[go: up one dir, main page]

CN115127972A - Magnetic beads and methods of making the same - Google Patents

Magnetic beads and methods of making the same Download PDF

Info

Publication number
CN115127972A
CN115127972A CN202110313571.0A CN202110313571A CN115127972A CN 115127972 A CN115127972 A CN 115127972A CN 202110313571 A CN202110313571 A CN 202110313571A CN 115127972 A CN115127972 A CN 115127972A
Authority
CN
China
Prior art keywords
magnetic
microspheres
microsphere
core
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110313571.0A
Other languages
Chinese (zh)
Inventor
褚先锋
秦军芳
陆锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Dymind Biotechnology Co Ltd
Original Assignee
Shenzhen Dymind Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dymind Biotechnology Co Ltd filed Critical Shenzhen Dymind Biotechnology Co Ltd
Priority to CN202110313571.0A priority Critical patent/CN115127972A/en
Publication of CN115127972A publication Critical patent/CN115127972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The application relates to the technical field of magnetic bead modification, and particularly discloses a magnetic bead and a manufacturing method thereof, wherein the magnetic bead comprises the following components: the magnetic microsphere comprises a core microsphere and first magnetic nanoparticles distributed in the core microsphere; a second magnetic nanoparticle coupled to an outer surface of the core microsphere; and the third magnetic nano-particles are at least dispersed and distributed in the core microsphere. By the mode, the magnetic response of the magnetic beads is improved, meanwhile, interference signals caused by impurities are reduced, autofluorescence of the magnetic microspheres can be reduced, and detection sensitivity is improved.

Description

磁珠及其制作方法Magnetic beads and methods of making the same

技术领域technical field

本申请涉及磁珠修饰技术领域,尤其是涉及一种磁珠及其制作方法。The present application relates to the technical field of magnetic bead modification, and in particular, to a magnetic bead and a manufacturing method thereof.

背景技术Background technique

磁性微球是一类直径在纳米或微米级的球形复合材料,磁性微球由微球以 及吸附于微球表面的磁性纳米颗粒构成,磁性微球的外围包覆有聚合物保护层。Magnetic microspheres are a kind of spherical composite materials with a diameter of nanometer or micrometer. Magnetic microspheres are composed of microspheres and magnetic nanoparticles adsorbed on the surface of the microspheres.

本申请发明人在长期研发过程中,发现若微球表面过量吸附磁性纳米颗粒, 如图26所示,会导致磁性微球上的杂质增加,杂质信号会严重干扰流式细胞仪 上的主团信号,且包覆聚合物保护层的过程中需要加热,容易使微球产生较强 的自体荧光,导致检测灵敏度降低。In the long-term research and development process, the inventors of the present application found that if the surface of the microspheres adsorbs magnetic nanoparticles excessively, as shown in Figure 26, the impurities on the magnetic microspheres will increase, and the impurity signal will seriously interfere with the main group on the flow cytometer. signal, and heating is required in the process of coating the polymer protective layer, which easily causes the microspheres to generate strong autofluorescence, resulting in a decrease in detection sensitivity.

发明内容SUMMARY OF THE INVENTION

本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一 个目的在于提出一种磁珠及其制作方法,在提高磁珠的磁响应的同时,降低杂 质带来的干扰信号,且能降低有磁微球的自体荧光,提高检测灵敏度。The present application aims to solve at least one of the technical problems existing in the prior art. Therefore, one purpose of the present application is to propose a magnetic bead and a method for making the same, which can reduce the interference signal caused by impurities while improving the magnetic response of the magnetic bead, and can reduce the autofluorescence of magnetic microspheres, improve detection sensitivity.

本申请第一方面提供一种磁珠,该磁珠包括:有磁微球,包括核微球以及 分布于核微球内部的第一磁性纳米颗粒;第二磁性纳米颗粒,偶联于核微球的 外表面;第三磁性纳米颗粒,至少弥散分布于核微球的内部。A first aspect of the present application provides a magnetic bead, the magnetic bead comprising: a magnetic microsphere, including a core microsphere and a first magnetic nanoparticle distributed inside the core microsphere; a second magnetic nanoparticle coupled to the core microsphere the outer surface of the sphere; the third magnetic nanoparticles, at least dispersed in the inner part of the core microsphere.

本申请第二方面提供一种磁珠的制作方法,该方法包括:提供一有磁微球, 有磁微球包括核微球以及分布于核微球内部的第一磁性纳米颗粒;采用吸附技 术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳米颗粒偶联于核微球的 外表面;其中,在采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二 磁性纳米颗粒偶联于核微球的外表面的步骤之前,或者,在采用吸附技术组合 有磁微球与第二磁性纳米颗粒,使得第二磁性纳米颗粒偶联于核微球的外表面 的步骤之后,该方法还包括:采用溶胀技术组合有磁微球与第三磁性纳米颗粒, 使得第三磁性纳米颗粒弥散分布于核微球的内部。A second aspect of the present application provides a method for manufacturing a magnetic bead, the method comprising: providing a magnetic microsphere, the magnetic microsphere including a core microsphere and first magnetic nanoparticles distributed inside the core microsphere; adopting an adsorption technology The magnetic microspheres and the second magnetic nanoparticles are combined, so that the second magnetic nanoparticles are coupled to the outer surface of the core microsphere; wherein, the magnetic microspheres and the second magnetic nanoparticles are combined by using an adsorption technology, so that the second magnetic Before the step of coupling the nanoparticle to the outer surface of the core microsphere, or, using an adsorption technique to combine the magnetic microsphere and the second magnetic nanoparticle, so that the second magnetic nanoparticle is coupled to the outer surface of the core microsphere. Afterwards, the method further includes: combining the magnetic microspheres and the third magnetic nanoparticles by using a swelling technique, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

区别于现有技术的情况,本申请的磁珠包括:偶联于有磁微球的外表面的 第二磁性纳米颗粒、以及至少弥散分布于核微球的内部和/或凝胶层的内部的第 三磁性纳米颗粒,如图27所示,在避免有磁微球表面过量吸附磁性纳米颗粒的 前提下,能够增强磁珠的磁响应信号,并降低杂质带来的干扰信号,且能够降 低有磁微球的自体荧光,提高检测灵敏度。Different from the situation in the prior art, the magnetic beads of the present application include: second magnetic nanoparticles coupled to the outer surface of the magnetic microspheres, and at least dispersed in the interior of the core microspheres and/or the interior of the gel layer The third magnetic nanoparticle, as shown in Figure 27, can enhance the magnetic response signal of the magnetic bead and reduce the interference signal caused by impurities on the premise of avoiding excessive adsorption of magnetic nanoparticles on the surface of the magnetic microsphere With the autofluorescence of magnetic microspheres, the detection sensitivity is improved.

本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描 述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the present application will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the present application.

附图说明Description of drawings

本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中 将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of embodiments in conjunction with the accompanying drawings, wherein:

图1是本申请第一实施例提出的磁珠的制作方法的流程示意图;1 is a schematic flowchart of a method for making magnetic beads according to the first embodiment of the present application;

图2是本申请第二实施例提出的磁珠的制作方法的流程示意图;2 is a schematic flowchart of a method for making magnetic beads according to a second embodiment of the present application;

图3是本申请第三实施例提出的磁珠的制作方法的流程示意图;3 is a schematic flowchart of a method for making magnetic beads according to a third embodiment of the present application;

图4是图1-3中步骤S10的流程示意图;Fig. 4 is a schematic flowchart of step S10 in Figs. 1-3;

图5是本申请第四实施例提出的磁珠的制作方法的流程示意图;5 is a schematic flowchart of a method for manufacturing a magnetic bead according to a fourth embodiment of the present application;

图6是本申请第五实施例提出的磁珠的制作方法的流程示意图;6 is a schematic flowchart of a method for making magnetic beads according to the fifth embodiment of the present application;

图7是本申请第六实施例提出的磁珠的制作方法的流程示意图;FIG. 7 is a schematic flowchart of a method for making magnetic beads according to the sixth embodiment of the present application;

图8是本申请第七实施例提出的磁珠的制作方法的流程示意图;8 is a schematic flowchart of a method for making magnetic beads according to the seventh embodiment of the present application;

图9是本申请第八实施例提出的磁珠的制作方法的流程示意图;9 is a schematic flowchart of a method for manufacturing a magnetic bead according to an eighth embodiment of the present application;

图10是本申请第九实施例提出的磁珠的制作方法的流程示意图;10 is a schematic flowchart of a method for making magnetic beads according to the ninth embodiment of the present application;

图11是本申请第十实施例提出的磁珠的制作方法的流程示意图;11 is a schematic flowchart of a method for producing magnetic beads according to the tenth embodiment of the present application;

图12是本申请第十一实施例提出的磁珠的制作方法的流程示意图;12 is a schematic flowchart of a method for manufacturing a magnetic bead according to the eleventh embodiment of the present application;

图13是本申请第十二实施例提出的磁珠的制作方法的流程示意图;13 is a schematic flowchart of a method for making magnetic beads according to the twelfth embodiment of the present application;

图14是本申请第十三实施例提出的磁珠的制作方法的流程示意图;14 is a schematic flowchart of a method for producing magnetic beads according to the thirteenth embodiment of the present application;

图15是本申请第十四实施例提出的磁珠的制作方法的流程示意图;15 is a schematic flowchart of a method for manufacturing a magnetic bead according to the fourteenth embodiment of the present application;

图16是本申请第十五实施例提出的磁珠的制作方法的流程示意图;16 is a schematic flowchart of a method for making magnetic beads according to the fifteenth embodiment of the present application;

图17是本申请第十六实施例提出的磁珠的制作方法的流程示意图;17 is a schematic flowchart of a method for making magnetic beads according to the sixteenth embodiment of the present application;

图18是本申请第十七实施例提出的磁珠的制作方法的流程示意图;18 is a schematic flowchart of a method for manufacturing a magnetic bead according to the seventeenth embodiment of the present application;

图19是本申请第十八实施例提出的磁珠的制作方法的流程示意图;19 is a schematic flowchart of a method for making magnetic beads according to the eighteenth embodiment of the present application;

图20是图1-图3、图5~图19中步骤S30的流程示意图;Fig. 20 is a schematic flowchart of step S30 in Fig. 1-Fig. 3 and Fig. 5-Fig. 19;

图21是本申请提出的磁珠的第一结构示意图;21 is a schematic diagram of the first structure of the magnetic bead proposed in the present application;

图22是本申请提出的磁珠的第二结构示意图;Fig. 22 is the second structural schematic diagram of the magnetic bead proposed by the present application;

图23是本申请提出的有磁微球的制作方法的示意图;23 is a schematic diagram of a method for making magnetic microspheres proposed by the present application;

图24是本申请提出的磁珠的第三结构示意图;Fig. 24 is the third structural schematic diagram of the magnetic bead proposed by the present application;

图25是本申请提出的磁珠的第四结构示意图;FIG. 25 is a schematic diagram of the fourth structure of the magnetic bead proposed by the present application;

图26是现有技术中微球表面过量吸附磁性纳米颗粒时的磁响应信号图;Fig. 26 is the magnetic response signal diagram when the magnetic nanoparticles are excessively adsorbed on the surface of the microsphere in the prior art;

图27是本申请磁珠的磁响应信号图;Fig. 27 is the magnetic response signal diagram of the magnetic beads of the present application;

图28是本申请提出的磁珠的第五结构示意图;Fig. 28 is the fifth structural schematic diagram of the magnetic bead proposed by the present application;

图29是本申请提出的磁珠的第六结构示意图。FIG. 29 is a schematic diagram of the sixth structure of the magnetic bead proposed in the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不 是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative work, all belong to the scope of protection of this application.

在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域 中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语 具有与本申请所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明 书优先。Throughout the specification, unless specifically stated otherwise, terms used herein should be understood as commonly used in the art. Therefore, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. In case of conflict, this manual takes precedence.

需要说明的是,在本申请实施例中,术语“包括”、“包含”或者其任何其 他变体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不 仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包 括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包 括一个……”限定的要素,并不排除在包括该要素的方法或者装置中还存在另 外的相关要素(例如方法中的步骤或者装置中的单元,这里的单元可以是部分电 路、部分处理器、部分程序或软件等等)。It should be noted that, in the embodiments of the present application, the terms "comprising", "comprising" or any other variations thereof are intended to cover non-exclusive inclusion, so that a method or device including a series of elements not only includes the explicitly stated elements, but also other elements not expressly listed or inherent to the implementation of the method or apparatus. Without further limitation, an element defined by the phrase "comprising a..." does not preclude the presence of additional related elements (eg, steps in a method or elements in an apparatus) in the method or apparatus that includes the element , where a unit may be part of a circuit, part of a processor, part of a program or software, etc.).

需要说明的是,本申请实施例所涉及的术语“第一\第二\第三”仅仅是区 别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三” 在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三” 区分的对象在适当情况下可以互换,以使这里描述的本申请实施例能够以除了 在这里图示或描述的那些以外的顺序实施。It should be noted that the term "first\second\third" involved in the embodiments of the present application is only to distinguish similar objects, and does not represent a specific ordering of objects. It is understandable that "first\second\third" "Three" may be interchanged in a particular order or sequence where permitted. It should be understood that the "first\second\third" distinctions may be interchanged under appropriate circumstances, so that the embodiments of the present application described herein can be implemented in sequences other than those illustrated or described herein.

参阅图1,本申请第一实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Fig. 1, the first embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

上述第一磁性纳米颗粒可以为脂溶性磁性纳米颗粒或水溶性磁性纳米颗 粒中的至少一种。The above-mentioned first magnetic nanoparticles may be at least one of lipid-soluble magnetic nanoparticles or water-soluble magnetic nanoparticles.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

具体而言,第二磁性纳米颗粒可以为水溶性磁性纳米颗粒,核微球与第二 磁性纳米颗粒之间可通过吸附、范德华力和/或共价结合实现偶联。Specifically, the second magnetic nanoparticles can be water-soluble magnetic nanoparticles, and the coupling between the core microspheres and the second magnetic nanoparticles can be realized by adsorption, van der Waals force and/or covalent bonding.

可选地,核微球的外表面可以通过化学手段修饰所需要的带电荷官能团, 其中,带电荷官能团包括带电荷的羧基、氨基、磺酸基或巯基中的至少一种, 为核微球偶联第二磁性纳米颗粒提供了可能性。Optionally, the outer surface of the core microspheres can be chemically modified with required charged functional groups, wherein the charged functional groups include at least one of charged carboxyl groups, amino groups, sulfonic acid groups or sulfhydryl groups, which are core microspheres. Coupling a second magnetic nanoparticle offers the possibility.

取第二磁性纳米颗粒溶于去离子水中,并加入有磁微球,第二磁性纳米颗 粒与有磁微球发生交联反应,以使核微球的外表面偶联有第二磁性纳米颗粒。Dissolve the second magnetic nanoparticles in deionized water, add magnetic microspheres, and cross-link the second magnetic nanoparticles with the magnetic microspheres, so that the outer surface of the core microspheres is coupled with the second magnetic nanoparticles .

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

将步骤S10新鲜制备的外表面偶联有水溶性磁性纳米颗粒的有磁微球与凝 胶材料混合,加入交联剂,搅拌反应,所得产物静置后,磁分离,去除残留的 凝胶材料,获得外表面包覆有凝胶层的微球。其中,凝胶层包覆至少部分第二 磁性纳米颗粒。Mix the magnetic microspheres freshly prepared in step S10 with water-soluble magnetic nanoparticles coupled on the outer surface with the gel material, add a cross-linking agent, stir the reaction, and after the obtained product is allowed to stand, magnetic separation is performed to remove the residual gel material , to obtain microspheres whose outer surface is covered with a gel layer. Wherein, the gel layer covers at least part of the second magnetic nanoparticles.

其中,凝胶层的材料可以为壳聚糖、海藻酸钠、聚丙烯酸、聚甲基丙烯酸、 聚丙烯酰胺、聚N-聚代丙烯酰胺中的至少一种。Wherein, the material of the gel layer may be at least one of chitosan, sodium alginate, polyacrylic acid, polymethacrylic acid, polyacrylamide, and polyN-polyacrylamide.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部和/或凝胶层的内部。S40: The magnetic microspheres and the third magnetic nanoparticles are combined by the swelling technology, so that the third magnetic nanoparticles are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

具体而言,第三磁性纳米颗粒可以为脂溶性磁性纳米颗粒,将有磁微球分 散于第一介质中,提供一含有第三磁性纳米颗粒的第二介质,混合,然后进行 溶胀反应(涡旋分散均匀,旋转反应预设时间),第三磁性纳米颗粒包埋进有磁 微球的内部和/或凝胶层的内部,磁分离去上清液,获得内部分布有第三磁性纳 米颗粒的微球。其中,第一介质与第二介质均为溶胀介质,具体为既可以使第 三磁性纳米颗粒弥散分布,又能使有磁微球溶胀的单一或混合溶剂,例如,溶 胀介质可以为氯仿、二氯甲烷、乙醇、甲醇、己二醇、正丁醇、异丁醇、正己 烷、环己烷、四氢呋喃中的一种或几种的组合,但不局限于上述几种物质。Specifically, the third magnetic nanoparticles can be lipid-soluble magnetic nanoparticles, the magnetic microspheres are dispersed in the first medium, a second medium containing the third magnetic nanoparticles is provided, mixed, and then subjected to a swelling reaction (vortex). Dispersion is uniform, and the rotation reaction time is preset), the third magnetic nanoparticles are embedded in the interior of the magnetic microspheres and/or the interior of the gel layer, the supernatant is removed by magnetic separation, and the third magnetic nanoparticles are distributed inside. of microspheres. Wherein, the first medium and the second medium are both swelling media, specifically a single or mixed solvent that can not only disperse and distribute the third magnetic nanoparticles, but also swell magnetic microspheres, for example, the swelling medium can be chloroform, two One or a combination of methyl chloride, ethanol, methanol, hexanediol, n-butanol, isobutanol, n-hexane, cyclohexane, and tetrahydrofuran, but not limited to the above-mentioned substances.

参阅图2,本申请第二实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Fig. 2, the second embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

上述第一磁性纳米颗粒可以为脂溶性磁性纳米颗粒或水溶性磁性纳米颗 粒中的至少一种。The above-mentioned first magnetic nanoparticles may be at least one of lipid-soluble magnetic nanoparticles or water-soluble magnetic nanoparticles.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

上述第三磁性纳米颗粒可以为脂溶性磁性纳米颗粒。The above-mentioned third magnetic nanoparticles may be fat-soluble magnetic nanoparticles.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

上述第二磁性纳米颗粒为水溶性磁性纳米颗粒。The above-mentioned second magnetic nanoparticles are water-soluble magnetic nanoparticles.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

不同于第一实施例的是,第二实施例“采用溶胀技术组合有磁微球与第三 磁性纳米颗粒”发生在“采用吸附技术组合有磁微球与第二磁性纳米颗粒”之 前,因此,可避免因水溶性磁性纳米颗粒的亲水性(即疏油性)而导致脂溶性 磁性纳米颗粒难以进入有磁微球的内部,更大地提升有磁微球内的脂溶性磁性 纳米颗粒的包埋数量。Different from the first embodiment, the second embodiment “combines magnetic microspheres and third magnetic nanoparticles using swelling technology” occurs before “combining magnetic microspheres and second magnetic nanoparticles using adsorption technology”, so , which can avoid the difficulty of the fat-soluble magnetic nanoparticles entering the interior of the magnetic microspheres due to the hydrophilicity (ie oleophobicity) of the water-soluble magnetic nanoparticles, and greatly improve the encapsulation of the lipid-soluble magnetic nanoparticles in the magnetic microspheres. Buried quantity.

参阅图3,本申请第三实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Fig. 3, the third embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

上述第一磁性纳米颗粒可以为脂溶性磁性纳米颗粒或水溶性磁性纳米颗 粒中的至少一种。The above-mentioned first magnetic nanoparticles may be at least one of lipid-soluble magnetic nanoparticles or water-soluble magnetic nanoparticles.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

上述第二磁性纳米颗粒可以为水溶性磁性纳米颗粒。The above-mentioned second magnetic nanoparticles may be water-soluble magnetic nanoparticles.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

上述第三磁性纳米颗粒可以为脂溶性磁性纳米颗粒。The above-mentioned third magnetic nanoparticles may be fat-soluble magnetic nanoparticles.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

不同于第一实施例的是,第三实施例的“采用溶胀技术组合有磁微球与第 三磁性纳米颗粒”发生在包覆凝胶层之前,因此,第三磁性纳米颗粒更易进入 核微球的内部,更大地提升有磁微球内的第三磁性纳米颗粒的包埋数量。Different from the first embodiment, the “combination of magnetic microspheres and third magnetic nanoparticles using swelling technology” in the third embodiment occurs before the coating of the gel layer, so the third magnetic nanoparticles are more likely to enter the core microparticles. Inside the sphere, the embedding quantity of the third magnetic nanoparticles in the magnetic microsphere is greatly increased.

可选地,上述第一实施例至第三实施例步骤S30中的凝胶层可替换为聚合 物包覆层,聚合物包覆层的材料为聚苯乙烯、聚甲基丙烯酸甲酯、聚乙烯-甲基 丙烯酸甲酯、聚丙烯腈、聚乙烯、聚丙烯、聚丙烯酸乙酯中的至少一种。Optionally, the gel layer in step S30 of the first embodiment to the third embodiment can be replaced with a polymer coating layer, and the material of the polymer coating layer is polystyrene, polymethyl methacrylate, poly At least one of ethylene-methyl methacrylate, polyacrylonitrile, polyethylene, polypropylene, and polyethyl acrylate.

由此,通过上述第一实施例至第三实施例制得的磁珠10结构如图21或图 22所示,磁珠10包括:有磁微球11、第二磁性纳米颗粒12、第三磁性纳米颗 粒13以及包覆层14。其中,有磁微球11包括核微球111以及分布于核微球111 内部的第一磁性纳米颗粒112。第二磁性纳米颗粒12可偶联于有磁微球11的 外表面。包覆层14包覆于有磁微球11的外表面,且包覆层14包覆至少部分第 二磁性纳米颗粒12。可选地,包覆层14包覆全部第二磁性纳米颗粒12,磁珠 10的外表面为光滑表面。第三磁性纳米颗粒13至少弥散分布于核微球111的 内部,可以理解的是,第三磁性纳米颗粒13通过溶胀进入核微球111的内部后, 第三磁性纳米颗粒13包埋在核微球111的内部。其中,上述包覆层14可以为 凝胶层或聚合物包覆层。可以理解的是,第三磁性纳米颗粒13可弥散分布于凝 胶层的内部,而受限于聚合物包覆层的材料,第三磁性纳米颗粒13不可弥散分 布于聚合物包覆层的内部。Therefore, the structure of the magnetic bead 10 prepared by the above-mentioned first to third embodiments is shown in FIG. 21 or FIG. 22 . The magnetic bead 10 includes: magnetic microspheres 11 , second magnetic nanoparticles 12 , third magnetic Magnetic nanoparticles 13 and coating layer 14 . The magnetic microspheres 11 include core microspheres 111 and first magnetic nanoparticles 112 distributed inside the core microspheres 111 . The second magnetic nanoparticles 12 can be coupled to the outer surface of the magnetic microspheres 11. The coating layer 14 coats the outer surface of the magnetic microspheres 11 , and the coating layer 14 coats at least part of the second magnetic nanoparticles 12 . Optionally, the coating layer 14 covers all the second magnetic nanoparticles 12, and the outer surface of the magnetic beads 10 is a smooth surface. The third magnetic nanoparticles 13 are dispersed and distributed at least inside the core microspheres 111. It can be understood that after the third magnetic nanoparticles 13 enter the interior of the core microspheres 111 through swelling, the third magnetic nanoparticles 13 are embedded in the core microspheres. Inside of ball 111. Wherein, the above-mentioned coating layer 14 can be a gel layer or a polymer coating layer. It can be understood that the third magnetic nanoparticles 13 can be dispersed in the gel layer, and limited by the material of the polymer coating layer, the third magnetic nanoparticles 13 cannot be dispersed in the polymer coating layer. .

更进一步地,可删减上述第一实施例至第三实施例中的步骤S30,由此制 得的磁珠10结构如图28所示,磁珠10包括:有磁微球11、第二磁性纳米颗 粒12以及第三磁性纳米颗粒13。其中,有磁微球11包括核微球111以及分布 于核微球111内部的第一磁性纳米颗粒112。第二磁性纳米颗粒12可偶联于有 磁微球11的外表面。第三磁性纳米颗粒13至少弥散分布于核微球111的内部, 可以理解的是,第三磁性纳米颗粒13通过溶胀进入核微球111的内部后,第三 磁性纳米颗粒13包埋在核微球111的内部。Further, step S30 in the above-mentioned first embodiment to third embodiment can be deleted, and the structure of the magnetic bead 10 thus obtained is shown in FIG. 28 . The magnetic bead 10 includes: a magnetic microsphere 11 , a second Magnetic nanoparticles 12 and third magnetic nanoparticles 13 . The magnetic microspheres 11 include core microspheres 111 and first magnetic nanoparticles 112 distributed inside the core microspheres 111. The second magnetic nanoparticles 12 can be coupled to the outer surface of the magnetic microspheres 11. The third magnetic nanoparticles 13 are dispersed and distributed at least inside the core microspheres 111. It can be understood that after the third magnetic nanoparticles 13 enter the interior of the core microspheres 111 through swelling, the third magnetic nanoparticles 13 are embedded in the core microspheres. Inside of ball 111.

区别于现有技术的情况,本申请实施例制得的磁珠包括:偶联于有磁微球 的外表面的第二磁性纳米颗粒、以及至少弥散分布于核微球的内部第三磁性纳 米颗粒,如图27所示,在避免有磁微球表面过量吸附磁性纳米颗粒的前提下, 通过内部溶胀有第三磁性纳米颗粒以及外部偶联第二磁性纳米颗粒,本申请的 磁珠能够增强磁珠的磁响应信号(即主团信号),并可降低杂质带来的干扰信号, 且能够降低有磁微球的自体荧光,提高检测灵敏度。Different from the situation in the prior art, the magnetic beads prepared in the embodiments of the present application include: second magnetic nanoparticles coupled to the outer surface of the magnetic microspheres, and at least third magnetic nanoparticles dispersed inside the core microspheres. Particles, as shown in Figure 27, under the premise of avoiding the excessive adsorption of magnetic nanoparticles on the surface of the magnetic microspheres, the magnetic beads of the present application can be enhanced by swelling the third magnetic nanoparticles inside and coupling the second magnetic nanoparticles outside. The magnetic response signal (ie the main group signal) of the magnetic beads can reduce the interference signal caused by impurities, and can reduce the autofluorescence of the magnetic microspheres and improve the detection sensitivity.

在一些实施例中,核微球111为聚合物核微球111。In some embodiments, the core microspheres 111 are polymer core microspheres 111 .

具体而言,上述核微球111的材料为有机单体分子的聚合物,更具体的, 核微球111的材料可以包括聚苯乙烯、聚甲基丙烯酸甲酯、聚乙烯-甲基丙烯酸 甲酯、聚丙烯腈、聚乙烯、聚丙烯、聚丙烯酸乙酯中的至少一种。Specifically, the material of the core microspheres 111 is a polymer of organic monomer molecules. More specifically, the material of the core microspheres 111 may include polystyrene, polymethyl methacrylate, polyethylene-methyl methacrylate At least one of ester, polyacrylonitrile, polyethylene, polypropylene, and polyethyl acrylate.

在一些实施例中,上述核微球111的外表面含有带电荷官能团,带电荷官 能团包括带电荷的羧基、氨基、磺酸基或巯基中的至少一种。核微球111通过 带电荷官能团偶联第二磁性纳米颗粒12。In some embodiments, the outer surface of the above-mentioned core microspheres 111 contains charged functional groups, and the charged functional groups include at least one of charged carboxyl groups, amino groups, sulfonic acid groups or thiol groups. The core microspheres 111 are coupled to the second magnetic nanoparticles 12 through charged functional groups.

在一些实施例中,上述水溶性磁性纳米颗粒为具有顺磁性的纳米颗粒,其 中,具有顺磁性的纳米颗粒可选自四氧化三铁、三氧化二铁、含有镍或钴的合 金型顺磁性磁颗粒中的至少一种。In some embodiments, the above-mentioned water-soluble magnetic nanoparticles are paramagnetic nanoparticles, wherein the paramagnetic nanoparticles can be selected from ferric tetroxide, ferric oxide, and alloy-type paramagnetism containing nickel or cobalt at least one of the magnetic particles.

在一些实施例中,上述脂溶性磁性纳米颗粒为具有顺磁性的纳米颗粒,其 中,具有顺磁性的纳米颗粒可选自四氧化三铁或三氧化二铁中的至少一种。此 外,脂溶性磁性纳米颗粒含有不饱和脂肪酸、饱和脂肪酸、不饱和脂肪胺或饱 和脂肪胺中至少一种的脂溶性配体。上述脂溶性配体能够结合脂溶性磁性纳米 颗粒的表面,从而使脂溶性磁性纳米颗粒稳定。其中,脂溶性配体可以包括油 酸、油胺或硬脂酸中的至少一种。In some embodiments, the above-mentioned fat-soluble magnetic nanoparticles are nanoparticles with paramagnetic properties, wherein the nanoparticles with paramagnetic properties can be selected from at least one of ferric oxide or ferric oxide. In addition, the fat-soluble magnetic nanoparticles contain a fat-soluble ligand of at least one of unsaturated fatty acids, saturated fatty acids, unsaturated fatty amines or saturated fatty amines. The above-mentioned lipid-soluble ligands can bind to the surface of the lipid-soluble magnetic nanoparticles, thereby stabilizing the lipid-soluble magnetic nanoparticles. Wherein, the fat-soluble ligand may include at least one of oleic acid, oleylamine or stearic acid.

在一些实施例中,有磁微球11的粒径为1μm~50μm(例如1μm、5μm、10μm、 20μm、50μm),第三磁性纳米颗粒13的粒径为1nm~200nm(例如1nm、5nm、 50nm、100nm、200nm),第二磁性纳米颗粒12的粒径为1nm~200nm(例如1nm、 5nm、50nm、100nm、200nm)。In some embodiments, the particle size of the magnetic microspheres 11 is 1 μm˜50 μm (eg 1 μm, 5 μm, 10 μm, 20 μm, 50 μm), and the particle size of the third magnetic nanoparticles 13 is 1 nm˜200 nm (eg 1 nm, 5 nm, 50 nm, 100 nm, 200 nm), the particle size of the second magnetic nanoparticles 12 is 1 nm˜200 nm (for example, 1 nm, 5 nm, 50 nm, 100 nm, 200 nm).

在一些实施例中,按质量百分比计,磁珠10包括:50%~99.5%的有磁微球 11、0.1%~49.9%的第二磁性纳米颗粒12、0.1%~49.9%的第三磁性纳米颗粒13。 申请人发现在上述数值范围内,可在避免有磁微球表面过量吸附磁性纳米颗粒 的前提下,提高磁珠的磁响应,并降低杂质带来的干扰信号,且能够降低有磁 微球的自体荧光,提高检测灵敏度。In some embodiments, by mass percentage, the magnetic beads 10 include: 50%-99.5% of the magnetic microspheres 11, 0.1%-49.9% of the second magnetic nanoparticles 12, 0.1%-49.9% of the third magnetic Nanoparticles 13. The applicant found that within the above numerical range, the magnetic response of the magnetic beads can be improved, the interference signal caused by impurities can be reduced, and the magnetic microspheres can be reduced under the premise of avoiding excessive adsorption of magnetic nanoparticles on the surface of the magnetic microspheres. Autofluorescence improves detection sensitivity.

参阅图4,在一些实施例中,上述步骤S10包括以下步骤:Referring to FIG. 4, in some embodiments, the above step S10 includes the following steps:

S11:将第一磁性纳米颗粒与有机单体分子混合,以形成混合流体。S11: Mix the first magnetic nanoparticles with organic monomer molecules to form a mixed fluid.

S12:将混合流体制备成有磁微球。S12: Prepare the mixed fluid into magnetic microspheres.

具体而言,如图23所示,有机单体分子可以为苯乙烯单体、甲基丙烯酸 甲酯单体、乙烯-甲基丙烯酸甲酯单体、丙烯腈单体、乙烯单体、丙烯单体、丙 烯酸乙酯单体中的至少一种。将第一磁性纳米颗粒加入至有机单体分子溶液中, 以形成混合流体。混合流体经聚合制得有磁微球,其中,第一磁性纳米颗粒分 布于核微球的内部。更具体地,将具有超顺磁性的磁性纳米颗粒、苯乙烯单体、 辛烷混合并超声分散得到混合流体;将可自交联的非离子型水溶性表面活性剂 以及混合流体加入水中,充分混合并于0~65℃(例如0℃、25℃、30℃、50℃、 65℃)下进行反应,得到磁性纳米颗粒-聚苯乙烯核微球混合乳液。将催化剂溶液加入磁性纳米颗粒-聚苯乙烯核微球混合乳液中,搅拌,静置析出后水洗,即 得可磁性分离的有磁微球。Specifically, as shown in FIG. 23, the organic monomer molecules can be styrene monomer, methyl methacrylate monomer, ethylene-methyl methacrylate monomer, acrylonitrile monomer, ethylene monomer, propylene monomer At least one of monomer and ethyl acrylate monomer. The first magnetic nanoparticles are added to the solution of organic monomer molecules to form a mixed fluid. The mixed fluid is polymerized to produce magnetic microspheres, wherein the first magnetic nanoparticles are distributed inside the core microspheres. More specifically, the superparamagnetic magnetic nanoparticles, styrene monomer, and octane are mixed and ultrasonically dispersed to obtain a mixed fluid; the self-crosslinkable nonionic water-soluble surfactant and the mixed fluid are added to water, and the mixture is fully mixed. Mix and react at 0-65°C (eg, 0°C, 25°C, 30°C, 50°C, 65°C) to obtain a magnetic nanoparticle-polystyrene core microsphere mixed emulsion. The catalyst solution is added to the magnetic nanoparticle-polystyrene core microsphere mixed emulsion, stirred, left to stand for precipitation, and washed with water to obtain magnetically separated magnetic microspheres.

参阅图5,本申请第四实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Figure 5, the fourth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

具体而言,将有磁微球分散于第一介质中,提供一含有脂溶性荧光染料的 第三介质,混合,然后进行溶胀反应(涡旋分散均匀,旋转反应预设时间),脂 溶性荧光染料包埋进核微球的内部,磁分离去上清液,获得内部分布有脂溶性 荧光染料的荧光微球。其中,第一介质与第三介质均为溶胀介质,具体为既可 以使脂溶性磁性纳米颗粒弥散分布,又能使有磁微球溶胀的单一或混合溶剂, 例如,溶胀介质可以为氯仿、二氯甲烷、乙醇、甲醇、己二醇、正丁醇、异丁 醇、正己烷、环己烷、四氢呋喃中的一种或几种的组合,但不局限于上述几种 物质。Specifically, the magnetic microspheres are dispersed in the first medium, a third medium containing a fat-soluble fluorescent dye is provided, mixed, and then a swelling reaction is performed (the vortex is dispersed uniformly, and the rotation reaction time is preset), and the fat-soluble fluorescent dye is The dye is embedded in the core microspheres, and the supernatant is magnetically separated to obtain fluorescent microspheres with lipid-soluble fluorescent dyes distributed inside. Wherein, the first medium and the third medium are both swelling media, specifically a single or mixed solvent that can not only disperse and distribute fat-soluble magnetic nanoparticles, but also swell magnetic microspheres. One or a combination of methyl chloride, ethanol, methanol, hexanediol, n-butanol, isobutanol, n-hexane, cyclohexane, and tetrahydrofuran, but not limited to the above-mentioned substances.

进一步地,可多次进行步骤S50,分别组合具有不同荧光特征的脂溶性荧 光染料和有磁微球,或者,分别组合不同浓度的脂溶性荧光染料和有磁微球, 以获得多个不同荧光强度的微球,即荧光编码微球。其中,可以将不同的脂溶 性荧光染料按不同比例混合,以制备出不同的编码的微球。正是由于不同脂溶 性荧光染料的不同比例,赋予了荧光编码微球不同的荧光特征。Further, step S50 may be performed multiple times, respectively combining lipid-soluble fluorescent dyes with different fluorescence characteristics and magnetic microspheres, or, respectively combining lipid-soluble fluorescent dyes and magnetic microspheres with different concentrations, to obtain a plurality of different fluorescent dyes. Intensity of the microspheres, that is, fluorescently encoded microspheres. Wherein, different liposoluble fluorescent dyes can be mixed in different proportions to prepare different encoded microspheres. It is precisely due to the different ratios of different lipid-soluble fluorescent dyes that endow the fluorescently encoded microspheres with different fluorescent characteristics.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部和/或凝胶层的内部。S40: The magnetic microspheres and the third magnetic nanoparticles are combined by the swelling technology, so that the third magnetic nanoparticles are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

参阅图6,本申请第五实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Fig. 6, the fifth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部和/或凝胶层的内部。S40: The magnetic microspheres and the third magnetic nanoparticles are combined by the swelling technology, so that the third magnetic nanoparticles are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

参阅图7,本申请第六实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Fig. 7, the sixth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部和/或凝胶层的内部。S50: Magnetic microspheres and liposoluble fluorescent dyes are combined using swelling technology, so that the liposoluble fluorescent dyes are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

进一步地,在脂溶性荧光染料包埋进核微球的内部的过程中,脂溶性荧光 染料可包埋进凝胶层的内部。Further, in the process of embedding the lipid-soluble fluorescent dye into the interior of the core microspheres, the lipid-soluble fluorescent dye may be embedded into the interior of the gel layer.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部和/或凝胶层的内部。S40: The magnetic microspheres and the third magnetic nanoparticles are combined by the swelling technology, so that the third magnetic nanoparticles are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

参阅图8,本申请第七实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Figure 8, the seventh embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部和/或凝胶层的内部。S40: The magnetic microspheres and the third magnetic nanoparticles are combined by the swelling technology, so that the third magnetic nanoparticles are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部和/或凝胶层的内部。S50: Magnetic microspheres and liposoluble fluorescent dyes are combined using swelling technology, so that the liposoluble fluorescent dyes are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

参阅图9,本申请第八实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Fig. 9, the eighth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S60:采用溶胀技术同时组合有磁微球与脂溶性荧光染料、有磁微球与第 三磁性纳米颗粒,使得脂溶性荧光染料、第三磁性纳米颗粒弥散分布于核微球 的内部和/或凝胶层的内部。S60: Using swelling technology to combine magnetic microspheres and lipid-soluble fluorescent dyes, magnetic microspheres and third magnetic nanoparticles simultaneously, so that the lipid-soluble fluorescent dyes and third magnetic nanoparticles are dispersed and distributed inside the core microspheres and/or inside the gel layer.

具体而言,将有磁微球分散于第一介质中,提供一含有脂溶性磁性纳米颗 粒的第二介质,提供一含有脂溶性荧光染料的第三介质,混合,然后进行溶胀 反应(涡旋分散均匀,旋转反应预设时间),脂溶性磁性纳米颗粒、脂溶性荧光 染料包埋进核微球的内部,磁分离去上清液,获得核微球内部分布有脂溶性磁 性纳米颗粒和脂溶性荧光染料的荧光磁珠。Specifically, magnetic microspheres are dispersed in a first medium, a second medium containing lipid-soluble magnetic nanoparticles is provided, a third medium containing lipid-soluble fluorescent dyes is provided, mixed, and then a swelling reaction (vortex) is performed. Disperse uniformly, rotate for a preset time), liposoluble magnetic nanoparticles and liposoluble fluorescent dyes are embedded in the interior of the core microspheres, magnetically separate the supernatant, and obtain the core microspheres with lipid-soluble magnetic nanoparticles and lipids distributed inside the core microspheres. Fluorescent magnetic beads for soluble fluorescent dyes.

进一步地,在脂溶性磁性纳米颗粒、脂溶性荧光染料包埋进核微球的内部 的过程中,脂溶性磁性纳米颗粒、脂溶性荧光染料可包埋进凝胶层的内部。Further, in the process of embedding the lipid-soluble magnetic nanoparticles and lipid-soluble fluorescent dyes into the interior of the core microspheres, the lipid-soluble magnetic nanoparticles and lipid-soluble fluorescent dyes can be embedded into the interior of the gel layer.

进一步地,可多次进行步骤S60,分别组合具有不同荧光特征的脂溶性荧 光染料和有磁微球,或者,分别组合不同浓度的脂溶性荧光染料和有磁微球, 同时组合脂溶性磁性纳米颗粒和有磁微球,以获得多个不同荧光强度的磁珠, 即荧光编码磁珠。其中,可以将不同的脂溶性荧光染料按不同比例混合,以制 备出不同的编码的磁珠。正是由于不同脂溶性荧光染料的不同比例,赋予了制 备的荧光编码磁珠不同的荧光特征。Further, step S60 can be performed multiple times, respectively combining lipid-soluble fluorescent dyes with different fluorescent characteristics and magnetic microspheres, or, respectively combining lipid-soluble fluorescent dyes with different concentrations and magnetic microspheres, and combining lipid-soluble magnetic nanospheres. particles and magnetic microspheres to obtain multiple magnetic beads with different fluorescence intensities, that is, fluorescently encoded magnetic beads. Among them, different liposoluble fluorescent dyes can be mixed in different proportions to prepare different encoded magnetic beads. It is precisely because of the different ratios of different lipid-soluble fluorescent dyes that the prepared fluorescently encoded magnetic beads have different fluorescent characteristics.

参阅图10,本申请第九实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Figure 10, the ninth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图11,本申请第十实施例提出一种磁珠的制作方法,该方法包括以下 步骤:Referring to Figure 11, the tenth embodiment of the present application proposes a method for making magnetic beads, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图12,本申请第十一实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 12, the eleventh embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图13,本申请第十二实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 13, the twelfth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部和/或凝胶层的内部。S50: Magnetic microspheres and liposoluble fluorescent dyes are combined using swelling technology, so that the liposoluble fluorescent dyes are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

参阅图14,本申请第十三实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 14, the thirteenth embodiment of the present application proposes a method for making magnetic beads, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S60:采用溶胀技术同时组合有磁微球与脂溶性荧光染料、有磁微球与第 三磁性纳米颗粒,使得脂溶性荧光染料、第三磁性纳米颗粒弥散分布于核微球 的内部。S60: The swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, magnetic microspheres and third magnetic nanoparticles, so that the lipid-soluble fluorescent dyes and the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图15,本申请第十四实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 15, the fourteenth embodiment of the present application proposes a method for making magnetic beads, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图16,本申请第十五实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 16, a fifteenth embodiment of the present application proposes a method for making magnetic beads, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图17,本申请第十六实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 17, the sixteenth embodiment of the present application proposes a method for making magnetic beads, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部。S50: Swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, so that the lipid-soluble fluorescent dyes are dispersed and distributed inside the core microspheres.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

参阅图18,本申请第十七实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 18, the seventeenth embodiment of the present application proposes a method for making a magnetic bead, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S40:采用溶胀技术组合有磁微球与第三磁性纳米颗粒,使得第三磁性纳 米颗粒弥散分布于核微球的内部。S40: the swelling technology is used to combine the magnetic microspheres and the third magnetic nanoparticles, so that the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

S50:采用溶胀技术组合有磁微球与脂溶性荧光染料,使得脂溶性荧光染 料弥散分布于核微球的内部和/或凝胶层的内部。S50: Magnetic microspheres and liposoluble fluorescent dyes are combined using swelling technology, so that the liposoluble fluorescent dyes are dispersed and distributed in the interior of the core microspheres and/or the interior of the gel layer.

参阅图19,本申请第十八实施例提出一种磁珠的制作方法,该方法包括以 下步骤:Referring to Figure 19, the eighteenth embodiment of the present application proposes a method for making magnetic beads, the method comprising the following steps:

S10:提供一有磁微球,有磁微球包括核微球以及分布于核微球内部的第 一磁性纳米颗粒。S10: Provide a magnetic microsphere, the magnetic microsphere includes a core microsphere and first magnetic nanoparticles distributed inside the core microsphere.

S20:采用吸附技术组合有磁微球与第二磁性纳米颗粒,使得第二磁性纳 米颗粒偶联于核微球的外表面。S20: The magnetic microspheres and the second magnetic nanoparticles are combined by the adsorption technology, so that the second magnetic nanoparticles are coupled to the outer surface of the core microspheres.

S60:采用溶胀技术同时组合有磁微球与脂溶性荧光染料、有磁微球与第 三磁性纳米颗粒,使得脂溶性荧光染料、第三磁性纳米颗粒弥散分布于核微球 的内部。S60: The swelling technology is used to combine magnetic microspheres and lipid-soluble fluorescent dyes, magnetic microspheres and third magnetic nanoparticles, so that the lipid-soluble fluorescent dyes and the third magnetic nanoparticles are dispersed and distributed inside the core microspheres.

S30:在偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆凝胶层,且 凝胶层包覆至少部分第二磁性纳米颗粒。S30: A gel layer is coated on the outer surface of the magnetic microspheres coupled with the second magnetic nanoparticles, and the gel layer coats at least part of the second magnetic nanoparticles.

可选地,上述第四实施例至第十八实施例步骤S30中的凝胶层可替换为聚 合物包覆层,聚合物包覆层的材料为聚苯乙烯、聚甲基丙烯酸甲酯、聚乙烯- 甲基丙烯酸甲酯、聚丙烯腈、聚乙烯、聚丙烯、聚丙烯酸乙酯中的至少一种。Optionally, the gel layer in step S30 of the fourth embodiment to the eighteenth embodiment can be replaced with a polymer coating layer, and the material of the polymer coating layer is polystyrene, polymethyl methacrylate, Polyethylene - at least one of methyl methacrylate, polyacrylonitrile, polyethylene, polypropylene, polyethyl acrylate.

由此,通过上述第四实施例至第十八实施例或其替换方案制得的磁珠结构 如图24或25所示,磁珠10包括:有磁微球11、脂溶性荧光染料15、第二磁 性纳米颗粒12、第三磁性纳米颗粒13以及包覆层14。其中,有磁微球11包括 核微球111以及分布于核微球111内部的第一磁性纳米颗粒112。其中,脂溶 性荧光染料15、第三磁性纳米颗粒13弥散分布于核微球111的内部,可以理 解的是,通过溶胀进入有磁微球11的内部后,脂溶性荧光染料15、第三磁性 纳米颗粒13包埋在核微球111的内部。第二磁性纳米颗粒12可偶联于核微球 111的外表面。包覆层14包覆于有磁微球11的外表面,且包覆层14包覆至少 部分第二磁性纳米颗粒12。可选地,包覆层14包覆全部第二磁性纳米颗粒12, 磁珠10的外表面为光滑表面。其中,上述包覆层14可以为凝胶层或聚合物包 覆层。可以理解的是,第三磁性纳米颗粒13、脂溶性荧光染料15可弥散分布 于凝胶层的内部,而受限于聚合物包覆层的材料,第三磁性纳米颗粒13、脂溶 性荧光染料15不可弥散分布于聚合物包覆层的内部。Thus, the magnetic bead structures prepared by the fourth embodiment to the eighteenth embodiment or their alternatives are shown in FIG. 24 or 25. The magnetic bead 10 includes: magnetic microspheres 11, liposoluble fluorescent dyes 15, The second magnetic nanoparticles 12 , the third magnetic nanoparticles 13 and the coating layer 14 . The magnetic microspheres 11 include core microspheres 111 and first magnetic nanoparticles 112 distributed inside the core microspheres 111 . Among them, the lipid-soluble fluorescent dye 15 and the third magnetic nanoparticles 13 are dispersed and distributed inside the core microsphere 111. It can be understood that, after entering the interior of the magnetic microsphere 11 through swelling, the lipid-soluble fluorescent dye 15, the third magnetic The nanoparticles 13 are embedded inside the core microspheres 111 . The second magnetic nanoparticles 12 may be coupled to the outer surface of the core microspheres 111. The coating layer 14 is coated on the outer surface of the magnetic microspheres 11, and the coating layer 14 is coated with at least part of the second magnetic nanoparticles 12. Optionally, the coating layer 14 covers all the second magnetic nanoparticles 12, and the outer surface of the magnetic beads 10 is a smooth surface. Wherein, the above-mentioned coating layer 14 may be a gel layer or a polymer coating layer. It can be understood that the third magnetic nanoparticles 13 and the liposoluble fluorescent dyes 15 can be dispersed in the gel layer, but limited by the material of the polymer coating layer, the third magnetic nanoparticles 13 and the liposoluble fluorescent dyes 15 is not dispersible in the interior of the polymer coating.

更进一步地,可删减上述第四实施例至第十实施例中的步骤S30,由此制 得的磁珠10结构如图28所示,磁珠10包括:有磁微球11、脂溶性荧光染料 15、第二磁性纳米颗粒12以及第三磁性纳米颗粒13。其中,有磁微球11包括 核微球111以及分布于核微球111内部的第一磁性纳米颗粒112。其中,脂溶 性荧光染料15、第三磁性纳米颗粒13弥散分布于核微球111的内部,可以理 解的是,通过溶胀进入有磁微球11的内部后,脂溶性荧光染料15、第三磁性 纳米颗粒13包埋在核微球111的内部。第二磁性纳米颗粒12可偶联于核微球 111的外表面。Further, step S30 in the fourth embodiment to the tenth embodiment above can be deleted, and the structure of the magnetic bead 10 obtained therefrom is shown in FIG. 28 . The magnetic bead 10 includes: Fluorescent dye 15 , second magnetic nanoparticles 12 and third magnetic nanoparticles 13 . The magnetic microspheres 11 include core microspheres 111 and first magnetic nanoparticles 112 distributed inside the core microspheres 111 . Among them, the lipid-soluble fluorescent dye 15 and the third magnetic nanoparticles 13 are dispersed and distributed inside the core microsphere 111. It can be understood that, after entering the interior of the magnetic microsphere 11 through swelling, the lipid-soluble fluorescent dye 15, the third magnetic The nanoparticles 13 are embedded inside the core microspheres 111 . The second magnetic nanoparticles 12 may be coupled to the outer surface of the core microspheres 111.

参阅图20,进一步地,上述第一实施例至第十八实施例中,步骤S30具体 包括以下步骤:Referring to Figure 20, further, in the above-mentioned first embodiment to the eighteenth embodiment, step S30 specifically includes the following steps:

S31:将偶联有第二磁性纳米颗粒的有磁微球与凝胶材料混合,加入交联 剂,进行交联反应,使得偶联有第二磁性纳米颗粒的有磁微球的外表面上包覆 凝胶层。S31: Mix the magnetic microspheres coupled with the second magnetic nanoparticles and the gel material, add a cross-linking agent, and perform a cross-linking reaction, so that the outer surfaces of the magnetic microspheres coupled with the second magnetic nanoparticles are Coat the gel layer.

在凝胶材料为壳聚糖时,交联剂可以为戊二醛,其中,壳聚糖与有磁微球 的质量比为:0.01~20%,壳聚糖通过静电相互作用和戊二醛发生化学反应产生 交联作用。When the gel material is chitosan, the cross-linking agent can be glutaraldehyde, wherein the mass ratio of chitosan to magnetic microspheres is 0.01-20%, and chitosan interacts with glutaraldehyde through electrostatic interaction. A chemical reaction occurs to produce cross-linking.

进一步地,上述实施例中的步骤S20的操作温度为0~100℃(例如0℃、 25℃、30℃、50℃、65℃、100℃),步骤S30的操作温度为20~65℃(例如20℃、 30℃、50℃、65℃),步骤S40的操作温度为0~65℃(例如0℃、25℃、30℃、 50℃、65℃),步骤S50的操作温度为0~65℃(例如0℃、25℃、30℃、50℃、 65℃)。在上述温度范围内,可有效避免因加热导致有磁微球的自体荧光升高, 进而提高检测灵敏度。Further, the operating temperature of step S20 in the above embodiment is 0-100°C (for example, 0°C, 25°C, 30°C, 50°C, 65°C, 100°C), and the operating temperature of step S30 is 20-65°C ( For example, 20°C, 30°C, 50°C, 65°C), the operating temperature of step S40 is 0-65°C (for example, 0°C, 25°C, 30°C, 50°C, 65°C), and the operating temperature of step S50 is 0-65°C 65°C (eg 0°C, 25°C, 30°C, 50°C, 65°C). Within the above temperature range, the increase in autofluorescence of the magnetic microspheres caused by heating can be effectively avoided, thereby improving the detection sensitivity.

优选地,上述实施例中的步骤S20的操作温度为0~30℃(例如0℃、25℃、 30℃),步骤S30的操作温度为20~30℃(例如20℃、25℃、30℃),步骤S40 的操作温度为0~30℃(例如0℃、25℃、30℃),步骤S50的操作温度为0~30℃ (例如0℃、25℃、30℃)。在上述操作温度范围内,可有效避免因加热导致无 磁有磁微球的自体荧光升高,进而提高检测灵敏度。Preferably, the operating temperature of step S20 in the above embodiment is 0-30°C (eg 0°C, 25°C, 30°C), and the operating temperature of step S30 is 20-30°C (eg 20°C, 25°C, 30°C) ), the operating temperature of step S40 is 0-30°C (eg 0°C, 25°C, 30°C), and the operating temperature of step S50 is 0-30°C (eg 0°C, 25°C, 30°C). Within the above operating temperature range, the autofluorescence increase of the non-magnetic and magnetic microspheres caused by heating can be effectively avoided, thereby improving the detection sensitivity.

更优选地,上述实施例中的步骤S20的操作温度为室温(23℃±2℃),步 骤S30的操作温度为室温(23℃±2℃),步骤S40的操作温度为室温(23℃± 2℃),步骤S50的操作温度为室温(23℃±2℃)。在上述操作温度范围内,可 有效避免因加热导致无磁有磁微球的自体荧光升高,进而提高检测灵敏度。More preferably, the operating temperature of step S20 in the above-mentioned embodiment is room temperature (23 ℃ ± 2 ℃), the operating temperature of step S30 is room temperature (23 ℃ ± 2 ℃), and the operating temperature of step S40 is room temperature (23 ℃ ± 2 ℃). 2° C.), and the operating temperature of step S50 is room temperature (23° C.±2° C.). Within the above operating temperature range, the autofluorescence increase of the non-magnetic and magnetic microspheres caused by heating can be effectively avoided, thereby improving the detection sensitivity.

在本申请所提供的几个实施方式中,应该理解到,所揭露的方法以及设备, 可以通过其它的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的, 例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有 另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略,或不执行。In the several embodiments provided in this application, it should be understood that the disclosed method and device may be implemented in other manners. For example, the device implementations described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other divisions. For example, multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施方式方案的目的。The units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this implementation manner.

另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的 形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware, and can also be implemented in the form of software functional units.

以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利 用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运 用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only the embodiments of the present application, and are not intended to limit the scope of the patent of the present application. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present application, or directly or indirectly applied to other related technologies Fields are similarly included within the scope of patent protection of this application.

Claims (19)

1. A magnetic bead, comprising:
the magnetic microsphere comprises a core microsphere and first magnetic nanoparticles distributed in the core microsphere;
a second magnetic nanoparticle coupled to the outer surface of the core microsphere
And the third magnetic nano-particles are at least dispersed and distributed in the core microsphere.
2. The magnetic bead of claim 1, further comprising:
and the coating layer is coated on the outer surface of the magnetic microsphere and at least partially coats the second magnetic nanoparticles.
3. The magnetic bead of claim 2,
the coating layer is a gel layer or a polymer coating layer;
and the third magnetic nanoparticles are dispersed in the gel layer.
4. A magnetic bead as defined in claim 3,
the gel layer is made of at least one of chitosan, sodium alginate, polyacrylic acid, polymethacrylic acid, polyacrylamide and poly-N-substituted acrylamide;
the polymer coating layer is made of at least one of polystyrene, polymethyl methacrylate, polyethylene-methyl methacrylate, polyacrylonitrile, polyethylene, polypropylene and polyethylacrylate.
5. The magnetic bead of claim 1, wherein the core microsphere is a polymeric core microsphere.
6. The magnetic bead of claim 1, wherein an outer surface of the core microsphere comprises a charged functional group, and wherein the core microsphere is coupled to the second magnetic nanoparticle via the charged functional group.
7. The magnetic bead of claim 1, wherein the first magnetic nanoparticle is at least one of a fat-soluble magnetic nanoparticle or a water-soluble magnetic nanoparticle.
8. The magnetic bead of claim 1, wherein the second magnetic nanoparticle is a water-soluble magnetic nanoparticle and the third magnetic nanoparticle is a fat-soluble magnetic nanoparticle.
9. The magnetic bead of claim 7 or 8,
the fat-soluble magnetic nanoparticles are paramagnetic nanoparticles, and contain at least one fat-soluble ligand of unsaturated fatty acid, saturated fatty acid, unsaturated fatty amine or saturated fatty amine.
10. The magnetic bead of claim 7 or 8,
the water-soluble magnetic nanoparticles are paramagnetic nanoparticles.
11. The magnetic bead of claim 1, further comprising:
and the fat-soluble fluorescent dye is at least dispersed and distributed in the core microsphere.
12. The magnetic bead of claim 3, further comprising:
and the fat-soluble fluorescent dye is at least dispersed and distributed in the gel layer.
13. The magnetic bead of claim 1, wherein the magnetic bead is a magnetic bead,
the magnetic bead comprises the following components in percentage by mass: 50% -99.5% of the magnetic microspheres, 0.1% -49.9% of the second magnetic nanoparticles and 0.1% -49.9% of the third magnetic nanoparticles.
14. A method of making a magnetic bead, the method comprising:
providing a magnetic microsphere, wherein the magnetic microsphere comprises a core microsphere and first magnetic nanoparticles distributed in the core microsphere;
combining the magnetic microsphere and a second magnetic nanoparticle using an adsorption technique such that the second magnetic nanoparticle is coupled to the outer surface of the core microsphere;
wherein prior to the step of combining the magnetic microsphere and the second magnetic nanoparticle using an adsorption technique such that the second magnetic nanoparticle is coupled to the outer surface of the core microsphere, or after the step of combining the magnetic microsphere and the second magnetic nanoparticle using an adsorption technique such that the second magnetic nanoparticle is coupled to the outer surface of the core microsphere, the method further comprises: and combining the magnetic microspheres and the third magnetic nanoparticles by adopting a swelling technology, so that the third magnetic nanoparticles are dispersed in the core microspheres.
15. The method of claim 14, wherein after the step of combining the magnetic microsphere and the second magnetic nanoparticle using an adsorption technique such that the second magnetic nanoparticle is coupled to the outer surface of the core microsphere, the method further comprises: and coating a polymer coating layer on the outer surface of the magnetic microsphere coupled with the second magnetic nanoparticle, wherein the gel layer coats at least part of the second magnetic nanoparticle.
16. The method of claim 14, wherein after the step of combining the magnetic microsphere and the second magnetic nanoparticle using an adsorption technique such that the second magnetic nanoparticle is coupled to the outer surface of the core microsphere, the method further comprises: coating a gel layer on the outer surface of the magnetic microsphere coupled with the second magnetic nanoparticle, wherein the gel layer coats at least part of the second magnetic nanoparticle.
17. The method of claim 14, wherein the step of providing a magnetic microsphere comprises:
mixing the first magnetic nanoparticles with organic monomer molecules to form a mixed fluid;
preparing the mixed fluid into the magnetic microspheres.
18. The method of claim 16,
the magnetic microspheres and the second magnetic nanoparticles are combined by adopting an adsorption technology, so that the operating temperature of coupling the second magnetic nanoparticles to the outer surfaces of the core microspheres is 0-100 ℃;
coating a gel layer on the outer surface of the magnetic microsphere coupled with the second magnetic nanoparticles, wherein the operation temperature of coating at least part of the second magnetic nanoparticles by the gel layer is 20-65 ℃;
and combining the magnetic microspheres and the third magnetic nanoparticles by adopting a swelling technology, so that the operating temperature of the third magnetic nanoparticles dispersed in the core microspheres and/or the gel layer is 0-65 ℃.
19. The method of claim 14, further comprising:
and combining the magnetic microspheres and the fat-soluble fluorescent dye by adopting a swelling technology, so that the fat-soluble fluorescent dye is dispersed and distributed in the core microspheres.
CN202110313571.0A 2021-03-24 2021-03-24 Magnetic beads and methods of making the same Pending CN115127972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110313571.0A CN115127972A (en) 2021-03-24 2021-03-24 Magnetic beads and methods of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110313571.0A CN115127972A (en) 2021-03-24 2021-03-24 Magnetic beads and methods of making the same

Publications (1)

Publication Number Publication Date
CN115127972A true CN115127972A (en) 2022-09-30

Family

ID=83374242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110313571.0A Pending CN115127972A (en) 2021-03-24 2021-03-24 Magnetic beads and methods of making the same

Country Status (1)

Country Link
CN (1) CN115127972A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070059705A1 (en) * 2003-08-08 2007-03-15 Huachang Lu Fluorescent magnetic nanoparticles and process of preparation
CN101012312A (en) * 2007-02-08 2007-08-08 上海交通大学 Method of preparing multifunctional macromolecule-inorganic composite microsphere
CN101044213A (en) * 2004-10-12 2007-09-26 卢米尼克斯股份有限公司 Methods for forming dyed microspheres and populations of dyed microspheres
CN101650998A (en) * 2005-01-20 2010-02-17 卢米尼克斯股份有限公司 Microspheres, populations of microspheres, and methods for forming microspheres
CN102302918A (en) * 2011-06-13 2012-01-04 天津大学 Magnetic fluorescent composite microsphere and method for preparing same
CN110244044A (en) * 2019-06-13 2019-09-17 苏州百源基因技术有限公司 A kind of rare-earths dyeing magnetic bead and its preparation and application
US20190353649A1 (en) * 2016-12-01 2019-11-21 University Of Florida Research Foundation, Inc. Polymer conjugates, methods of making polymer conjugates, and methods of using polymer conjugates
CN111426659A (en) * 2020-03-24 2020-07-17 深圳唯公生物科技有限公司 Magnetic fluorescent coding microsphere and preparation method thereof
CN111849022A (en) * 2020-06-16 2020-10-30 湖北新纵科病毒疾病工程技术有限公司 Carboxylated magnetic polystyrene fluorescent microsphere and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070059705A1 (en) * 2003-08-08 2007-03-15 Huachang Lu Fluorescent magnetic nanoparticles and process of preparation
CN101044213A (en) * 2004-10-12 2007-09-26 卢米尼克斯股份有限公司 Methods for forming dyed microspheres and populations of dyed microspheres
CN101650998A (en) * 2005-01-20 2010-02-17 卢米尼克斯股份有限公司 Microspheres, populations of microspheres, and methods for forming microspheres
CN101012312A (en) * 2007-02-08 2007-08-08 上海交通大学 Method of preparing multifunctional macromolecule-inorganic composite microsphere
CN102302918A (en) * 2011-06-13 2012-01-04 天津大学 Magnetic fluorescent composite microsphere and method for preparing same
US20190353649A1 (en) * 2016-12-01 2019-11-21 University Of Florida Research Foundation, Inc. Polymer conjugates, methods of making polymer conjugates, and methods of using polymer conjugates
CN110244044A (en) * 2019-06-13 2019-09-17 苏州百源基因技术有限公司 A kind of rare-earths dyeing magnetic bead and its preparation and application
CN111426659A (en) * 2020-03-24 2020-07-17 深圳唯公生物科技有限公司 Magnetic fluorescent coding microsphere and preparation method thereof
CN111849022A (en) * 2020-06-16 2020-10-30 湖北新纵科病毒疾病工程技术有限公司 Carboxylated magnetic polystyrene fluorescent microsphere and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDMOND W.K. YOUNG 等: "Assessment of enhanced autofluorescence and impact on cell microscopy for microfabricated thermoplastic devices", ANAL CHEM, 2 January 2013 (2013-01-02) *

Similar Documents

Publication Publication Date Title
CN112666140B (en) Poly (undecylenic acid-divinylbenzene) -coated magnetic fluorescently encoded microspheres
CN111375360B (en) Preparation method of magnetic microspheres with uniform particle size
CN1523076A (en) A magnetic fluorescent bifunctional microsphere with core-shell structure and preparation method thereof
CN102344632A (en) Three-layer core-shell-structure inorganic nanoparticle/silicon dioxide/high polymer composite microspheres and preparation method thereof
CN1994469A (en) Biodegradable magnetic nanoparticle, preparation method and application thereof
CN111995720B (en) Monodisperse superparamagnetic carboxyl silicon magnetic bead and preparation method thereof
CN112175150A (en) Novel preparation method of functionalized porous magnetic microspheres
CN102861541A (en) Preparation method of surface-modified fluorescent magnetic polymer composite microspheres
CN111393574A (en) Magnetic microspheres with functional groups on the surface and preparation method and use thereof
CN116082669B (en) A kind of polymer-based nano magnetic beads and preparation method thereof
CN105435753B (en) A kind of mesoporous magnetic high-molecular composite balls and the preparation method and application thereof
CN1539913A (en) Fluorescent magnetic multifunctional nanomaterial and preparation method thereof
CN115127973A (en) Fluorescent magnetic beads and method of making the same
CN102294213A (en) Preparation method of polymer-coated binary double-functional nano-cluster core-shell microspheres
CN1193383C (en) Magnetic hud fine particles possessing strong magnetic field response capability and its preparing method
CN115127972A (en) Magnetic beads and methods of making the same
CN100573747C (en) The preparation method of nano-magnetic microsphere
CN107275023A (en) Golden shell magnetic bead and its preparation method and application
CN115127977A (en) Magnetic beads and methods of making the same
CN1718619A (en) Magnetic composite microsphere with inorganic/organic core-shell structure and preparation method thereof
CN115127975A (en) Fluorescent magnetic beads and method of making the same
CN104388079A (en) Preparation method of composite fluorescent microspheres
CN115127976A (en) Fluorescent magnetic bead and manufacturing method thereof
CN115127971A (en) Magnetic beads and methods of making the same
CN115127978A (en) Fluorescent magnetic beads and method of making the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination