CN115077860A - Submarine optical cable damage detection device and detection method - Google Patents
Submarine optical cable damage detection device and detection method Download PDFInfo
- Publication number
- CN115077860A CN115077860A CN202210616483.2A CN202210616483A CN115077860A CN 115077860 A CN115077860 A CN 115077860A CN 202210616483 A CN202210616483 A CN 202210616483A CN 115077860 A CN115077860 A CN 115077860A
- Authority
- CN
- China
- Prior art keywords
- optical cable
- unit
- data
- detection
- submarine optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0791—Fault location on the transmission path
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及海底光缆在线检测技术领域,尤其涉及一种海底光缆损坏检测装置及检测方法。The invention relates to the technical field of online detection of submarine optical cables, in particular to a detection device and detection method for damage to submarine optical cables.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
海底光缆,又称海底通讯电缆,是用绝缘材料包裹的导线,铺设在海底,用以设立国家之间的电信传输。海底光缆系统主要用于连接光缆和Internet,它分为岸上设备和水下设备两大部分,海底光缆是水下设备中最重要的也是最脆弱的部分。Submarine optical cable, also known as submarine communication cable, is a wire wrapped with insulating material and laid on the seabed to establish telecommunication transmission between countries. The submarine optical cable system is mainly used to connect the optical cable and the Internet. It is divided into two parts: the shore equipment and the underwater equipment. The submarine optical cable is the most important and the most vulnerable part of the underwater equipment.
海底光缆由于受到地壳运动牵扯、飓风运动或者海底火山等恶劣环境的影响,以及海上渔业活动频繁等因素造成的海底光缆损坏问题日益突出。Due to the influence of harsh environments such as crustal movement, hurricane movement or submarine volcanoes, and frequent marine fishing activities, the problem of submarine cable damage has become increasingly prominent.
目前,海底光缆损坏后,特别是由于自然因素造成的海底光缆损坏,只能在海底光缆传输出现问题后,再通过分段逐级查找,实现故障定位;现有技术很难对海底光缆进行在线实时监测和精确定位。At present, after the submarine optical cable is damaged, especially the damage caused by natural factors, the fault location can only be achieved by segment-by-level search after the transmission of the submarine optical cable has a problem; Real-time monitoring and precise positioning.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明提出了一种海底光缆损坏检测装置及检测方法,以阵列形式布置在海底光缆的侧面,能够检测数据实时传输情况,并能够通过洋流发电实现电能自给。In order to solve the above problems, the present invention proposes a submarine optical cable damage detection device and detection method, which are arranged on the side of the submarine optical cable in an array form, can detect real-time data transmission, and can realize self-sufficiency of electric energy through ocean current generation.
在一些实施方式中,采用如下技术方案:In some embodiments, the following technical solutions are adopted:
一种海底光缆损坏检测装置,包括:A submarine optical cable damage detection device, comprising:
固定单元,用于实现与海底光缆的固定;The fixing unit is used to realize the fixing with the submarine optical cable;
位置调整驱动单元,与所述固定单元连接,包括上部入水口和下部出水口;通过驱动电机将水流自上部入水口引导至下部出水口流出,以获取反作用力,从而使得装置始终垂直向上;A position adjustment drive unit, connected with the fixed unit, includes an upper water inlet and a lower water outlet; the water flow is guided from the upper water inlet to the lower water outlet by the driving motor to obtain a reaction force, so that the device is always vertically upward;
光缆数据检测单元,包括缠绕在光缆外表面的检测螺旋触角以及布设在所述检测螺旋触角上的光缆磁场检测触点;an optical cable data detection unit, comprising a detection helical antenna wound on the outer surface of the optical cable and an optical cable magnetic field detection contact arranged on the detection helical antenna;
洋流发电单元,与所述位置调整驱动单元连接,包括相互连接的洋流偏转发电机构和储能电池;an ocean current power generation unit, connected with the position adjustment drive unit, and includes an ocean current deflection power generation mechanism and an energy storage battery connected to each other;
所述洋流发电单元连接数据处理单元,所述数据处理单元接收光缆数据检测单元检测的数据,并通过数据传输单元进行数据传输。The ocean current power generation unit is connected to a data processing unit, and the data processing unit receives the data detected by the optical cable data detection unit, and transmits the data through the data transmission unit.
作为可选的方案,所述固定单元包括抓取端头,抓取端头顶端连接缓冲弹簧撑杆;所述缓冲弹簧撑杆为弹性件,能够在受到压力作用时向下压缩;所述抓取端头包括第一半环和第二半环,所述第二半环能够相对于第一半环弹性伸缩。As an optional solution, the fixing unit includes a grabbing end, and the top end of the grabbing end is connected to a buffer spring strut; the buffer spring strut is an elastic member that can be compressed downward when subjected to pressure; the catch The pick-up head includes a first half ring and a second half ring, and the second half ring can elastically expand and contract relative to the first half ring.
作为可选的方案,所述位置调整驱动单元连接在固定单元和洋流发电单元之间,所述位置调整驱动单元包括驱动箱体,驱动箱体内设有驱动电机,驱动箱体上分别设有上部进水口和下部出水口。As an optional solution, the position adjustment drive unit is connected between the fixed unit and the ocean current power generation unit, the position adjustment drive unit includes a drive box body, the drive box body is provided with a drive motor, and the drive boxes are respectively provided with Upper inlet and lower outlet.
作为可选的方案,所述洋流发电单元包括:防护筒体,防护筒体外侧面设有辅助位置调整拨板,用于引导水流正对洋流。As an optional solution, the ocean current power generation unit includes: a protective cylinder, and an auxiliary position adjustment dial is arranged on the outer side of the protective cylinder to guide the water current to face the ocean current.
作为可选的方案,所述洋流偏转发电机构包括螺旋桨叶,洋流推动螺旋桨叶旋转实现发电。As an optional solution, the ocean current deflection power generation mechanism includes a propeller blade, and the ocean current pushes the propeller blade to rotate to generate electricity.
作为可选的方案,所述洋流偏转发电机构上设有指示灯。As an optional solution, an indicator light is provided on the ocean current deflection transmission mechanism.
作为可选的方案,所述数据传输单元外侧设置有锥形引流护罩,所述锥形引流护罩顶端设置有数据发射金属导杆,所述锥形引流护罩内部设有数据发射驱动终端。As an optional solution, a conical drainage shield is provided outside the data transmission unit, a data transmission metal guide rod is arranged at the top of the conical drainage shield, and a data transmission drive terminal is arranged inside the conical drainage shield. .
作为可选的方案,所述光缆数据检测单元的检测螺旋触角连接数据输出导线,所述数据输出导线连接至数据处理单元。As an optional solution, the detection spiral antenna of the optical cable data detection unit is connected to a data output wire, and the data output wire is connected to the data processing unit.
作为可选的方案,对海底光缆进行分段,每一段光缆上均设置海底光缆损坏检测装置。As an optional solution, the submarine optical cable is segmented, and each segment of the optical cable is provided with a submarine optical cable damage detection device.
在另一些实施方式中,采用如下技术方案:In other embodiments, the following technical solutions are adopted:
一种海底光缆损坏检测方法,包括:A method for detecting damage to a submarine optical cable, comprising:
将海底光缆损坏检测装置固定在海底光缆上;Fix the submarine optical cable damage detection device on the submarine optical cable;
通过缠绕在检测螺旋触角上的光缆磁场检测触点,实时检测光缆的传输数据,并传送至数据处理单元,数据处理单元判断光缆是否正常工作,并将数据通过数据传输单元传送出去;Through the magnetic field detection contact of the optical cable wound on the detection spiral antenna, the transmission data of the optical cable is detected in real time, and transmitted to the data processing unit. The data processing unit judges whether the optical cable is working normally, and transmits the data through the data transmission unit;
其中,数据处理单元和数据传输单元所需电源均通过洋流发电得到。Among them, the power required by the data processing unit and the data transmission unit is obtained by generating electricity from ocean currents.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
(1)本发明固定单元能够对海底光缆进行主要方向固定,通过控制第一半环相对于第二半环的弹性伸缩,实现对光缆的锁紧固定和释放松脱。(1) The fixing unit of the present invention can fix the main direction of the submarine optical cable. By controlling the elastic expansion and contraction of the first half ring relative to the second half ring, the optical cable can be locked, fixed and released.
(2)本发明光缆数据检测单元能够通过检测检测螺旋触角进行辅助固定,同时通过光缆磁场检测触点对光缆传输进行微磁场检测;对海底光缆进行分段检测,能够在出现光缆损坏或数据传输中断时能够进行快速精准定位,便于维护人员进行快速精准定位修复,减少经济损失。(2) The optical cable data detection unit of the present invention can perform auxiliary fixing by detecting and detecting the spiral antenna, and at the same time, perform micro-magnetic field detection on the optical cable transmission through the optical cable magnetic field detection contact; segment detection of the submarine optical cable can be used in the event of optical cable damage or data transmission. Fast and accurate positioning can be performed during interruptions, which is convenient for maintenance personnel to perform fast and accurate positioning and repair and reduce economic losses.
(3)本发明位置调整驱动单元能够通过驱动电机驱动水流自上而下流动,以获取反作用力,从而使得检测装置始终垂直向上;能够简单有效地实现检测装置的自动姿态调整。(3) The position adjustment driving unit of the present invention can drive the water flow from top to bottom through the driving motor to obtain the reaction force, so that the detection device is always vertically upward; the automatic attitude adjustment of the detection device can be simply and effectively realized.
(4)本发明数据处理单元能够对海底光缆检测数据进行处理,判断光缆是否正常工作;同时能够进行数据备份储存,避免出现信号丢失导致数据不完整。数据处理单元能够将数据通过数据传输单元传输出去;可选每天或每周上传,在数据变化较大时可以缩短上传间隔时间。(4) The data processing unit of the present invention can process the detection data of the submarine optical cable to judge whether the optical cable is working normally; at the same time, the data can be backed up and stored to avoid the loss of the signal and the incomplete data. The data processing unit can transmit data through the data transmission unit; it can be uploaded every day or every week, and the upload interval can be shortened when the data changes greatly.
本发明的其他特征和附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本方面的实践了解到。Other features and advantages of additional aspects of the invention will be set forth in part from the description that follows, and in part will become apparent from the description below, or will be learned by practice of the present aspects.
附图说明Description of drawings
图1为本发明实施例中的海底光缆损坏检测装置整体结构示意图;1 is a schematic diagram of the overall structure of a submarine optical cable damage detection device in an embodiment of the present invention;
图2为本发明实施例中的固定单元结构示意图;2 is a schematic structural diagram of a fixed unit in an embodiment of the present invention;
图3为本发明实施例中的位置调整驱动单元结构示意图;3 is a schematic structural diagram of a position adjustment driving unit in an embodiment of the present invention;
图4为本发明实施例中的数据处理单元结构示意图;4 is a schematic structural diagram of a data processing unit in an embodiment of the present invention;
图5为本发明实施例中的数据传输单元结构示意图;5 is a schematic structural diagram of a data transmission unit in an embodiment of the present invention;
图6为本发明实施例中的光缆数据检测单元结构示意图;6 is a schematic structural diagram of an optical cable data detection unit in an embodiment of the present invention;
图7为本发明实施例中的洋流发电单元结构示意图;7 is a schematic structural diagram of an ocean current power generation unit in an embodiment of the present invention;
其中,1.光缆损坏检测装置本体;2.固定单元;3.位置调整驱动单元;4.数据处理单元;5.数据传输单元;6.光缆数据检测单元;7.洋流发电单元;8.第一半环;9.缓冲弹簧撑杆;10.第二半环;11.驱动箱体;12.第一转接端头;13.第二转接端头;14.驱动电机;15.上部进水口;16.数据处理终端;17.数据发射接入端口;18.数据备份储存机构;19.检测数据接入端口;20.锥形引流护罩;21.数据发射金属导杆;22.数据发射驱动终端;23.数据转接固定端口;24.检测检测螺旋触角;25.光缆磁场检测触点;26.检测数据输出导线;27.弯折转接固定端头;28.防护机构转接端口;29.辅助位置调整拨板;30.储能电池;31.洋流偏转发电机构;32.位置标记信号指示灯。Among them, 1. Optical cable damage detection device body; 2. Fixed unit; 3. Position adjustment drive unit; 4. Data processing unit; 5. Data transmission unit; 6. Optical cable data detection unit; 7. Ocean current power generation unit; Half ring; 9. Buffer spring strut; 10. Second half ring; 11. Drive box; 12. First adapter end; 13. Second adapter end; 14. Drive motor; 15. Upper part Water inlet; 16. Data processing terminal; 17. Data launch access port; 18. Data backup storage mechanism; 19. Detection data access port; 20. Conical drainage shield; 21. Data launch metal guide rod; 22. Data transmission drive terminal; 23. Data transfer fixed port; 24. Detection and detection spiral antenna; 25. Optical cable magnetic field detection contact; 26. Detection of data output wire; 29. Auxiliary position adjustment dial; 30. Energy storage battery; 31. Ocean current deflection transmission mechanism; 32. Position marking signal indicator.
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
实施例一Example 1
在一个或多个实施方式中,公开了一种海底光缆损坏检测装置,包括光缆损坏检测装置本体,参照图1,光缆损坏检测装置本体具体包括:In one or more embodiments, a submarine optical cable damage detection device is disclosed, including an optical cable damage detection device body. Referring to FIG. 1 , the optical cable damage detection device body specifically includes:
固定单元2,用于实现与海底光缆的固定;The fixing
位置调整驱动单元3,与所述固定单元2连接,包括上部入水口和下部出水口;通过驱动电机14将水流自上部入水口引导至下部出水口流出,以获取反作用力,从而使得装置始终垂直向上;The position
光缆数据检测单元6,包括缠绕在光缆外表面的检测螺旋触角24以及布设在检测螺旋触角24上的光缆磁场检测触点25;The optical cable
洋流发电单元7,与所述位置调整驱动单元3连接,包括相互连接的洋流偏转发电机构31和储能电池;洋流发电单元7连接数据处理单元4,所述数据处理单元4接收光缆数据检测单元6检测的数据,并通过数据传输单元5进行数据传输。The ocean current
具体地,结合图2,固定单元2包括抓取端头,抓取端头顶端连接缓冲弹簧撑杆9;其中,抓取端头包括第一半环8和第二半环10,第二半环10能够相对于第一半环8弹性伸缩。本实施例的抓取端头为圆环状结构,第一半环8固定,第二半环10能够沿第一半环8内通道实现弹性伸缩;抓取端头能够实现检测装置与海底光缆的便捷化固定;通过压缩第二半环10使得光缆进入圆环状结构内,释放第二半环10后,环状结构能够自动抱紧光缆,实现检测装置与海底光缆的固定。Specifically, with reference to FIG. 2 , the fixing
本实施例中缓冲弹簧撑杆9为弹性件,能够在受到压力作用时向下压缩;检测装置在深海中由于受到地壳运动或光缆发生位移的影响,会导致检测装置内部的压力发生变化;本实施例的缓冲弹簧撑杆9能够通过上下运动缓冲压力变化的影响,避免外部压力对检测装置产生破坏。In this embodiment, the
结合图3,位置调整驱动单元3连接在固定单元2的顶部,位置调整驱动单元3包括驱动箱体11,驱动箱体11一端设置有第一转接端头12,驱动箱体11另一端设置有第二转接端头13;驱动箱体11通过第一转接端头12与洋流发电单元7上的第一转接端口连接,通过第二转接端头13与固定单元2的缓冲弹簧撑杆9连接。3, the position
驱动箱体11内设有驱动电机14,驱动箱体11上分别设有上部进水口15和下部出水口。检测装置位置发生倾斜时,通过驱动电机14将水流从上部进水口15引导至下部出水口的过程,会产生反作用力,通过反作用力保证检测装置始终垂直向上。The
结合图4,数据处理单元4包括数据处理终端16,数据处理终端16顶部设置有数据发射接入端口17,数据处理终端16底部设有数据备份储存机构18,数据处理终端16侧面设置有检测数据接入端口19。数据处理单元4的作用是接收光缆的检测数据并存储,基于接收到的数据判断光缆是否正常工作,并将判断结果通过数据传输单元5传送出去。4, the
结合图5,数据传输单元5外侧设置有锥形引流护罩20,锥形引流护罩20顶端设置有数据发射金属导杆21,锥形引流护罩20内侧设置有数据发射驱动终端22,数据发射驱动终端22另一端设置有数据转接固定端口23。5 , the outer side of the
结合图6,光缆数据检测单元6包括缠绕在光缆外表面的检测螺旋触角24以及布设在所述检测螺旋触角24上的光缆磁场检测触点25;检测螺旋触角24与检测数据输出导线26连接,检测数据输出导线26另一端连接弯折转接固定端头27,弯折转接固定端头27连接数据处理单元4的检测数据接入端口19。检测数据输出导线26用于传输实时光缆检测数据,光缆是否正常传输工作的数据。6, the optical cable
结合图7,洋流发电单元7设置为桶状结构,洋流发电单元7两端设置有防护机构转接端口28,洋流发电单元7侧面顶端设置有辅助位置调整拨板29,洋流发电单元7内侧底端设置有洋流发电储能电池30,洋流发电单元7侧面设置有洋流偏转发电机构31,洋流偏转发电机构31一侧设置有位置标记信号指示灯32,用于在检测设备出现故障时,便于通过信号灯近距离查找定位。With reference to FIG. 7 , the ocean current
本实施例中,洋流偏转发电机构31包括螺旋桨叶,洋流推动螺旋桨叶旋转实现发电。辅助位置调整拨板29的结构作用类似于船舶舵机,目的在于引导水流正对洋流推动螺旋桨叶,提高发电效率。In this embodiment, the ocean current deflection
操作使用时,先将检测装置进行整体组装,再通过固定单元2进行主方向固定,再通过光缆数据检测单元6缠绕光缆进行辅助固定,启动设备电源,确认洋流发电单元7是否正常工作,位置调整驱动单元3能否随洋流变化进行姿态调整,数据处理单元4与数据传输单元5能否正常进行数据传输,确认无误后检测装置单次组装完成。When operating, first assemble the detection device as a whole, then fix the main direction through the fixing
本实施例中,可以将海底光缆分成若干区段,每一个区段内均设置本实施例的海底光缆损坏检测装置,能够实现对海底光缆的故障定位。In this embodiment, the submarine optical cable can be divided into several sections, and each section is provided with the submarine optical cable damage detection device of this embodiment, which can realize fault location of the submarine optical cable.
实施例二
在一个或多个实施方式中,公开了一种海底光缆损坏检测方法,具体包括如下过程:In one or more embodiments, a method for detecting damage to a submarine optical cable is disclosed, which specifically includes the following processes:
(1)将海底光缆损坏检测装置固定在海底光缆上;(1) Fix the submarine optical cable damage detection device on the submarine optical cable;
(2)通过缠绕在检测螺旋触角24上的光缆磁场检测触点25,实时检测光缆的传输数据,并传送至数据处理单元4,数据处理单元4判断光缆是否正常工作,并将数据通过数据传输单元5传送出去;其中,数据处理单元4和数据传输单元5所需电源均通过洋流发电得到。(2) Through the optical cable magnetic
上述过程的具体实现方式已经在实施例一中进行了说明,此处不再详述。The specific implementation manner of the above process has been described in
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific embodiments of the present invention have been described above in conjunction with the accompanying drawings, they do not limit the scope of protection of the present invention. Those skilled in the art should understand that on the basis of the technical solutions of the present invention, those skilled in the art do not need to pay creative efforts. Various modifications or deformations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210616483.2A CN115077860A (en) | 2022-06-01 | 2022-06-01 | Submarine optical cable damage detection device and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210616483.2A CN115077860A (en) | 2022-06-01 | 2022-06-01 | Submarine optical cable damage detection device and detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115077860A true CN115077860A (en) | 2022-09-20 |
Family
ID=83249835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210616483.2A Pending CN115077860A (en) | 2022-06-01 | 2022-06-01 | Submarine optical cable damage detection device and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115077860A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103419907A (en) * | 2012-05-18 | 2013-12-04 | 李钜彬 | Flight vehicle for water sports |
US20140361785A1 (en) * | 2012-01-31 | 2014-12-11 | Damir Radan | Fault Detection in Subsea Power Cables |
CN105564645A (en) * | 2016-01-08 | 2016-05-11 | 西北工业大学 | Water surface grazing ultralow altitude aircraft |
CN205787277U (en) * | 2016-05-31 | 2016-12-07 | 江苏亨通海洋光网系统有限公司 | A kind of repeaterless submarine fiber optic cable that fault detect is provided |
CN208589727U (en) * | 2018-07-18 | 2019-03-08 | 南京双电科技实业有限公司 | A kind of fixed device of communication cable |
CN209387245U (en) * | 2018-12-29 | 2019-09-13 | 无锡联河光子技术有限公司 | A kind of submarine optical fiber cable fault positioning monitoring device |
CN113447066A (en) * | 2020-03-25 | 2021-09-28 | 中天海洋系统有限公司 | Seabed data monitoring device and system |
CN114459710A (en) * | 2020-10-22 | 2022-05-10 | 中国石油化工股份有限公司 | Memory, submarine cable fault detection and diagnosis method, device, equipment and system |
-
2022
- 2022-06-01 CN CN202210616483.2A patent/CN115077860A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140361785A1 (en) * | 2012-01-31 | 2014-12-11 | Damir Radan | Fault Detection in Subsea Power Cables |
CN103419907A (en) * | 2012-05-18 | 2013-12-04 | 李钜彬 | Flight vehicle for water sports |
CN105564645A (en) * | 2016-01-08 | 2016-05-11 | 西北工业大学 | Water surface grazing ultralow altitude aircraft |
CN205787277U (en) * | 2016-05-31 | 2016-12-07 | 江苏亨通海洋光网系统有限公司 | A kind of repeaterless submarine fiber optic cable that fault detect is provided |
CN208589727U (en) * | 2018-07-18 | 2019-03-08 | 南京双电科技实业有限公司 | A kind of fixed device of communication cable |
CN209387245U (en) * | 2018-12-29 | 2019-09-13 | 无锡联河光子技术有限公司 | A kind of submarine optical fiber cable fault positioning monitoring device |
CN113447066A (en) * | 2020-03-25 | 2021-09-28 | 中天海洋系统有限公司 | Seabed data monitoring device and system |
CN114459710A (en) * | 2020-10-22 | 2022-05-10 | 中国石油化工股份有限公司 | Memory, submarine cable fault detection and diagnosis method, device, equipment and system |
Non-Patent Citations (1)
Title |
---|
仇胜美: "海底光缆故障判定及测试方法", 海洋工程, no. 03, 30 August 2005 (2005-08-30), pages 98 - 102 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2655869B1 (en) | Power generating equipment | |
US9395021B2 (en) | System and method for interconnecting umbilicals for conveying energy, fluids and/or data in a marine environment | |
JP6313747B2 (en) | Hydroelectric power generation equipment | |
JP6715850B2 (en) | Connection system for array cable of severable marine energy equipment | |
CN109790697B (en) | Assembly and method for installing subsea cables | |
CN207157464U (en) | A kind of Shui Zhong cable maintenances robot | |
US11136846B2 (en) | Controlling subsea apparatus | |
CN104787274A (en) | Submarine cable motion detector and control method thereof | |
CN113709597A (en) | Real-time power supply and high-speed data transmission subsurface buoy device based on seabed observation network | |
JP2017178253A (en) | Underwater robot control system and underwater robot control method | |
CN110344996A (en) | It is a kind of for feeding the device of wave glider electric energy | |
KR20160101109A (en) | A method of managing a hydroelectric turbine array | |
CN219039256U (en) | Submarine cable fault positioning system based on underwater beacon | |
CN115077860A (en) | Submarine optical cable damage detection device and detection method | |
US9929563B2 (en) | Subsea cable engagement system | |
CN114552793A (en) | Underwater wireless charging system suitable for electric ship | |
CN204606177U (en) | Submarine cable motion detector | |
WO2020069725A1 (en) | Floating wave energy converter | |
CN221995630U (en) | Auxiliary communication system for offshore operation and maintenance vessel | |
KR102052043B1 (en) | Real-time submarine monitoring device | |
CN212259173U (en) | Auxiliary tool for underwater maintenance | |
CN110510068A (en) | A stereoscopic buoy observation system based on photoelectric composite cable for full-sea depth profile | |
CN215794328U (en) | Multi-position installation mechanism for submerged buoy measurement of marine water body | |
CN112260356B (en) | A mobile docking power supply system for ships and a power supply method thereof | |
CN108729900A (en) | A kind of underwater abandoned well monitoring system of self-powered and monitoring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |