[go: up one dir, main page]

CN115128257A - Metabolic markers for predicting the risk of hepatocellular carcinoma and their applications - Google Patents

Metabolic markers for predicting the risk of hepatocellular carcinoma and their applications Download PDF

Info

Publication number
CN115128257A
CN115128257A CN202210788440.2A CN202210788440A CN115128257A CN 115128257 A CN115128257 A CN 115128257A CN 202210788440 A CN202210788440 A CN 202210788440A CN 115128257 A CN115128257 A CN 115128257A
Authority
CN
China
Prior art keywords
sulfate
acid
androstenediol
glycerophosphatidylcholine
glucuronide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210788440.2A
Other languages
Chinese (zh)
Other versions
CN115128257B (en
Inventor
沈洪兵
胡志斌
马红霞
杭栋
靳光付
戴俊程
宋词
杨晓林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Medical University
Original Assignee
Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Medical University filed Critical Nanjing Medical University
Priority to CN202210788440.2A priority Critical patent/CN115128257B/en
Publication of CN115128257A publication Critical patent/CN115128257A/en
Application granted granted Critical
Publication of CN115128257B publication Critical patent/CN115128257B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/743Steroid hormones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/82Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/04Phospholipids, i.e. phosphoglycerides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention discloses a metabolic marker for liver cancer morbidity risk prediction and application thereof, and development and utilization of the metabolic marker can provide technical support for risk prediction and early diagnosis and treatment of liver cancer. The invention screens and verifies 44 plasma metabolites related to liver cancer morbidity risk by using a non-targeted metabonomics detection method, and determines a group of 18 plasma metabolites, so that the risk prediction level of liver cancer can be obviously improved.

Description

肝癌发病风险预测的代谢标志物及其应用Metabolic markers for predicting the risk of hepatocellular carcinoma and their applications

技术领域technical field

本发明属于生物医学技术领域,涉及肝癌风险预测的代谢标志物及其应用。The invention belongs to the technical field of biomedicine, and relates to a metabolic marker for predicting the risk of liver cancer and its application.

背景技术Background technique

原发性肝癌是全球第六大常见癌症,也是导致癌症死亡的第三大原因。我国肝癌的发病率超过世界其他国家,每年新增和死亡的肝癌病例占全球的50%以上,我国肝癌发病率和死亡率在癌症中分别排第二和第四位,严重威胁居民生命健康。肝癌起病隐匿,病情进展迅速,约70%-80%的患者确诊时已属于中晚期,失去了手术或其他局部治疗机会,复发率高,导致5年生存率仅有14%。因此,提高肝癌发病风险的预测水平、识别高危人群进行早期干预和诊疗,对于降低肝癌发病率和死亡率具有重要公共卫生意义。Primary liver cancer is the sixth most common cancer worldwide and the third leading cause of cancer death. The incidence of liver cancer in my country exceeds that of other countries in the world. The new and dead liver cancer cases account for more than 50% of the world's annual incidence. The incidence and mortality of liver cancer in my country rank second and fourth respectively among cancers, seriously threatening the lives and health of residents. The onset of liver cancer is insidious and the disease progresses rapidly. About 70% to 80% of the patients are in the middle and late stages at the time of diagnosis, losing the opportunity of surgery or other local treatments, and the recurrence rate is high, resulting in a 5-year survival rate of only 14%. Therefore, improving the prediction level of the risk of liver cancer and identifying high-risk groups for early intervention and diagnosis and treatment are of great public health significance for reducing the incidence and mortality of liver cancer.

截至目前,肝癌的筛查或辅助诊断技术主要包括血清甲胎蛋白检测和影像技术。然而,尽管甲胎蛋白是临床应用最广泛的血清学指标,其发现早期肝癌的灵敏度低于40%,且有30%~40%的肝癌患者其甲胎蛋白并未显著升高。因此,甲胎蛋白在肝癌的筛查中具有灵敏度和特异度有限。影像技术包括计算机断层扫描、超声和核磁共振成像等,费用较高,受操作者的技术水平限制,且对早期肝癌的灵敏度低。此外,上述方法主要用于筛查或辅助诊断,无法对肝癌的潜在发病风险进行有效评估,肝癌早期预防水平的提高亟待新的技术方法。Up to now, the screening or auxiliary diagnosis technology of liver cancer mainly includes serum alpha-fetoprotein detection and imaging technology. However, although alpha-fetoprotein is the most widely used serological marker in clinical practice, its sensitivity for detecting early-stage liver cancer is less than 40%, and 30% to 40% of liver cancer patients have no significant increase in alpha-fetoprotein. Therefore, alpha-fetoprotein has limited sensitivity and specificity in liver cancer screening. Imaging techniques include computed tomography, ultrasound, and magnetic resonance imaging, which are expensive, limited by the operator's skill level, and have low sensitivity to early-stage liver cancer. In addition, the above methods are mainly used for screening or auxiliary diagnosis, and cannot effectively evaluate the potential risk of liver cancer. The improvement of the early prevention of liver cancer requires new technical methods.

代谢组学是继基因组学、转录组学和蛋白质组学之后兴起的一个新的组学技术,可对生物体内参与生化反应的成千上万中间产物及终产物进行定量分析,在病因学、诊断学、生物功能研究及药物研发等领域应用广泛。与其他组学研究方法相比,代谢组学具有以下优势:①从整体角度测定机体对生理病理条件变化所产生的代谢应答,尤其是代谢组处于生命网络调控的下游,代谢物的检测更接近于反映生物表型的改变;②基因和蛋白表达在功能水平上的微小变化可通过代谢物得到放大,而它们的非功能性变化则不会在代谢水平上得到反映,因而代谢物的检测更易发现改变生物表型的关键事件;③其测定的样品可以是生物体液(如血液、尿液等),比较容易获得,对人体损伤较小,易于推广应用。因此,代谢组学技术有助于发现肿瘤早期事件,鉴定具有人群应用价值的生物标志物,以提高肿瘤的风险预测及干预能力。Metabolomics is a new omics technology emerging after genomics, transcriptomics and proteomics, which can quantitatively analyze thousands of intermediates and end products involved in biochemical reactions in organisms. It is widely used in the fields of diagnostics, biological function research and drug research and development. Compared with other omics research methods, metabolomics has the following advantages: (1) Measure the metabolic response of the body to changes in physiological and pathological conditions from an overall perspective, especially the metabolome is in the downstream regulation of life network, and the detection of metabolites is closer To reflect changes in biological phenotype; ② Minor changes in gene and protein expression at the functional level can be amplified by metabolites, while their non-functional changes will not be reflected at the metabolic level, so the detection of metabolites is easier Discover the key events that change the biological phenotype; 3. The samples to be measured can be biological fluids (such as blood, urine, etc.), which are relatively easy to obtain, cause less damage to the human body, and are easy to popularize and apply. Therefore, metabolomic technology can help to discover early events in tumors, identify biomarkers with population application value, and improve the ability of tumor risk prediction and intervention.

既往肝癌的代谢组学研究样本量较小,检测的代谢物数量偏少,缺乏外部验证,尤其是未在前瞻性队列中评估代谢标志物对于未来发病风险的预测价值。因此,有必要开展基于队列的肝癌代谢组学研究,系统筛选具有应用价值的代谢生物标志物,这对于实现肝癌预防关口前移及精准预防,降低我国肝癌的发病率和死亡率具有重要意义。Previous metabolomic studies of liver cancer have small sample sizes, a small number of metabolites detected, and lack of external validation. In particular, the predictive value of metabolic markers for future risk of disease has not been evaluated in prospective cohorts. Therefore, it is necessary to carry out cohort-based metabolomic studies of liver cancer and systematically screen metabolic biomarkers with application value, which is of great significance for realizing the advance and precise prevention of liver cancer prevention, and reducing the incidence and mortality of liver cancer in my country.

发明内容SUMMARY OF THE INVENTION

针对上述不足,本发明提供一类用于肝癌风险预测的血浆代谢物及其应用。该方法可应用于检测肝癌发病相关的新的生物标志物。In view of the above deficiencies, the present invention provides a class of plasma metabolites for predicting the risk of liver cancer and applications thereof. This method can be applied to detect new biomarkers related to the pathogenesis of liver cancer.

本发明的第一个目的是提供一种与肝癌相关的标志物组合,所述标志物组合为以下44种化合物中的一种或多种的组合:The first object of the present invention is to provide a marker combination related to liver cancer, which is a combination of one or more of the following 44 compounds:

羟基喹啉铜Copper quinoline

3-(4-羟基苯基)乳酸3-(4-Hydroxyphenyl)lactic acid

胱硫醚cystathionine

甘胆酸盐Glycocholate

瓜氨酸Citrulline

苯丙氨酸Phenylalanine

维生素AVitamin A

酪氨酸tyrosine

肌氨酸sarcosine

甘氨鹅脱氧胆酸Glycinechenodeoxycholic acid

牛磺鹅脱氧胆酸盐Taurochenodeoxycholate

核糖醇Ribitol

1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0)

1-肉豆蔻酰-2-棕榈酰-甘油磷脂酰胆碱(14:0/16:0)1-Myristoyl-2-palmitoyl-glycerophosphatidylcholine (14:0/16:0)

硫酸脱氢表雄酮Dehydroepiandrosterone Sulfate

N-乙酰甘氨酸N-Acetylglycine

硫酸雄酮androsterone sulfate

N-乙酰酪氨酸N-Acetyltyrosine

表雄甾酮硫酸盐epiandrosterone sulfate

N1-甲基-2-吡啶酮-5-甲酰胺N1-Methyl-2-pyridone-5-carboxamide

1-花生四烯酰-甘油磷脂酰胆碱(20:4/0:0)1-Arachidinoyl-glycerophosphatidylcholine (20:4/0:0)

1-花生四烯酰-甘油磷酰乙醇胺(20:4/0:0)1-Arachididyl-glycerophosphorylethanolamine (20:4/0:0)

5α-雄甾烷-3β,17β-二醇硫酸氢盐5α-Androstane-3β,17β-diol hydrogen sulfate

牛磺胆烯酸硫酸盐Taurocholenoic Acid Sulfate

雄烯二醇二硫酸盐Androstenediol Disulfate

5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate

雄烯二醇(3α,17α)单硫酸盐Androstenediol (3α,17α) Monosulfate

17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1)

17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2)

16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate

雄酮葡萄糖苷酸androsterone glucuronide

精氨酸Arginine

甘氨酸熊脱氧胆酸Glycine ursodeoxycholic acid

柠康酸盐Citraconate

甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate

1-(1-烯基-棕榈酰)-2-棕榈油酰-甘油磷脂酰胆碱(P-16:1/16:1)1-(1-Enyl-palmitoyl)-2-palmitoleoyl-glycerophosphatidylcholine (P-16:1/16:1)

1-(1-烯基-棕榈酰)-2-棕榈酰-甘油磷脂酰胆碱(P-16:0/16:0)1-(1-Enyl-palmitoyl)-2-palmitoyl-glycerophosphatidylcholine (P-16:0/16:0)

甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide

神经酰胺(d18:2/24:1,d18:1/24:2)Ceramides (d18:2/24:1, d18:1/24:2)

11β-羟基雄甾酮葡糖苷酸11β-Hydroxyandrosterone glucuronide

甘氨熊脱氧胆酸硫酸盐Glycinursodeoxycholate Sulfate

2,3-二羟基-5-甲硫基-4-戊烯酸酯2,3-Dihydroxy-5-methylthio-4-pentenoate

内酯硫酸Lactone Sulfate

四氢皮质醇葡糖苷酸。Tetrahydrocortisol glucuronide.

进一步的,所述标志物组合为以下33种化合物中的一种或多种的组合:Further, the marker combination is a combination of one or more of the following 33 compounds:

羟基喹啉铜Copper quinoline

胱硫醚cystathionine

瓜氨酸Citrulline

肌氨酸sarcosine

核糖醇Ribitol

1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0)

1-肉豆蔻酰-2-棕榈酰-甘油磷脂酰胆碱(14:0/16:0)1-Myristoyl-2-palmitoyl-glycerophosphatidylcholine (14:0/16:0)

N-乙酰甘氨酸N-Acetylglycine

硫酸雄酮androsterone sulfate

N-乙酰酪氨酸N-Acetyltyrosine

表雄甾酮硫酸盐epiandrosterone sulfate

N1-甲基-2-吡啶酮-5-甲酰胺N1-Methyl-2-pyridone-5-carboxamide

1-花生四烯酰-甘油磷酰乙醇胺(20:4/0:0)1-Arachididyl-glycerophosphorylethanolamine (20:4/0:0)

5α-雄甾烷-3β,17β-二醇硫酸氢盐5α-Androstane-3β,17β-diol hydrogen sulfate

牛磺胆烯酸硫酸盐Taurocholenoic Acid Sulfate

雄烯二醇二硫酸盐Androstenediol Disulfate

5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate

雄烯二醇(3α,17α)单硫酸盐Androstenediol (3α,17α) Monosulfate

17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1)

17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2)

16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate

雄酮葡萄糖苷酸androsterone glucuronide

精氨酸Arginine

柠康酸盐Citraconate

甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate

1-(1-烯基-棕榈酰)-2-棕榈油酰-甘油磷脂酰胆碱(P-16:1/16:1)1-(1-Enyl-palmitoyl)-2-palmitoleoyl-glycerophosphatidylcholine (P-16:1/16:1)

甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide

神经酰胺(d18:2/24:1,d18:1/24:2)Ceramides (d18:2/24:1, d18:1/24:2)

11β-羟基雄甾酮葡糖苷酸11β-Hydroxyandrosterone glucuronide

甘氨熊脱氧胆酸硫酸盐Glycinursodeoxycholate Sulfate

2,3-二羟基-5-甲硫基-4-戊烯酸酯2,3-Dihydroxy-5-methylthio-4-pentenoate

内酯硫酸Lactone Sulfate

四氢皮质醇葡糖苷酸。Tetrahydrocortisol glucuronide.

进一步的,所述标志物组合为以下18种化合物中的一种或多种的组合:Further, the marker combination is a combination of one or more of the following 18 compounds:

羟基喹啉铜Copper quinoline

3-(4-羟基苯基)乳酸3-(4-Hydroxyphenyl)lactic acid

胱硫醚cystathionine

甘胆酸盐Glycocholate

瓜氨酸Citrulline

肌氨酸sarcosine

1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0)

硫酸雄酮androsterone sulfate

1-花生四烯酰-甘油磷脂酰胆碱(20:4/0:0)1-Arachidinoyl-glycerophosphatidylcholine (20:4/0:0)

5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate

17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1)

17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2)

16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate

精氨酸Arginine

柠康酸盐Citraconate

甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate

甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide

神经酰胺(d18:2/24:1,d18:1/24:2)。Ceramides (d18:2/24:1, d18:1/24:2).

进一步的,所述标志物组合为以下15种化合物中的一种或多种的组合:Further, the marker combination is a combination of one or more of the following 15 compounds:

羟基喹啉铜Copper quinoline

胱硫醚cystathionine

瓜氨酸Citrulline

肌氨酸sarcosine

1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0)

硫酸雄酮androsterone sulfate

5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate

17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1)

17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2)

16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate

精氨酸Arginine

柠康酸盐Citraconate

甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate

甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide

神经酰胺(d18:2/24:1,d18:1/24:2)。Ceramides (d18:2/24:1, d18:1/24:2).

本发明的第二个目的是提供检测前述的标志物组合的产品在制备肝癌诊断和/或风险预测制品中的应用。The second object of the present invention is to provide the application of the product for detecting the aforementioned combination of markers in the preparation of a product for diagnosis and/or risk prediction of liver cancer.

进一步的,所述标志物组合来源于血浆。Further, the marker combination is derived from plasma.

本发明的第三个目的是提供前述的标志物组合在筛选治疗和/或缓解肝癌的药物中的应用。The third object of the present invention is to provide the application of the aforementioned marker combination in screening drugs for treating and/or alleviating liver cancer.

进一步的,所述标志物组合来源于血浆。Further, the marker combination is derived from plasma.

本发明的第四个目的是提供前述的标志物组合在制备用于肝癌诊断和/或风险预测的检测试剂盒中的应用。The fourth object of the present invention is to provide the application of the aforementioned marker combination in the preparation of a detection kit for liver cancer diagnosis and/or risk prediction.

进一步的,所述标志物组合来源于血浆。Further, the marker combination is derived from plasma.

与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:

(1)本发明采用严密筛选、验证和评价体系,基于中国的2项前瞻性队列开展肝癌的巢式病例对照研究,独立筛选并验证出44种代谢物与肝癌的发病风险相关,其中33种代谢物的关联为国际首次报道;(1) The present invention adopts a strict screening, verification and evaluation system to carry out a nested case-control study of liver cancer based on two prospective cohorts in China, and independently screened and verified that 44 metabolites are related to the risk of liver cancer, of which 33 The association of metabolites is the first international report;

(2)本发明确定了一组18种血浆代谢物,用于预测肝癌的发生风险,显示出良好的灵敏度和特异度,为识别肝癌高危人群、早期诊疗提供了新的技术支撑;(2) The present invention determines a group of 18 plasma metabolites, which are used to predict the occurrence risk of liver cancer, show good sensitivity and specificity, and provide new technical support for identifying high-risk groups of liver cancer and early diagnosis and treatment;

(3)本发明表明特定的血浆代谢物可作为一种新型的微创生物标志物,提高疾病风险预测水平,该类生物标志物的成功开发为其他疾病生物标志物的研制提供方法和策略上的借鉴。(3) The present invention shows that specific plasma metabolites can be used as a new type of minimally invasive biomarkers to improve the level of disease risk prediction, and the successful development of such biomarkers provides methods and strategies for the development of other disease biomarkers of reference.

附图说明Description of drawings

图1针对44个代谢物的受试者工作特征分析结果。A为南通队列筛选集结果,B为常州队列验证集结果,验证集中logistic回归计算C指数为0.79(95%CI:0.70-0.88)。Figure 1 Results of receiver operating characteristic analysis for 44 metabolites. A is the result of the screening set of Nantong cohort, and B is the result of the validation set of Changzhou cohort. The C index calculated by logistic regression in the validation set is 0.79 (95%CI: 0.70-0.88).

图2针对18个代谢物的受试者工作特征分析结果。A为南通队列筛选集结果,B为常州队列验证集结果,验证集中logistic回归计算C指数为0.86(95%CI:0.80-0.93)。Figure 2 Results of receiver operating characteristic analysis for 18 metabolites. A is the result of the screening set of Nantong cohort, and B is the result of the validation set of Changzhou cohort. The C index calculated by logistic regression in the validation set is 0.86 (95%CI: 0.80-0.93).

具体实施方式Detailed ways

实验设计:experimental design:

(1)建立统一标准的队列标本库和数据库:以标准操作程序(SOP)采集符合标准的血液样本,系统收集完整的人口学资料和临床资料。(1) Establish a unified standard cohort specimen library and database: standard operating procedures (SOP) are used to collect blood samples that meet the standards, and complete demographic and clinical data are systematically collected.

(2)代谢组检测:纳入2个前瞻性队列中确诊的肝癌病例及与其年龄、性别匹配的健康对照,利用非靶代谢组学技术,筛选并验证肝癌发病相关的代谢标志物。(2) Metabolome detection: Two prospective cohorts of confirmed liver cancer cases and age- and sex-matched healthy controls were included, and non-target metabolomics technology was used to screen and verify the metabolic markers associated with the pathogenesis of liver cancer.

(3)对筛选出的阳性关联代谢物,进一步采用机器学习等方法鉴定具有独立预测价值的代谢物,评估其联合预测效能。(3) For the screened positive associated metabolites, further use machine learning and other methods to identify metabolites with independent predictive value, and evaluate their combined predictive efficacy.

发明人利用2个前瞻性的中国人群队列开展了巢式病例对照研究,通过非靶向代谢组学技术检测了基线血浆中612种被命名的代谢物,发现其中44种代谢物与肝癌的发病显著相关,包括12种雄激素/孕激素、8种胆汁酸、10种氨基酸、6种磷脂和8种其他代谢物。采用机器学习技术进一步鉴定出18种具有预测价值的代谢标志物,为肝癌的风险评估提供技术支持,为发现具有潜在干预价值的新型小分子药物提供数据支持。The inventors conducted a nested case-control study using 2 prospective Chinese population cohorts, and detected 612 named metabolites in baseline plasma by non-targeted metabolomics technology, and found that 44 metabolites were associated with the incidence of liver cancer. Significantly associated, including 12 androgens/progestins, 8 bile acids, 10 amino acids, 6 phospholipids, and 8 other metabolites. Machine learning technology was used to further identify 18 metabolic markers with predictive value, providing technical support for risk assessment of liver cancer and data support for the discovery of new small molecule drugs with potential intervention value.

实施例1样品的收集和样品资料的整理Example 1 Collection of samples and arrangement of sample data

1、研究样本的选择:1. Selection of research samples:

来自江苏省南通市和常州市两个前瞻性队列的新发肝癌患者163人,按年龄±2岁、性别和地区相同1:1匹配健康对照。A total of 163 new-onset liver cancer patients from two prospective cohorts in Nantong City and Changzhou City, Jiangsu Province, were matched 1:1 with healthy controls by age ± 2 years, gender and region.

本研究共纳入326例符合标准的样本进行研究,其中南通市216例,常州市110例。A total of 326 eligible samples were included in this study, including 216 in Nantong and 110 in Changzhou.

2、血浆样本的提取:2. Extraction of plasma samples:

每个研究对象均采用真空抗凝(EDTA)采血管采集晨起空腹静脉血5ml,按标准方法立即分离出血浆并冷冻保存在-80℃备用;移取100μL血浆样品至EP管中,加入300μL提取液(甲醇,含同位素标记内标混合物),涡旋混匀30s;超声10min(冰水浴);-40℃静置1h;将样品4℃,12000rpm离心15min;取上清于进样瓶中上机检测。From each research subject, a vacuum anticoagulation (EDTA) blood collection tube was used to collect 5ml of fasting venous blood in the morning, and the plasma was immediately separated according to standard methods and stored frozen at -80°C for future use; 100μL of plasma sample was transferred to an EP tube, and 300μL of plasma was added. Extract solution (methanol, containing isotope-labeled internal standard mixture), vortex and mix for 30s; ultrasonicate for 10min (ice-water bath); let stand at -40°C for 1h; centrifuge the sample at 4°C, 12000rpm for 15min; take the supernatant into the injection bottle On-board detection.

实施例2血浆代谢组检测Example 2 Plasma metabolome detection

3、代谢组学检测:3. Metabolomics detection:

检测样品:采用超高效液相色谱(Waters ACQUITY)与四极杆-轨道阱高分辨质谱(Thermo Scientific Q Exactive)联用技术平台进行检测。Detection samples: Ultra-high performance liquid chromatography (Waters ACQUITY) combined with quadrupole-orbitrap high-resolution mass spectrometry (Thermo Scientific Q Exactive) technology platform was used for detection.

(1)使用Waters公司的C18色谱柱(UPLC BEH C18-2.1x100 mm,1.7μm),用80%流动相A(95:5:0.1vol/vol/vol 10mM醋酸铵/甲醇/甲酸)洗脱1分钟,80%流动相B(99.9:0.1vol/vol甲醇/甲酸)洗脱2分钟,100%流动相B洗脱7分钟;质谱分析采用电喷雾电离负离子模式,在200-1000m/z范围内进行全扫描分析,分辨率为70000,数据采集速率为3hz;其他参数:鞘气流速50,源内CID 5ev,扫气5,喷雾电压3kv,毛细管温度300℃,s-透镜射频电压50v,加热器温度300℃。(1) Use Waters' C18 column (UPLC BEH C18-2.1x100 mm, 1.7 μm), eluted with 80% mobile phase A (95:5:0.1vol/vol/vol 10mM ammonium acetate/methanol/formic acid) 1 minute, 80% mobile phase B (99.9:0.1vol/vol methanol/formic acid) eluted for 2 minutes, 100% mobile phase B eluted for 7 minutes; mass spectrometry analysis adopts electrospray ionization negative ion mode, in the range of 200-1000m/z Full scan analysis was carried out in the 70000 resolution, data acquisition rate was 3hz; other parameters: sheath gas flow rate 50, source CID 5ev, scavenging gas 5, spray voltage 3kv, capillary temperature 300℃, s-lens RF voltage 50v, heating The temperature of the device is 300°C.

(2)使用Waters公司的HILIC色谱柱(UPLC BEH Amide 2.1x150 mm,1.7μm),用5%流动相A(10mM甲酸铵和0.1%甲酸的水溶液)洗脱0.5分钟,40%流动相B(含0.1%甲酸的乙腈)洗脱10分钟;质谱分析采用电喷雾电离正离子模式,在70-800m/z范围内全扫描分析,分辨率为70000,数据采集速率为3hz;其他参数:鞘气流速40,扫气2,喷雾电压3.5kV,毛管温度350℃,s-透镜射频电压40,加热器温度300℃。(2) Use a HILIC column (UPLC BEH Amide 2.1x150 mm, 1.7 μm) from Waters, eluted with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) for 0.5 minutes, and 40% mobile phase B ( Acetonitrile containing 0.1% formic acid) elution for 10 minutes; mass spectrometry analysis adopts electrospray ionization positive ion mode, full scan analysis in the range of 70-800m/z, resolution is 70000, data acquisition rate is 3hz; other parameters: sheath gas flow Speed 40, purge 2, spray voltage 3.5kV, capillary temperature 350°C, s-lens RF voltage 40, heater temperature 300°C.

4、数据处理:4. Data processing:

进行峰识别、峰提取、峰对齐和积分等处理,进行物质注释确定基线血浆中612种被命名的代谢物;基于相对标准偏差(relative standard deviation)对异常值进行过滤;缺失数据采用最小值二分之一进行填补;利用内标(internal standard)进行归一化。Processes such as peak identification, peak extraction, peak alignment, and integration were performed, and substance annotation was performed to determine 612 named metabolites in baseline plasma; outliers were filtered based on relative standard deviation; missing data were taken as the minimum value of two 1/1 for padding; normalization is performed using the internal standard.

5、统计分析:5. Statistical analysis:

进行正交-偏最小二乘判别分析(变量重要性投影,VIP)和配对t检验(P值),经过多重校正(FDR)避免假阳性结果,发现44个代谢物在病例和对照组之间具有显著差异,满足VIP>1且PFDR<0.05(表1);Orthogonal-partial least squares discriminant analysis (variable importance projection, VIP) and paired t-test (P-value), after multiple correction (FDR) to avoid false positive results, found 44 metabolites between cases and controls There is a significant difference, meeting VIP>1 and P FDR <0.05 (Table 1);

使用套索回归(Lasso regression)进一步发现其中18个代谢物具有独立预测价值的代谢标志物;使用机器学习建立预测模型,受试者工作特征(Receiver operatingcharacteristic,ROC)分析发现模型的预测效果优异,验证队列中logistic回归计算的ROC曲线下面积(AUC)为0.86(95%CI:0.80-0.93),灵敏度和特异度分别为81.8%和74.5%。Lasso regression was used to further discover metabolic markers with independent predictive value for 18 metabolites; machine learning was used to establish a predictive model, and receiver operating characteristic (ROC) analysis found that the model had an excellent predictive effect. The area under the ROC curve (AUC) calculated by logistic regression in the validation cohort was 0.86 (95% CI: 0.80-0.93), with a sensitivity and specificity of 81.8% and 74.5%, respectively.

从图1中的ROC曲线可知,两队列的44种代谢标志物的AUC分别为0.90和0.79,在对肝癌的诊断过程中具有一定的准确性;图2中两队列的18种代谢标志物的ROC曲线下面积均大于0.85,具有较高准确性,具有临床诊断意义。From the ROC curves in Figure 1, the AUCs of the 44 metabolic markers in the two cohorts were 0.90 and 0.79, respectively, which had certain accuracy in the diagnosis of liver cancer; the AUCs of the 18 metabolic markers in the two cohorts in Figure 2 The areas under the ROC curve were all greater than 0.85, with high accuracy and clinical diagnostic significance.

实施例3数据分析Example 3 Data Analysis

肝癌病例与对照相比,44种显著差异的代谢产物见表1。Table 1 shows 44 significantly different metabolites between liver cancer cases and controls.

表1Table 1

Figure BDA0003732599040000091
Figure BDA0003732599040000091

Figure BDA0003732599040000101
Figure BDA0003732599040000101

Figure BDA0003732599040000111
Figure BDA0003732599040000111

Figure BDA0003732599040000121
Figure BDA0003732599040000121

以上实施例不用于限制本发明,仅用于说明本发明。以上实施例中所使用的实验方法如无特殊说明,实施例中未注明具体条件的实验方法为常规条件和常规方法,以上实施例中各原始试剂材料均可商购获得,如无特殊说明,均可从商业途径得到。The above embodiments are not used to limit the present invention, but are only used to illustrate the present invention. Unless otherwise specified, the experimental methods used in the above examples are conventional conditions and conventional methods, unless otherwise specified. The original reagent materials in the above examples can be obtained commercially. , are commercially available.

Claims (10)

1.一种与肝癌相关的标志物组合,其特征在于,所述标志物组合为以下44种化合物中的一种或多种的组合:1. A marker combination related to liver cancer, characterized in that, the marker combination is a combination of one or more of the following 44 compounds: 羟基喹啉铜Copper quinoline 3-(4-羟基苯基)乳酸3-(4-Hydroxyphenyl)lactic acid 胱硫醚cystathionine 甘胆酸盐Glycocholate 瓜氨酸Citrulline 苯丙氨酸Phenylalanine 维生素AVitamin A 酪氨酸tyrosine 肌氨酸sarcosine 甘氨鹅脱氧胆酸Glycinechenodeoxycholic acid 牛磺鹅脱氧胆酸盐Taurochenodeoxycholate 核糖醇Ribitol 1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0) 1-肉豆蔻酰-2-棕榈酰-甘油磷脂酰胆碱(14:0/16:0)1-Myristoyl-2-palmitoyl-glycerophosphatidylcholine (14:0/16:0) 硫酸脱氢表雄酮Dehydroepiandrosterone Sulfate N-乙酰甘氨酸N-Acetylglycine 硫酸雄酮androsterone sulfate N-乙酰酪氨酸N-Acetyltyrosine 表雄甾酮硫酸盐epiandrosterone sulfate N1-甲基-2-吡啶酮-5-甲酰胺N1-Methyl-2-pyridone-5-carboxamide 1-花生四烯酰-甘油磷脂酰胆碱(20:4/0:0)1-Arachidinoyl-glycerophosphatidylcholine (20:4/0:0) 1-花生四烯酰-甘油磷酰乙醇胺(20:4/0:0)1-Arachididyl-glycerophosphorylethanolamine (20:4/0:0) 5α-雄甾烷-3β,17β-二醇硫酸氢盐5α-Androstane-3β,17β-diol hydrogen sulfate 牛磺胆烯酸硫酸盐Taurocholenoic Acid Sulfate 雄烯二醇二硫酸盐Androstenediol Disulfate 5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate 雄烯二醇(3α,17α)单硫酸盐Androstenediol (3α,17α) Monosulfate 17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1) 17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2) 16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate 雄酮葡萄糖苷酸androsterone glucuronide 精氨酸Arginine 甘氨酸熊脱氧胆酸Glycine ursodeoxycholic acid 柠康酸盐Citraconate 甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate 1-(1-烯基-棕榈酰)-2-棕榈油酰-甘油磷脂酰胆碱(P-16:1/16:1)1-(1-Enyl-palmitoyl)-2-palmitoleoyl-glycerophosphatidylcholine (P-16:1/16:1) 1-(1-烯基-棕榈酰)-2-棕榈酰-甘油磷脂酰胆碱(P-16:0/16:0)1-(1-Enyl-palmitoyl)-2-palmitoyl-glycerophosphatidylcholine (P-16:0/16:0) 甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide 神经酰胺(d18:2/24:1,d18:1/24:2)Ceramides (d18:2/24:1, d18:1/24:2) 11β-羟基雄甾酮葡糖苷酸11β-Hydroxyandrosterone glucuronide 甘氨熊脱氧胆酸硫酸盐Glycinursodeoxycholate Sulfate 2,3-二羟基-5-甲硫基-4-戊烯酸酯2,3-Dihydroxy-5-methylthio-4-pentenoate 内酯硫酸Lactone Sulfate 四氢皮质醇葡糖苷酸。Tetrahydrocortisol glucuronide. 2.根据权利要求1所述的标志物组合,其特征在于,所述标志物组合为以下33种化合物中的一种或多种的组合:2. The marker combination according to claim 1, wherein the marker combination is a combination of one or more of the following 33 compounds: 羟基喹啉铜Copper quinoline 胱硫醚cystathionine 瓜氨酸Citrulline 肌氨酸sarcosine 核糖醇Ribitol 1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0) 1-肉豆蔻酰-2-棕榈酰-甘油磷脂酰胆碱(14:0/16:0)1-Myristoyl-2-palmitoyl-glycerophosphatidylcholine (14:0/16:0) N-乙酰甘氨酸N-Acetylglycine 硫酸雄酮androsterone sulfate N-乙酰酪氨酸N-Acetyltyrosine 表雄甾酮硫酸盐epiandrosterone sulfate N1-甲基-2-吡啶酮-5-甲酰胺N1-Methyl-2-pyridone-5-carboxamide 1-花生四烯酰-甘油磷酰乙醇胺(20:4/0:0)1-Arachididyl-glycerophosphorylethanolamine (20:4/0:0) 5α-雄甾烷-3β,17β-二醇硫酸氢盐5α-Androstane-3β,17β-diol hydrogen sulfate 牛磺胆烯酸硫酸盐Taurocholenoic Acid Sulfate 雄烯二醇二硫酸盐Androstenediol Disulfate 5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate 雄烯二醇(3α,17α)单硫酸盐Androstenediol (3α,17α) Monosulfate 17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1) 17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2) 16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate 雄酮葡萄糖苷酸androsterone glucuronide 精氨酸Arginine 柠康酸盐Citraconate 甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate 1-(1-烯基-棕榈酰)-2-棕榈油酰-甘油磷脂酰胆碱(P-16:1/16:1)1-(1-Enyl-palmitoyl)-2-palmitoleoyl-glycerophosphatidylcholine (P-16:1/16:1) 甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide 神经酰胺(d18:2/24:1,d18:1/24:2)Ceramides (d18:2/24:1, d18:1/24:2) 11β-羟基雄甾酮葡糖苷酸11β-Hydroxyandrosterone glucuronide 甘氨熊脱氧胆酸硫酸盐Glycinursodeoxycholate Sulfate 2,3-二羟基-5-甲硫基-4-戊烯酸酯2,3-Dihydroxy-5-methylthio-4-pentenoate 内酯硫酸Lactone Sulfate 四氢皮质醇葡糖苷酸。Tetrahydrocortisol glucuronide. 3.根据权利要求1所述的标志物组合,其特征在于,所述标志物组合为以下18种化合物中的一种或多种的组合:3. The marker combination according to claim 1, wherein the marker combination is a combination of one or more of the following 18 compounds: 羟基喹啉铜Copper quinoline 3-(4-羟基苯基)乳酸3-(4-Hydroxyphenyl)lactic acid 胱硫醚cystathionine 甘胆酸盐Glycocholate 瓜氨酸Citrulline 肌氨酸sarcosine 1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0) 硫酸雄酮androsterone sulfate 1-花生四烯酰-甘油磷脂酰胆碱(20:4/0:0)1-Arachidinoyl-glycerophosphatidylcholine (20:4/0:0) 5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate 17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1) 17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2) 16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate 精氨酸Arginine 柠康酸盐Citraconate 甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate 甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide 神经酰胺(d18:2/24:1,d18:1/24:2)。Ceramides (d18:2/24:1, d18:1/24:2). 4.根据权利要求1所述的标志物组合,其特征在于,所述标志物组合为以下15种化合物中的一种或多种的组合:4. The marker combination according to claim 1, wherein the marker combination is a combination of one or more of the following 15 compounds: 羟基喹啉铜Copper quinoline 胱硫醚cystathionine 瓜氨酸Citrulline 肌氨酸sarcosine 1,2-二棕榈酰基-甘油磷脂酰胆碱(16:0/16:0)1,2-Dipalmitoyl-glycerophosphatidylcholine (16:0/16:0) 硫酸雄酮androsterone sulfate 5α-孕甾-3β,20α-二醇单硫酸盐5α-Pregnant-3β,20α-diol monosulfate 17-硫酸雄烯二醇(1)17-Androstenediol Sulfate(1) 17-硫酸雄烯二醇(2)17-Androstenediol Sulfate(2) 16α-羟基脱氢异雄酮3-硫酸盐16α-Hydroxydehydroisoandrosterone 3-sulfate 精氨酸Arginine 柠康酸盐Citraconate 甘氨鹅脱氧胆酸3-硫酸盐Glycinechenodeoxycholic acid 3-sulfate 甘氨鹅脱氧胆酸葡糖苷酸Glycinechenodeoxycholic acid glucuronide 神经酰胺(d18:2/24:1,d18:1/24:2)。Ceramides (d18:2/24:1, d18:1/24:2). 5.检测权利要求1至4任意一项所述的标志物组合的产品在制备肝癌诊断和/或风险预测制品中的应用。5. Use of a product for detecting the combination of markers according to any one of claims 1 to 4 in the preparation of a product for liver cancer diagnosis and/or risk prediction. 6.根据权利要求5所述的应用,其特征在于,所述标志物组合来源于血浆。6. The use according to claim 5, wherein the marker combination is derived from plasma. 7.权利要求1至4任意一项所述的标志物组合在筛选治疗和/或缓解肝癌的药物中的应用。7. Use of the marker combination according to any one of claims 1 to 4 in screening drugs for treating and/or relieving liver cancer. 8.根据权利要求7所述的应用,其特征在于,所述标志物组合来源于血浆。8. The use according to claim 7, wherein the marker combination is derived from plasma. 9.权利要求1至4任意一项所述的标志物组合在制备用于肝癌诊断和/或风险预测的检测试剂盒中的应用。9. Use of the marker combination of any one of claims 1 to 4 in the preparation of a detection kit for liver cancer diagnosis and/or risk prediction. 10.根据权利要求9所述的应用,其特征在于,所述标志物组合来源于血浆。10. The use according to claim 9, wherein the marker combination is derived from plasma.
CN202210788440.2A 2022-07-06 2022-07-06 Metabolic markers for predicting the risk of liver cancer and their application Active CN115128257B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210788440.2A CN115128257B (en) 2022-07-06 2022-07-06 Metabolic markers for predicting the risk of liver cancer and their application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210788440.2A CN115128257B (en) 2022-07-06 2022-07-06 Metabolic markers for predicting the risk of liver cancer and their application

Publications (2)

Publication Number Publication Date
CN115128257A true CN115128257A (en) 2022-09-30
CN115128257B CN115128257B (en) 2025-02-18

Family

ID=83382862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210788440.2A Active CN115128257B (en) 2022-07-06 2022-07-06 Metabolic markers for predicting the risk of liver cancer and their application

Country Status (1)

Country Link
CN (1) CN115128257B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116124950A (en) * 2023-02-22 2023-05-16 复旦大学 Serum biomarkers and their application for growth hormone injection screening or detection
CN116879434A (en) * 2023-07-05 2023-10-13 首都医科大学附属北京佑安医院 Metabolic product and CG locus methylation marker for liver cancer diagnosis

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101995441A (en) * 2010-02-10 2011-03-30 中国科学院大连化学物理研究所 Kit for testing 3-sulfate glycochenodeoxycholic acids and glycochenodeoxycholic acids in blood
US20110163226A1 (en) * 2008-05-28 2011-07-07 Basf Se Means and methods for assessing liver toxicity
WO2011130385A1 (en) * 2010-04-13 2011-10-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Biomarkers for hepatocellular cancer
CN102445512A (en) * 2010-10-09 2012-05-09 中国人民解放军第二军医大学 Small molecule metabolite map for identifying liver cancer, hepatitis or liver cirrhosis and preparation method thereof
CN104678003A (en) * 2013-11-29 2015-06-03 沈阳药科大学 Biomarker for evaluating liver cancer disease by using urine
CN107454940A (en) * 2015-04-13 2017-12-08 法兰克福大学 Serum Biomarkers of Hepatocellular Carcinoma (HCC)
CN111610262A (en) * 2020-05-19 2020-09-01 上海鹿明生物科技有限公司 Metabolism marker for diagnosing liver and gall diseases
CN112881547A (en) * 2021-01-12 2021-06-01 中国科学院大学宁波华美医院 Screening method of early liver cancer diagnosis marker for liver cirrhosis and hepatitis population
KR20220022370A (en) * 2020-08-18 2022-02-25 서울대학교산학협력단 Composition for diagnosing liver cancer comprising glycine labeled isotope 13C or 2H as an active ingredient
US20220187317A1 (en) * 2020-11-25 2022-06-16 Venn Biosciences Corporation Biomarkers for diagnosing non-alcoholic steatohepatitis (nash) or hepatocellular carcinoma (hcc)

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163226A1 (en) * 2008-05-28 2011-07-07 Basf Se Means and methods for assessing liver toxicity
CN101995441A (en) * 2010-02-10 2011-03-30 中国科学院大连化学物理研究所 Kit for testing 3-sulfate glycochenodeoxycholic acids and glycochenodeoxycholic acids in blood
WO2011130385A1 (en) * 2010-04-13 2011-10-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic Biomarkers for hepatocellular cancer
CN102445512A (en) * 2010-10-09 2012-05-09 中国人民解放军第二军医大学 Small molecule metabolite map for identifying liver cancer, hepatitis or liver cirrhosis and preparation method thereof
CN104678003A (en) * 2013-11-29 2015-06-03 沈阳药科大学 Biomarker for evaluating liver cancer disease by using urine
CN107454940A (en) * 2015-04-13 2017-12-08 法兰克福大学 Serum Biomarkers of Hepatocellular Carcinoma (HCC)
CN111610262A (en) * 2020-05-19 2020-09-01 上海鹿明生物科技有限公司 Metabolism marker for diagnosing liver and gall diseases
KR20220022370A (en) * 2020-08-18 2022-02-25 서울대학교산학협력단 Composition for diagnosing liver cancer comprising glycine labeled isotope 13C or 2H as an active ingredient
US20220187317A1 (en) * 2020-11-25 2022-06-16 Venn Biosciences Corporation Biomarkers for diagnosing non-alcoholic steatohepatitis (nash) or hepatocellular carcinoma (hcc)
CN112881547A (en) * 2021-01-12 2021-06-01 中国科学院大学宁波华美医院 Screening method of early liver cancer diagnosis marker for liver cirrhosis and hepatitis population

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG HANG ET AL: "Untargeted plasma metabolomics for risk prediction of hepatocellular carcinoma: A prospective study in two Chinese cohorts", 《 INTERNATIONAL JOURNAL OF CANCER》, vol. 151, no. 12, 22 July 2022 (2022-07-22), pages 2144 - 2154 *
宋词: "慢性乙型肝炎感染与肝外肿瘤发生风险的前瞻性队列研究", 《中国博士学位论文全文数据库 医药卫生科技辑》, no. 06, 15 June 2022 (2022-06-15), pages 061 - 1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116124950A (en) * 2023-02-22 2023-05-16 复旦大学 Serum biomarkers and their application for growth hormone injection screening or detection
CN116879434A (en) * 2023-07-05 2023-10-13 首都医科大学附属北京佑安医院 Metabolic product and CG locus methylation marker for liver cancer diagnosis

Also Published As

Publication number Publication date
CN115128257B (en) 2025-02-18

Similar Documents

Publication Publication Date Title
CN108990420B (en) Liver disease-associated biomarkers and methods of use thereof
Wang et al. Power of metabolomics in diagnosis and biomarker discovery of hepatocellular carcinoma
Zhao et al. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry
EP2863227B1 (en) Means and methods for metabolic differentiation of non-alcoholic steatohepatitis from liver disease
Audet-Delage et al. Identification of metabolomic biomarkers for endometrial cancer and its recurrence after surgery in postmenopausal women
WO2011151252A2 (en) Means and methods for diagnosing pancreatic cancer in a subject
US8758992B2 (en) Method for the differential diagnosis of non-alcoholic fatty liver disease based on a metabolomic profile
CN105486799B (en) Metabolic markers for diagnosing acute coronary syndrome
US20170003291A1 (en) Methods for detecting, diagnosing and treating endometrial cancer
Wu et al. Metabolomics in hepatocellular carcinoma: From biomarker discovery to precision medicine
CN115128257A (en) Metabolic markers for predicting the risk of hepatocellular carcinoma and their applications
Zhang et al. Potential biomarkers identified in plasma of patients with gestational diabetes mellitus
CN110220987A (en) Bile acid combines marker in preparation for predicting or diagnosing the detection reagent of diabetes or the purposes of detectable substance
Deng et al. Urinary biomarkers for hepatocellular carcinoma: current knowledge for clinicians
Yilmaz Serum proteomics for biomarker discovery in nonalcoholic fatty liver disease
CN105758967B (en) The mark group of coronary atherosclerosis and stable angina cordis is distinguished in diagnosis
WO2025039607A1 (en) Use of polyunsaturated fatty acid combined marker in preparation of detection product for diagnosing diabetes
CN105628809B (en) The metabolic markers of coronary atherosclerosis and coronary heart disease are distinguished for diagnosing
CN112034171A (en) Application of reagent for detecting serum sphingosine-1-phosphate in preparation of kit for distinguishing liver cirrhosis or hepatocellular carcinoma
Zhang et al. Efficacy of bile acid profiles in diagnosing and staging of alcoholic liver disease
CN112326948B (en) Biomarker for predicting diabetes, kit and using method thereof
CN105717205A (en) Metabolite marker for diagnosing stable angina pectoris
CN117434277B (en) Fecal metabolic marker panels and applications for early diagnosis or screening of Crohn&#39;s disease
CN119147669B (en) Metabolic marker combination, detection kit and detection method thereof and auxiliary diagnosis method for female pre-diabetes
Peng et al. Plasma-based untargeted metabolomics reveals potential biomarkers for screening and distinguishing of ovarian tumors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant