CN115072010B - Space satellite-borne extensible turntable mechanism and method for testing delay time thereof - Google Patents
Space satellite-borne extensible turntable mechanism and method for testing delay time thereof Download PDFInfo
- Publication number
- CN115072010B CN115072010B CN202211004833.6A CN202211004833A CN115072010B CN 115072010 B CN115072010 B CN 115072010B CN 202211004833 A CN202211004833 A CN 202211004833A CN 115072010 B CN115072010 B CN 115072010B
- Authority
- CN
- China
- Prior art keywords
- rotating arm
- optical imaging
- locking
- borne
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 112
- 238000012360 testing method Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000012634 optical imaging Methods 0.000 claims abstract description 59
- 238000012546 transfer Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 10
- 238000003384 imaging method Methods 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/66—Arrangements or adaptations of apparatus or instruments, not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Accessories Of Cameras (AREA)
Abstract
Description
技术领域technical field
本发明涉及用于空间星载光学成像负载的转台机构,具体涉及一种空间星载可展开转台机构及其迟滞时间的测试方法。The invention relates to a turntable mechanism used for a space satellite-borne optical imaging load, in particular to a space satellite-borne expandable turntable mechanism and a test method for its lag time.
背景技术Background technique
近年来,空间星载光电成像与测量技术发展迅猛,其中转台机构作为空间光学成像载荷驱动与支撑的重要部分,其机构的稳定性对成像与测量精度有很重要的影响。In recent years, space-borne optoelectronic imaging and measurement technology has developed rapidly. Among them, the turntable mechanism is an important part of the drive and support of space optical imaging loads, and the stability of its mechanism has a great impact on imaging and measurement accuracy.
由于转台机构的存在,光学成像载荷相对于安装面有一定的高度差,因此当星体振动与冲击由转台机构传输到光学成像载荷上时被放大10-20倍。现有转台机构大多采用方位轴与俯仰轴构成的U形结构或L形结构,U形结构形式力学性能较为稳定,但其重量较大,负载比较小,L形结构形式虽重量更轻,负载比更大,但其刚度与强度较差,不能有效降低光学成像载荷所经受的力学振动与冲击量。Due to the existence of the turntable mechanism, the optical imaging load has a certain height difference relative to the installation surface, so when the vibration and impact of the star are transmitted to the optical imaging load by the turntable mechanism, it is magnified by 10-20 times. Most of the existing turntable mechanisms adopt a U-shaped structure or an L-shaped structure composed of an azimuth axis and a pitch axis. The U-shaped structure has relatively stable mechanical properties, but its weight is relatively small, and the load is relatively small. Although the L-shaped structure is lighter in weight, the load The ratio is larger, but its stiffness and strength are poor, which cannot effectively reduce the mechanical vibration and impact of the optical imaging load.
发明内容Contents of the invention
本发明的目的是解决现有空间星载转台机构存在或是负载比较小,或是不能有效降低光学成像载荷所经受的力学振动与冲击量的不足之处,而提供一种空间星载可展开转台机构及其迟滞时间的测试方法。The purpose of the present invention is to solve the shortcomings of the existing space star-borne turntable mechanism, or the load is relatively small, or the inability to effectively reduce the mechanical vibration and impact of the optical imaging load, and provide a space star-borne deployable Test method for turntable mechanism and its dead time.
为了解决上述现有技术所存在的不足之处,本发明提供了如下技术解决方案:In order to solve the deficiencies in the above-mentioned prior art, the present invention provides the following technical solutions:
一种空间星载可展开转台机构,其特殊之处在于:包括底座和设置在底座上的支撑机构,所述支撑机构包括第一旋转臂、第二旋转臂、展开驱动机构和机械锁紧机构;A space star-borne expandable turntable mechanism, which is special in that it includes a base and a support mechanism arranged on the base, and the support mechanism includes a first rotating arm, a second rotating arm, an unfolding drive mechanism and a mechanical locking mechanism ;
所述第一旋转臂设置在底座上,第一旋转臂的旋转轴垂直于底座表面,第一旋转臂可绕其旋转轴相对预设原位旋转±170°,拟支撑光学成像载荷的方位轴与第一旋转臂的旋转轴重合;The first rotating arm is arranged on the base, the rotating axis of the first rotating arm is perpendicular to the surface of the base, the first rotating arm can rotate ±170° around its rotating axis relative to the preset original position, and is intended to support the azimuth axis of the optical imaging load Coincident with the axis of rotation of the first rotating arm;
所述第二旋转臂一端通过所述展开驱动机构铰接在第一旋转臂端部,另一端与拟支撑光学成像载荷连接,且设置有拟支撑光学成像载荷的俯仰轴;所述展开驱动机构包括安装轴、设置在安装轴一端的电机,所述第二旋转臂的旋转轴与安装轴轴线重合,第二旋转臂可绕其旋转轴旋转90°;所述俯仰轴垂直于第二旋转臂及第二旋转臂的旋转轴;One end of the second rotating arm is hinged to the end of the first rotating arm through the unfolding drive mechanism, and the other end is connected to the optical imaging load to be supported, and is provided with a pitch axis intended to support the optical imaging load; the unfolding drive mechanism includes Mounting shaft, motor arranged at one end of the mounting shaft, the rotating shaft of the second rotating arm coincides with the axis of the mounting shaft, and the second rotating arm can rotate 90° around its rotating shaft; the pitch axis is perpendicular to the second rotating arm and the axis of rotation of the second rotating arm;
所述机械锁紧机构包括位置检测组件、第一锁紧组件和第二锁紧组件;所述位置检测组件用于检测第二旋转臂与第一旋转臂之间的夹角,并用于输出到位信号给第二锁紧组件;第二锁紧组件用于根据到位信号对第二旋转臂的位置进行固定;所述第一锁紧组件用于在第二锁紧组件完成固定前暂时固定第二旋转臂的位置;The mechanical locking mechanism includes a position detection component, a first locking component and a second locking component; the position detection component is used to detect the angle between the second rotating arm and the first rotating arm, and is used to output The signal is sent to the second locking component; the second locking component is used to fix the position of the second rotating arm according to the in-position signal; the first locking component is used to temporarily fix the second locking component before the second locking component is fixed. the position of the swivel arm;
所述支撑机构设置有折叠状态和展开状态;所述支撑机构处于折叠状态,所述第二旋转臂与第一旋转臂之间的夹角为0°,拟支撑光学成像载荷位于第二旋转臂下方,且拟支撑光学成像载荷与底座连接;或者,所述支撑机构处于展开状态,所述第二旋转臂与第一旋转臂之间的夹角为90°,拟支撑光学成像载荷与底座分离,所述第二锁紧组件对第二旋转臂的位置进行固定。The support mechanism is provided with a folded state and an unfolded state; the support mechanism is in the folded state, the angle between the second rotating arm and the first rotating arm is 0°, and the optical imaging load to be supported is located on the second rotating arm Below, and the optical imaging load to be supported is connected to the base; or, the support mechanism is in an unfolded state, the angle between the second rotating arm and the first rotating arm is 90°, and the optical imaging load to be supported is separated from the base , the second locking component fixes the position of the second rotating arm.
进一步地,所述第二锁紧组件包括设置在第一旋转臂端部且靠近展开驱动机构的第二锁紧固定部,以及设置在第二旋转臂上的第二锁紧移动部,所述第二锁紧固定部与第一旋转臂顶面之间的夹角为90°,所述第二锁紧移动部一端与第二旋转臂铰接,另一端可绕铰接处旋转,并在支撑机构处于展开状态即第二旋转臂与第一旋转臂之间的夹角为90°时与第二锁紧固定部卡接。Further, the second locking assembly includes a second locking fixing part arranged at the end of the first rotating arm and close to the deployment driving mechanism, and a second locking moving part arranged on the second rotating arm, the The included angle between the second locking fixed part and the top surface of the first rotating arm is 90°, one end of the second locking moving part is hinged to the second rotating arm, and the other end can rotate around the hinge, and is positioned on the support mechanism In the unfolded state, that is, when the angle between the second rotating arm and the first rotating arm is 90°, it engages with the second locking and fixing part.
进一步地,所述位置检测组件包括设置在第二锁紧固定部靠近第二旋转臂一面上的霍尔开关,以及设置在第二旋转臂上的与霍尔开关相对应的霍尔磁钢;所述霍尔开关在第二旋转臂旋转到与第一旋转臂之间的夹角为90°时输出到位信号;所述第一锁紧组件包括设置在第二锁紧固定部靠近第二旋转臂一面上的第一电磁铁,以及设置在第二旋转臂上的与第一电磁铁相对应的第二电磁铁,利用两个电磁铁的吸力可暂时固定第二旋转臂的位置。Further, the position detection assembly includes a Hall switch arranged on the side of the second locking and fixing part close to the second rotating arm, and a Hall magnet corresponding to the Hall switch arranged on the second rotating arm; The Hall switch outputs an in-position signal when the second rotating arm rotates to an angle of 90° with the first rotating arm; The first electromagnet on one side of the arm, and the second electromagnet corresponding to the first electromagnet arranged on the second rotating arm can temporarily fix the position of the second rotating arm by the attraction force of the two electromagnets.
进一步地,所述第二锁紧移动部旋转端设置有第一连接件,所述第二旋转臂上设置有可与第一连接件卡接的第二连接件,第二锁紧移动部收到到位信号时,第一连接件与第二连接件分离。Further, the rotating end of the second locking and moving part is provided with a first connecting piece, and the second rotating arm is provided with a second connecting piece that can engage with the first connecting piece, and the second locking and moving part closes When the in-position signal is received, the first connecting part is separated from the second connecting part.
进一步地,所述第一旋转臂端部设置有U形铰接部,U形铰接部两端均设置有第一通孔;所述第一旋转臂端部有与U形铰接部开口适配的凸出部,凸出部上设置有第二通孔;所述安装轴的另一端设置有扭簧,安装轴包括通过联轴器与电机连接的第一转接轴和与扭簧连接的第二转接轴,第一转接轴穿过U形铰接部一端的第一通孔,第二转接轴穿过U形铰接部另一端的第一通孔,第一转接轴与第二转接轴在凸出部第二通孔内对接;第一转接轴、第二转接轴与U形铰接部两端第一通孔之间均设置有角接触轴承,角接触轴承内圈设置有内压板,外圈设置有外压板;电机、扭簧均用于给第二旋转臂运动提供驱动力,扭簧的存在可以减小电机输出力矩。Further, the end of the first rotating arm is provided with a U-shaped hinge, and both ends of the U-shaped hinge are provided with first through holes; the end of the first rotating arm has a hole that fits the opening of the U-shaped hinge A protruding part, the protruding part is provided with a second through hole; the other end of the installation shaft is provided with a torsion spring, and the installation shaft includes a first transfer shaft connected to the motor through a coupling and a second through shaft connected to the torsion spring. Two transfer shafts, the first transfer shaft passes through the first through hole at one end of the U-shaped hinge, the second transfer shaft passes through the first through hole at the other end of the U-shaped hinge, the first transfer shaft and the second The transfer shaft is butted in the second through hole of the protrusion; angular contact bearings are arranged between the first transfer shaft, the second transfer shaft and the first through holes at both ends of the U-shaped hinge, and the inner ring of the angular contact bearing An inner pressure plate is provided, and an outer pressure plate is provided on the outer ring; both the motor and the torsion spring are used to provide driving force for the movement of the second rotating arm, and the existence of the torsion spring can reduce the output torque of the motor.
进一步地,所述底座上设置有固定件,固定件用于在折叠状态时穿过拟支撑光学成像载荷上的固定孔将拟支撑光学成像载荷固定在底座上,以降低发射入轨前光学成像载荷所经受的力学振动与冲击量。Further, the base is provided with a fixing piece, and the fixing piece is used to fix the optical imaging load to be supported on the base through the fixing hole on the optical imaging load to be supported in the folded state, so as to reduce the optical imaging load before launching into orbit. The amount of mechanical vibration and impact the load is subjected to.
一种空间星载可展开转台机构迟滞时间的测试方法,其特殊之处在于,用于上述空间星载可展开转台机构,包括如下步骤:A method for testing the lag time of a space satellite-borne expandable turntable mechanism, which is special in that it is used for the above-mentioned space satellite-borne expandable turntable mechanism, including the following steps:
步骤1、将所述空间星载可展开转台机构固定在微振动测试平台上,使支撑机构处于展开状态,并清理微振动测试平台周围会产生振动、噪音的物体;
步骤2、连接微振动测试平台与微振动上位机系统后,启动微振动上位机系统;
步骤3、设置所述空间星载可展开转台机构的运动形式;
所述运动形式包括以下三种:The exercise forms include the following three types:
第一种运动形式为仅俯仰轴运动,拟支撑光学成像载荷绕其俯仰轴按照预设速度 旋转多次,每次旋转时间为; The first type of motion is only the motion of the pitch axis, and the optical imaging load to be supported rotates around its pitch axis several times at a preset speed, and the time for each rotation is ;
第二种运动形式为仅方位轴运动,拟支撑光学成像载荷绕其方位轴按照预设速度 旋转多次,每次旋转时间为; The second type of movement is only the movement of the azimuth axis. The optical imaging load to be supported rotates around its azimuth axis several times at a preset speed, and the time for each rotation is ;
第三种运动形式为方位轴与俯仰轴联动,拟支撑光学成像载荷同时绕其方位轴与 俯仰轴按照预设速度旋转多次,拟支撑光学成像载荷每次旋转时间均为; The third movement form is the linkage between the azimuth axis and the pitch axis. The optical imaging load to be supported rotates around its azimuth axis and the pitch axis multiple times at the preset speed at the same time. The time for each rotation of the optical imaging load to be supported is ;
步骤4、控制所述空间星载可展开转台机构按照步骤3所述运动形式进行运动,通
过微振动测试平台感应运动,输出感应信号,记录各运动形式每次旋转的感应信号的输出
时间,则输出时间旋转时间之差即为该次旋转迟滞时间。
Step 4. Control the space starborne expandable turntable mechanism to move according to the movement form described in
进一步地,步骤3中,所述第一种运动形式具体为:拟支撑光学成像载荷绕其俯仰轴按照预设速度旋转12次,每次旋转10°,每次旋转时间为2.5s,所述预设速度为4°/s。Further, in
进一步地,步骤3中,所述第二种运动形式具体为:拟支撑光学成像载荷绕其方位轴按照预设速度旋转34次,每次旋转10°,每次旋转时间为2.5s,所述预设速度为4°/s。Further, in
进一步地,步骤3中,所述第三种运动形式具体为:拟支撑光学成像载荷同时绕其方位轴与俯仰轴按照预设速度旋转12次,每次旋转10°,拟支撑光学成像载荷每次旋转时间为2.5s,所述预设速度为4°/s。Further, in
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
(1)本发明一种空间星载可展开转台机构包括第一旋转臂、第二旋转臂、展开驱动机构和机械锁紧机构,第一旋转臂、第二旋转臂上分别设置有拟支撑光学成像载荷的方位轴与俯仰轴,支撑机构发射入轨前处于折叠状态,入轨后转换为展开状态,有效降低光学成像载荷所经受的力学振动与冲击量,进而提高了负载比和发射可靠性。(1) A space starborne expandable turntable mechanism of the present invention includes a first rotating arm, a second rotating arm, an unfolding drive mechanism and a mechanical locking mechanism. The azimuth axis and pitch axis of the imaging payload, the support mechanism is in a folded state before launching into orbit, and it is converted into an unfolded state after entering orbit, which effectively reduces the mechanical vibration and impact of the optical imaging payload, thereby improving the load ratio and launch reliability. .
(2)本发明一种空间星载可展开转台机构所采用的机械锁紧机构包括位置检测组件、第一锁紧组件和第二锁紧组件,位置检测组件在检测到第二旋转臂与第一旋转臂之间的夹角为90°时会输出到位信号给第二锁紧组件,第二锁紧组件收到到位信号后对第二旋转臂的位置进行固定,为了保证第二锁紧组件中第二锁紧移动部与第二锁紧固定部卡接时,第二旋转臂与第一旋转臂之间的夹角仍为90°,本发明设置有第一锁紧组件对第二旋转臂的位置进行暂时固定。(2) The mechanical locking mechanism adopted by a space starborne expandable turntable mechanism of the present invention includes a position detection component, a first locking component and a second locking component. When the angle between the first rotating arms is 90°, it will output the in-position signal to the second locking assembly, and the second locking assembly will fix the position of the second rotating arm after receiving the in-position signal, in order to ensure that the second locking assembly When the second locking moving part and the second locking fixed part are clamped, the angle between the second rotating arm and the first rotating arm is still 90°, and the present invention is provided with a first locking assembly for the second rotating The position of the arm is temporarily fixed.
(3)本发明一种空间星载可展开转台机构迟滞时间的测试方法通过在微振动测试平台、微振动上位机系统对所述空间星载可展开转台机构的迟滞时间进行测试,通过缩小驱动电机驱动步长,以获得更高精度的微抖动迟滞时间测量结果,通过该测试方法,在光电成像系统调试工作之前就可以获得系统跟踪迟滞时间,可以有效提高光电系统装调速度。(3) A method for testing the hysteresis time of a space-borne expandable turntable mechanism in the present invention is to test the hysteresis time of the space-borne expandable turntable mechanism on the micro-vibration test platform and the micro-vibration host computer system, and by reducing the drive The step size of the motor drive is used to obtain higher-precision micro-jitter delay time measurement results. Through this test method, the system tracking delay time can be obtained before the photoelectric imaging system is debugged, which can effectively improve the speed of photoelectric system installation and adjustment.
附图说明Description of drawings
图1为本发明一种空间星载可展开转台机构一个实施例的结构示意图(支撑机构处于折叠状态);Figure 1 is a schematic structural view of an embodiment of a space-borne expandable turntable mechanism of the present invention (the support mechanism is in a folded state);
图2为本发明实施例中支撑机构处于展开状态的结构示意图;Fig. 2 is a schematic structural view of the support mechanism in the unfolded state in the embodiment of the present invention;
图3为图2中展开驱动机构的剖视图;Fig. 3 is a sectional view of the unfolding drive mechanism in Fig. 2;
图4为图1中机械锁紧机构的结构放大示意图;Fig. 4 is the enlarged schematic diagram of the structure of the mechanical locking mechanism in Fig. 1;
图5为本发明实施例中支撑机构处于展开状态时空间星载可展开转台机构的结构示意图;Fig. 5 is a schematic structural diagram of a space-borne expandable turntable mechanism when the support mechanism is in the unfolded state in an embodiment of the present invention;
图6为本发明实施例中支撑机构处于折叠状态时特征正弦扫描振动试验结果的示意图;6 is a schematic diagram of the characteristic sinusoidal scanning vibration test results when the support mechanism is in a folded state in an embodiment of the present invention;
图7为本发明实施例中支撑机构处于展开状态时特征正弦扫描振动试验结果的示意图。Fig. 7 is a schematic diagram of the characteristic sinusoidal scanning vibration test results when the supporting mechanism is in the unfolded state in the embodiment of the present invention.
附图标记说明如下:The reference signs are explained as follows:
01-拟支撑光学成像载荷;02-固定孔;01-to be supported by optical imaging load; 02-fixing hole;
1-底座;2-固定件;3-支撑机构,31-第一旋转臂,311-U形铰接部,32-第二旋转臂,321-凸出部,1-base; 2-fixer; 3-support mechanism, 31-first rotating arm, 311-U-shaped hinge, 32-second rotating arm, 321-protruding part,
33-展开驱动机构,331-安装轴,332-电机,333-扭簧,334-角接触轴承,335-内压板,336-外压板,33-expansion drive mechanism, 331-installation shaft, 332-motor, 333-torsion spring, 334-angular contact bearing, 335-inner pressure plate, 336-outer pressure plate,
34-机械锁紧机构,341-位置检测组件,3411-霍尔开关,3412-霍尔磁钢,342-第一锁紧组件,3421-第一电磁铁,3422-第二电磁铁,343-第二锁紧组件,3431-第二锁紧固定部,3432-第二锁紧移动部,3433-第一连接件,3434-第二连接件。34-Mechanical locking mechanism, 341-Position detection component, 3411-Hall switch, 3412-Hall magnet, 342-First locking component, 3421-First electromagnet, 3422-Second electromagnet, 343- The second locking component, 3431 - the second locking fixing part, 3432 - the second locking moving part, 3433 - the first connecting part, 3434 - the second connecting part.
具体实施方式detailed description
下面结合附图和示例性实施例对本发明作进一步地说明。The present invention will be further described below in conjunction with the accompanying drawings and exemplary embodiments.
参照图1至图4,一种空间星载可展开转台机构,包括底座1,以及设置在底座1上的固定件2和支撑机构3,所述支撑机构3包括第一旋转臂31、第二旋转臂32、展开驱动机构33和机械锁紧机构34。Referring to Figures 1 to 4, a space starborne expandable turntable mechanism includes a
所述第一旋转臂31设置在底座1上,第一旋转臂31的旋转轴垂直于底座1表面,第一旋转臂31可绕其旋转轴相对预设原位旋转±170°,拟支撑光学成像载荷01的方位轴与第一旋转臂31的旋转轴重合。The first
所述第二旋转臂32一端通过所述展开驱动机构33铰接在第一旋转臂31端部,另一端设置拟支撑光学成像载荷01,且设置有拟支撑光学成像载荷01的俯仰轴。One end of the second
所述展开驱动机构33包括安装轴331、分别设置在安装轴331两端的电机332和扭簧333,第一旋转臂31端部设置有U形铰接部311,U形铰接部311两端均设置有第一通孔,第一旋转臂31端部有与U形铰接部311开口适配的凸出部321,凸出部321上设置有第二通孔,安装轴331包括通过联轴器与电机332连接的第一转接轴和与扭簧333连接的第二转接轴,第一转接轴穿过U形铰接部311一端的第一通孔,第二转接轴穿过U形铰接部311另一端的第一通孔,第一转接轴与第二转接轴在凸出部321的第二通孔内对接,第一转接轴、第二转接轴与U形铰接部311第一通孔之间均设置有角接触轴承334,角接触轴承334内圈设置有内压板335,外圈设置有外压板336。The unfolding
所述第二旋转臂32的旋转轴与安装轴331轴线重合,第二旋转臂32可绕其旋转轴旋转90°;拟支撑光学成像载荷01的俯仰轴垂直于第二旋转臂32及第二旋转臂32的旋转轴,如图5虚线所示。The rotation axis of the
所述机械锁紧机构34包括位置检测组件341、第一锁紧组件342和第二锁紧组件343;所述第二锁紧组件343用于根据到位信号对第二旋转臂32的位置进行固定,第二锁紧组件343包括设置在第一旋转臂31端部且靠近展开驱动机构33的第二锁紧固定部3431,以及设置在第二旋转臂32上的第二锁紧移动部3432,所述第二锁紧固定部3431与第一旋转臂31顶面之间的夹角为90°,所述第二锁紧移动部3432一端与第二旋转臂32铰接,另一端可绕铰接处旋转,并在支撑机构3处于展开状态即第二旋转臂32与第一旋转臂31之间的夹角为90°时与第二锁紧固定部3431卡接;所述位置检测组件341用于检测第二旋转臂32与第一旋转臂31之间的夹角,并用于输出到位信号给第二锁紧组件343,位置检测组件341包括设置在第二锁紧固定部3431靠近第二旋转臂32一面上的霍尔开关3411,以及设置在第二旋转臂32上的霍尔磁钢3412;所述第一锁紧组件342用于在第二锁紧组件343完成固定前暂时固定第二旋转臂32的位置,第一锁紧组件342包括设置在第二锁紧固定部3431靠近第二旋转臂32一面上的第一电磁铁3421,以及设置在第二旋转臂32上的与第一电磁铁3421相对应的第二电磁铁3422。The
所述第二锁紧移动部3432旋转端设置第一连接件3433,所述第二旋转臂32上设置有可与第一连接件3433卡接的第二连接件3434,第二锁紧移动部3432收到到位信号时,第一连接件3433与第二连接件3434分离。The rotating end of the second
所述支撑机构3设置有折叠状态和展开状态;参照图1、图2,支撑机构3处于折叠状态,第二旋转臂32与第一旋转臂31之间的夹角为0°,拟支撑光学成像载荷01位于第二旋转臂32下方,拟支撑光学成像载荷01上的固定孔02通过固定件2与底座1连接,第一连接件3433与第二连接件3434卡接;或者,参照图5,支撑机构3处于展开状态,第二旋转臂32与第一旋转臂31之间的夹角为90°,拟支撑光学成像载荷01上的固定孔02与固定件2分离,第二锁紧移动部3432与第二锁紧固定部3431卡接。The supporting
本发明的工作过程如下:Working process of the present invention is as follows:
在发射入轨前支撑机构3处于折叠状态,入轨后支撑机构3转换为展开状态;转换时,首先将固定件2与拟支撑光学成像载荷01上的固定孔02分离,启动电机332,在扭簧333的辅助驱动下,使得第二旋转臂32绕安装轴331旋转,直至第二旋转臂32与第一旋转臂31之间的夹角为90°,霍尔开关3411感应到霍尔磁钢3412,霍尔开关3411输出到位信号至第二锁紧组件343,同时第一锁紧组件342暂时固定第二旋转臂32的位置,第二锁紧组件343接收到到位信号后,使第一连接件3433与第二连接件3434分离,第二锁紧移动部3432与第二锁紧固定部3431卡接后,第一锁紧组件342停止工作,即完成转换。The
本实施例中,支撑机构3处于折叠状态,拟支撑光学成像载荷01质心与底座1表面之间的距离为63.5mm;支撑机构3处于展开状态,拟支撑光学成像载荷01质心与底座1表面之间的距离为351mm。In this embodiment, the supporting
对所述空间星载可展开转台机构及拟支撑光学成像载荷01整体整机进行特征正弦扫描振动试验,试验条件如表1所示;试验结果如图6、图7所示,支撑机构3处于折叠状态时,星体振动状况传递到拟支撑光学成像载荷01,振动量级在一阶频率(63Hz)处会放大1.5倍;支撑机构3处于展开状态时,星体振动状况传递到拟支撑光学成像载荷01,振动量级会放大20倍。The characteristic sinusoidal scanning vibration test is carried out on the space starborne expandable turntable mechanism and the whole machine to support the
表1Table 1
所述空间星载可展开转台机构在俯仰、方位运动以及联动过程中,由于多个运动关节之间均存在间隙,因此运动停止时会存在微小的迟滞时间,即运动停止指令已给出,但机构仍会运动一段时间,该段时间称为迟滞时间,该迟滞时间对光电成像系统跟踪测量具有重要影响,在后期进行光电转台跟踪测量时,可以基于迟滞时间对实际工况进行时间补偿。During the pitching, azimuth, and linkage processes of the space-borne expandable turntable mechanism, there is a slight lag time when the motion stops because there are gaps between multiple motion joints, that is, the motion stop command has been given, but The mechanism will still move for a period of time, which is called the lag time. This lag time has an important impact on the tracking measurement of the photoelectric imaging system. When the photoelectric turntable tracking measurement is performed in the later stage, the actual working conditions can be compensated based on the lag time.
本发明公开一种空间星载可展开转台机构迟滞时间的测试方法,用于上述空间星载可展开转台机构,包括如下步骤:The invention discloses a method for testing the hysteresis time of a space satellite-borne deployable turntable mechanism, which is used for the above-mentioned space satellite-borne deployable turntable mechanism, comprising the following steps:
步骤1、将所述空间星载可展开转台机构固定在微振动测试平台上,使支撑机构3处于展开状态,并清理微振动测试平台周围会产生振动、噪音的物体;
步骤2、连接微振动测试平台与微振动上位机系统后,启动微振动上位机系统;
步骤3、设置所述空间星载可展开转台机构的运动形式;
所述运动形式包括以下三种:The exercise forms include the following three types:
第一种运动形式为仅俯仰轴运动,拟支撑光学成像载荷01绕其俯仰轴按照4°/s旋
转12次,每次旋转10°,每次旋转时间为,;
The first type of motion is only the motion of the pitch axis. The
第二种运动形式为仅方位轴运动,拟支撑光学成像载荷01绕其方位轴按照4°/s旋
转34次(相对预设原位由-170°至+170°),每次旋转10°,每次旋转时间为,;
The second type of movement is the movement of the azimuth axis only. It is intended to support the
第三种运动形式为方位轴与俯仰轴联动,拟支撑光学成像载荷01同时绕其方位轴
与俯仰轴按照4°/s旋转12次,每次旋转10°,拟支撑光学成像载荷01每次旋转时间均为,;
The third movement form is the linkage between the azimuth axis and the pitch axis. The
步骤4、控制所述空间星载可展开转台机构按照上述运动形式进行运动,通过微振 动测试平台感应运动,输出感应信号,记录各运动形式每次旋转的感应信号的输出时间, 输出时间与旋转时间之差即为该次旋转迟滞时间。 Step 4. Control the space star-borne expandable turntable mechanism to move according to the above-mentioned motion form, sense the motion through the micro-vibration test platform, output the induction signal, and record the output time of the induction signal for each rotation of each motion form , the output time and rotation time The difference is the rotation delay time.
以上实施例仅用以说明本发明的技术方案,而非对其限制,对于本领域的普通专业技术人员来说,可以对前述各实施例所记载的具体技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明所保护技术方案的范围。The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them. For those of ordinary skill in the art, the specific technical solutions described in the foregoing embodiments can be modified, or part of the technical solutions can be modified. Features are equivalently replaced, and these modifications or replacements do not make the essence of the corresponding technical solution depart from the scope of the technical solution protected by the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211004833.6A CN115072010B (en) | 2022-08-22 | 2022-08-22 | Space satellite-borne extensible turntable mechanism and method for testing delay time thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211004833.6A CN115072010B (en) | 2022-08-22 | 2022-08-22 | Space satellite-borne extensible turntable mechanism and method for testing delay time thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115072010A CN115072010A (en) | 2022-09-20 |
CN115072010B true CN115072010B (en) | 2022-12-23 |
Family
ID=83243965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211004833.6A Active CN115072010B (en) | 2022-08-22 | 2022-08-22 | Space satellite-borne extensible turntable mechanism and method for testing delay time thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115072010B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116331516A (en) * | 2023-03-27 | 2023-06-27 | 中国科学院西安光学精密机械研究所 | A Two-Dimensional Tracking Turntable System Expandable in Space |
CN116238719B (en) * | 2023-04-26 | 2025-06-24 | 长光卫星技术股份有限公司 | A space-borne periscope two-dimensional turntable end locking device |
CN120008548B (en) * | 2025-04-21 | 2025-07-11 | 中国科学院西安光学精密机械研究所 | A device and method for correcting pointing error of a satellite-borne turntable based on a star camera |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091400A (en) * | 2003-09-12 | 2005-04-07 | Ricoh Co Ltd | Gear drive unevenness measurement apparatus, gear whose drive unevenness is measured by the apparatus, and image forming apparatus using such gear |
CN102788234A (en) * | 2012-08-07 | 2012-11-21 | 中国科学院长春光学精密机械与物理研究所 | Satellite-borne precision sun pointing mechanism |
CN103395701A (en) * | 2013-07-30 | 2013-11-20 | 中联重科股份有限公司 | Locking mechanism for rotary table and arm support and engineering machinery |
EP3106063A1 (en) * | 2015-06-17 | 2016-12-21 | Keysheen Industry (Shanghai) Co., Ltd. | Hanging table comprising folding and unfolding structure |
DE102018112690A1 (en) * | 2018-05-28 | 2019-11-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Device for deploying a mast |
CN110514228A (en) * | 2019-09-02 | 2019-11-29 | 哈尔滨工业大学 | Dynamic comprehensive performance testing device and method of micro-UAV attitude measurement system |
CN211391721U (en) * | 2020-01-02 | 2020-09-01 | 哈尔滨和达光电仪器技术开发有限公司 | Turntable locking device using memory alloy unlocking device |
EP3725637A1 (en) * | 2017-12-14 | 2020-10-21 | Dalian Research and Development Center of CRRC Qiqihar Rolling Stock Co., Ltd. | Bogie and self-adaptive rotary arm positioning device thereof |
CN112596258A (en) * | 2020-12-04 | 2021-04-02 | 中国科学院西安光学精密机械研究所 | Debugging method for two-dimensional turntable folded optical assembly |
WO2022095036A1 (en) * | 2020-11-09 | 2022-05-12 | 深圳市大疆创新科技有限公司 | Foldable device and mobile platform |
CN114643482A (en) * | 2020-12-21 | 2022-06-21 | 厄罗瓦公司 | Monitoring device, clamping system with monitoring device and method for monitoring clamping device by monitoring device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012004796A2 (en) * | 2010-07-08 | 2012-01-12 | Nadav Gavish | A sheltering device |
CN107632297B (en) * | 2017-08-25 | 2019-08-06 | 中国科学院西安光学精密机械研究所 | An ultra-light laser irradiator |
-
2022
- 2022-08-22 CN CN202211004833.6A patent/CN115072010B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005091400A (en) * | 2003-09-12 | 2005-04-07 | Ricoh Co Ltd | Gear drive unevenness measurement apparatus, gear whose drive unevenness is measured by the apparatus, and image forming apparatus using such gear |
CN102788234A (en) * | 2012-08-07 | 2012-11-21 | 中国科学院长春光学精密机械与物理研究所 | Satellite-borne precision sun pointing mechanism |
CN103395701A (en) * | 2013-07-30 | 2013-11-20 | 中联重科股份有限公司 | Locking mechanism for rotary table and arm support and engineering machinery |
EP3106063A1 (en) * | 2015-06-17 | 2016-12-21 | Keysheen Industry (Shanghai) Co., Ltd. | Hanging table comprising folding and unfolding structure |
EP3725637A1 (en) * | 2017-12-14 | 2020-10-21 | Dalian Research and Development Center of CRRC Qiqihar Rolling Stock Co., Ltd. | Bogie and self-adaptive rotary arm positioning device thereof |
DE102018112690A1 (en) * | 2018-05-28 | 2019-11-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Device for deploying a mast |
CN110514228A (en) * | 2019-09-02 | 2019-11-29 | 哈尔滨工业大学 | Dynamic comprehensive performance testing device and method of micro-UAV attitude measurement system |
CN211391721U (en) * | 2020-01-02 | 2020-09-01 | 哈尔滨和达光电仪器技术开发有限公司 | Turntable locking device using memory alloy unlocking device |
WO2022095036A1 (en) * | 2020-11-09 | 2022-05-12 | 深圳市大疆创新科技有限公司 | Foldable device and mobile platform |
CN112596258A (en) * | 2020-12-04 | 2021-04-02 | 中国科学院西安光学精密机械研究所 | Debugging method for two-dimensional turntable folded optical assembly |
CN114643482A (en) * | 2020-12-21 | 2022-06-21 | 厄罗瓦公司 | Monitoring device, clamping system with monitoring device and method for monitoring clamping device by monitoring device |
Also Published As
Publication number | Publication date |
---|---|
CN115072010A (en) | 2022-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115072010B (en) | Space satellite-borne extensible turntable mechanism and method for testing delay time thereof | |
CN201909614U (en) | Rotating platform structure for automatic optical measuring instruments | |
CN205404023U (en) | Self -lubricating joint bearing no -load start -up force moment measuring apparatu | |
CN110395415B (en) | A universal zero gravity unloading device | |
US9933332B2 (en) | Dynamometer rotary table | |
CN115266086A (en) | Fatigue test device and fatigue test method for coupling | |
JPS5856427B2 (en) | dynamometer | |
CN215811677U (en) | A gravity compensation device for one-dimensional turntable ground test | |
CN113884323B (en) | Marine wave compensation crane testing device and testing method | |
CN115499550A (en) | Book flattening device suitable for automatic page turning scanner and flattening scanning method | |
CN106052992A (en) | Low cross-linking coupled launch vehicle instrument cabin angular vibration test stand | |
CN102944207A (en) | Springback type angle displacement measurement device and measurement method thereof | |
CN113532900B (en) | A gravity compensation device for one-dimensional turntable ground test | |
CN113859592B (en) | Zero-gravity balance unfolding and folding test device for cabin door of spacecraft and application method | |
CN109037887A (en) | A kind of assembly method of expandable type SAR antenna on satellite | |
CN116604615A (en) | Robot joint testing device | |
CN113650729B (en) | Automatic centering assembly, automatic centering method and mobile device | |
CN115355775A (en) | Load simulation device of missile ultra-light gas rudder | |
KR20010087133A (en) | Apparatus for measuring forces produced by unbalance of a rotary member | |
CN114261533A (en) | An aircraft landing gear aerodynamic load simulation device | |
CN116588306B (en) | Marine diesel engine shock attenuation intelligent control system | |
CN109250039A (en) | A kind of active rotary motion compensation device | |
KR102322631B1 (en) | Gravity compensation device for deployable parabolic antenna | |
Santos et al. | High accuracy flexural hinge development | |
SU1601555A1 (en) | Installation for fatigue testing of samples of materials in bending |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |