabolicdiseases.AME Med J 2018;3:51.doi:10.21037/amj
24.Hu R,Xie Y,Lu B,et al.High detective rate of“metabolicinflammatory syndrome”in pateints with type 2diabetes.Chi J EndocrinolMetab.2016;32:27-32.
25.Rena G,K Sakamoto.Salicylic acid:old and new implications for thetreatment of type 2diabetes[J].Diabetology international,2014,5(4):212-218.
26.Huang J,Y Yang,R Hu,et al.Anti-interleukin-1therapy has mildhypoglycaemic effect in type 2diabetes[J].Diabetes,obesity&metabolism,2018,20(4):1024-1028.
27.I Livneh,Cohen-Kaplan V,Cohen-Rosenzweig C,et al.The life cycle ofthe 26S proteasome:from birth,through regulation and function,and onto itsdeath[J].Cell Res,2016,26(8):869-885.28.
29.T Eleftheriadis,Pissas G,Antoniadi G,et al.A comparative analysisbetween proteasome and immunoproteasome inhibition in cellular and humoralalloimmunity[J].Int Immunopharmacol,2017,5048-54.
30.G Mondanelli,Albini E,Pallotta M-T,et al.The Proteasome InhibitorBortezomib Controls Indoleamine 2,3-Dioxygenase 1Breakdown and RestoresImmune Regulation in Autoimmune Diabetes[J].Front Immunol,2017,8428.
31.S Weisberg,Leibel R,Tortoriello D-V.Proteasome inhibitors,including curcumin,improve pancreatic beta-cell function and insulinsensitivity in diabetic mice[J].Nutr Diabetes,2016,6e205.
32.X Wang,Hu Z,Hu J,et al.Insulin resistance accelerates muscleprotein degradation:Activation of the ubiquitin-proteasome pathway by defectsin muscle cell signaling[J].Endocrinology,2006,147(9):4160-4168.
33.S-Y Aghdam,Gurel Z,Ghaffarieh A,et al.High glucose and diabetesmodulate cellular proteasome function:Implications in the pathogenesis ofdiabetes complications[J].Biochem Biophys Res Commun,2013,432(2):339-344.
34.T Otoda,Takamura T,Misu H,et al.Proteasome dysfunction mediatesobesity-induced endoplasmic reticulum stress and insulin resistance in theliver[J].Diabetes,2013,62(3):811-824.。
发明内容
本发明的目的是基于现有技术的基础及现状,提供一种新的治疗糖尿病的药物,涉及伊沙佐米在制备治疗糖尿病药物中的应用,尤其是蛋白酶体抑制剂伊沙佐米在制备代谢性炎症及胰岛素抵抗药物中的用途。
本发明提供了一种新的治疗或者缓解糖尿病药物,具体提供了蛋白酶体抑制剂伊沙佐米在制备代谢性炎症及胰岛素抵抗药物中的用途。
为了解决上述技术问题,本发明实验研究了伊沙佐米潜在的治疗糖尿病及代谢性炎症综合征潜在性作用靶点。实验结果证实,伊沙佐米可降低2型糖尿病动物模型db/db小鼠的空腹血糖、随机血糖、糖化血红蛋白和血脂,同时提高了小鼠的糖耐量,且结果显示其主要是通过改善db/db小鼠的胰岛素敏感性从而降低血糖,口服给药,每周2次,干预6周后,显著地降低了db/db小鼠的HOMA-IR指数和空腹胰岛素水平,腹腔注射胰岛素后,药物干预组血糖下降的速度明显增快,除此之外,结果显示伊沙佐米显著提高了db/db小鼠肝脏胰岛素信号通路Akt的磷酸化水平,以及IRS1蛋白含量,本发明实验结果证实伊沙佐米增加了2型糖尿病小鼠的胰岛素敏感性。
进一步,本发明对伊沙佐米干预的db/db小鼠肝脏制做了蛋白芯片,共筛选出14个差异表达蛋白,其中11个上调、3个下调,上调最明显的两个蛋白TRAIL和Axl均对炎症有抑制作用,下调最明显的两个蛋白均具有促进炎症反应的作用,表明所述蛋白酶体抑制剂通过TRAIL或Axl抑制2型糖尿病小鼠代谢性炎症,从而改善胰岛素抵抗、降低血糖。
本发明提供了蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途,尤其是蛋白酶体抑制剂伊沙佐米在制备代谢性炎症及胰岛素抵抗药物中的用途。
较好的,所述的药物是改善2型糖尿病胰岛素抵抗、降低空腹血糖、降低随机血糖、降低糖化血红蛋白、降低血脂或者提高糖耐量的药物。
较好的,所述的药物是增加肝脏Akt磷酸化水平及IRS1蛋白含量的药物。
较好的,所述的药物是改善代谢性炎症的药物。
较好的,所述的药物能够:
上调TRAIL、Axl、CD36、PF4、CD40、Fas、IL-17F、IL-2Ra、OPN、IGFBP-6、I-TAC基因表达;或者
下调NOV、CTLA4或者CD6基因表达。
本发明还提供了一组糖尿病药物的筛选靶标,所述的筛选靶标选自下列基因的一种或者几种:
TRAIL、Axl、CD36、PF4、CD40、Fas、IL-17F、IL-2Ra、OPN、IGFBP-6、I-TAC、NOV、CTLA4或者CD6。
在本发明的一个优选实施例中,比较伊沙佐米处理前后的组织样本,结果显示,TRAIL、Axl、CD36、PF4、CD40、Fas、IL-17F、IL-2Ra、OPN、IGFBP-6、I-TAC基因表达上调;同时,NOV、CTLA4或者CD6基因表达下调。
本发明还提供了一种缓解体外培养细胞胰岛素抵抗的方法,该方法包括以下步骤:
(1)收集胰岛细胞,置于体外细胞培养介质中培养;和/或
(2)在细胞培养介质中加入伊沙佐米,孵育。
另一方面,本发明的伊沙佐米可以单独或者与其他溶媒、糖尿病药物联用,制成治疗或者缓解糖尿病的药物。
更进一步,本发明提供了一种治疗糖尿病的药物组合物,该药物组合物含有伊沙佐米和药学上常用的注射溶媒。
较好的,所述的药物组合物还含有硼替佐米。
本发明研究证实蛋白酶体抑制剂伊沙佐米能改善2型糖尿病db/db小鼠的胰岛素抵抗并降低血糖,同时证实可能通过TRAIL或Axl抑制2型糖尿病小鼠代谢性炎症,从而改善胰岛素抵抗、降低血糖。本发明的伊沙佐米能够显著改善糖尿病临床指标,改善2型糖尿病胰岛素抵抗、降低空腹血糖、降低随机血糖、降低糖化血红蛋白、降低血脂或者提高糖耐量,为糖尿病的治疗提供了新的干预工具和途径。本发明中伊沙佐米处理后的组织芯片,提供了一系列与糖尿病相关的基因靶标,为后续研究和药物筛选提供了基础。
附图说明
图1:蛋白酶体抑制剂伊沙佐米(ixazomib)和硼替佐米(ps-341)对db/db小鼠指标的改变,
其中,a,随机血糖;b,空腹血糖;e,糖化血红蛋白和f,血清总胆固醇。未改变小鼠的c,体重和d,摄食量。
图2:IPGTT示蛋白酶体抑制剂干预提高了db/db小鼠的糖耐量。
图3:胰岛素和伊沙佐米对小鼠血糖和胰岛素水平的改变,
其中,a,b,c,腹腔注射胰岛素后蛋白酶体抑制剂增加了db/db小鼠血糖下降的速率;d,伊沙佐米(ixazomib)降低了db/db小鼠的HOMA-IR指数;e,伊沙佐米(ixazomib)降低了db/db小鼠的空腹胰岛素水平。
图4:伊沙佐米对血糖相关蛋白含量的改变,
其中,a,伊沙佐米(ixazomib)增加了db/db小鼠肝脏p-Akt水平及b,IRS1蛋白含量;c,伊沙佐米(ixazomib)未改变db/db小鼠肝脏IRS1表达量。
图5:差异蛋白结果图,
其中,筛选条件:p值小于0.05,同时foldchange大于1.2或小于0.83;i13、i14、i7、i4为伊沙佐米(ixazomib)干预db/db小鼠;con2.14、con2.11、con2.13、con2.12为对照db/db小鼠。
图6:GO分析提示伊沙佐米(ixazomib)改善db/db小鼠肝脏炎症图。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
对2型糖尿病动物模型db/db小鼠注射伊沙佐米进行干预,结果显示,蛋白酶体抑制剂伊沙佐米降低db/db小鼠的空腹血糖、随机血糖、糖化血红蛋白和血脂,改善糖耐量。
图1中显示了,蛋白酶体抑制剂伊沙佐米(ixazomib)和硼替佐米(ps-341)降低了db/db小鼠的a,随机血糖;b,空腹血糖;e,糖化血红蛋白和f,血清总胆固醇。未改变小鼠的c,体重和d,摄食量。
图2中显示了,IPGTT示蛋白酶体抑制剂干预提高了db/db小鼠的糖耐量。
实施例2
口服给药,每周2次,干预6周后,显著地降低了db/db小鼠的HOMA-IR指数和空腹胰岛素水平,腹腔注射胰岛素后,药物干预组血糖下降的速度也明显增快,蛋白酶体抑制剂伊沙佐米提高db/db小鼠的胰岛素敏感性。
图3中a,b,c,显示腹腔注射胰岛素后蛋白酶体抑制剂增加了db/db小鼠血糖下降的速率;d显示伊沙佐米(ixazomib)降低了db/db小鼠的HOMA-IR指数;e显示伊沙佐米(ixazomib)降低了db/db小鼠的空腹胰岛素水平。
图4中,a,伊沙佐米(ixazomib)增加了db/db小鼠肝脏p-Akt水平及b,IRS1蛋白含量;c,伊沙佐米(ixazomib)未改变db/db小鼠肝脏IRS1表达量。
实施例3
Raybiotech Mouse Cytokine Array GS4000蛋白芯片显示蛋白酶体抑制剂伊沙佐米可改善db/db小鼠肝脏炎症。
其中,图5中差异蛋白筛选条件:p值小于0.05,同时foldchange大于1.2或小于0.83;i13、i14、i7、i4为伊沙佐米(ixazomib)干预db/db小鼠;con2.14、con2.11、con2.13、con2.12为对照db/db小鼠。
表一:蛋白芯片筛出14个差异表达蛋白
其中,多数促炎蛋白下调,抑炎蛋白上调。+:促进炎症;-:抑制炎症;+/-:促进且抑制炎症;UK:unknown。
Claims (4)
1.蛋白酶体抑制剂伊沙佐米在制备治疗胰岛素抵抗疾病药物中的用途,所述的胰岛素抵抗 疾病是 2 型糖尿病。
2.如权利要求 1 所述的用途,其特征在于,所述的药物是改善 2 型糖尿病胰岛素抵抗、降 低空腹血糖、降低随机血糖、降低糖化血红蛋白、降低血脂或者提高糖耐量的药物。
3.如权利要求 1 所述的用途,其特征在于,所述的药物是增加肝脏 Akt 磷酸化水平及 IRS1 蛋白含量的药物。
4.如权利要求 1 所述的用途, 其特征在于, 所述的药物能: 上调 TRAIL 、Axl 、CD36、 PF4 、CD40 、Fas 、IL-17F 、IL-2 Ra 、OPN 、IGFBP-6 、I-TAC 基因表达; 或者, 下调
NOV、CTLA4 或者 CD6 基因表达。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110460520.0A CN115245556B (zh) | 2021-04-27 | 2021-04-27 | 蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110460520.0A CN115245556B (zh) | 2021-04-27 | 2021-04-27 | 蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115245556A CN115245556A (zh) | 2022-10-28 |
CN115245556B true CN115245556B (zh) | 2025-03-18 |
Family
ID=83696061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110460520.0A Active CN115245556B (zh) | 2021-04-27 | 2021-04-27 | 蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115245556B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101686951A (zh) * | 2006-11-13 | 2010-03-31 | 纽约市哥伦比亚大学托管会 | 治疗糖尿病的选择性蛋白酶体抑制物 |
CN104174021A (zh) * | 2013-05-22 | 2014-12-03 | 复旦大学附属华山医院 | 蛋白酶体抑制剂在制备治疗慢性低度炎症性疾病药物中的用途 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL1694354T3 (pl) * | 2003-11-27 | 2009-12-31 | Develogen Ag | Sposób zapobiegania i leczenia cukrzycy za pomocą neurturyny |
EP3381908A1 (en) * | 2017-03-27 | 2018-10-03 | Leadiant Biosciences SA | 2-(4-(4-(bromo-methoxybenzamido)benzylamino)phenyl)benzazole derivatives and their use as anti-heparanase |
-
2021
- 2021-04-27 CN CN202110460520.0A patent/CN115245556B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101686951A (zh) * | 2006-11-13 | 2010-03-31 | 纽约市哥伦比亚大学托管会 | 治疗糖尿病的选择性蛋白酶体抑制物 |
CN104174021A (zh) * | 2013-05-22 | 2014-12-03 | 复旦大学附属华山医院 | 蛋白酶体抑制剂在制备治疗慢性低度炎症性疾病药物中的用途 |
Also Published As
Publication number | Publication date |
---|---|
CN115245556A (zh) | 2022-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rohm et al. | Inflammation in obesity, diabetes, and related disorders | |
Chen et al. | The role of Th17 cells in inflammatory bowel disease and the research progress | |
Lopez-Candales et al. | Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome | |
Lan et al. | L-arginine ameliorates lipopolysaccharide-induced intestinal inflammation through inhibiting the TLR4/NF-κB and MAPK pathways and stimulating β-defensin expression in vivo and in vitro | |
Gonçalves et al. | Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel | |
Tu et al. | Ovomucin ameliorates intestinal barrier and intestinal bacteria to attenuate DSS-induced colitis in mice | |
Kobayashi et al. | Oral administration of hen egg white ovotransferrin attenuates the development of colitis induced by dextran sodium sulfate in mice | |
Liu et al. | RDP3, a novel antigout peptide derived from water extract of rice | |
US20230181550A1 (en) | Pharmaceutical use of an extended-release composition containing pirfenidone for the treatment and reversal of human steatohepatitis (nafld/nash) | |
Xia et al. | Phosphorylated peptides from Antarctic krill (Euphausia superba) prevent estrogen deficiency induced osteoporosis by inhibiting bone resorption in ovariectomized rats | |
Okagu et al. | Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides | |
CA2949644A1 (en) | Composition for treating or preventing metabolic disease, containing, as active ingredient, extracellular vesicles derived from akkermansia muciniphila bacteria | |
Liu et al. | Cerasus humilis cherry polyphenol reduces high-fat diet-induced obesity in C57BL/6 mice by mitigating fat deposition, inflammation, and oxidation | |
Gao et al. | Identification and antihypertension study of novel angiotensin I-converting enzyme inhibitory peptides from the skirt of Chlamys farreri fermented with Bacillus natto | |
Xu et al. | Ginsenoside compound K inhibits obesity-induced insulin resistance by regulation of macrophage recruitment and polarization via activating PPARγ | |
Wu et al. | Propionic acid driven by the Lactobacillus johnsonii culture supernatant alleviates colitis by inhibiting M1 macrophage polarization by modulating the MAPK pathway in mice | |
Wang et al. | [Retracted] Amidation‐Modified Apelin‐13 Regulates PPARγ and Perilipin to Inhibit Adipogenic Differentiation and Promote Lipolysis | |
CN101874807A (zh) | 以羊毛固醇及茯苓萃取物治疗恶病质的用途 | |
He et al. | Isolation and characterization of novel peptides from fermented products of Lactobacillus for ulcerative colitis prevention and treatment | |
Lv et al. | Prevention and potential repair of colitis: Beneficial effects and regulatory mechanisms of food-derived anti-inflammatory peptides | |
CN115245556B (zh) | 蛋白酶体抑制剂伊沙佐米在制备治疗糖尿病药物中的用途 | |
Xu et al. | Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation | |
Li et al. | Mechanism of Action and Risk Prediction of Adiponectin in Cardiovascular Diseases | |
Chen et al. | Ethanol extract of Pycnoporus sanguineus relieves the dextran sulfate sodium-induced experimental colitis by suppressing helper T cell-mediated inflammation via apoptosis induction | |
Mun et al. | Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |