CN115216325B - A high-sulfur petroleum coke high-efficiency desulfurization process - Google Patents
A high-sulfur petroleum coke high-efficiency desulfurization process Download PDFInfo
- Publication number
- CN115216325B CN115216325B CN202210818718.6A CN202210818718A CN115216325B CN 115216325 B CN115216325 B CN 115216325B CN 202210818718 A CN202210818718 A CN 202210818718A CN 115216325 B CN115216325 B CN 115216325B
- Authority
- CN
- China
- Prior art keywords
- petroleum coke
- desulfurization
- sulfur
- photocatalytic
- biological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002006 petroleum coke Substances 0.000 title claims abstract description 68
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 57
- 230000023556 desulfurization Effects 0.000 title claims abstract description 57
- 239000011593 sulfur Substances 0.000 title claims abstract description 30
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 230000001699 photocatalysis Effects 0.000 claims abstract description 25
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 14
- 230000003647 oxidation Effects 0.000 claims abstract description 10
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 241000894006 Bacteria Species 0.000 claims abstract description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract 3
- 238000001035 drying Methods 0.000 claims abstract 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 239000001963 growth medium Substances 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002609 medium Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 230000003009 desulfurizing effect Effects 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 238000002203 pretreatment Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000011941 photocatalyst Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 244000005700 microbiome Species 0.000 abstract description 2
- 238000007146 photocatalysis Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- 230000000813 microbial effect Effects 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 230000002195 synergetic effect Effects 0.000 abstract 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000007433 bsm medium Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 241000187562 Rhodococcus sp. Species 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 150000003577 thiophenes Chemical class 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241001585103 Gordonella Species 0.000 description 1
- 241001337904 Gordonia <angiosperm> Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 1
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- VWYGTDAUKWEPCZ-UHFFFAOYSA-L dichlorocopper;hydrate Chemical compound O.Cl[Cu]Cl VWYGTDAUKWEPCZ-UHFFFAOYSA-L 0.000 description 1
- DGLRDKLJZLEJCY-UHFFFAOYSA-L disodium hydrogenphosphate dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].OP([O-])([O-])=O DGLRDKLJZLEJCY-UHFFFAOYSA-L 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229940044631 ferric chloride hexahydrate Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B57/00—Other carbonising or coking processes; Features of destructive distillation processes in general
- C10B57/005—After-treatment of coke, e.g. calcination desulfurization
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种高硫石油焦高效脱硫工艺,具体为光催化协同微生物对石油焦进行脱硫,属于石油焦清洁生产领域。本发明发明内容包括利用掺铁二氧化钛光催化薄膜对高硫石油焦进行光催化氧化预处理和石油焦生物脱硫两个方面。具体步骤如下:(1)在汞灯照射下,利用光催化薄膜对石油焦水匀浆(液固比为20‑30 mL/g)进行8‑12 h的光催化氧化预处理;(2)利用脱硫菌对预处理后的石油焦进行生物脱硫,在脱硫培养基中加入0.5‑1g石油焦,以30℃条件培养6‑16 d;(3)将生物脱硫后的石油焦样进行水洗,抽滤并烘干后,实现石油焦的协同脱硫。本发明充分利用了光催化与微生物脱硫条件温和、成本低廉和对环境绿色友好的特点,又可以实现光催化剂的回收利用,同时满足了深度且高效的石油焦脱硫需求,具有很高的实际应用价值。The invention discloses a high-sulfur petroleum coke high-efficiency desulfurization process, which specifically involves photocatalytic collaboration with microorganisms to desulfurize petroleum coke, and belongs to the field of clean production of petroleum coke. The present invention includes two aspects: photocatalytic oxidation pretreatment of high-sulfur petroleum coke by using iron-doped titanium dioxide photocatalytic film and biological desulfurization of petroleum coke. The specific steps are as follows: (1) Under the irradiation of a mercury lamp, use a photocatalytic film to conduct photocatalytic oxidation pretreatment of petroleum coke water homogenate (liquid-to-solid ratio: 20-30 mL/g) for 8-12 hours; (2) Use desulfurization Bacteria perform biological desulfurization on the pretreated petroleum coke, add 0.5-1g petroleum coke to the desulfurization medium, and culture it at 30°C for 6-16 days; (3) Wash the petroleum coke sample after biological desulfurization with water, and filter it with suction After drying, synergistic desulfurization of petroleum coke is achieved. The invention makes full use of the characteristics of photocatalysis and microbial desulfurization, including mild conditions, low cost, and environmental friendliness. It can also realize the recycling of photocatalysts, and at the same time meets the needs for deep and efficient petroleum coke desulfurization, and has high practical application. value.
Description
技术领域Technical field
本发明属于石油焦清洁生产领域,具体公开了一种高硫石油焦高效脱硫工艺。The invention belongs to the field of clean production of petroleum coke, and specifically discloses a high-sulfur petroleum coke high-efficiency desulfurization process.
背景技术Background technique
我国的电解铝产业正踏上健康发展的道路,石油焦的需求量也保持平稳上涨。目前高品质的低硫石油焦呈现供不应求的态势,因此许多企业不得不把目光转向高硫石油焦市场。然而高硫焦中的硫分往往会危害产品的质量,在进行工业生产时释放的酸性气体还会损害生产设备,此外石油焦中的硫分转化为二氧化硫逸散到空气中还会造成大气污染,引发酸雨等自然灾害。因此,探寻高效、经济脱除石油焦中硫分的技术方法,对扩展高硫焦市场,提升高硫石油焦的利用率有着十分重要的意义。my country's electrolytic aluminum industry is embarking on a healthy development path, and the demand for petroleum coke has also maintained a steady increase. At present, high-quality low-sulfur petroleum coke is in short supply, so many companies have to turn their attention to the high-sulfur petroleum coke market. However, the sulfur in high-sulfur coke often harms the quality of products. The acid gas released during industrial production can also damage production equipment. In addition, the sulfur in petroleum coke is converted into sulfur dioxide and escapes into the air, causing air pollution. , causing natural disasters such as acid rain. Therefore, exploring technical methods for efficient and economical removal of sulfur from petroleum coke is of great significance for expanding the high-sulfur coke market and improving the utilization rate of high-sulfur petroleum coke.
石油焦中的硫分以有机硫为主,占比99%以上,其中以噻吩类及其衍生物最难去除。目前针对石油焦脱硫,尤其是噻吩类的脱除研究,主要包括高温煅烧脱硫、化学氧化法脱硫、碱金属脱硫和加氢脱硫等。然而高温脱硫、碱金属脱硫和加氢脱硫往往需要消耗大量的能源,且需要采用高昂的耐高温材料,导致脱硫成本较高,并存在较大的安全隐患;化学氧化法脱硫则容易破坏石油焦的石墨雏晶结构,降低石油焦的品质,同时还会带来难以处理的废液,造成环境污染和设备腐蚀等问题。The sulfur in petroleum coke is mainly organic sulfur, accounting for more than 99%. Among them, thiophenes and their derivatives are the most difficult to remove. Current research on petroleum coke desulfurization, especially the removal of thiophenes, mainly includes high-temperature calcination desulfurization, chemical oxidation desulfurization, alkali metal desulfurization and hydrodesulfurization. However, high-temperature desulfurization, alkali metal desulfurization and hydrodesulfurization often consume a lot of energy and require the use of expensive high-temperature-resistant materials, resulting in high desulfurization costs and major safety hazards; chemical oxidation desulfurization can easily destroy petroleum coke. The graphite crystal structure reduces the quality of petroleum coke, and also brings waste liquid that is difficult to handle, causing environmental pollution and equipment corrosion.
综上所述,有必要开发一种条件温和、绿色环保并且不易产生二次污染的新型石油焦脱硫技术。In summary, it is necessary to develop a new petroleum coke desulfurization technology that has mild conditions, is green and environmentally friendly, and is not prone to secondary pollution.
发明内容Contents of the invention
为解决传统石油焦脱硫方法存在的问题,本发明提供了一种高硫石油焦高效脱硫工艺,利用光催化与微生物的协同脱硫能力,结合各自的技术优势,以期获得高效且深度的脱硫效果。In order to solve the problems existing in the traditional petroleum coke desulfurization method, the present invention provides a high-sulfur petroleum coke high-efficiency desulfurization process, which utilizes the collaborative desulfurization capabilities of photocatalysis and microorganisms and combines their respective technical advantages in order to obtain efficient and deep desulfurization effects.
为实现以上脱硫目的,本发明提供的一种高硫石油焦高效脱硫工艺,技术方案如下。In order to achieve the above desulfurization purpose, the present invention provides a high-sulfur petroleum coke high-efficiency desulfurization process. The technical solution is as follows.
利用溶胶凝胶法制备掺铁量为1-4 wt%的纳米二氧化钛薄膜。Nanoscale titanium dioxide films with an iron content of 1-4 wt% were prepared using the sol-gel method.
取适量高硫石油焦粉碎至粒径小于200目。Take an appropriate amount of high-sulfur petroleum coke and crush it until the particle size is less than 200 mesh.
称取0.5-1 g石油焦加入到盛有14.5 mL去离子水的培养皿中,再加入0.5-1 mL30%的过氧化氢作为辅助氧化剂,搅拌均匀后放入掺铁二氧化钛薄膜。Weigh 0.5-1 g of petroleum coke and add it to a petri dish containing 14.5 mL of deionized water. Then add 0.5-1 mL of 30% hydrogen peroxide as an auxiliary oxidant. Stir evenly and add the iron-doped titanium dioxide film.
将培养皿平置于光催化反应器中,以200-300 W的高压汞灯照射8-10 h。Place the culture dish flatly in the photocatalytic reactor and irradiate it with a 200-300 W high-pressure mercury lamp for 8-10 h.
光催化反应结束后,对石油焦匀浆进行水洗、抽滤并烘干。After the photocatalytic reaction is completed, the petroleum coke homogenate is washed with water, filtered and dried.
将Rhodococcus sp. DQ-07菌(保藏于“中国普通微生物菌种保藏管理中心”,保藏编号为:CGMCC 1.60022)接种至50 mL BSM培养基中,在30 ℃摇床中培养2 d。 Rhodococcus sp. DQ-07 (deposited in the "China General Microbial Culture Collection and Management Center", deposit number: CGMCC 1.60022) was inoculated into 50 mL BSM medium and cultured in a shaking incubator at 30°C for 2 days.
本发明所使用BSM培养基:葡萄糖10 g、氯化铵2 g、磷酸二氢钾2.44 g、十二水合磷酸氢二钠14.02 g、六水合氯化镁0.2 g、无水氯化钙0.04 g、二水合氯化铜0.01 g、氯化锌 0.002 g、六水合氯化钴0.004 g、六水合氯化铝0.001 g、硼酸0.001 g、六水合氯化铁0.04 g、二水合钼酸钠0.001 g、四水合氯化锰0.008 g,121 ℃灭菌20 min。The BSM culture medium used in the present invention: 10 g of glucose, 2 g of ammonium chloride, 2.44 g of potassium dihydrogen phosphate, 14.02 g of disodium hydrogen phosphate dodecahydrate, 0.2 g of magnesium chloride hexahydrate, 0.04 g of anhydrous calcium chloride, Copper chloride hydrate 0.01 g, zinc chloride 0.002 g, cobalt chloride hexahydrate 0.004 g, aluminum chloride hexahydrate 0.001 g, boric acid 0.001 g, ferric chloride hexahydrate 0.04 g, sodium molybdate dihydrate 0.001 g, tetrahydrate Hydrated manganese chloride 0.008 g, sterilized at 121°C for 20 minutes.
取0.5 g预处理石油焦加入脱硫培养基中,以30-35 ℃条件培养6-10 d,培养结束后,将含有石油焦的培养液抽滤、清洗并烘干,测定其含硫量。Add 0.5 g of pretreated petroleum coke to the desulfurization medium and culture it at 30-35°C for 6-10 d. After the culture, the culture solution containing petroleum coke is filtered, washed and dried, and its sulfur content is measured.
本发明的技术优势。Technical advantages of the present invention.
1.光催化氧化脱硫与生物脱硫两种技术均在常温常压下进行,具有反应条件温和、反应过程安全可控的优势。1. Both photocatalytic oxidative desulfurization and biological desulfurization technologies are carried out at normal temperature and pressure, and have the advantages of mild reaction conditions and safe and controllable reaction processes.
2.纳米二氧化钛有抑菌作用,当光催化剂固化为玻璃薄膜后,既可以减少光催化剂的损耗率,也不会影响后续的生物脱硫。2. Nano-titanium dioxide has an antibacterial effect. When the photocatalyst is solidified into a glass film, it can reduce the loss rate of the photocatalyst and will not affect subsequent biological desulfurization.
3.光催化氧化将传统生物脱硫的“4S途径”简化为两步,同时利用其强氧化性质破坏了石油焦外部结构,改善了石油焦表面的亲水性,可以最大限度地发挥脱硫菌的脱硫特性,大幅缩短脱硫周期。3. Photocatalytic oxidation simplifies the "4S pathway" of traditional biological desulfurization into two steps. At the same time, it uses its strong oxidizing properties to destroy the external structure of petroleum coke and improve the hydrophilicity of the petroleum coke surface, which can maximize the effectiveness of desulfurization bacteria. Desulfurization characteristics greatly shorten the desulfurization cycle.
附图说明Description of the drawings
图1 掺铁二氧化钛扫描电镜图(70K×)。Figure 1 Scanning electron microscope image of iron-doped titanium dioxide (70K×).
图2 石油焦预处理前(a)和预处理后(b)接触角对比。Figure 2 Comparison of contact angles before (a) and after (b) pretreatment of petroleum coke.
图3 协同脱硫效果图。Figure 3 Collaborative desulfurization effect diagram.
具体实施方式Detailed ways
下面首先制备光催化剂薄膜,再结合生物脱硫具体实施案例解释本发明技术特点,需注意具体案例仅用作解释本发明,并不限制本发明使用范围。The following first prepares a photocatalyst film, and then explains the technical features of the present invention in conjunction with specific implementation cases of biological desulfurization. It should be noted that the specific cases are only used to explain the present invention and do not limit the scope of use of the present invention.
实施例1:一种高硫石油焦高效脱硫工艺如下。Example 1: A high-sulfur petroleum coke high-efficiency desulfurization process is as follows.
将乙醇、钛酸四丁酯、硝酸铁水溶液和冰乙酸以体积比50:10:8:15依次添加,并在磁力搅拌和超声震荡下进行水解反应,获得掺铁量为4 wt%的二氧化钛溶胶,室温下陈化24h。Ethanol, tetrabutyl titanate, iron nitrate aqueous solution and glacial acetic acid were added in sequence at a volume ratio of 50:10:8:15, and the hydrolysis reaction was carried out under magnetic stirring and ultrasonic vibration to obtain titanium dioxide with an iron-doped amount of 4 wt%. Sol, aged at room temperature for 24 hours.
使用浸渍提拉法将掺铁二氧化钛溶胶以镀膜的方式固定在载玻片上,450 ℃热处理2 h。The iron-doped titanium dioxide sol was fixed on the glass slide by coating using the dipping and pulling method, and then heat-treated at 450°C for 2 h.
取0.5 g粒径小于200目的石油焦加入到盛有14.5 mL去离子水的培养皿中,再加入0.5 mL 30%的过氧化氢作为辅助氧化剂,搅拌均匀后放入2片掺铁二氧化钛薄膜。Take 0.5 g of petroleum coke with a particle size less than 200 mesh and add it to a petri dish containing 14.5 mL of deionized water. Then add 0.5 mL of 30% hydrogen peroxide as an auxiliary oxidant. After stirring evenly, add 2 iron-doped titanium dioxide films.
在光催化反应器中,以200 W的汞灯照射8 h。In the photocatalytic reactor, a 200 W mercury lamp was used for irradiation for 8 h.
将光催化氧化后的石油焦匀浆进行抽滤、清洗并烘干。The petroleum coke homogenate after photocatalytic oxidation is filtered, washed and dried.
将Rhodococcus sp. DQ-07菌接种至50 mL BSM培养基中,在30 ℃摇床中培养2d。 Rhodococcus sp. DQ-07 was inoculated into 50 mL BSM medium and cultured in a shaker at 30°C for 2 days.
称取0.5 g光催化预处理后的石油焦样,加入至Rhodococcus sp. DQ-07菌的培养基中,在30 ℃摇床中继续培养8 d。Weigh 0.5 g of the petroleum coke sample after photocatalytic pretreatment, add it to the culture medium of Rhodococcus sp .
培养结束后,将含有石油焦的培养液抽滤、清洗并烘干,测定其含硫量,脱硫率最高为51.92%。After the culture, the culture solution containing petroleum coke was filtered, washed and dried, and its sulfur content was measured. The highest desulfurization rate was 51.92%.
实施例2:一种高硫石油焦高效脱硫工艺如下。Example 2: A high-sulfur petroleum coke high-efficiency desulfurization process is as follows.
将乙醇、钛酸四丁酯、硝酸铁水溶液和冰乙酸以体积比50:10:8:15依次添加,并在磁力搅拌和超声震荡下进行水解反应,获得掺铁量为4 wt%的二氧化钛溶胶,室温下陈化24h;Ethanol, tetrabutyl titanate, iron nitrate aqueous solution and glacial acetic acid were added in sequence at a volume ratio of 50:10:8:15, and the hydrolysis reaction was carried out under magnetic stirring and ultrasonic vibration to obtain titanium dioxide with an iron-doped amount of 4 wt%. Sol, aged at room temperature for 24 hours;
使用浸渍提拉法将掺铁二氧化钛溶胶以镀膜的方式固定在载玻片上,450 ℃热处理2 h。The iron-doped titanium dioxide sol was fixed on the glass slide by coating using the dipping and pulling method, and then heat-treated at 450°C for 2 h.
取0.5 g粒径小于200目的石油焦加入到盛有14.5 mL去离子水的培养皿中,再加入0.5 mL 30%的过氧化氢作为辅助氧化剂,搅拌均匀后放入2片掺铁二氧化钛薄膜。Take 0.5 g of petroleum coke with a particle size less than 200 mesh and add it to a petri dish containing 14.5 mL of deionized water. Then add 0.5 mL of 30% hydrogen peroxide as an auxiliary oxidant. After stirring evenly, add 2 iron-doped titanium dioxide films.
在光催化反应器中,以200 W的汞灯照射8 h。In the photocatalytic reactor, a 200 W mercury lamp was used for irradiation for 8 h.
将光催化氧化后的石油焦匀浆进行抽滤、清洗并烘干。The petroleum coke homogenate after photocatalytic oxidation is filtered, washed and dried.
将戈登氏菌接种至50 mL BSM培养基中,在30 ℃摇床中培养2 d。Gordonia was inoculated into 50 mL BSM medium and cultured in a shaker at 30°C for 2 days.
称取0.5 g光催化预处理后的石油焦样,用灭菌尼龙布包裹,放入至戈登氏菌的培养基中,在30 ℃摇床中继续培养8 d。Weigh 0.5 g of the petroleum coke sample after photocatalytic pretreatment, wrap it in sterilized nylon cloth, put it into Gordonella's culture medium, and continue to culture it in a shaker at 30°C for 8 d.
培养结束后,将含有石油焦的培养液抽滤、清洗并烘干,测定其含硫量,脱硫率最高为29.42%。After the culture, the culture solution containing petroleum coke was filtered, washed and dried, and its sulfur content was measured. The highest desulfurization rate was 29.42%.
实例3:一种高硫石油焦高效脱硫工艺如下。Example 3: A high-sulfur petroleum coke high-efficiency desulfurization process is as follows.
将乙醇、钛酸四丁酯、硝酸铁水溶液和冰乙酸以体积比10:50:8:15依次添加,并在磁力搅拌和超声震荡下进行水解反应,获得掺铁量为4 wt%的二氧化钛溶胶,室温下陈化24h。Ethanol, tetrabutyl titanate, aqueous iron nitrate solution and glacial acetic acid were added in sequence at a volume ratio of 10:50:8:15, and the hydrolysis reaction was carried out under magnetic stirring and ultrasonic vibration to obtain titanium dioxide with an iron-doped amount of 4 wt%. Sol, aged at room temperature for 24 hours.
使用浸渍提拉法将掺铁二氧化钛溶胶以镀膜的方式固定在载玻片上,450 ℃热处理2 h。The iron-doped titanium dioxide sol was fixed on the glass slide by coating using the dipping and pulling method, and then heat-treated at 450°C for 2 h.
取0.5 g粒径小于200目的石油焦加入到盛有14.5 mL去离子水的培养皿中,再加入0.5 mL 30%的过氧化氢作为辅助氧化剂,搅拌均匀后放入2片掺铁二氧化钛薄膜。Take 0.5 g of petroleum coke with a particle size less than 200 mesh and add it to a petri dish containing 14.5 mL of deionized water. Then add 0.5 mL of 30% hydrogen peroxide as an auxiliary oxidant. After stirring evenly, add 2 iron-doped titanium dioxide films.
在光催化反应器中,以200 W的汞灯照射8 h。In the photocatalytic reactor, a 200 W mercury lamp was used for irradiation for 8 h.
将光催化氧化后的石油焦匀浆进行抽滤、清洗并烘干。The petroleum coke homogenate after photocatalytic oxidation is filtered, washed and dried.
将HPJ菌接种至50 mL BSM培养基中,在30 ℃摇床中培养2 d。HPJ bacteria were inoculated into 50 mL BSM medium and cultured in a shaker at 30°C for 2 days.
称取0.5 g光催化预处理后的石油焦样,加入至HPJ菌的培养基中,在30 ℃摇床中继续培养8 d。Weigh 0.5 g of the petroleum coke sample after photocatalytic pretreatment, add it to the culture medium of HPJ bacteria, and continue to culture it in a shaker at 30°C for 8 d.
培养结束后,将含有石油焦的培养液抽滤、清洗并烘干,测定其含硫量,脱硫率最高为34.47%。After the culture, the culture solution containing petroleum coke was filtered, washed and dried, and its sulfur content was measured. The highest desulfurization rate was 34.47%.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210818718.6A CN115216325B (en) | 2022-07-13 | 2022-07-13 | A high-sulfur petroleum coke high-efficiency desulfurization process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210818718.6A CN115216325B (en) | 2022-07-13 | 2022-07-13 | A high-sulfur petroleum coke high-efficiency desulfurization process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115216325A CN115216325A (en) | 2022-10-21 |
CN115216325B true CN115216325B (en) | 2023-09-08 |
Family
ID=83611884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210818718.6A Active CN115216325B (en) | 2022-07-13 | 2022-07-13 | A high-sulfur petroleum coke high-efficiency desulfurization process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115216325B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049173A (en) * | 2001-08-07 | 2003-02-21 | National Institute Of Advanced Industrial & Technology | Oil reforming method |
CN101850268A (en) * | 2010-06-17 | 2010-10-06 | 廖禹东 | Nano titanium dioxide thin film and preparation method and application thereof |
WO2011113769A2 (en) * | 2010-03-17 | 2011-09-22 | Ostthüringische Materialprüfgesellschaft Für Textil Und Kunststoffe Mbh | Filter granulate |
CN105833724A (en) * | 2016-04-22 | 2016-08-10 | 江苏迪萨机械有限公司 | Sintering flue gas synchronous desulfurization and denitration process based on optical-electric type fenton coupling regeneration |
CN107096546A (en) * | 2017-03-15 | 2017-08-29 | 浙江工商大学 | A kind of iron oxide bismuth oxide bismuth sulfide visible light catalytic film and its preparation method and application |
CN110386656A (en) * | 2019-08-01 | 2019-10-29 | 武汉科技大学 | A kind of coking desulfurization waste liquor processing method |
CN211098405U (en) * | 2019-10-31 | 2020-07-28 | 四川鸿源环保科技有限公司 | Submerged arc furnace flue gas microbiological desulfurization tower |
CN111924838A (en) * | 2020-08-31 | 2020-11-13 | 中国矿业大学 | A kind of biological desulfurization process of high-sulfur petroleum coke |
CN113105066A (en) * | 2021-03-16 | 2021-07-13 | 江西铜业铅锌金属有限公司 | Zinc smelting process for improving xanthate wastewater treatment efficiency |
CN214680983U (en) * | 2020-12-25 | 2021-11-12 | 青岛华世洁环保科技有限公司 | A waste gas treatment system for coke oven gas desulfurization and ammonia ammonia plant |
CN214862445U (en) * | 2021-05-08 | 2021-11-26 | 广东众城生态环境发展有限公司 | Comprehensive waste gas treatment system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI651269B (en) * | 2013-09-23 | 2019-02-21 | 歐洲泰奧色得有限公司 | Titanium dioxide particles and preparation method thereof |
-
2022
- 2022-07-13 CN CN202210818718.6A patent/CN115216325B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049173A (en) * | 2001-08-07 | 2003-02-21 | National Institute Of Advanced Industrial & Technology | Oil reforming method |
WO2011113769A2 (en) * | 2010-03-17 | 2011-09-22 | Ostthüringische Materialprüfgesellschaft Für Textil Und Kunststoffe Mbh | Filter granulate |
CN101850268A (en) * | 2010-06-17 | 2010-10-06 | 廖禹东 | Nano titanium dioxide thin film and preparation method and application thereof |
CN105833724A (en) * | 2016-04-22 | 2016-08-10 | 江苏迪萨机械有限公司 | Sintering flue gas synchronous desulfurization and denitration process based on optical-electric type fenton coupling regeneration |
CN107096546A (en) * | 2017-03-15 | 2017-08-29 | 浙江工商大学 | A kind of iron oxide bismuth oxide bismuth sulfide visible light catalytic film and its preparation method and application |
CN110386656A (en) * | 2019-08-01 | 2019-10-29 | 武汉科技大学 | A kind of coking desulfurization waste liquor processing method |
CN211098405U (en) * | 2019-10-31 | 2020-07-28 | 四川鸿源环保科技有限公司 | Submerged arc furnace flue gas microbiological desulfurization tower |
CN111924838A (en) * | 2020-08-31 | 2020-11-13 | 中国矿业大学 | A kind of biological desulfurization process of high-sulfur petroleum coke |
CN214680983U (en) * | 2020-12-25 | 2021-11-12 | 青岛华世洁环保科技有限公司 | A waste gas treatment system for coke oven gas desulfurization and ammonia ammonia plant |
CN113105066A (en) * | 2021-03-16 | 2021-07-13 | 江西铜业铅锌金属有限公司 | Zinc smelting process for improving xanthate wastewater treatment efficiency |
CN214862445U (en) * | 2021-05-08 | 2021-11-26 | 广东众城生态环境发展有限公司 | Comprehensive waste gas treatment system |
Also Published As
Publication number | Publication date |
---|---|
CN115216325A (en) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104388923B (en) | A kind of preparation method of graphene modified titanium oxide metal anticorrosion coating | |
CN101549895B (en) | Preparation method of carbon aerogel loaded titanium dioxide electrodes and application thereof | |
CN103801284B (en) | A kind of preparation method of bismuth vanadate-graphene composite photocatalyst | |
CN101574652B (en) | Loaded photo-catalyst and preparation method and use thereof | |
CN107497431A (en) | Heterogeneous fenton catalyst of high-specific surface area FeOOH/ carbon cloths and preparation method thereof | |
CN109225325B (en) | Fe-PANI/zeolite catalyst and preparation method thereof | |
CN105833860A (en) | A kind of CQDs/Bi2WO6 composite photocatalyst and its preparation method | |
CN110586063A (en) | Carbon fiber loaded zinc oxide photocatalytic composite material and preparation method thereof | |
CN102489253A (en) | Bismuth ferrate-carbon nano tube, preparation method thereof and method for treating organic dye wastewater by utilizing bismuth ferrate-carbon nano tube | |
CN103721737A (en) | Non-metallic material for driving photocatalytic decomposition of water by using efficient visible light | |
CN115216325B (en) | A high-sulfur petroleum coke high-efficiency desulfurization process | |
CN101462073A (en) | Heteronuclear cobalt-zinc metallophthalocyanine/nano titanic oxide composite film and preparation method | |
CN102701315A (en) | Method for processing dye wastewater by applying nanocomposite photocatalyst combination-Fenton | |
CN112520819B (en) | Bismuth-system three-dimensional microsphere heterojunction photoelectrode and preparation and application thereof | |
CN102674525A (en) | Method for preparing cathode for cathode electro-fenton process | |
CN1410158A (en) | Method of loading titanium dioxide photo catalyst on metal surface | |
CN107381863A (en) | A kind of degraded highly salt containing organic waste water and the method for synchronously preparing iron oxide | |
CN107335418A (en) | Novel hollow TiO2Preparation method of nano cup catalyst and application of nano cup catalyst after metal loading | |
CN108754177B (en) | Method for removing organic matter in zinc sulfate solution of hydrometallurgy by ultraviolet light irradiation | |
CN107973367B (en) | Fe-doped coated TiO2Process for degrading wastewater by using photocatalyst | |
CN108187647A (en) | A kind of nano graphite flakes and composite titania material and its preparation method and application | |
CN110124683A (en) | Mesoporous NiMn2O4The preparation method of catalyst, the catalyst thus prepared and application thereof | |
WO2024192677A1 (en) | Heterogeneous catalytic material, preparation method therefor, and use thereof | |
CN116688969A (en) | Preparation method of carbon dot composite photocatalytic material, carbon dot composite photocatalytic material and its application | |
CN111921516B (en) | Preparation method of photocatalyst with super-strong degradation effect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |