CN115188812A - MOSFET with split planar gate structure - Google Patents
MOSFET with split planar gate structure Download PDFInfo
- Publication number
- CN115188812A CN115188812A CN202210828217.6A CN202210828217A CN115188812A CN 115188812 A CN115188812 A CN 115188812A CN 202210828217 A CN202210828217 A CN 202210828217A CN 115188812 A CN115188812 A CN 115188812A
- Authority
- CN
- China
- Prior art keywords
- gate
- region
- trench gate
- planar
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 210000000746 body region Anatomy 0.000 claims abstract description 143
- 239000000758 substrate Substances 0.000 claims abstract description 71
- 239000004065 semiconductor Substances 0.000 claims abstract description 26
- 230000005669 field effect Effects 0.000 claims abstract description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 5
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 67
- 230000008569 process Effects 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 125000006850 spacer group Chemical group 0.000 claims description 16
- 229910021332 silicide Inorganic materials 0.000 claims description 11
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 11
- 238000009825 accumulation Methods 0.000 claims description 7
- 239000000969 carrier Substances 0.000 claims description 5
- 238000000407 epitaxy Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 description 21
- 239000012535 impurity Substances 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 239000003989 dielectric material Substances 0.000 description 20
- 230000015556 catabolic process Effects 0.000 description 17
- 230000003071 parasitic effect Effects 0.000 description 17
- 238000005530 etching Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- 229920005591 polysilicon Polymers 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 238000002513 implantation Methods 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 229910052796 boron Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000059 patterning Methods 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- 229910002601 GaN Inorganic materials 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 206010010144 Completed suicide Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/023—Manufacture or treatment of FETs having insulated gates [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/611—Insulated-gate field-effect transistors [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
该发明涉及一种具有分离平面栅结构的金属氧化物半导体场效应晶体管(MOSFET)器件,其包括形成于衬底上表面的外延区域和至少两个形成于外延区域中的体区域。体区域位于靠近外延区域的上表面,且横向彼此间隔。该器件还包括至少两个设置于对应的体区域中且靠近该体区域上表面的位置的源区,以及包括至少两个平面栅和一个沟槽栅的栅极结构。每个平面栅均位于所述的外延区域的上表面,并与相应的体区域的至少一部分重叠。该沟槽栅位于两个所述体区域之间且至少部分位于所述外延区域之中,还在外延区域上表面之上形成横向过生长的侧壁;以及位于衬底背面且与衬底电连接的漏极触点。
The invention relates to a metal oxide semiconductor field effect transistor (MOSFET) device having a split planar gate structure, which includes an epitaxial region formed on the upper surface of a substrate and at least two body regions formed in the epitaxial region. The body regions are located adjacent to the upper surface of the epitaxial region and are laterally spaced apart from each other. The device also includes at least two source regions disposed in corresponding body regions and proximate the upper surface of the body regions, and a gate structure including at least two planar gates and one trench gate. Each planar gate is located on the upper surface of the epitaxial region and overlaps at least a portion of the corresponding body region. the trench gate is located between the two body regions and at least partially within the epitaxial region, and also forms laterally overgrown sidewalls over the upper surface of the epitaxial region; and is located on the backside of the substrate and electrically connected to the substrate connected drain contact.
Description
技术领域technical field
本发明一般涉及电气、电子和计算机技术,更具体地涉及功率晶体管器件和制造方法The present invention relates generally to electrical, electronic and computer technology, and more particularly to power transistor devices and methods of manufacture
背景技术Background technique
功率晶体管,例如功率金属氧化物半导体场效应晶体管(MOSFET),通常被设计成能够在导通状态下维持高的漏源电流密度,并且在关断状态下维持源漏间的高阻断电压。有许多晶体管器件类型,例如横向和垂直器件、平面栅和沟槽栅、单极和双极晶体管,每一种都是为特定的应用而设计的。许多设计参数是互斥的,因此一个参数的改进会导致另一个参数的退化。因此,在不同的晶体管设计中,存在着一种特殊的性能权衡。Power transistors, such as power metal-oxide-semiconductor field-effect transistors (MOSFETs), are typically designed to maintain a high drain-source current density in the on-state and a high blocking voltage between source and drain in the off-state. There are many transistor device types, such as lateral and vertical devices, planar and trench gate, unipolar and bipolar transistors, each designed for a specific application. Many design parameters are mutually exclusive, so improvement in one parameter leads to degradation in another. Therefore, there is a special performance trade-off in different transistor designs.
晶体管的设计和性能标准可以用几个属性来衡量,包括漏源击穿电压(BVds)、特征导通电阻(Rsp)、栅极电容(Cg)和栅漏电容(Cgd)。这些性能特性在很大程度上取决于晶体管的设计、结构和材料的选择等因素。此外,这些晶体管性能特性通常在关键设计参数上遵循相反的趋势,例如栅极长度、沟道和漂移区掺杂浓度、漂移区长度、总的栅极宽度等等,从而使得晶体管器件的设计具有挑战性。例如,增加晶体管中的漂移区掺杂浓度会降低特征导通电阻,同时也会降低击穿电压,这可能使晶体管器件无法满足特定应用下的击穿电压额定值。同样的,较大的栅极宽度可以降低晶体管器件的总导通电阻,但同时也会增加寄生栅极电容,从而增加晶体管的开关损耗。因此,在晶体管设计的实践中,往往涉及到某些关键设计参数的权衡,以便在各性能特性之间达成妥协。Transistor design and performance criteria can be measured by several properties, including drain-source breakdown voltage (BV ds ), characteristic on-resistance (R sp ), gate capacitance (C g ), and gate-drain capacitance (C gd ). These performance characteristics are highly dependent on factors such as transistor design, structure, and material selection. Furthermore, these transistor performance characteristics typically follow opposite trends on key design parameters such as gate length, channel and drift region doping concentrations, drift region length, overall gate width, etc., allowing transistor device designs with challenge. For example, increasing the doping concentration of the drift region in a transistor reduces the characteristic on-resistance and also reduces the breakdown voltage, which may prevent the transistor device from meeting the breakdown voltage rating for a particular application. Likewise, a larger gate width can reduce the overall on-resistance of the transistor device, but it also increases parasitic gate capacitance, thereby increasing the switching losses of the transistor. Therefore, in the practice of transistor design, it often involves the trade-off of certain key design parameters in order to reach a compromise between various performance characteristics.
决定晶体管器件效率和可靠性的一个重要性能参数是密勒电容,或称栅漏电容。随着人们对更高效率的需求不断增加,功率MOSFET的设计趋向于更小的栅极尺寸,从而降低栅极电荷(Qg)和更低的阈值电压(Vt),由于密勒电容耦合效应,使器件更容易受到漏极电压峰值的影响。与此同时,较高的晶体管开关频率,以及增加的寄生电感,导致漏极振铃电压的增加。这些效应的综合影响使得现今的功率晶体管器件容易产生漏极电压引起假导通,从而损坏器件。另外一个极富挑战性的事实是减小密勒电容,并且作为一种设计妥协,常常导致器件的导通电阻增加。降低寄生栅漏电容的常用方法不可避免地会导致更高的器件导通电阻,因此降低功率晶体管器件中的密勒电容可能是最难实现的设计目标之一,也是产品性能和应用可靠性的关键需要。An important performance parameter that determines the efficiency and reliability of transistor devices is Miller capacitance, or gate-to-drain capacitance. With the increasing demand for higher efficiency, power MOSFET designs are trending towards smaller gate sizes, resulting in lower gate charge (Q g ) and lower threshold voltage (V t ) due to Miller capacitive coupling effect, making the device more susceptible to drain voltage spikes. At the same time, higher transistor switching frequencies, along with increased parasitic inductance, lead to increased drain ringing voltage. The combined effect of these effects makes today's power transistor devices prone to spurious turn-on caused by drain voltages that can damage the device. Another very challenging fact is reducing the Miller capacitance and, as a design compromise, often leads to an increase in the on-resistance of the device. Common methods of reducing parasitic gate-to-drain capacitance inevitably result in higher device on-resistance, so reducing Miller capacitance in power transistor devices can be one of the most difficult design goals to achieve, as well as a critical factor for product performance and application reliability. critical need.
发明内容SUMMARY OF THE INVENTION
该发明的目的是克服了上述现有技术中的缺点,提供一种有利地提供了用于LDMOS晶体管器件的增强栅极结构以及用于制造该器件的方法。该栅极结构有利于与现有的互补金属氧化物半导体(CMOS)制造技术兼容,并且不依赖于深奥且昂贵的工艺和材料的使用,例如,碳化硅(SiC)、氮化镓(GaN)等,在不显著降低器件阻断电压和器件可靠性的前提下,实现器件导通电阻的大幅降低。The purpose of this invention is to overcome the above-mentioned disadvantages of the prior art, and to provide an enhancement gate structure advantageously provided for an LDMOS transistor device and a method for manufacturing the same. This gate structure facilitates compatibility with existing complementary metal-oxide-semiconductor (CMOS) fabrication technologies and does not rely on the use of esoteric and expensive processes and materials, eg, silicon carbide (SiC), gallium nitride (GaN) etc., under the premise of not significantly reducing the blocking voltage of the device and the reliability of the device, the on-resistance of the device can be greatly reduced.
为了实现上述的目的,该发明的具有如下构成:In order to achieve the above-mentioned purpose, this invention has the following constitution:
根据本发明的实施例,金属氧化物半导体场效应晶体管(MOSFET)器件包括设置在衬底上表面上的具有第一导电类型的外延区域,以及在该外延区域中形成的具有第二导电类型的至少两个体区域,第二导电类型与第一导电类型具有相反的导电类型。所述体区域分布于靠近所述外延区域的上表面并且彼此横向间隔。该器件还包括设置于各相应的体区域中且靠近所述体区域的上表面的具有所述第一导电类型的至少两个源区,还包括至少具有两个平面栅和一个沟槽栅的栅极结构。每个所述的平面栅均设置于所述外延区域的上表面,并且与对应的体区域的至少一部分重叠。沟槽栅部分形成与外延区域之中,并且位于所述体区域之间,且沟槽栅在所述外延区域上表面之上形成横向过生长的侧壁以部分覆盖所述外延区域上表面。设置在衬底背面的漏极触点提供与衬底间的电连接。According to an embodiment of the present invention, a metal oxide semiconductor field effect transistor (MOSFET) device includes an epitaxial region having a first conductivity type disposed on an upper surface of a substrate, and a second conductivity type formed in the epitaxial region At least two body regions, the second conductivity type has an opposite conductivity type to the first conductivity type. The body regions are distributed proximate the upper surface of the epitaxial region and are laterally spaced from each other. The device also includes at least two source regions of the first conductivity type disposed in each respective body region and proximate an upper surface of the body region, and includes at least two planar gates and a trench gate gate structure. Each of the planar gates is disposed on the upper surface of the epitaxial region and overlaps at least a portion of the corresponding body region. A trench gate is partially formed in the epitaxial region and between the body regions, and the trench gate forms laterally overgrown sidewalls on the upper surface of the epitaxial region to partially cover the upper surface of the epitaxial region. A drain contact disposed on the backside of the substrate provides electrical connection to the substrate.
根据本发明的实施例,制造该MOSFET器件的方法包括:在具有第一导电类型的衬底的上表面上形成具有第一导电类型的外延区域;在所述外延区域中形成具有第二导电类型的至少两个体区域,所述第二导电类型与所述第一导电类型的导电类型相反,所述体区域设置于靠近所述外延区域的上表面并且彼此横向间隔;形成具有第一导电类型的至少两个源区,每个所述源区均分别设置与靠近所述体区域的上表面的相应的对应的体区域中;形成包括至少两个平面栅和一个沟槽栅的栅极结构,平面栅均被设置于外延区域的上表面上,并且与相应的体区域的至少一部分重叠,沟槽栅部分形成与外延区域之中,并且位于所述体区域之间,且沟槽栅在所述外延区域上表面之上形成横向过生长的侧壁以部分覆盖所述外延区域上表面;以及在衬底背面形成漏极触点并与衬底电连接。According to an embodiment of the present invention, a method of fabricating the MOSFET device includes: forming an epitaxial region having a first conductivity type on an upper surface of a substrate having a first conductivity type; forming an epitaxial region having a second conductivity type in the epitaxial region at least two body regions, the second conductivity type is opposite to the conductivity type of the first conductivity type, the body regions are disposed close to the upper surface of the epitaxial region and are laterally spaced from each other; forming a at least two source regions, each of which is respectively disposed in a corresponding corresponding body region near the upper surface of the body region; forming a gate structure including at least two planar gates and one trench gate, The planar gates are all disposed on the upper surface of the epitaxial region and overlap with at least a portion of the corresponding body region, the trench gate portion is formed in the epitaxial region, and is located between the body regions, and the trench gate is in the A lateral overgrown sidewall is formed on the upper surface of the epitaxial region to partially cover the upper surface of the epitaxial region; and a drain contact is formed on the backside of the substrate and electrically connected to the substrate.
本发明的技术可以提供实质性的有益技术效果。仅作为示例而不是作为限制,本发明的一个或多个实施例中的LDMOS可以提供以下一个或多个有益效果:The techniques of the present invention can provide substantial beneficial technical effects. By way of example only and not by way of limitation, the LDMOS in one or more embodiments of the present invention may provide one or more of the following beneficial effects:
·更低的导通电阻RDS-on Lower on-resistance R DS-on
·更低的栅漏(密勒)电容;Lower gate-to-drain (Miller) capacitance;
·更低的开关损耗;Lower switching losses;
·更高的关断状态阻断电压。• Higher off-state blocking voltage.
本发明的这些和其他特征和优点将通过以下说明性实施例中的详细描述并结合附图加以阐述。These and other features and advantages of the present invention will be elucidated from the following detailed description in the illustrative embodiments taken in conjunction with the accompanying drawings.
附图说明Description of drawings
参照以下仅作为示例的附图描述的本发明各实施例是非限制性和非穷尽性的。除非另有规定,附图中所使用的附图标记在多个视图中标识相同的元素。The embodiments of the invention described below with reference to the accompanying drawings, which are by way of example only, are non-limiting and non-exhaustive. Unless otherwise specified, reference numerals used in the figures identify the same elements throughout the several views.
图1A和1B分别是包括导通电阻和寄生栅漏电容图示的垂直双扩散金属氧化物半导体场效应晶体管(VDMOSFET)器件的至少一部分的截面图;1A and 1B are, respectively, cross-sectional views of at least a portion of a vertical double-diffused metal-oxide-semiconductor field-effect transistor (VDMOSFET) device including on-resistance and parasitic gate-drain capacitance diagrams;
图2A至2C为沟槽栅MOSFET器件的截面图的至少一部分,其显示出减小的导通电阻,并说明器件中体区域深度变化带来的一些影响;2A-2C are at least a portion of cross-sectional views of trench gate MOSFET devices showing reduced on-resistance and illustrating some of the effects of varying body region depth in the device;
图3A至3C为分裂沟槽栅MOSFET器件的截面图的至少一部分,其显示出减小的寄生栅漏电容和增加的关断状态阻断电压,并说明器件中体区域深度变化带来的一些影响;3A-3C are at least a portion of cross-sectional views of a split trench gate MOSFET device showing reduced parasitic gate-to-drain capacitance and increased off-state blocking voltage, and illustrating some of the effects of body region depth variation in the device influences;
图4A表示本发明的一个实施例的超级栅MOSFET器件的至少一部分的透视图;Figure 4A represents a perspective view of at least a portion of a Supergate MOSFET device of one embodiment of the present invention;
图4B为沿图4A中A-A′的超级栅MOSFET器件的截面图;4B is a cross-sectional view of the super-gate MOSFET device along A-A' in FIG. 4A;
图4C为图4B中所示的具有在沟槽栅极结构附近形成的累积层的超级栅MOSFET器件的截面图;4C is a cross-sectional view of the super-gate MOSFET device shown in FIG. 4B with an accumulation layer formed adjacent to the trench gate structure;
图5概念性地描述了三种不同类型MOSFET器件的特征导通电阻RSP与击穿电压之间的关系;Figure 5 conceptually depicts the relationship between the characteristic on-resistance R SP and breakdown voltage of three different types of MOSFET devices;
图6表示本发明的另一实施例的超级栅MOSFET器件的至少一部分的透视图;Figure 6 shows a perspective view of at least a portion of a Super Gate MOSFET device of another embodiment of the present invention;
图7A至7I为图4B所示的本发明的一个实施例的超级栅MOSFET器件的至少一部分的制造过程截面示意图;7A to 7I are schematic cross-sectional views of the manufacturing process of at least a portion of the super-gate MOSFET device according to an embodiment of the present invention shown in FIG. 4B;
图8为本发明的一个实施例中具有增强电压阻断能力栅极结构的超级栅MOSFET器件的至少一部分的截面图;8 is a cross-sectional view of at least a portion of a super-gate MOSFET device having an enhanced voltage blocking capability gate structure in accordance with one embodiment of the present invention;
图9A至9L为图8所示的本发明的一个实施例的超级栅MOSFET器件的至少一部分的制造过程截面示意图;9A to 9L are schematic cross-sectional views of the manufacturing process of at least a portion of the super-gate MOSFET device according to one embodiment of the present invention shown in FIG. 8;
图10为本发明的一个实施例中具有增强源极触点的超级栅MOSFET器件的至少一部分的截面图;10 is a cross-sectional view of at least a portion of a super-gate MOSFET device with enhanced source contacts in one embodiment of the present invention;
图11为与标准MOSFET器件相比,本发明的一个或多个实施例的超级栅MOSFET器件的漏极电压随时间变化的函数曲线示意图;以及Figure 11 is a schematic diagram of the drain voltage as a function of time for a super-gate MOSFET device of one or more embodiments of the present invention compared to a standard MOSFET device; and
图12为与标准MOSFET器件相比,本发明的一个或多个实施例的超级栅MOSFET器件的栅极电压随时间变化的函数曲线示意图。12 is a schematic diagram of gate voltage as a function of time for a super-gate MOSFET device according to one or more embodiments of the present invention compared to a standard MOSFET device.
应当理解,图中所示的元件是为了表示的简单和清楚。在商业上可行的实施例中,为了减少视图中的阻碍,可能有一些有用或必要的但属于公知内容的元件没有在图中表示出来。It will be appreciated that elements shown in the figures are for simplicity and clarity of presentation. In a commercially feasible embodiment, some elements that are useful or necessary but which are well known may not be shown in the figures in order to reduce obstruction of the view.
具体实施方式Detailed ways
为了能够更清楚地理解该发明的技术内容,特举以下实施例详细说明。In order to understand the technical content of the invention more clearly, the following examples are given for detailed description.
本发明的横向扩散金属氧化物半导体(LDMOS)器件以及制造LDMOS器件的方法的原理将在本文中通过一个或多个实施例及上下文进行描述,该器件在不显著降低功率和线性性能的情况下增强了高频性能。然而应当认识到,本发明不限于本文中说明性地列出的特定器件和/或方法。应当认为,对于本领域技术人员而言,鉴于本文的启示,许多对于实施例的修改将变得显而易见,而这些内容都在本发明要求保护的范围之内。也就是说,本文中的各实施例不是作为也不应视作对本发明的限制。The principles of the laterally diffused metal-oxide-semiconductor (LDMOS) devices and methods of fabricating LDMOS devices of the present invention will be described herein in one or more embodiments and contexts without significant degradation in power and linearity performance. Enhanced high frequency performance. It should be appreciated, however, that the present invention is not limited to the specific devices and/or methods illustratively set forth herein. It is believed that many modifications to the embodiments will become apparent to those skilled in the art in view of the teachings herein, which are within the scope of the present invention as claimed. That is, the embodiments herein are not intended to and should not be construed to limit the present invention.
为了描述本发明的实施例,本文中可能使用的术语MISFET应当被宽泛地解释为包括任何类型的金属绝缘体半导体场效应晶体管(metal-insulator-semiconductor field-effect transistor)。例如,MISFET可以包括利用氧化物材料作为栅极电介质的半导体场效应晶体管(即MOSFET)以及其它不使用氧化物材料的半导体场效应晶体管。另外,尽管在缩写词MISFET和MOSFET中提到了“金属”(metal)一词,但是MISFET和MOSFET还包括栅极由非金属材料,例如多晶硅,形成的半导体场效应晶体管,这种情况下MISFET和MOSFET可以互换使用。For purposes of describing embodiments of the present invention, the term MISFET as may be used herein should be construed broadly to include any type of metal-insulator-semiconductor field-effect transistor. For example, MISFETs may include semiconductor field effect transistors (ie, MOSFETs) that utilize oxide materials as gate dielectrics, as well as other semiconductor field effect transistors that do not use oxide materials. In addition, although the word "metal" is mentioned in the acronyms MISFET and MOSFET, MISFET and MOSFET also include semiconductor field effect transistors whose gates are formed of non-metallic materials such as polysilicon, in which case MISFET and MOSFET MOSFETs can be used interchangeably.
尽管本发明中所形成的整体制造方法和结构都是全新的,然而实施本发明的一个或多个实施例的方法的一个或多个部分所需的某些个别加工步骤可利用传统半导体制造技术和传统半导体制造工具。这些技术和工具是本领域普通技术人员所熟知的。此外,大量的现有出版物中也记载了许多用于制造半导体器件的加工步骤和工具,举例来说,包括:P.H.Holloway等所著的《复合半导体手册:生长,加工,特性和器件》(Handbook ofCompound Semiconductors:Growth,Processing,Characterization,and Devices),剑桥大学出版社,2008;以及R.K.Willardson等所著的《复合半导体的工艺与性能》(Processingand Properties of Compound Semiconductors),学术出版社,2001,上述文献以引用方式并入本文中。需要强调的是,虽然本文阐述了一些单独的加工步骤,但是这些步骤仅仅是说明性的,本领域技术人员可能熟悉的其它同样合适的替代方案也包含在本发明的范围之内。Although the overall fabrication methods and structures formed in the present invention are novel, certain individual processing steps required to implement one or more portions of the methods of one or more embodiments of the present invention may utilize conventional semiconductor fabrication techniques and traditional semiconductor manufacturing tools. These techniques and tools are well known to those of ordinary skill in the art. In addition, numerous process steps and tools for the fabrication of semiconductor devices are also documented in a number of existing publications, including, for example: P.H. Handbook of Compound Semiconductors: Growth, Processing, Characterization, and Devices), Cambridge University Press, 2008; and "Processing and Properties of Compound Semiconductors" by R.K.Willardson et al., Academic Press, 2001, The above documents are incorporated herein by reference. It is emphasized that although some individual processing steps are described herein, these steps are merely illustrative and other equally suitable alternatives that may be familiar to those skilled in the art are also included within the scope of the present invention.
应当理解,附图中所示的各个层和/或区域不一定按比例绘制。此外,为了描述的经济性,可能在所示附图的集成电路器件中没有将该器件中常用的一种或多种半导体层表示出来。然而,这并不意味着在实际的集成电路器件中省略这些没有被明确表示的半导体层。It should be understood that the various layers and/or regions shown in the figures have not necessarily been drawn to scale. Furthermore, for the sake of economy of description, one or more of the semiconductor layers commonly used in the device may not be represented in the integrated circuit device of the figures shown. However, this does not mean that these semiconductor layers, which are not explicitly represented, are omitted in an actual integrated circuit device.
图1A所示为垂直双扩散金属氧化物半导体场效应晶体管(VDMOSFET)器件100的至少一部分的截面图。该VDMOSFET器件100包括衬底102,该衬底102可由单晶硅形成,单晶硅通过添加杂质或掺杂剂(例如硼、磷、砷等)来改变材料的导电性(例如,N型或P型)。在本例中,衬底102具有N导电类型,因此可被称为N型衬底(N+SUB)。FIG. 1A shows a cross-sectional view of at least a portion of a vertical double-diffused metal-oxide-semiconductor field-effect transistor (VDMOSFET)
外延区域104形成于该衬底102的上表面。在本例中,外延区域104通过添加杂质或掺杂剂具有N导电类型(N-EPI)。在该VDMOSFET器件100中,该外延区域104作为该器件的轻掺杂漂移区。在本实施例中具有P型导电类型的两个体区域(P-BODY)形成于靠近外延区域104的上表面,并在横向上相互间隔开。该VDMOSFET器件100还包括形成于各体区域106的至少一部分中并靠近该体区域的上表面的源区108。优选的,可采用传统的注入工艺,用已知浓度水平的杂质掺杂该源区108,从而根据需要选择性地改变材料的导电性。例如,该源区108为N型导电类型(N+)。形成于靠近体区域106上表面重掺杂区域110具有与体区域106相同的导电类型(例如本例中的P型),其横向与对应的源区108相邻,以形成该VDMOSFET器件100的体区域触点。每个所述的源区108均与对应的体区域触点110电连接。An
在VDMOSFET结构中,衬底102作为器件的漏极区域。形成于衬底102背面的漏极触点112提供与该衬底/漏极102之间的电连接。In the VDMOSFET structure, the
在源区108之间的至少一部分体区域106及外延漂移区104之上形成栅极114。在该栅极114下形成薄氧化层116(例如,二氧化硅SiO2)作为栅氧化物,用于将栅极与该VDMOSFET器件100中的源区108、体区域106和外延区域104电隔离。在栅极114和栅氧化层116的侧面形成绝缘侧墙118将栅极与源区108电隔离。如本领域技术人员所熟知的,施加于栅极的偏压在栅极下的体区域106中形成通道,用于控制源区108和作为漏极区域的衬底102之间的电流。A
该VDMOSFET器件100采用在器件表面的平面栅结构,具有制作工艺简单、应用可靠性佳等优点。然而,VDMOSFET设计也显示出明显的缺点,包括具有较高的导通电阻和较大的寄生栅漏电容(即,密勒电容),这使得这种器件不适合大功率、高频应用。较高的导通电阻RON主要归因于P体通道电阻RBODY(可称为MOSFET通道电阻)、结场效应晶体管(JFET)通道电阻RJFET和外延漂移区电阻REPI的结合(即RON=RBODY+RJFET+REPI)。其中,REPI是主要因素(在100伏器件中,占总导通电阻RON的百分之五十以上)。The
图1B为图1A中的VDMOSFET器件100的至少一部分的截面图,其中表示出了寄生栅漏电容(密勒电容)。如图1B所示,较大的寄生栅漏电容Cgd主要归因于栅极114和外延漂移区104之间的较大的重叠区。这种大寄生栅漏电容Cgd元件在高频应用中会造成显著的开关功率损耗,因此不适用。FIG. 1B is a cross-sectional view of at least a portion of the
人们一直努力降低VDMOSFET器件的导通电阻,从而提高电导率。特别是希望通过减小体区域106的横向间距来增加VDMOSFET器件100的通道密度。然而,更窄的体区域间隔带来的结场效应晶体管效应会增加体区域106之间的JFET电阻RJFET,从而抵消增加通道密度所带来的好处,总需要在MOSFET通道电阻RBODY和JFET通道电阻RJFET之间进行权衡。同样,虽然可以通过增加外延区域104(JFET区域)的上表面中的掺杂浓度来减小JFET通道电阻,但是这种JFET通道电阻的减小也会导致不期望的器件关断状态的雪崩击穿电压的降低。在这一方面,也有尝试在器件的关断状态下,使用电荷平衡方法来平衡N型外延漂移区104中的正电荷与P型体区域106中的负电荷,以增加外延漂移区104的掺杂浓度,从而减小漂移区域通态电阻REPI,然而,对于一个给定的尺寸,掺杂浓度被限定在一个特定的等级,通常低于1017/cm3左右。Efforts have been made to reduce the on-resistance of VDMOSFET devices, thereby increasing the conductivity. In particular, it is desirable to increase the channel density of the
图2A至2C分别为典型沟槽栅MOSFET器件200、230和250的截面图的至少一部分,其显示出减小的导通电阻,并概念性地说明器件中体区域深度变化带来的一些影响。参考图2A所示,沟槽栅MOSFET器件200包括衬底202,该衬底202可由单晶硅形成,单晶硅通过添加具有N导电类型的杂质或掺杂剂形成,因此可被称为N型衬底(N+SUB)。Figures 2A-2C are at least a portion of cross-sectional views of typical trench
外延区域204形成于该衬底202的上表面。在本例中,外延区域204通过添加杂质或掺杂剂具有N导电类型(N-EPI)。与图1A中所示的VDMOSFET器件100类似,在该VDMOSFET器件200中,该外延区域204作为该器件的轻掺杂漂移区。在本实施例中具有P型导电类型的两个体区域(P-BODY)206形成于靠近外延区域204的上表面,并在横向上相互间隔开。该MOSFET器件200还包括形成于各体区域206的至少一部分中并靠近该体区域的上表面的源区208。优选的,可采用传统的注入工艺,用已知浓度水平的杂质掺杂该源区208以具有N型导电类型(N+)。形成于靠近体区域206上表面重掺杂区域210具有P导电类型,其横向与对应的源区208相邻,以形成该MOSFET器件200的源极触点。每个所述的源区208均与对应的体区域触点210电连接。An
与图1A所示的的VDMOSFET器件100类似,在该MOSFET器件200中,衬底202作为器件的漏极区域。形成于衬底202背面的漏极触点212提供与该衬底/漏极202之间的电连接。Similar to the
该MOSFET器件200还包括沟槽栅极214,该包含多晶硅的沟槽栅极214形成于体区域206之间以及源区208之间的外延区域204上表面。沟槽栅极214可以通过形成部分穿过体区域206之间以及源区208之间的外延区域204的通道(即,沟槽),并在通道中用介电材料216填充来制造。所述介电材料优选为氧化物,例如二氧化硅。沟槽栅极214随后部分穿过介电材料216垂直延伸,并超过源区208和体区域206。围绕该沟槽栅极214侧壁的介电材料216侧壁的厚度优选刚好能够防止该沟槽栅极214与相邻的源区208和体区域206之间直接电接触。The
与图1A所示的VDMOSFET器件100中的平面栅极设置相反,沟槽栅MOSFET器件200通过消除JFET电阻RJFET实现具有较低导通电阻的优点。然而,寄生栅漏(密勒)电容Cgd仍然很高。如图2B所示的沟槽栅MOSFET器件230,通过增加沟槽底部的介质材料216的厚度,栅漏电容Cgd可以稍微减小。该沟槽栅MOSFET器件230基本上与图2A中所示的器件200相同,只是体区域206进入外延漂移区域204的深度略微减小。虽然器件230减小了寄生栅漏电容Cgd,但是在多晶硅沟槽栅极214的底角和外延区域204之间产生了薄弱点232,该薄弱点232会导致人们所不期望的器件击穿电压的降低。In contrast to the planar gate arrangement in the
使得在体区域206内形成通道的这一过程的困难进一步复杂化的是,外延区域204中,体区域的深度必须参照沟槽栅极214的深度进行严格控制。体区域206不能太浅,因为如图2B所示的MOSFET设备230所示,这会导致在高阻断电压下被过早击穿的薄弱点232。类似的,如图2C中的沟槽栅MOSFET器件250所示,体区域206也不能在外延区域204中太深,因为这将与人们所希望的相反,增加沟槽栅极214底部附近的栅氧化层厚度,如图2C中由厚氧化物区域252所表示的那样。沟槽栅MOSFET器件250中的厚氧化物区域252减少了对形成于体区域206中的通道的栅极控制,从而使得器件难以导通;也就是说,MOSFET器件250将表现出人们所不希望的器件阈值电压的增大。Further complicating the difficulty of this process of forming a channel within the
图3A至3C分别为分裂沟槽栅MOSFET器件300、330、350的截面图的至少一部分。如图3A所示,该分裂沟槽栅MOSFET器件300包括衬底302,该衬底302可由单晶硅形成,单晶硅通过添加具有N导电类型的杂质或掺杂剂形成,因此可被称为N型衬底(N+SUB)。外延区域304形成于该衬底302的上表面。在本例中,外延区域304通过添加杂质或掺杂剂具有N导电类型(N-EPI)。与图1A中所示的VDMOSFET器件100及图2A中所示的沟槽栅MOSFET器件200类似,在该MOSFET器件300中,该外延区域304作为该器件的轻掺杂漂移区。在本实施例中具有P型导电类型的两个体区域(P-BODY)306形成于靠近外延区域304的上表面,并在横向上相互间隔开。该MOSFET器件300还包括形成于各体区域306的至少一部分中并靠近该体区域的上表面的源区308。优选的,可采用传统的注入N型杂质形成具有N型导电类型的源区308(N+)。在本实施例中,形成于靠近体区域306上表面重掺杂区域310具有P导电类型,其横向与对应的源区308相邻,以形成该MOSFET器件300的体区域触点。因此,每个所述的源区308均与对应的体区域触点310电连接。3A-3C are at least a portion of cross-sectional views of split trench
与图1A所示的VDMOSFET器件100及图2A中所示的沟槽栅MOSFET器件200类似,在该分裂沟槽栅MOSFET器件300中,衬底302作为器件的漏极区域。形成于衬底/漏极302背面的漏极触点312提供与该衬底/漏极302之间的电连接。Similar to the
该MOSFET器件300还包括填充了介质材料(例如二氧化硅)的介质沟槽314,该介质沟槽314垂直延伸于体区域306之间以及源区308之间的外延区域304中。可包含多晶硅的沟槽栅极316形成与该介质沟槽314中,沟槽栅极316的深度刚好低于体区域306的底部。在沟槽314中还形成了位于所述沟槽栅极316的垂直下方的屏蔽栅318。介质沟槽314中的介质材料将该屏蔽栅318与所述的沟槽栅极316以及外延区域304电隔离。在本实施例中,沟槽栅极316比屏蔽栅318略宽,由此,与沟槽栅极相比,屏蔽栅被更厚的介质材料层包围。优选的,屏蔽栅318连接到源区308。The
在该MOSFET器件300中,所述的屏蔽栅318有助于减小寄生栅漏电容Cgd,并增加的关断状态阻断电压。然而,这种分裂沟槽栅MOSFET设计所提供的任何改进都只能在器件关断状态下适用,也就是说,在最大掺杂浓度由器件所需的击穿电压决定的情况下,基本上没有改善导通状态的性能。在精确控制体区域306的深度和厚度方面,分裂沟槽栅设计面临类似的困难。In the
例如,如图3B所示的具有浅体区域306的分裂沟栅MOSFET器件330。如前文中结合图2B表述的那样,该MOSFET器件330中的浅体区域306会在沟槽栅极316的底角附近产生薄弱点区域332,这会导致在高阻断电压下器件被过早击穿。For example, a split trench
同样,图3C表示了具有深体区域306的分裂沟槽栅MOSFET器件350,其使得体区域的底部延伸到沟槽栅极316的底部之下。如前文中结合图2C表述的那样,该MOSFET器件350中的深体区域306会在沟槽栅极316底角附近形成厚氧化区域352,该厚氧化物区域352减少了对形成于体区域306中的通道的栅极控制,从而增大了器件的阈值电压,使得器件难以导通。Likewise, FIG. 3C shows a split trench
如在一个或多个实施例中所示的,本发明利用平面栅极和沟槽栅极结构的有益特性来提供具有超级栅结构的MOSFET器件,其有利地实现了增强高频性能,且不会显著降低器件中的功率和线性性能。图4A及4B所示,分别为本发明的一个实施例中的超级栅MOSFET器件400的至少一部分的透视图和截面图。As shown in one or more embodiments, the present invention exploits the beneficial properties of planar gate and trench gate structures to provide MOSFET devices with super gate structures that advantageously achieve enhanced high frequency performance without Significantly degrades power and linearity performance in the device. 4A and 4B are respectively a perspective view and a cross-sectional view of at least a portion of a
该MOSFET器件400包括衬底402,该衬底402可由单晶硅(例如具有<100>或<111>的晶向)形成,单晶硅通过添加杂质或掺杂剂(例如硼、磷、砷、锑等)来形成所需要的导电类型(例如,N型或P型)和掺杂等级。P型衬底可通过向衬底材料中添加规定浓度水平(例如,每立方厘米约1014至约1018个原子)的P型杂质或掺杂剂(例如,III族元素,例如硼)来形成,例如通过扩散或注入工艺,根据需要改变材料的导电特性。在其它实施例中,N型衬底可通过向衬底材料中添加规定浓度水平的N型杂质或掺杂剂(例如,V族元素,例如磷)来形成。在该实施例中,衬底402被掺杂以具有N型导电类型,因此可被称为N型衬底(N+SUB)。类似的其它可用于形成衬底402的材料,例如但不限于:锗、砷化镓、碳化硅、氮化镓、磷化铟等等。The
外延区域404形成于该衬底402的上表面。在本例中,外延区域404通过添加杂质或掺杂剂具有N导电类型(N-NPI),类似的,也可考虑采用P型外延(例如,通过添加P型掺杂剂)。与图1A所示的的VDMOSFET器件100及图2A中所示的沟槽栅MOSFET器件200类似的,在该MOSFET器件400中,该外延区域404作为该器件的轻掺杂漂移区。在本实施例中具有P型导电类型的两个体区域(P-BODY)406形成于靠近外延区域404的上表面,并在横向上相互间隔开。本实施例中的体区域406可通过使用标准互补金属氧化物半导体(CMOS)制造技术,将P型杂质(例如:硼)注入外延区域404的指定区域来形成。相对于衬底的掺杂水平,体区域406优选地采用更重的掺杂,例如,约5×1016个原子/立方厘米(cm3)至约1×1018个原子/cm3。在采用P型外延区域的一个或多个可选的实施例中,体区域406可以包括使用类似CMOS制造技术形成的N型阱。An
该MOSFET器件400还包括形成于各体区域406的至少一部分中并靠近该体区域的上表面的源区408。优选的,源区408采用与所述体区域406的导电类型相反的杂质掺杂。在本实施例中,该源区408为N型导电类型(N+)。在本实施例中,形成于靠近体区域406上表面并横向与对应的源区408相邻的重掺杂区域410具有P型导电类型,从而形成该MOSFET器件400的体区域触点。相应的源极(S)电极412将每一源区408电连接到对应的体区域触点410。The
与图1A所示的VDMOSFET器件100类似,在该MOSFET器件400中,衬底402作为器件的漏极区域。漏极(D)触点414优选地形成于衬底/漏极402背面,其提供与衬底/漏极之间的电连接。与标准横向MOSFET器件中漏极和源极电极均形成在器件的上表面不同,该MOSFET器件400的漏极触点414形成于与源极电极414相反的器件下表面,也就是说,漏极电极414和源极电极412分布于该MOSFET器件400的垂直方向上相反的两个表面上。Similar to the
该MOSFET器件400还包括栅极结构,其至少包括两个部分,平面栅(G1)416和沟槽栅(G2)418。在本实施例的图示中,两个平面栅416分别设置于沟槽栅418的两侧。平面栅416和沟槽栅418优选地形成为彼此结构分离的梳状(条状)结构,即便平面栅和沟槽栅在其条状结构的一端或两端电连接(图中未明示,但隐含)。在一个或多个可替代的实施例中,平面栅416和沟槽栅418可以形成具有平面和沟槽栅极功能的相连栅极结构,下文中将结合图6进一步详细描述。The
在一个或多个实施例中,可包含有多晶硅的沟槽栅418通常可通过位于体区域406之间,也位于源区408之间的外延区域404的上表面垂直形成,从而使得在沟槽栅418的两侧都有一个源区408。更具体地说,沟槽栅418可以在两个体区406(以及源区408)之间的外延区域404上开口(即,挖槽),并用介电材料420填充该开口来制造。在一个或多个实施例中,该介电材料420是一种氧化物,例如二氧化硅,然而本发明不限于任何特定的电绝缘材料。该沟槽栅418随后部分穿过介电材料420形成,垂直延伸到源区408和体区域406的更下方。由此,介电材料420将沟槽栅418与周围的外延区域404电隔离,从而防止沟槽栅418与相邻源区408和体区域406之间的直接电接触,因此该介电材料420可被称为沟槽栅氧化层。该沟槽栅418还可以包括在所述外延区域404上表面之上形成横向过生长的侧壁以部分覆盖所述外延区域404的上表面。In one or more embodiments,
在一个或多个实施例中,各平面栅416均设置于外延区域404的上表面上,其至少一部分重叠于相应的体区域406。在每个平面栅416与体区域406以及外延区域404的上表面之间形成介电层422,以将平面栅416与体区域及外延区域电隔离,因此可称为平面栅氧化层。尽管在图4A中未明确示出,如图4B所示,优选地在平面栅416的侧壁和延伸于外延层404的上表面上的沟槽栅418的横向过生长部分侧壁上形成介电侧墙424。如图4B所示,栅极侧墙424将平面栅与沟槽栅电隔离,并且将平面栅416与对应的源极电极412电隔离。In one or more embodiments, each
继续参考图4B,该MOSFET器件400还包括与平面栅416连接的第一栅极电极426,以及与沟槽栅418连接的第二栅极电极428。栅极电极426及428可以通过分别在栅极416和418的上表面的至少一部分上形成金属硅化物层的方式实现。如本领域技术人员所知,在栅极硅化工艺中,金属膜(例如钛、钨、铂、钴、镍等)沉积于多晶硅栅极的上表面上,并且通过退火使沉积的金属膜与多晶硅栅极中的硅之间发生反应,最终形成金属硅化物触点。With continued reference to FIG. 4B , the
当超过阈值电压的正偏压施加于N通道MOSFET器件时,例如通过在所述的平面栅416和相应的源区408之间施加正电压,在平面栅下的体区域406中形成通道,从而导通该MOSFET器件400。同时,由于沟槽栅418电连接到平面栅416,正偏压将施加于沟槽栅上,从而如图4C所示,在外延区域404靠近沟槽栅氧化层420的表面处形成一个具有多数载流子(例如本实施例中的电子)的强积累层430。这个积累层430有益地增加了MOSFET器件400的电导,这使得器件能够获得非常低的导通电阻,举例而言,在30伏的阻断电压额定值下,大约二毫欧姆-平方毫米(2mΩ-mm2)。如下文中所将叙述的,相比传统的平面栅极和沟槽栅极器件,该超级栅MOSFET器件400获得了实质性的性能提升。When a positive bias voltage in excess of the threshold voltage is applied to an N-channel MOSFET device, such as by applying a positive voltage between the
图5概念性地描述了三种不同类型MOSFET器件的特征导通电阻RSP(欧姆-平方厘米)与击穿电压(伏特)之间的比例关系。具体而言,标号502表示与图2A中所示的沟槽栅MOSFET器件200一致的沟槽栅MOSFET器件的特征导通电阻RSP与击穿电压之间的比例关系。标号504表示与图3A中所示的分裂沟槽栅MOSFET器件300一致的分裂沟槽栅MOSFET器件的特征导通电阻RSP与击穿电压之间的比例关系。标号506表示为根据本发明的一个或多个实施例形成的超级栅MOSFET器件(例如图4A中所示的超级栅MOSFET器件400)的特征导通电阻RSP与击穿电压之间的比例关系。在理想情况下,MOSFET器件将表现出高击穿电压和低特征导通电阻,然而,在实践中,器件特性通常是相互矛盾的,也就是说,具有非常低导通电阻的MOSFET器件也将具有非常低的击穿电压,反之亦然,如图中标号分别为502及504所示的沟槽栅及分裂沟槽栅MOSFET器件那样。Figure 5 conceptually depicts the proportional relationship between characteristic on-resistance R SP (ohm-square centimeter) and breakdown voltage (volts) for three different types of MOSFET devices. In particular,
如图5所示,与沟槽栅MOSFET器件(标号502)或分裂沟槽栅MOSFET器件(标号504)相比,根据本发明实施例形成的超级栅MOSFET器件(标号506)至少具有两个明显的优点。首先,相较于502和504,表示特征导通电阻RSP与击穿电压之间的比例关系506的斜率显著降低,即在与具有相同额定击穿电压的沟槽栅MOSFET器件或分裂沟槽栅MOSFET器件相比,超级栅MOSFET器件具有明显更小的特征导通电阻。从而,芯片的尺寸可以按比例缩小,与芯片尺寸成正比的,进一步导致寄生栅极电容和栅漏电容的明显减小。As shown in FIG. 5, a super gate MOSFET device (reference numeral 506) formed in accordance with embodiments of the present invention has at least two distinct features compared to a trench gate MOSFET device (reference numeral 502) or a split trench gate MOSFET device (reference numeral 504). The advantages. First, the slope representing the proportional relationship between characteristic on-resistance R SP and
通常情况下,平行板电容的电容值C根据下式确定:Normally, the capacitance value C of the parallel plate capacitor is determined according to the following formula:
其中,ε0是绝对介电常数(即真空介电常数ε0=8.854×10-12F/m,εr是平行板之间的介质或介电材料的相对介电常数,A是每个平行板的一个侧面的表面积,d是平行板之间的距离(即,平行板之间介电材料的厚度)。因此,通过减小芯片尺寸,可以减少寄生栅极电容和/或寄生栅漏电容的一个或两个平行板的表面积。寄生栅极电容和栅极对漏极电容减小有利于降低在高频应用(例如同步DC-DC变换器)中的开关损耗。where ε 0 is the absolute permittivity (i.e. vacuum permittivity ε 0 = 8.854×10 −12 F/m, ε r is the relative permittivity of the medium or dielectric material between parallel plates, A is each The surface area of one side of the parallel plates, d is the distance between the parallel plates (i.e., the thickness of the dielectric material between the parallel plates). Therefore, by reducing the chip size, parasitic gate capacitance and/or parasitic gate leakage can be reduced The surface area of one or two parallel plates of the capacitor. Parasitic gate capacitance and gate-to-drain capacitance reduction is beneficial for reducing switching losses in high frequency applications such as synchronous DC-DC converters.
继续参考图5,如标记506的梯形形状所示的,本发明实施例的超级栅MOSFET器件的第二个显著的优点在于,该超级栅MOSFET器件能够在器件运行期间调节特征导通电阻,而常规MOSFET器件具有固定的特征导通电阻。这主要是由于在常规MOSFET设计中,掺杂浓度,及其关联的载流子浓度,在器件制造完成后是固定的。相比之下,在本发明的一个或多个实施例的超级栅MOSFET器件中,载流子浓度不是固定的,而是依赖于施加于沟槽栅结构的偏压,是可以方便地进行调节的。由此带来了许多的好处,包括为器件设计提供了更大的灵活性,更宽的工艺窗口,并且为超级栅MOSFET器件的运行提供了更高的可靠性。Continuing to refer to FIG. 5, as indicated by the trapezoidal shape of
图6为本发明的一个可选的实施例所示的典型的超级栅MOSFET器件600的至少一部分的透视图。更具体地说,该超级栅MOSFET器件600与图4A和4B中所示的典型的超级栅MOSFET器件400类似,区别在于该MOSFET器件600包括简化的栅极设计,其将平面栅(图4B中的416)和沟槽栅(图4B中418)合并在一起,在该MOSFET器件600形成具有平面栅和沟槽栅功能的T形栅极602。具体的,所述栅极602包括作为相连结构的平面栅部分604和沟槽栅部分606。FIG. 6 is a perspective view of at least a portion of a typical
沟槽栅部分606位于两个体区域406之间,并至少部分垂直延伸于外延区域404中。本发明的实施例中沟槽栅部分606不限于任何特定尺寸,但沟槽栅部分606的深度优选约1-2微米(μm)。平面栅部分604开始于沟槽栅极部分606,并沿外延区域404和体区域406的上表面,向两个相反的横向方向(即水平方向)延伸,直至相应的源区408的边缘。在栅极602下方形成绝缘层608以将栅极与相邻的结构和区域电隔离。优选地,介电侧墙610设置于该栅极602的侧壁上,以防止栅极与源极电极412之间电接触。A
平面和沟槽栅部分604和606优选地分别与图4b中的示例MOSFET器件400中平面栅416和沟槽栅418相同的方式工作。更具体地说,通过在栅极602和源区408之间施加大于MOSFET器件600阈值电压的栅极偏压信号,每个平面栅部分604将诱导在平面栅部分直接下方的相应体区域406中形成通道;当施加的栅极偏压信号低于器件阈值电压时,通道被根本性地关闭。与此同时,所施加的栅极偏压信号将导致沟槽栅部分606在靠近栅极氧化层608的位置形成一个具有大多数载流子的且具有沟槽栅部分的轮廓的强积累层612。如前文所述,即使在体区域406之间仅有一个狭窄的空间,该强积累层612能够增加MOSFET器件600的电导,从而降低器件的导通电阻。将栅极602连接到源极电极412,可关闭体区域406内的通道,从而关断该MOSFET器件600。Plane and
仅作为举例的,而非限制性的,图7A至7I所示为图4B中本发明的一个实施例的超级栅MOSFET器件的至少一部分的示例性的制造过程的截面示意图。参考图7A所示,By way of example only, and not limitation, FIGS. 7A-7I illustrate schematic cross-sectional views of an exemplary fabrication process for at least a portion of the super-gate MOSFET device of one embodiment of the present invention in FIG. 4B . Referring to Figure 7A,
该示例性的制造过程从衬底702开始,在一个或多个实施例中,该衬底702包括单晶硅或其它替代性的半导体材料,例如但不限于,锗、硅锗、碳化硅、砷化镓、氮化镓等。在本说明性实施例中,所述衬底702掺杂N型杂质或掺杂剂(例如:磷等)形成N导电类型衬底(N+SUB)。本发明的实施例中也可考虑使用P导电类型衬底。衬底702最好经过清洗和表面处理。The exemplary fabrication process begins with a
然后在衬底702的上表面,通过例如外延生长过程,形成外延层704。在一个或多个实施例中,所述外延层具有N导电类型(N-EPI),当然也可以考虑采用相类似的P导电类型外延层。外延层704的掺杂浓度最好低于衬底702的掺杂浓度。An
如图7B所示,为在外延层704的表面上形成硬掩膜层706。在一个或多个实施例中,可以包括氮化硅的硬掩膜层706优选使用标准沉积工艺形成。然后将硬掩膜层706进行图案化(例如,使用标准光刻和蚀刻),并蚀刻以形成至少部分位于所述外延层704中的沟槽708。在一个或多个实施例中,可以采用反应离子刻蚀(reactive ion etching,RIE)形成沟槽708。随后如图7C所示,在沟槽708的内壁(例如侧壁和底部)上形成第一介电层710,在一个或多个实施例中,该第一介电层710可以是的氧化层。尽管本发明的实施例不限于任何特定的介电材料,然而,在一个或多个实施例中,该第一介电层710包括使用干法或湿法氧化工艺形成的二氧化硅。该第一介电层710将形成本示例的超栅MOSFET器件中的沟槽栅的栅极氧化物(例如,图4A中的418)。As shown in FIG. 7B , a
现在参考图7D,举例而言,通过使用湿法或干法蚀刻工艺(例如化学或等离子体蚀刻)移除硬掩膜层(图7C中的706)。然后在外延层704的上表面形成第二介电层711,在一个或多个实施例中,该第二介电层711可以是的氧化层。该第二介电层711将形成超级栅MOSFET器件的平面栅的栅氧化物(例如图4A中的416)。通常是由高温环境(例如,约800摄氏度(℃)至1200℃)驱动氧和硅之间发生化学反应,产生二氧化硅,形成第一和第二介电层710,711;然而,即使在室温下,也可以在周围环境中形成一层薄(例如,约1-3埃(A))的天然氧化物。为了在受控环境中生长较厚的氧化物,可以使用几种已知的方法,例如,通过原位生成蒸汽或远程等离子体源(例如,远程等离子体氧化(RPO))进行氧化。Referring now to FIG. 7D, the hard mask layer (706 in FIG. 7C) is removed, for example, by using a wet or dry etching process such as chemical or plasma etching. A
接下来,如图7E所示,形成一个包括平面栅712和沟槽栅714的栅极结构。平面栅和沟槽栅712、714优选地包括多晶硅,并使用标准沉积工艺形成,然后进行图案化(例如,使用标准光刻和蚀刻)和蚀刻。在本实施例中,在沟槽栅714的两侧各设置有一个平面栅712。该沟槽栅714还包括在第二介电层711上表面之上形成横向过生长的侧壁以覆盖所述外延层704的部分上表面。如图7E所示,平面栅712和沟槽栅714优选地形成在结构上相互分离的梳状(即条状)结构,沟槽栅714的侧壁与相邻平面栅712的侧壁之间的间距为k,k为工艺最小值,以确保间距k尽可能的小,避免器件导通电阻的增大。该结构中,平面栅和沟槽栅在条状的一端或(相对的)两端电连接。在一个或多个可替代的实施例中,平面栅712和沟槽栅714可以形成如前文中结合图6所述的具有平面栅和沟槽栅功能的相连结构。Next, as shown in FIG. 7E, a gate structure including a
如图7F所示,采用例如标准的选择性蚀刻工艺,将位于外延层704的上表面的第二介电层(图7E中的711)的暴露部分(即不被平面栅712和沟槽栅714的横向过生长的侧壁覆盖的部分第二介电层)移除。然后在靠近外延层上表面的外延层704中形成自对准体区域716。在本示例性实施例中,优选地,通过将规定浓度等级的P型掺杂剂注入外延层704,然后进行热处理(例如退火)将掺杂剂驱动到外延层,来形成体区域716。As shown in FIG. 7F, the exposed portion of the second dielectric layer (711 in FIG. 7E) on the upper surface of the epitaxial layer 704 (ie, not covered by the
可选的,在图7F所示的实施例中,注入区域718最好形成于外延层704中,并靠近外延层的上表面,且位于体区域716和沟槽栅714之间。在一个或多个实施例中,所述注入区域718是通过将规定浓度水平的N型掺杂剂注入位于所述平面栅712和所述沟槽栅714之间的外延层704而形成的。在注入过程中,平面栅和沟槽栅作为掩膜。优选地,所述注入区域718用于提高在所述体区域716中形成的通道的边缘的N型掺杂浓度等级,从而降低该MOSFET器件的导通电阻。注入区域718还可以限制栅极712下的通道区域,从而提升高频性能。虽然本发明的实施例不限于任何特定的掺杂浓度,然而,在一个或多个实施例中,所述注入区域718的优选掺杂浓度约为1×1016至1×1018个原子/立方厘米。Alternatively, in the embodiment shown in FIG. 7F ,
如图7G所示,而后,在平面栅712和沟槽栅714的侧壁上形成介电侧墙720。尽管本发明不限于任何特定的介电材料,然而,在一个或多个实施例中,该介电侧墙720可以包括二氧化硅或氮化硅。而后,采用蚀刻工艺产生所需的图案化,形成器件中的源区触点(例如,N型)和体区域拾取触点(例如,P型)。As shown in FIG. 7G , then,
在图7H中,源区722形成于对应的体区域716中接近体区域上表面和自对准平面栅712的位置。在本示例性实施例中,使用例如标准注入工艺(例如离子注入)形成具有N导电类型的源区域722。在该实施例中,具有P导电类型的重掺杂区域724形成于靠近体区域716的上表面,且横向相邻于对应的源区722的位置,以形成该超级栅MOSFET器件的体区域触点。因此,每个源区722均电连接到相应的体区域触点724。In FIG. 7H ,
现在参考图7I,采用标准的前端硅化工艺,分别在源区722形成金属硅化物触点726,并在平面栅和沟槽栅分别形成金属硅化物触点728和730。众所周知,在硅化过程中,先在晶片的上表面沉积一层金属,然后进行热处理(例如热退火),以便在金属与暴露的硅接触的位置形成合金(金属硅化物)。然后使用例如标准蚀刻工艺去除未反应的金属,在源极和栅极触点处形成低电阻的硅化物。然后利用金属(如:铝等)进行正面互连和钝化,并在前道工艺(front-end-of-line,FEOL)中进行介电沉积和图案化。在FEOL工艺之后,晶片被翻转以进行背面减薄(例如,使用化学机械抛光,CMP)和背面金属化以形成超级栅MOSFET器件的漏极触点732。Referring now to FIG. 7I, using a standard front-end silicidation process,
图8为本发明的一个实施例中超级栅MOSFET器件800的至少一部分的截面图。所述MOSFET器件800与图4B中所示的超级栅MOSFET器件400相似,区别在于,其栅极结构被配置为具有增强电压阻断能力。如图8所示,超级栅MOSFET器件800包括衬底802,该衬底802可由通过添加具有期望的导电类型(N型或P型)和掺杂水平的杂质或掺杂剂(如硼、磷、砷、锑等)而改性的单晶硅形成。在本示例性实施例中,衬底802被掺杂以具有N导电类型,因此可以称为N型衬底(N+SUB)。也可以考虑采用其它材料形成衬底802,例如,但不限于锗、砷化镓、碳化硅、氮化镓、磷化铟等。8 is a cross-sectional view of at least a portion of a
外延区域804形成于该衬底802的上表面。在本例中,外延区域804通过添加具有N导电类型杂质或掺杂剂变性形成(N-NPI),当然,也可考虑采用P型外延。在该MOSFET器件800中,该外延区域804作为该器件的轻掺杂漂移区。在本实施例中具有P型导电类型的两个体区域(P-BODY)806形成于靠近外延区域804的上表面,并在横向上相互间隔开。本实施例中的体区域806可通过使用标准互补金属氧化物半导体(CMOS)制造技术,将P型杂质(例如:硼)注入外延区域804的指定区域来形成。An
源区808形成于对应体区域806的至少一部分中并靠近该体区域的上表面。优选的,在该示例性的MESFET器件800中,源区808具有N型导电类型。在本实施例中,形成于靠近体区域806上表面并横向与对应的源区808相邻的重掺杂区域810具有P型导电类型,从而形成该MOSFET器件800的体区域触点。相应的源极(S)电极812将每一源区808电连接到对应的体区域触点810。A
在该超级栅MOSFET器件800中,衬底802作为器件的漏极区域。相应的,例如在后道工艺(back-end-of-line,BEOL)中,漏极(D)电极814优选地形成于衬底/漏极802背面,其提供与衬底/漏极之间的电连接。与图4B中所示的MOSFET器件400相似,漏极电极814形成于该MOSFET器件800的背面,是位于与形成于器件上/前表面的源极电极812相反的一面上,也就是说,漏极电极814和源极电极812分布于该MOSFET器件800的垂直方向上相反的两个表面上。In this super
该MOSFET器件800还包括栅极结构,其至少包括两个部分,平面栅(G1)816和沟槽栅(G2)818。在本实施例的图示中,两个平面栅816分别设置于沟槽栅818的两侧。沟槽栅818还包括在外延区域804上表面之上形成横向过生长的侧壁以覆盖所述外延区域804的部分上表面。平面栅816和沟槽栅818优选地形成为彼此结构分离的梳状(条状)结构,沟槽栅818的侧壁与相邻平面栅816的侧壁之间的间距为k,k为工艺最小值,平面栅和沟槽栅在其条状结构的一端或两端电连接(图中未明示,但隐含)。在一个或多个可替代的实施例中,平面栅816和沟槽栅818可以形成具有平面和沟槽栅极功能的相连栅极结构。The
在一个或多个实施例中,可包含有多晶硅的沟槽栅818通常可通过位于体区域806之间,也位于源区808之间的外延区域804的上表面垂直形成,从而使得在沟槽栅818的两侧都有一个源区808。该MOSFET器件800还包括将沟槽栅818与周围的外延区域804电隔离的介电层820,从而防止沟槽栅818与相邻源区808和体区域806之间的直接电接触。在一个或多个实施例中,该介电层820包括一种氧化物,例如二氧化硅,可被称为沟槽栅氧化层,然而本发明不限于任何特定的电绝缘材料。In one or more embodiments,
在一个或多个实施例中,各平面栅816均设置于外延区域804的上表面上,其至少一部分重叠于相应的体区域806。在每个平面栅816与体区域806以及外延区域804的上表面之间形成第二介电层822,以将平面栅816与体区域及外延区域电隔离,因此可称为平面栅氧化层。优选地在平面栅816的侧壁和沟槽栅818的侧壁上形成介电侧墙824。栅极侧墙824将平面栅与沟槽栅电隔离,并且将平面栅816与对应的源极电极812电隔离。In one or more embodiments, each
继续参考图8,该超级栅MOSFET器件800还包括与平面栅816连接的第一栅极电极826,以及与沟槽栅818连接的第二栅极电极828。栅极电极426及428可以通过分别在栅极816和818的上表面的至少一部分上形成金属硅化物层的方式实现。With continued reference to FIG. 8 , the super
为了优化超级栅MOSFET器件800的电压阻断能力,沟槽栅结构优选地配置有沟槽栅氧化层820,该沟槽栅氧化层820位于所述沟槽栅结构下部830的部分比位于沟槽栅结构上部832的部分更厚。尽管本发明的实施例不限于任何特定的尺寸,然而,在一个或多个实施例中,在沟槽栅结构上部832处的沟槽栅氧化层820的厚度约为10-50nm,而位于沟槽栅结构下部830处的沟槽栅氧化层厚度约为50-500nm。每个平面栅(G1)816下的平面栅氧化层822优选在5-50nm左右。以下结合图9A到9L,说明性地介绍配置具有沟槽栅结构的超级栅MOSFET器件的方法。In order to optimize the voltage blocking capability of the super
具体而言,图9A至9L为图8所示的本发明的图8所示的实施例中的超级栅MOSFET器件800的至少一部分的制造过程的截面示意图。参考图9A所示,该示例性的制造过程从衬底902开始,在一个或多个实施例中,该衬底902包括单晶硅或其它替代性的半导体材料,例如但不限于,锗、硅锗、碳化硅、砷化镓、氮化镓等。在本说明性实施例中,所述衬底902掺杂N型杂质或掺杂剂(例如:磷等)形成N导电类型衬底(N+SUB)。本发明的实施例中也可考虑使用P导电类型衬底。衬底902最好经过清洗和表面处理。Specifically, FIGS. 9A to 9L are schematic cross-sectional views of a manufacturing process of at least a portion of the
然后在衬底902的上表面,通过例如外延生长过程,形成外延层904。在一个或多个实施例中,所述外延层具有N导电类型(N-EPI),当然也可以考虑采用相类似的P导电类型外延层。外延层904的掺杂浓度最好低于衬底902的掺杂浓度。An
如图9B所示,为在外延层904的表面上形成硬掩膜层906。在一个或多个实施例中,优选使用标准沉积工艺,形成可以包括氮化硅的硬掩膜层906。然后使用例如标准光刻和蚀刻,将硬掩膜层906进行图案化,在利用例如蚀刻工艺形成至少部分位于所述外延层904中的沟槽908;在一个或多个实施例中,可以采用反应离子刻蚀(RIE)形成沟槽908。随后如图9c所示,采用例如蚀刻的方法去除硬掩膜层906。As shown in FIG. 9B , a
该超级栅MOSFET器件800的制造过程中,一开始的两个步骤与图7A和7B中所描绘的图4B所示的示例性的超级栅MOSFET器件400的制造过程相同。现在参考图9D,在沟槽908中以及外延层904上表面的至少一部分上形成绝缘层910。在一个或多个实施例中,绝缘层910包括生长或沉积于沟槽908中以及外延层904上表面的氧化物(例如二氧化硅)。然后如图9E所示,利用回蚀刻工艺,例如湿法蚀刻,以去除外延层904上表面的绝缘层910和沟槽908中的部分侧壁上的绝缘层910,允许部分绝缘层910保留在沟槽底部,如图9F所示,晶片通过热氧化工艺,形成较薄的共形栅氧化层912。尽管本发明的实施例不限于任何特定尺寸,然而在一个或多个实施例中,所述外延层904上表面上以及沟槽908侧壁上的氧化层912的厚度约为30-50nm。The first two steps in the fabrication of this
如图9G所示,在一个或多个实施例中,利用各向异性蚀刻(例如RIE)在绝缘层910中形成一个较窄的沟槽914。然后,如图9H所示,在第一沟槽908的侧壁的上部和外延层904的上表面生长一个薄的栅氧化层916(例如,约30-50nm)。接下来,如图9I所示,形成一个包括平面栅918和沟槽栅920栅极结构。每个平面栅和沟槽栅918、920优选地包括多晶硅,并使用标准沉积工艺形成,然后进行图案化(例如,使用标准光刻和蚀刻)和蚀刻。在本实施例中,在沟槽栅920的两侧各设置有一个平面栅918。沟槽栅920还包括在栅氧化层916上表面之上形成横向过生长的侧壁以覆盖所述外延层904的部分上表面。如图9I所示,平面栅918和沟槽栅920优选地形成在结构上相互分离的梳状(即条状)结构,沟槽栅920的侧壁与相邻平面栅918的侧壁之间的间距为k,k为工艺最小值。该结构中,平面栅和沟槽栅在条状的一端或(相对的)两端电连接。As shown in FIG. 9G, in one or more embodiments, a
现在参考图9J所示,采用例如选择性蚀刻工艺,将位于外延层904的上表面的栅氧化层(图9I中的916)的暴露部分(即不被平面栅918和沟槽栅920的横向过生长的侧壁覆盖的部分栅氧化层)移除。然后在靠近外延层上表面的外延层904中形成自对准体区域922。在本示例性实施例中,优选地,通过将规定浓度等级的P型掺杂剂注入外延层904,然后进行热处理(例如退火)将掺杂剂驱动到外延层,来形成体区域922。Referring now to FIG. 9J , the exposed portion of the gate oxide layer ( 916 in FIG. 9I ) on the upper surface of the epitaxial layer 904 (ie, not covered by the lateral surfaces of the
可选的,在图9J所示的实施例中,注入区域924优选形成于外延层904中,并靠近外延层的上表面,且位于体区域922和沟槽栅920之间。在一个或多个实施例中,所述注入区域924是通过将规定浓度水平的N型掺杂剂注入位于所述平面栅918和所述沟槽栅920之间的外延层904而形成的。在注入过程中,平面栅和沟槽栅作为掩膜。与图7F中所示的注入区域718相同的,优选地,所述注入区域924用于提高在所述体区域922中形成的通道的边缘的N型掺杂浓度等级,从而降低该MOSFET器件的导通电阻。注入区域924还可以限制栅极918下的通道区域,从而提升高频性能。虽然本发明的实施例不限于任何特定的掺杂浓度,然而,在一个或多个实施例中,所述注入区域924的优选掺杂浓度约为1×1016至1×1018个原子/立方厘米。Optionally, in the embodiment shown in FIG. 9J , the implanted
如图9K所示,而后,在平面栅918和沟槽栅920的侧壁上形成介电侧墙926。尽管本发明不限于任何特定的介电材料,然而,在一个或多个实施例中,该介电侧墙926可以包括二氧化硅。而后,采用蚀刻工艺产生所需的图案化,形成器件中的源区触点(例如,N型)和体区域触点(例如,P型)。As shown in FIG. 9K ,
在图9L中,源区928形成于对应的体区域922中接近体区域上表面和自对准平面栅918的位置。在本示例性实施例中,使用例如标准注入工艺(例如离子注入)形成具有N导电类型的源区域928。在该实施例中,具有P导电类型的重掺杂区域930形成于靠近体区域922的上表面,且横向相邻于对应的源区928的位置,以形成该超级栅MOSFET器件的体区域触点。因此,每个源区928均电连接到相应的体区域触点930。In FIG. 9L ,
采用标准的前端硅化工艺,分别在源区928形成金属硅化物触点(812),并在平面栅918和沟槽栅920分别形成金属硅化物触点(826和828)。然后利用金属(如:铝等)进行正面互连和钝化,并在前道工艺(front-end-of-line,FEOL)中进行介电沉积和图案化。在FEOL工艺之后,晶片被翻转以进行背面减薄(例如,CMP)和背面金属化以形成漏极触点(814),由此形成图8所示的超级栅MOSFET器件800。Using standard front-end silicidation processes, metal silicide contacts (812) are formed on
图10为本发明的另一个实施例中具有增强源极触点的超级栅MOSFET器件的至少一部分的截面图。该MOSFET器件1000与图4B中所示的超级栅MOSFET器件400一致,区别在于源极触点。具体而言,如图10所示,该超级栅MOSFET器件1000包括在对应的体区域406中形成的嵌入式的源极触点1202,该源极触点1202靠近体区域的上表面,并与相邻的源区408电连接。在一个或多个实施例中,每个嵌入式源极触点1202均包括金属,例如钨,当然,本发明的实施例不限于钨。这种源极触点结构在源极金属和源区408之间提供了更大的接触面积,因此有利于降低源极触点的电阻。令人满意的是,这种源极触点结构可以与本文描述的任何超级栅MOSFET器件结构一起使用,对于本领域技术人员而言,基于这一启示,这一方案是显而易见的。虽然没有在图10中明确表示出来,但是利用与平面栅和沟槽栅触点426和428的形成相同的金属硅化工艺,金属硅化物也可以形成于嵌入式源极触点1202周围形成,对于本领域技术人员而言,基于这一启示,这一方案也将是显而易见的。10 is a cross-sectional view of at least a portion of a super-gate MOSFET device with enhanced source contacts in another embodiment of the present invention. The
与标准MOSFET器件设计相比,本发明各实施例的MOSFET器件实现了优越的性能。例如,图11是与标准MOSFET器件(标号1104)相比,超级栅MOSFET器件(标号1102),例如图4B中所示的超级栅MOSFET器件400,的漏极电压随时间变化的函数曲线示意图。从图11中可以看出,相对于标准MOSFET器件,新型超级栅MOSFET器件的漏极电压随时间上升(即dv/dt)要快得多。这证明了新型超级栅MOSFET器件的开关速度是有进步的。The MOSFET devices of various embodiments of the present invention achieve superior performance compared to standard MOSFET device designs. For example, Figure 11 is a graphical representation of the drain voltage as a function of time for a super gate MOSFET device (reference numeral 1102), such as the super
图12为与标准MOSFET器件(标号1204)相比,超级栅MOSFET器件(标号1202),例如图4B中所示的超级栅MOSFET器件400,的栅极电压随时间变化的函数曲线示意图。从图12中可以看出,当器件关断时,标准MOSFET器件的栅极电压表现出严重的扰动1206。这种扰动主要是由于与标准MOSFET器件相关的较大的寄生密勒电容(Cgd)的漏极电压耦合效应引起的(如前文中所述),其可能超过器件的阈值电压,从而导致器件误导通。这种器件的误导通可能会导致短路状态,特别是当MOSFET器件被用作功率开关应用(例如DC-DC变换器)中的低侧晶体管时。通过比较可以发现,标号1202所代表的超级栅MOSFET器件表现出非常小的栅极电压扰动,远低于器件的阈值电压,从而很好地消除了器件误导通问题。因此,相比传统MOSFET器件,在更高频DC-DC变换器应用中,本发明各实施例的超级栅MOSFET器件具有更高效率和更高可靠性。12 is a schematic diagram of gate voltage as a function of time for a super gate MOSFET device (reference numeral 1202), such as the super
本发明的至少部分技术可以在集成电路中实现。在形成集成电路时,相同的模具通常是在半导体晶片表面上以反复图形化的方式制造的。每个模具包括本文描述的器件,并且还可能包括其它结构和/或电路。单个模具从晶片上切割下来,然后封装为集成电路。本领域技术人员将知道如何从晶片切割并封装模具以形成集成电路。附图中所示的任何示例性结构或电路,或者其一部分,都可以是集成电路的一部分。这样的集成电路制造方法也被认为是本发明的一部分。At least some of the techniques of this disclosure may be implemented in integrated circuits. In the formation of integrated circuits, the same molds are typically fabricated in an iteratively patterned manner on the surface of a semiconductor wafer. Each mold includes the devices described herein, and may also include other structures and/or circuits. Individual dies are cut from the wafer and packaged into integrated circuits. Those skilled in the art will know how to cut and package molds from wafers to form integrated circuits. Any exemplary structure or circuit shown in the figures, or a portion thereof, may be part of an integrated circuit. Such integrated circuit fabrication methods are also considered to be part of the present invention.
本领域技术人员应当理解可以将本发明的一个或多个实施例中的上述示例性的结构,以原始形式(即具有多个未封装芯片的单个晶片)、裸芯片、或以封装形式,或作为中间产品或终端产品的组成部分应用于具有功率MOSFET器件中,例如射频(RF)功率放大器、功率管理集成电路等。It will be understood by those skilled in the art that the above-described exemplary structures in one or more embodiments of the present invention may be used in raw form (ie, a single wafer with multiple unpackaged chips), bare chips, or in packaged form, or Used as part of intermediate or end products in devices with power MOSFETs, such as radio frequency (RF) power amplifiers, power management integrated circuits, etc.
基本上任何高频、高功率应用和/或电子系统,例如但不限于射频功率放大器、功率管理集成电路等,都可以使用符合本发明所公开的集成电路。适用于实施本发明各实施例的系统可以包括,但不限于,DC-DC转换器。包含这种集成电路的系统被认为是本发明的一部分。鉴于本文所提供的本公开的启示,本领域普通技术人员将能够考虑本发明实施例的其它实现与应用。Essentially any high frequency, high power application and/or electronic system, such as, but not limited to, radio frequency power amplifiers, power management integrated circuits, etc., can use integrated circuits consistent with the present disclosure. Systems suitable for implementing embodiments of the present invention may include, but are not limited to, DC-DC converters. Systems incorporating such integrated circuits are considered part of the present invention. Given the teachings of the present disclosure provided herein, one of ordinary skill in the art will be able to consider other implementations and applications of embodiments of the present invention.
本发明的电路和技术的设备和系统的所有元素和特征的完整描述。基于本文的启示,对于本领域技术人员而言,许多其它实施例将变得显而易见,或由此派生出来,这样就可以在不偏离本本发明所披露的范围的情况下,进行结构和逻辑上的替换和更改。附图也仅具有代表性,而并不是按比例绘制的。因此,说明书和附图都应被视为说明性的,而非限制性的。A complete description of all elements and features of the devices and systems of the circuits and techniques of the present invention. Based on the teachings herein, many other embodiments will become apparent to those skilled in the art, or derived therefrom, so that structural and logical modifications can be made without departing from the scope of the present disclosure. Replace and change. The drawings are also representative only and not drawn to scale. Accordingly, both the specification and the drawings are to be regarded in an illustrative rather than a restrictive sense.
本文所列举的本发明的各实施例,单独和/或共同地提及“实施例”一词,“实施例”仅仅是为了方便,而不是将本发明的应用的范围限制在任何单一的或几个实施例或发明概念上。因此,虽然在本文中对具体实施例进行了说明和描述,但应理解的是,实现相同发明目的的安排可以取代所示的具体实施例;也就是说,本公开旨在涵盖各种实施例的任何和所有适应或变化。对于本领域技术人员而言,上述实施例的组合,以及在这里没有具体描述的其它实施例,也将是显而易见的。The various embodiments of the invention recited herein, individually and/or collectively, refer to the word "embodiment", which is for convenience only and is not intended to limit the scope of application of the invention to any single or Several embodiments or inventive concepts. Thus, although specific embodiments have been illustrated and described herein, it should be understood that arrangements that achieve the same purpose of the invention may be substituted for the specific embodiments shown; that is, this disclosure is intended to cover various embodiments of any and all adaptations or changes. Combinations of the above-described embodiments, as well as other embodiments not specifically described herein, will also be apparent to those skilled in the art.
本文所使用的术语仅用于描述特定实施例,而不是对于本发明的限制。如本文所使用的冠词单数形式也可包括复数形式,除非上下文清楚地表示另一种情况。进一步的,在本文说明书中所使用的“包括”和/或“组成”时,仅所述特征、步骤、操作、元素和/或组件的存在,而不排除存在或添加一个或多个其它的特征、步骤、操作、元素、组件和/或其组件。而诸如“之上”,“之下”,“上面”和“下面”等术语被用来表示元素或结构之间的相对位置关系,而不是绝对位置。The terminology used herein is used to describe specific embodiments only, and not to limit the invention. The singular form of an article as used herein may also include the plural form unless the context clearly indicates otherwise. Further, when "comprising" and/or "comprising" are used in this specification, only the presence of the stated features, steps, operations, elements and/or components does not preclude the presence or addition of one or more other Features, steps, operations, elements, components and/or components thereof. Rather, terms such as "above", "below", "above" and "below" are used to denote relative positional relationships between elements or structures, rather than absolute positions.
基于本发明各实施例的启示,本领域普通技术人员能够相关本发明实施例技术的其它实现和应用。虽然本发明的说明性实施例已在本文中参照附图进行了描述,但应理解的是,本发明的实施例并不限于这些精确的实施例,在不偏离权利要求的范围的情况下,本领域技技术人员可以对其中的实施例进行各种其它的修改。Based on the teachings of the embodiments of the present invention, those of ordinary skill in the art can relate to other implementations and applications of the technologies of the embodiments of the present invention. Although illustrative embodiments of the invention have been described herein with reference to the accompanying drawings, it is to be understood that the embodiments of the invention are not limited to these precise embodiments, without departing from the scope of the claims. Various other modifications may be made to the embodiments herein by those skilled in the art.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210828217.6A CN115188812A (en) | 2022-07-13 | 2022-07-13 | MOSFET with split planar gate structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210828217.6A CN115188812A (en) | 2022-07-13 | 2022-07-13 | MOSFET with split planar gate structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115188812A true CN115188812A (en) | 2022-10-14 |
Family
ID=83518798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210828217.6A Withdrawn CN115188812A (en) | 2022-07-13 | 2022-07-13 | MOSFET with split planar gate structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115188812A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117038738A (en) * | 2023-10-10 | 2023-11-10 | 艾科微电子(深圳)有限公司 | Semiconductor device and method for manufacturing the same |
CN118471979A (en) * | 2024-07-10 | 2024-08-09 | 杭州致善微电子科技有限公司 | Metal oxide field effect power transistor based on BCD integration and process |
-
2022
- 2022-07-13 CN CN202210828217.6A patent/CN115188812A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117038738A (en) * | 2023-10-10 | 2023-11-10 | 艾科微电子(深圳)有限公司 | Semiconductor device and method for manufacturing the same |
CN117038738B (en) * | 2023-10-10 | 2024-01-26 | 艾科微电子(深圳)有限公司 | Semiconductor device and manufacturing method thereof |
CN118471979A (en) * | 2024-07-10 | 2024-08-09 | 杭州致善微电子科技有限公司 | Metal oxide field effect power transistor based on BCD integration and process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI805991B (en) | Metal-oxide-semiconductor field-effect transistor device | |
US10211333B2 (en) | Scalable SGT structure with improved FOM | |
TWI550851B (en) | Vertical power MOS half-field effect transistor with planar channel | |
CN101107718B (en) | Power metal oxide semiconductor assembly | |
JP4198469B2 (en) | Power device and manufacturing method thereof | |
CN104518010B (en) | The method of integrated circuit and manufacture integrated circuit | |
US9564516B2 (en) | Method of making integrated MOSFET-schottky diode device with reduced source and body kelvin contact impedance and breakdown voltage | |
US8697556B2 (en) | Transistor structure having a trench drain | |
JP2002110984A (en) | High frequency MOSFET and manufacturing method thereof | |
CN114361250A (en) | Metal-oxide-semiconductor field-effect transistors with enhanced high-frequency performance | |
CN114664929B (en) | Split gate SiC MOSFET integrated with heterojunction diode and manufacturing method thereof | |
CN114784108B (en) | Planar gate SiC MOSFET integrated with junction barrier Schottky diode and manufacturing method thereof | |
US11616123B2 (en) | Enhancement on-state power semiconductor device characteristics utilizing new cell geometries | |
CN115188812A (en) | MOSFET with split planar gate structure | |
CN111697078A (en) | VDMOS device with high avalanche tolerance and preparation method thereof | |
US20220384594A1 (en) | Metal-oxide-semiconductor field-effect transistor having enhanced high-frequency performance | |
CN114784107B (en) | SiC MOSFET integrated with junction barrier Schottky diode and manufacturing method thereof | |
CN103531614B (en) | Charge compensation semiconductor device | |
RU2740124C1 (en) | Silicon carbide switching device and production method thereof | |
JP2003518749A (en) | Silicon carbide LMOSFET with gate breakdown protection | |
CN114883410A (en) | mOSFET with enhanced high frequency performance | |
US8008720B2 (en) | Transistor structure having a conductive layer formed contiguous in a single deposition | |
JP5038556B2 (en) | SiC lateral field effect transistor, method of manufacturing the same, and use of such a transistor | |
US20100090273A1 (en) | Transistor structure having dual shield layers | |
US12211909B2 (en) | Lateral double diffused MOS device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20221014 |