CN115128257B - Metabolic markers for predicting the risk of liver cancer and their application - Google Patents
Metabolic markers for predicting the risk of liver cancer and their application Download PDFInfo
- Publication number
- CN115128257B CN115128257B CN202210788440.2A CN202210788440A CN115128257B CN 115128257 B CN115128257 B CN 115128257B CN 202210788440 A CN202210788440 A CN 202210788440A CN 115128257 B CN115128257 B CN 115128257B
- Authority
- CN
- China
- Prior art keywords
- sulfate
- liver cancer
- acid
- combination
- marker combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 201000007270 liver cancer Diseases 0.000 title claims abstract description 47
- 208000014018 liver neoplasm Diseases 0.000 title claims abstract description 46
- 230000002503 metabolic effect Effects 0.000 title description 12
- 239000003550 marker Substances 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 11
- -1 Copper Hydroxyquinoline 3-(4-Hydroxyphenyl)lactic acid Chemical compound 0.000 claims description 18
- 229930182480 glucuronide Natural products 0.000 claims description 11
- YPWSLBHSMIKTPR-UHFFFAOYSA-N Cystathionine Natural products OC(=O)C(N)CCSSCC(N)C(O)=O YPWSLBHSMIKTPR-UHFFFAOYSA-N 0.000 claims description 9
- ILRYLPWNYFXEMH-UHFFFAOYSA-N D-cystathionine Natural products OC(=O)C(N)CCSCC(N)C(O)=O ILRYLPWNYFXEMH-UHFFFAOYSA-N 0.000 claims description 9
- ILRYLPWNYFXEMH-WHFBIAKZSA-N L-cystathionine Chemical compound [O-]C(=O)[C@@H]([NH3+])CCSC[C@H]([NH3+])C([O-])=O ILRYLPWNYFXEMH-WHFBIAKZSA-N 0.000 claims description 9
- 238000012216 screening Methods 0.000 claims description 9
- 238000003745 diagnosis Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- OKJIRPAQVSHGFK-UHFFFAOYSA-N N-acetylglycine Chemical compound CC(=O)NCC(O)=O OKJIRPAQVSHGFK-UHFFFAOYSA-N 0.000 claims description 6
- JLQSXXWTCJPCBC-UHFFFAOYSA-N N-methyl-6-pyridone-3-carboxamide Chemical compound CN1C=C(C(N)=O)C=CC1=O JLQSXXWTCJPCBC-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- ZMITXKRGXGRMKS-UHFFFAOYSA-N Androsteronsulfat-pyridiniumsalz Natural products C1C(OS(O)(=O)=O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CCC21 ZMITXKRGXGRMKS-UHFFFAOYSA-N 0.000 claims description 5
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 claims description 5
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 claims description 5
- ZMITXKRGXGRMKS-HLUDHZFRSA-N androsterone sulfate Chemical compound C1[C@H](OS(O)(=O)=O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC[C@H]21 ZMITXKRGXGRMKS-HLUDHZFRSA-N 0.000 claims description 5
- 229940106189 ceramide Drugs 0.000 claims description 5
- 229960002173 citrulline Drugs 0.000 claims description 5
- 235000013477 citrulline Nutrition 0.000 claims description 5
- 229940079593 drug Drugs 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 4
- VFUIRAVTUVCQTF-UHFFFAOYSA-N (17-oxo-5alpha-androstan-3alpha-yl)-beta-D-glucuronic acid Natural products O=C1CCC2C1(C)CCC(C1(CC3)C)C2CCC1CC3OC1OC(C(O)=O)C(O)C(O)C1O VFUIRAVTUVCQTF-UHFFFAOYSA-N 0.000 claims description 3
- HSSLFCCTLNPPSR-NKPAQCGESA-N (3S,8R,9S,10R,13S,14S,17S)-10,13-dimethyl-2,3,6,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,17-diol sulfo hydrogen sulfate Chemical compound OS(=O)(=O)OS(O)(=O)=O.O[C@H]1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 HSSLFCCTLNPPSR-NKPAQCGESA-N 0.000 claims description 3
- AODPIQQILQLWGS-UHFFFAOYSA-N (3alpa,5beta,11beta,17alphaOH)-form-3,11,17,21-Tetrahydroxypregnan-20-one, Natural products C1C(O)CCC2(C)C3C(O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC21 AODPIQQILQLWGS-UHFFFAOYSA-N 0.000 claims description 3
- PIXFHVWJOVNKQK-UHFFFAOYSA-N (3alpha,5alpha,11alpha)-3,11-Dihydroxyandrostan-17-one Natural products C1C(O)CCC2(C)C3C(O)CC(C)(C(CC4)=O)C4C3CCC21 PIXFHVWJOVNKQK-UHFFFAOYSA-N 0.000 claims description 3
- QADHLRWLCPCEKT-UHFFFAOYSA-N Androstenediol Natural products C1C(O)CCC2(C)C3CCC(C)(C(CC4)O)C4C3CC=C21 QADHLRWLCPCEKT-UHFFFAOYSA-N 0.000 claims description 3
- 108010007979 Glycocholic Acid Proteins 0.000 claims description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 3
- CAHKINHBCWCHCF-JTQLQIEISA-N N-acetyl-L-tyrosine Chemical compound CC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 CAHKINHBCWCHCF-JTQLQIEISA-N 0.000 claims description 3
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- QADHLRWLCPCEKT-LOVVWNRFSA-N androst-5-ene-3beta,17beta-diol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC=C21 QADHLRWLCPCEKT-LOVVWNRFSA-N 0.000 claims description 3
- 229950009148 androstenediol Drugs 0.000 claims description 3
- VFUIRAVTUVCQTF-BSOWLZGZSA-N androsterone 3-glucosiduronic acid Chemical compound O([C@H]1C[C@@H]2CC[C@@H]3[C@@H]([C@]2(CC1)C)CC[C@]1([C@H]3CCC1=O)C)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O VFUIRAVTUVCQTF-BSOWLZGZSA-N 0.000 claims description 3
- ZMITXKRGXGRMKS-LUJOEAJASA-N epiandrosterone sulfate Chemical compound C1[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC[C@H]21 ZMITXKRGXGRMKS-LUJOEAJASA-N 0.000 claims description 3
- 150000002596 lactones Chemical class 0.000 claims description 3
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 3
- 229960001682 n-acetyltyrosine Drugs 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 claims description 3
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 claims description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 2
- CZWCKYRVOZZJNM-UHFFFAOYSA-N Prasterone sodium sulfate Natural products C1C(OS(O)(=O)=O)CCC2(C)C3CCC(C)(C(CC4)=O)C4C3CC=C21 CZWCKYRVOZZJNM-UHFFFAOYSA-N 0.000 claims description 2
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 claims description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims description 2
- CZWCKYRVOZZJNM-USOAJAOKSA-N dehydroepiandrosterone sulfate Chemical compound C1[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 CZWCKYRVOZZJNM-USOAJAOKSA-N 0.000 claims description 2
- GHCZAUBVMUEKKP-XROMFQGDSA-N glycoursodeoxycholic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)CC1 GHCZAUBVMUEKKP-XROMFQGDSA-N 0.000 claims description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 2
- 229950009829 prasterone sulfate Drugs 0.000 claims description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 2
- 235000019155 vitamin A Nutrition 0.000 claims description 2
- 239000011719 vitamin A Substances 0.000 claims description 2
- 229940045997 vitamin a Drugs 0.000 claims description 2
- GHCZAUBVMUEKKP-UHFFFAOYSA-N ursodeoxycholic acid glycine-conjugate Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)CC2 GHCZAUBVMUEKKP-UHFFFAOYSA-N 0.000 claims 3
- YWYQTGBBEZQBGO-XFHAOOBSSA-N (3s,5s,8r,9s,10s,13s,14s,17s)-17-[(1r)-1-hydroxyethyl]-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-ol Chemical compound C([C@@H]1CC2)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](O)C)[C@@]2(C)CC1 YWYQTGBBEZQBGO-XFHAOOBSSA-N 0.000 claims 2
- 108010015031 Glycochenodeoxycholic Acid Proteins 0.000 claims 2
- YWYQTGBBEZQBGO-UHFFFAOYSA-N UC1011 Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(O)C)C1(C)CC2 YWYQTGBBEZQBGO-UHFFFAOYSA-N 0.000 claims 2
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 claims 2
- IHOWSFVYYZTGSY-FOIRCHMTSA-N (2s)-2-amino-5-(diaminomethylideneamino)pentanoic acid;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N.OC(=O)[C@@H](N)CCCN=C(N)N.OC(=O)[C@@H](N)CCCN=C(N)N.OC(=O)CC(O)(C(O)=O)CC(O)=O IHOWSFVYYZTGSY-FOIRCHMTSA-N 0.000 claims 1
- QQIVKFZWLZJXJT-DNKQKWOHSA-N 16alpha-hydroxydehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C([C@H](O)C4)=O)[C@@H]4[C@@H]3CC=C21 QQIVKFZWLZJXJT-DNKQKWOHSA-N 0.000 claims 1
- GHCZAUBVMUEKKP-NHIHLBCISA-N 2-[[(4R)-4-[(3R,5S,7S,10S,13R,17R)-3,7-Dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)C1C2C2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)CC1 GHCZAUBVMUEKKP-NHIHLBCISA-N 0.000 claims 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 claims 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 claims 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 claims 1
- 229960003624 creatine Drugs 0.000 claims 1
- 239000006046 creatine Substances 0.000 claims 1
- GHCZAUBVMUEKKP-GYPHWSFCSA-N glycochenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)CC1 GHCZAUBVMUEKKP-GYPHWSFCSA-N 0.000 claims 1
- RFDAIACWWDREDC-FRVQLJSFSA-N glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 claims 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 claims 1
- DKXXSIJHWWVNMO-GYPHWSFCSA-N sulfoglycochenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](OS(O)(=O)=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)CC1 DKXXSIJHWWVNMO-GYPHWSFCSA-N 0.000 claims 1
- BHTRKEVKTKCXOH-BJLOMENOSA-N taurochenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)CC1 BHTRKEVKTKCXOH-BJLOMENOSA-N 0.000 claims 1
- 239000002207 metabolite Substances 0.000 abstract description 23
- 238000011161 development Methods 0.000 abstract description 3
- 230000004060 metabolic process Effects 0.000 abstract description 3
- 238000013399 early diagnosis Methods 0.000 abstract description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 14
- 239000004471 Glycine Substances 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 8
- 239000008777 Glycerylphosphorylcholine Substances 0.000 description 7
- 229960004956 glycerylphosphorylcholine Drugs 0.000 description 7
- RUDATBOHQWOJDD-UHFFFAOYSA-N (3beta,5beta,7alpha)-3,7-Dihydroxycholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 RUDATBOHQWOJDD-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000090 biomarker Substances 0.000 description 5
- 229960001091 chenodeoxycholic acid Drugs 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- ALBNSVAJDFJRKQ-DNKQKWOHSA-N 16alpha-hydroxydehydroepiandrosterone 3-sulfate Chemical compound C1[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@H]3CC[C@](C)(C([C@H](O)C4)=O)[C@@H]4[C@@H]3CC=C21 ALBNSVAJDFJRKQ-DNKQKWOHSA-N 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- WHMOBEGYTDWMIG-BSWAIDMHSA-N Chenodeoxycholic acid 3-sulfate Chemical compound C([C@H]1C[C@H]2O)[C@H](OS(O)(=O)=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 WHMOBEGYTDWMIG-BSWAIDMHSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108010077895 Sarcosine Proteins 0.000 description 4
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 4
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 150000001783 ceramides Chemical class 0.000 description 4
- 229940018560 citraconate Drugs 0.000 description 4
- KILNVBDSWZSGLL-UHFFFAOYSA-N colfosceril palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-UHFFFAOYSA-N 0.000 description 4
- JLOULEJYJNBUMX-UHFFFAOYSA-L copper;quinoline-2-carboxylate Chemical compound [Cu+2].C1=CC=CC2=NC(C(=O)[O-])=CC=C21.C1=CC=CC2=NC(C(=O)[O-])=CC=C21 JLOULEJYJNBUMX-UHFFFAOYSA-L 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229940043230 sarcosine Drugs 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229940009976 deoxycholate Drugs 0.000 description 3
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000007477 logistic regression Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- 101150028074 2 gene Proteins 0.000 description 2
- LKTXOQJJFLAZRW-DDVNJCBZSA-N 2-[[(4r)-4-[(3r,5r,7r,8r,9s,10s,12s,13r,14s)-7,12-dihydroxy-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](OS(O)(=O)=O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CCC([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 LKTXOQJJFLAZRW-DDVNJCBZSA-N 0.000 description 2
- JVGVDSSUAVXRDY-UHFFFAOYSA-N 3-(4-hydroxyphenyl)lactic acid Chemical compound OC(=O)C(O)CC1=CC=C(O)C=C1 JVGVDSSUAVXRDY-UHFFFAOYSA-N 0.000 description 2
- PIXFHVWJOVNKQK-PTXZMSDUSA-N 3alpha,11beta-Dihydroxy-5alpha-androstane-17-one Chemical compound C1[C@H](O)CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC[C@H]21 PIXFHVWJOVNKQK-PTXZMSDUSA-N 0.000 description 2
- XMZBEAXQGSBWLG-UHFFFAOYSA-N CSC=CC(O)C(O)C(O)=O Chemical compound CSC=CC(O)C(O)C(O)=O XMZBEAXQGSBWLG-UHFFFAOYSA-N 0.000 description 2
- RFDAIACWWDREDC-UHFFFAOYSA-N Na salt-Glycocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCC(O)=O)C)C1(C)C(O)C2 RFDAIACWWDREDC-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229940099347 glycocholic acid Drugs 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 238000013103 analytical ultracentrifugation Methods 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002013 hydrophilic interaction chromatography Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000002705 metabolomic analysis Methods 0.000 description 1
- 230000001431 metabolomic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000000101 novel biomarker Substances 0.000 description 1
- 238000007427 paired t-test Methods 0.000 description 1
- 238000010239 partial least squares discriminant analysis Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6806—Determination of free amino acids
- G01N33/6812—Assays for specific amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
- G01N33/743—Steroid hormones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/82—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/92—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N2030/022—Column chromatography characterised by the kind of separation mechanism
- G01N2030/027—Liquid chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2405/00—Assays, e.g. immunoassays or enzyme assays, involving lipids
- G01N2405/04—Phospholipids, i.e. phosphoglycerides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/08—Hepato-biliairy disorders other than hepatitis
- G01N2800/085—Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/50—Determining the risk of developing a disease
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/70—Mechanisms involved in disease identification
- G01N2800/7023—(Hyper)proliferation
- G01N2800/7028—Cancer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Endocrinology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The invention discloses a metabolism marker for predicting liver cancer incidence risk and application thereof, and development and utilization of the metabolism marker provide technical support for liver cancer incidence risk prediction and early diagnosis and treatment. The invention utilizes a non-targeted metabonomics detection method to screen and verify 44 plasma metabolites related to the liver cancer incidence risk, and determines a group of 18 plasma metabolites, which can obviously improve the risk prediction level of liver cancer.
Description
Technical Field
The invention belongs to the technical field of biomedicine, and relates to a metabolic marker for liver cancer risk prediction and application thereof.
Background
Primary liver cancer is the sixth most common cancer worldwide and is also the third leading cause of cancer death. The incidence rate of liver cancer in China exceeds that of other countries in the world, and the new and dead liver cancer cases account for over 50% of the world every year, and the incidence rate and the death rate of liver cancer in China are respectively second and fourth in cancers, so that the life and the health of residents are seriously threatened. The liver cancer is hidden, the disease progress is rapid, about 70% -80% of patients already belong to middle and late stages when they are diagnosed, the chance of surgery or other local treatment is lost, the recurrence rate is high, and the survival rate in 5 years is only 14%. Therefore, the method improves the prediction level of the liver cancer incidence risk, identifies the high-risk group for early intervention and diagnosis and treatment, and has important public health significance for reducing the liver cancer incidence rate and the death rate.
Up to now, screening or auxiliary diagnosis techniques for liver cancer mainly include serum alpha fetoprotein detection and imaging techniques. However, although alpha fetoprotein is the most widely used serological index in clinical application, it is found that the sensitivity of early liver cancer is lower than 40%, and 30% -40% of liver cancer patients have no significant elevation of alpha fetoprotein. Therefore, alpha fetoprotein has limited sensitivity and specificity in screening liver cancer. Imaging techniques include computed tomography, ultrasound, and magnetic resonance imaging, which are relatively expensive, limited by the skill level of the operator, and have low sensitivity to early liver cancer. In addition, the method is mainly used for screening or auxiliary diagnosis, the potential risk of liver cancer onset cannot be effectively estimated, and a new technical method is urgently needed for improving the early prevention level of liver cancer.
Metabonomics is a new histology technology emerging after genomics, transcriptomics and proteomics, and can quantitatively analyze thousands of intermediate products and final products participating in biochemical reactions in organisms, and has wide application in the fields of etiology, diagnosis, biological function research, drug research and the like. Compared with other methods for studying the metabonomics, ① has the advantages that metabolic response of an organism to physiological and pathological condition changes is measured from the whole angle, particularly, the metabonomics is located at the downstream of life network regulation, detection of metabolites is closer to reflecting change of biological phenotype, tiny changes of ② gene and protein expression on functional level can be amplified through the metabolites, nonfunctional changes of the ② gene and protein expression cannot be reflected on metabolic level, therefore, detection of the metabolites is easier to find key events for changing the biological phenotype, and a sample measured by ③ can be biological fluid (such as blood, urine and the like), so that the sample is easier to obtain, less damage to human body and easy to popularize and apply. Therefore, the metabonomics technology is helpful for finding early events of tumors, and identifying biomarkers with crowd application value so as to improve the risk prediction and intervention capability of the tumors.
The traditional metabonomics research of liver cancer has small sample size, the detected metabolite quantity is small, and external verification is lacking, and especially the predictive value of the metabolic markers for future morbidity risk is not evaluated in a prospective queue. Therefore, it is necessary to develop a queue-based liver cancer metabonomics study, and the system screens metabolic biomarkers with application value, which has important significance for realizing liver cancer prevention gateway forward and accurate prevention and reducing incidence and death rate of liver cancer in China.
Disclosure of Invention
In order to overcome the defects, the invention provides a plasma metabolite for predicting liver cancer risk and application thereof. The method can be applied to detection of novel biomarkers related to liver cancer pathogenesis.
A first object of the present invention is to provide a marker combination associated with liver cancer, which is a combination of one or more of the following 44 compounds:
copper quinolinate
3- (4-Hydroxyphenyl) lactic acid
Cystathionine (cystathionine)
Glycocholic acid salt
Citrulline
Phenylalanine (Phe)
Vitamin A
Tyrosine
Sarcosine
Glycine chenodeoxycholic acid
Taurochenon deoxycholate
Ribitol
1, 2-Dipalmitoyl-glycerophosphorylcholine (16:0/16:0)
1-Myristoyl-2-palmitoyl-glycerophosphorylcholine (14:0/16:0)
Dehydroepiandrosterone sulfate
N-acetylglycine
Androsterone sulfate
N-acetyl tyrosine
Epiandrosterone sulfate
N1-methyl-2-pyridone-5-carboxamide
1-Arachidonyl-glycerophosphorylcholine (20:4/0:0)
1-Arachidonyl-glycerophosphoryl ethanolamine (20:4/0:0)
5 Alpha-androstane-3 beta, 17 beta-diol bisulphate
Taurocholate sulfate
Androstenediol disulfate
5 Alpha-pregna-3 beta, 20 alpha-diol monosulfate
Androstenediol (3 alpha, 17 alpha) monosulfate
17-Androstenediol sulfate (1)
17-Androstenediol sulfate (2)
16 Alpha-hydroxy dehydroepiandrosterone 3-sulfate
Androsterone glucuronide
Arginine (Arg)
Glycine ursodeoxycholic acid
Citraconate salt
Glycine chenodeoxycholic acid 3-sulfate
1- (1-Alkenyl-palmitoyl) -2-palmitoyl-glycerophosphorylcholine (P-16:1/16:1)
1- (1-Alkenyl-palmitoyl) -2-palmitoyl-glycerophosphorylcholine (P-16:0/16:0)
Glycine chenodeoxycholic acid glucuronide
Ceramides (d18:2/24:1, d18:1/24:2)
11 Beta-hydroxy androsterone glucuronide
Gan Anxiong deoxycholate sulphate
2, 3-Dihydroxy-5-methylsulfanyl-4-pentenoate
Lactone sulfuric acid
Tetrahydrocortisol glucuronide.
Further, the marker combination is a combination of one or more of the following 33 compounds:
copper quinolinate
Cystathionine (cystathionine)
Citrulline
Sarcosine
Ribitol
1, 2-Dipalmitoyl-glycerophosphorylcholine (16:0/16:0)
1-Myristoyl-2-palmitoyl-glycerophosphorylcholine (14:0/16:0)
N-acetylglycine
Androsterone sulfate
N-acetyl tyrosine
Epiandrosterone sulfate
N1-methyl-2-pyridone-5-carboxamide
1-Arachidonyl-glycerophosphoryl ethanolamine (20:4/0:0)
5 Alpha-androstane-3 beta, 17 beta-diol bisulphate
Taurocholate sulfate
Androstenediol disulfate
5 Alpha-pregna-3 beta, 20 alpha-diol monosulfate
Androstenediol (3 alpha, 17 alpha) monosulfate
17-Androstenediol sulfate (1)
17-Androstenediol sulfate (2)
16 Alpha-hydroxy dehydroepiandrosterone 3-sulfate
Androsterone glucuronide
Arginine (Arg)
Citraconate salt
Glycine chenodeoxycholic acid 3-sulfate
1- (1-Alkenyl-palmitoyl) -2-palmitoyl-glycerophosphorylcholine (P-16:1/16:1)
Glycine chenodeoxycholic acid glucuronide
Ceramides (d18:2/24:1, d18:1/24:2)
11 Beta-hydroxy androsterone glucuronide
Gan Anxiong deoxycholate sulphate
2, 3-Dihydroxy-5-methylsulfanyl-4-pentenoate
Lactone sulfuric acid
Tetrahydrocortisol glucuronide.
Further, the marker combination is a combination of one or more of the following 18 compounds:
copper quinolinate
3- (4-Hydroxyphenyl) lactic acid
Cystathionine (cystathionine)
Glycocholic acid salt
Citrulline
Sarcosine
1, 2-Dipalmitoyl-glycerophosphorylcholine (16:0/16:0)
Androsterone sulfate
1-Arachidonyl-glycerophosphorylcholine (20:4/0:0)
5 Alpha-pregna-3 beta, 20 alpha-diol monosulfate
17-Androstenediol sulfate (1)
17-Androstenediol sulfate (2)
16 Alpha-hydroxy dehydroepiandrosterone 3-sulfate
Arginine (Arg)
Citraconate salt
Glycine chenodeoxycholic acid 3-sulfate
Glycine chenodeoxycholic acid glucuronide
Ceramides (d18:2/24:1, d18:1/24:2).
Further, the marker combination is a combination of one or more of the following 15 compounds:
copper quinolinate
Cystathionine (cystathionine)
Citrulline
Sarcosine
1, 2-Dipalmitoyl-glycerophosphorylcholine (16:0/16:0)
Androsterone sulfate
5 Alpha-pregna-3 beta, 20 alpha-diol monosulfate
17-Androstenediol sulfate (1)
17-Androstenediol sulfate (2)
16 Alpha-hydroxy dehydroepiandrosterone 3-sulfate
Arginine (Arg)
Citraconate salt
Glycine chenodeoxycholic acid 3-sulfate
Glycine chenodeoxycholic acid glucuronide
Ceramides (d18:2/24:1, d18:1/24:2).
A second object of the present invention is to provide the use of a product for detecting a marker combination as described above for the preparation of a liver cancer diagnosis and/or risk prediction product.
Further, the marker combination is derived from plasma.
A third object of the present invention is to provide the use of the aforementioned marker combination for screening a drug for treating and/or alleviating liver cancer.
Further, the marker combination is derived from plasma.
The fourth object of the invention is to provide the application of the marker combination in preparing a detection kit for diagnosing and/or predicting liver cancer.
Further, the marker combination is derived from plasma.
Compared with the prior art, the invention has the beneficial effects that:
(1) The invention adopts a strict screening, verifying and evaluating system, and develops nest type case control research of liver cancer based on 2 prospective queues in China, 44 metabolites are independently screened and verified to be related with the incidence risk of the liver cancer, wherein the association of 33 metabolites is first reported in the world;
(2) The invention determines a group of 18 plasma metabolites, which are used for predicting the occurrence risk of liver cancer, shows good sensitivity and specificity, and provides a new technical support for identifying high-risk groups of liver cancer and early diagnosis and treatment;
(3) The invention shows that the specific plasma metabolite can be used as a novel micro-invasive biomarker to improve the disease risk prediction level, and the successful development of the biomarker provides a method and a strategic reference for the development of other disease biomarkers.
Drawings
Figure 1 results of a subject work profile analysis for 44 metabolites. A is a result of a screening set of a Nantong queue, B is a result of a verification set of a Changzhou queue, and a logistic regression calculation C index in the verification set is 0.79 (95% CI: 0.70-0.88).
Figure 2 results of a subject work profile analysis for 18 metabolites. A is a result of a screening set of a Nantong queue, B is a result of a verification set of a Changzhou queue, and a logistic regression calculation C index in the verification set is 0.86 (95% CI: 0.80-0.93).
Detailed Description
Experiment design:
(1) A unified standard queue specimen library and database are established, standard blood samples are collected by Standard Operation Procedure (SOP), and complete demographic data and clinical data are collected by the system.
(2) Metabolome detection, including the confirmed liver cancer cases in 2 prospective queues and the healthy controls matched with the ages and sexes of the liver cancer cases, screening and verifying the metabolic markers related to liver cancer incidence by using a non-target metabolomics technology.
(3) And (3) identifying the metabolites with independent prediction values by further adopting methods such as machine learning and the like for the screened positive associated metabolites, and evaluating the combined prediction efficacy of the metabolites.
The inventors have conducted a nest-like case control study using 2 prospective chinese crowd cohorts, detected 612 named metabolites in baseline plasma by non-targeted metabonomics technology, and found that 44 of these metabolites were significantly correlated with the onset of liver cancer, including 12 androgens/progestins, 8 bile acids, 10 amino acids, 6 phospholipids and 8 other metabolites. The machine learning technology is adopted to further identify 18 metabolic markers with predictive value, so that technical support is provided for risk assessment of liver cancer, and data support is provided for finding novel small molecular drugs with potential intervention value.
Example 1 sample collection and sample data arrangement
1. Selection of study samples:
163 new liver cancer patients from two prospective queues in Nantong and Changzhou City of Jiangsu province were matched with healthy controls by age.+ -.2 years, same sex and region 1:1.
The study was conducted with 326 standard-meeting samples, 216 in southern city and 110 in Changzhou city.
2. Extraction of plasma samples:
Each study subject adopts a vacuum anticoagulation (EDTA) blood collection tube to collect 5ml of fasting venous blood, plasma is immediately separated according to a standard method and frozen and stored at-80 ℃ for standby, 100 mu L of plasma sample is removed to an EP tube, 300 mu L of extracting solution (methanol and isotope-labeled internal standard mixture) is added, vortex mixing is carried out for 30s, ultrasound is carried out for 10min (ice water bath), standing is carried out at-40 ℃ for 1h, the sample is centrifuged at 4 ℃ and 12000rpm for 15min, and the supernatant is taken and loaded into a sample bottle for machine detection.
Example 2 plasma metabolome detection
3. Metabonomics detection:
and detecting a sample by adopting a technical platform combining ultra-high performance liquid chromatography (Waters acquisition) and quadrupole-orbitrap high-resolution mass spectrum (Thermo SCIENTIFIC Q Exactive).
(1) A C18 column (UPLC BEH C18-2.1X100 mM,1.7 μm) from Waters was used, eluting with 80% mobile phase A (95:5:0.1vol/vol/vol 10mM ammonium acetate/methanol/formic acid) for 1 min, 80% mobile phase B (99.9:0.1vol/vol methanol/formic acid) for 2 min, 100% mobile phase B for 7 min, and the mass spectrometry was performed using electrospray ionization anion mode for full scan analysis in the range of 200-1000m/z with a resolution of 70000 and a data acquisition rate of 3hz, and other parameters were sheath gas flow rate 50, in-source CID 5ev, scavenging 5, spray voltage 3kv, capillary temperature 300℃and s-lens radio frequency voltage 50v, heater temperature 300 ℃.
(2) HILIC chromatographic column (UPLC BEH Amide 2.1X150 mM,1.7 μm) from Waters was used, eluting with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) for 0.5 min, 40% mobile phase B (acetonitrile containing 0.1% formic acid) for 10 min, full scan analysis in the range of 70-800m/z with resolution 70000 and data acquisition rate of 3hz, other parameters of sheath gas flow rate 40, scavenging 2, spray voltage 3.5kV, capillary temperature 350℃s-lens radio frequency voltage 40, heater temperature 300 ℃.
4. And (3) data processing:
processing such as peak identification, peak extraction, peak alignment and integration is performed, material annotation is performed to determine 612 named metabolites in baseline plasma, outliers are filtered based on relative standard deviation (RELATIVE STANDARD displacement), missing data are filled in by one half of the minimum value, and normalization is performed by using an internal standard (INTERNAL STANDARD).
5. Statistical analysis:
Performing orthogonal-partial least squares discriminant analysis (variable importance projection, VIP) and paired t test (P value), avoiding false positive results through multiple correction (FDR), finding that 44 metabolites have significant differences between cases and control groups, satisfying VIP >1 and P FDR <0.05 (table 1);
Metabolic markers were further found in which 18 metabolites had independent predictive value using lasso regression (Lasso regression), predictive models were built using machine learning, subject work characteristics (Receiver operating characteristic, ROC) analysis found that the predictive effect of the models was excellent, and the area under the ROC curve (AUC) calculated by logistic regression in the validation cohort was 0.86 (95% ci: 0.80-0.93), with sensitivity and specificity of 81.8% and 74.5%, respectively.
As can be seen from the ROC curves in FIG. 1, the AUCs of the 44 metabolic markers in the two queues are respectively 0.90 and 0.79, and the ROC curves of the 18 metabolic markers in the two queues in FIG. 2 have a certain accuracy in the liver cancer diagnosis process, and the area under the ROC curves of the 18 metabolic markers in the two queues in FIG. 2 is larger than 0.85, so that the ROC curves have higher accuracy and clinical diagnosis significance.
Example 3 data analysis
The 44 significantly different metabolites are shown in table 1 in the liver cancer case compared with the control.
TABLE 1
The above examples are not intended to limit the present invention, but are merely illustrative of the present invention. The experimental methods used in the above examples, unless otherwise specified, and the experimental methods in which the specific conditions are not specified in the examples are conventional conditions and conventional methods, and the raw reagent materials in the above examples are all commercially available, and if otherwise specified, are all commercially available.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210788440.2A CN115128257B (en) | 2022-07-06 | 2022-07-06 | Metabolic markers for predicting the risk of liver cancer and their application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210788440.2A CN115128257B (en) | 2022-07-06 | 2022-07-06 | Metabolic markers for predicting the risk of liver cancer and their application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115128257A CN115128257A (en) | 2022-09-30 |
CN115128257B true CN115128257B (en) | 2025-02-18 |
Family
ID=83382862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210788440.2A Active CN115128257B (en) | 2022-07-06 | 2022-07-06 | Metabolic markers for predicting the risk of liver cancer and their application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115128257B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116124950B (en) * | 2023-02-22 | 2025-02-21 | 复旦大学 | Serum biomarker for growth hormone injection screening or detection and application thereof |
CN116879434A (en) * | 2023-07-05 | 2023-10-13 | 首都医科大学附属北京佑安医院 | Metabolic product and CG locus methylation marker for liver cancer diagnosis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995441A (en) * | 2010-02-10 | 2011-03-30 | 中国科学院大连化学物理研究所 | Kit for testing 3-sulfate glycochenodeoxycholic acids and glycochenodeoxycholic acids in blood |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009153136A2 (en) * | 2008-05-28 | 2009-12-23 | Basf Se | Means and methods for assessing liver toxicity |
WO2011130385A1 (en) * | 2010-04-13 | 2011-10-20 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic | Biomarkers for hepatocellular cancer |
CN102445512A (en) * | 2010-10-09 | 2012-05-09 | 中国人民解放军第二军医大学 | Small molecule metabolite map for identifying liver cancer, hepatitis or liver cirrhosis and preparation method thereof |
CN104678003A (en) * | 2013-11-29 | 2015-06-03 | 沈阳药科大学 | Biomarker for evaluating liver cancer disease by using urine |
EP3081938A1 (en) * | 2015-04-13 | 2016-10-19 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Serum biomarker for hepatocellular carcinoma (hcc) |
CN111610262A (en) * | 2020-05-19 | 2020-09-01 | 上海鹿明生物科技有限公司 | Metabolism marker for diagnosing liver and gall diseases |
KR102379017B1 (en) * | 2020-08-18 | 2022-03-28 | 서울대학교 산학협력단 | Composition for diagnosing liver cancer comprising glycine labeled isotope 13C or 2H as an active ingredient |
WO2022115574A2 (en) * | 2020-11-25 | 2022-06-02 | Venn Biosciences Corporation | Biomarkers for diagnosing non-alcoholic steatohepatitis (nash) or hepatocellular carcinoma (hcc) |
CN112881547B (en) * | 2021-01-12 | 2023-04-21 | 中国科学院大学宁波华美医院 | Screening method of early liver cancer diagnosis markers for liver cirrhosis and hepatitis people |
-
2022
- 2022-07-06 CN CN202210788440.2A patent/CN115128257B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995441A (en) * | 2010-02-10 | 2011-03-30 | 中国科学院大连化学物理研究所 | Kit for testing 3-sulfate glycochenodeoxycholic acids and glycochenodeoxycholic acids in blood |
Non-Patent Citations (1)
Title |
---|
Untargeted plasma metabolomics for risk prediction of hepatocellular carcinoma: A prospective study in two Chinese cohorts;Dong Hang et al;《 INTERNATIONAL JOURNAL OF CANCER》;20220722;第151卷(第12期);2144-2154 * |
Also Published As
Publication number | Publication date |
---|---|
CN115128257A (en) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma | |
Wei et al. | Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer | |
EP2284540A1 (en) | Method of diagnosing organ failure | |
Sun et al. | Plasma metabolomics reveals metabolic profiling for diabetic retinopathy and disease progression | |
CN106979982A (en) | It is a kind of to be predicted for diabetes risk, treat the method evaluated and kit | |
CN115128257B (en) | Metabolic markers for predicting the risk of liver cancer and their application | |
WO2011157655A1 (en) | Use of bile acids for prediction of an onset of sepsis | |
EP2480895B1 (en) | Method for the diagnosis of non-alcoholic steatohepatitis based on a metabolomic profile | |
US9739780B2 (en) | Metabolite biomarkers for the detection of liver cancer | |
CN116381073A (en) | Use and method of biomarker in preparation of lung cancer detection reagent | |
WO2017003936A1 (en) | Methods for detecting, diagnosing and treating endometrial cancer | |
WO2019185692A1 (en) | Metabolite-based breast cancer detection and diagnosis | |
Jelonek et al. | Metabolome-based biomarkers: their potential role in the early detection of lung cancer | |
CN110514772A (en) | Application of Metabolic Markers of Clear Renal Cell Carcinoma in Early Screening and Diagnosis Products of Renal Cell Carcinoma | |
His et al. | Application of metabolomics to epidemiologic studies of breast cancer: new perspectives for etiology and prevention | |
CN111896641B (en) | Small molecule screening method and application of colorectal cancer-related estrogen plasma metabolism | |
Kozar et al. | Identification of novel diagnostic biomarkers in breast cancer using targeted metabolomic profiling | |
Yilmaz | Serum proteomics for biomarker discovery in nonalcoholic fatty liver disease | |
US20140162903A1 (en) | Metabolite Biomarkers For Forecasting The Outcome of Preoperative Chemotherapy For Breast Cancer Treatment | |
EP2339352A1 (en) | Use of endogenous metabolites for early diagnosing sepsis | |
Xu et al. | The complete change in bile acids and steroids in systematic metabolomics applied to the intrahepatic cholestasis of pregnancy | |
CN112034171A (en) | Application of reagent for detecting serum sphingosine-1-phosphate in preparation of kit for distinguishing liver cirrhosis or hepatocellular carcinoma | |
US11923082B2 (en) | Method and system for rapid prediction offast blood glucose level in pregnant subjects | |
CN113189234B (en) | Laryngeal carcinoma analysis method based on ceramide, sphingomyelin and phospholipid rich in arachidonic acid acyl chain and application | |
CN112326948B (en) | Biomarker for predicting diabetes, kit and using method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |