[go: up one dir, main page]

CN115054728B - 一种仿生骨组织工程支架材料及其制备方法 - Google Patents

一种仿生骨组织工程支架材料及其制备方法 Download PDF

Info

Publication number
CN115054728B
CN115054728B CN202210841681.9A CN202210841681A CN115054728B CN 115054728 B CN115054728 B CN 115054728B CN 202210841681 A CN202210841681 A CN 202210841681A CN 115054728 B CN115054728 B CN 115054728B
Authority
CN
China
Prior art keywords
matrix
bionic
tissue engineering
solution
scaffold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210841681.9A
Other languages
English (en)
Other versions
CN115054728A (zh
Inventor
刘江涛
庞清江
蒋鲁勇
林佳益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences filed Critical University of Chinese Academy of Sciences
Priority to CN202210841681.9A priority Critical patent/CN115054728B/zh
Publication of CN115054728A publication Critical patent/CN115054728A/zh
Application granted granted Critical
Publication of CN115054728B publication Critical patent/CN115054728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/112Phosphorus-containing compounds, e.g. phosphates, phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/23Carbohydrates
    • A61L2300/236Glycosaminoglycans, e.g. heparin, hyaluronic acid, chondroitin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种仿生骨组织工程支架及其制备方法。该仿生骨组织工程支架由基体、仿生层、以及含有促骨生长生长因子BMP‑2和抗菌肽的凝胶层组成,通过3D打印的方法获得基体,然后再用多巴胺修饰基体,浸渍于I型胶原纤维和海藻酸钠的水溶液中再冷冻干燥从而形成仿生层;再将其浸没在含有促骨生长因子BMP‑2和抗菌肽的壳聚糖/聚乙烯醇凝胶液中,再置于温育箱中形成凝胶得到仿生骨组织工程支架。该仿生骨组织工程支架,具有近似于人体骨的优异的力学强度和生物相容性,而且能够在治疗骨缺损的同时缓释抗菌药物预防术后感染。

Description

一种仿生骨组织工程支架材料及其制备方法
技术领域
本发明属于生物医用材料领域,具体涉及一种仿生骨组织工程材料及其制备方法。
背景技术
目前,临床上对创伤、感染和肿瘤切除后所造成的大范围的骨缺损一直没有得到有效的解决。骨缺损的修复是骨组织工程学的重要课题之一,骨组织工程学的发展也为骨缺损修复难题的解决提供了新思路。
通常认为,骨组织工程包含三大元素:支架材料、细胞和生长因子。骨组织工程支架在体内除起结构支撑作用外,还起着细胞黏附、生长、繁殖以及为组织再生提供场所的作用。理想的骨组织工程材料既是理想的骨替代物,又同时具有能够诱导骨细胞形成矿化组织的性能。
在无机材料中,羟基磷灰石/磷酸钙是人体骨骼和牙齿的主要组成部分,具有良好的生物相容性,能与人体骨骼相结合并诱导新骨的形成,但其在应用中存在脆性大,材料抗弯强度低等缺陷,为克服这一弱点,现有技术中常将其与聚合物复合。
Bioactive macro/micro porous silk fibroin/nano-sized calciumphosphate sc affolds with potential for bone-tissue-engineering applications,Nanomedicine,2013,8(3),359–378采用原位合成法合成了丝素蛋白与磷酸钙的复合材料,并采用溶盐致孔法与冷冻干燥法相结合的方法制备了具有大孔与微孔结构的丝素蛋白与纳米磷酸钙复合支架。但人类密质骨压缩强度为133-197MPa,而该支架的压缩强度为0.62MPa,压缩强度较小,无法实现良好的人体骨骼替代功能。S.-H.Jegal,J.-H.Park,J.-H.Kim,T.-H.Kim,U.S.Shin,T.-I.Kim and H.-W.Kim.Functional composite nanofibersof poly(lactide-co-caprolactone)containing gelatin-apatite bone mimeticprecipitate for bone regeneration.Acta Biomaterialia.2011;7:1609-1617采用静电纺丝技术制备了乳酸-聚己内酯共聚物(PLCL)纤维膜、添加明胶和磷灰石的PLCL纤维膜,大鼠颅骨植入6周结果表明,纤维结构能够有效地促进新骨的生长,且明胶和磷灰石的添加增强了这一促成骨作用。然而,该方法制备的纤维基骨修复支架为膜片状,不易满足不同形状骨缺损对植入物的要求、不易进行密实填充,且该支架不具备任何力学强度、植入后不能在骨缺损部位提供任何力学支撑。
同时,目前高分子材料与无机材料复合支架多采用冷冻干燥法、溶盐致孔法和模具浇铸法制备,例如存在制备时间冗长、模具制备成本高、孔径大小及形状不易控制等缺点。
骨修复支架的仿生模型即为天然骨组织的ECM,天然骨组织的ECM的主要成分为矿化的I型胶原,I型胶原纤维与羟基磷灰石晶体有序排列构成了成熟的骨基质。研究表明,类ECM的纤维结构对多种组织的修复都具有较好的促进作用,骨组织中的相关细胞(成骨细胞、骨髓间充质干细胞(MSCs)等)对于纤维拓扑结构也具有一定的识别功能,因此骨修复支架能够为细胞黏附生长及骨组织修复提供适宜的三维环境。现有技术中目前仍无法制备这样的与人体骨骼性能类似的具有良好力学性能和仿生功能和矿化纤维结构的组织工程骨材料。同时,术后的感染问题也是骨移植手术后所面临的一大问题,如果骨组织工程支架能够在提供良好的支撑和仿生性能的同时具有一定的抗菌性能,将会更有利于病人术后的恢复。同时,我们研究发现,壳聚糖/聚乙烯醇共混材料在许多方面的性能优于纯壳聚糖,该共混体系在一定条件下具有温敏性,在体温时发生凝胶-溶胶转变,随着因子和/或药物的扩散和凝胶自身降解,可以使得因子和/或药物缓慢平稳释放。因此,特构建这样一种骨修复支架,解决大范围的骨缺损的供体问题,以更好地满足骨缺损手术及修复中存在的需求。
发明内容
为了克服现有技术不足和缺点,本发明提供了一种具有优异的力学强度和生物相容性,能够在治疗骨缺损的同时缓释抗菌药物预防术后感染的仿生骨组织工程材料及其制备方法。
一种仿生骨组织工程支架,其特征在于,由基体、仿生层、以及含有促骨生长生长因子BMP-2和抗菌肽的凝胶层组成,基体由聚(己内酯-co-丙交酯)、柞蚕丝素蛋白与羟基磷灰石通过3D打印的方法获得,然后再用多巴胺修饰基体,得到经多巴胺修饰的基体,再将I型胶原短纤维均匀分散于海藻酸钠水溶液中,将经多巴胺修饰的基体浸渍于I型胶原短纤维和海藻酸钠的水溶液中再取出,进行冷冻干燥,在基体外形成仿生层得到具有仿生层的支架;将具有仿生层的支架在负压环境在浸没在含有促骨生长因子BMP-2和抗菌肽的壳聚糖/聚乙烯醇凝胶液中,于4℃静置12-24h中,再将其置于37℃的温育箱中形成凝胶从而得到仿生骨组织工程支架。
基体支架中,聚(己内酯-co-丙交酯)、柞蚕丝素蛋白与羟基磷灰石的质量比为(40-70):(6-10):(30-40),聚(己内酯-co-丙交酯)的分子量为500-1000kDa,聚(己内酯-co-丙交酯)的己内酯与丙交酯的单体摩尔比为(70-30):(30-70)。I型胶原短纤维的长度为0.1mm-2mm,优选0.2mm-1mm,更优选0.3-0.8mm。海藻酸钠水溶液的浓度为5%-25wt%,I型胶原短纤维与海藻酸钠的质量比为(70-80):(20-30)。抗菌肽为ε-多聚赖氨酸、L-多聚精氨酸或聚L-谷氨酸。含有促骨生长因子BMP-2和抗菌肽的壳聚糖/聚乙烯醇凝胶液中BMP-2和抗菌肽的浓度分别为150-200μg/ml和300-400μg/ml。
其中,促骨生长因子BMP-2可替换为促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的混合物,优选促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的质量比为5-10:1,其在凝胶液中的总浓度为150-200μg/ml。
上述仿生骨组织工程支架的制备方法,该方法包括以下步骤:(1)将聚(己内酯-co-丙交酯)、柞蚕丝素蛋白与羟基磷灰石按质量比依次加入三氟乙醇中,混合均匀形成浆料,进行3D打印,然后将打印出来的支架进行冷冻干燥处理12h以上得到基体;(2)把基体放入多巴胺Tris-HCl溶液中反应得到经多巴胺修饰的基体;再将I型胶原短纤维均匀分散于海藻酸钠水溶液中,将经多巴胺修饰的基体浸渍于I型胶原短纤维和海藻酸钠的水溶液中再取出,进行冷冻干燥处理4-8h从而在基体外形成仿生层,得到将具有仿生层的基体支架;(3)将具有仿生层的基体支架通过物理溶液法在负压环境下浸没在含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12-24h,再将其置于37℃的温育箱中形成凝胶,从而得到仿生骨组织工程支架;
步骤(1)中3D打印的方法为:根据所获取的拟修复的自体骨CT扫描断层数据,通过三维重建技术获得骨缺损的三维模型;利用复合浆料根据三维模型打印成所需形状,然后将打印出来的支架进行冷冻干燥处理12h以上,保持支架的形貌不产生收缩,同时去除支架中的溶剂,得到骨组织工程支架的多孔基体。
使用3D打印时挤压速度设置为0.006-0.01mm/s,XY平台运动速度可以为2.0-3.0mm/s。例如:选择挤压速度0.008mm/s,XY平台运动速度2.5mm/s,挤压速度可根据实际情况进行微调,以获得最好的打印工艺。
步骤(2)中的多巴胺Tris-HCl溶液的pH值为7.5~8.5,浓度为0.5wt%~1.5wt%,反应时间为2-24h。
步骤(2)中的I型胶原纤维的制备方法为将I型胶原加入1.0mol/L的醋酸溶液中,搅拌至I型胶原完全溶解,脱泡得到纺丝原液,纺丝原液中的胶原浓度为3-5wt%。采用静电纺丝的方法形成I型胶原纤维,并通过切割获得I型胶原短纤维。I型胶原短纤维的长度为0.1mm-2mm,优选0.2mm-1mm,更优选0.5-0.8mm。
步骤(3)中含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液的制备方法为:1)将浓度0.5-0.6mol/L的NaHCO3溶液与浓度为0.5-3wt%的聚乙烯醇溶液混合,取一定量的1.5-2.5wt%的壳聚糖盐酸溶液,均于冰浴下放置15min,在冰浴及磁力搅拌下,向壳聚糖盐酸溶液中缓慢滴加NaHCO3与聚乙烯醇的混合液,滴加完毕后,将BMP-2和抗菌肽直接加入到混合液中,继续搅拌20min,保证混合均匀,得到含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液。凝胶液中BMP-2和抗菌肽的浓度分别为150-200μg/ml和300-400μg/ml。
具有仿生层的基体支架通过物理溶液法在负压环境下浸没在含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12-24小时,将其置于37℃温育箱中,2-24小时后即可形成凝胶。
当促骨生长因子BMP-2替换为促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的混合物时,则将上述制备方法中的促骨生长因子BMP-2替换为促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的混合物,优选促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的质量比为5-10:1,其在凝胶液中的总浓度为150-200μg/ml。
聚(己内酯-co-丙交酯)具有良好的力学性能,生物活性以及生物降解性,可通过己内酯和丙交酯的比例调整其降解速度,而其良好的力学性能有利于骨支架起到良好的支撑作用。
柞蚕丝素蛋白是丝素蛋白的一种,是由柞蚕丝腺内壁上的内皮细胞分泌的高纯度蛋白质,其氨基酸组成中以甘氨酸、丙氨酸和丝氨酸为主,具有良好的生物相容性,其本身及其降解产物对细胞和机体无毒,不会或较少引起炎症和免疫排斥反应。在绝大部分的丝素蛋白材料的研究或报道中,所用的原料都是家蚕丝。柞蚕丝素蛋白与家蚕丝素蛋白相比,柞蚕丝素蛋白分子中含有特殊的精氨酸-甘氨酸-天门冬氨酸(RGD)三肽序列。RGD序列作为细胞膜整合素受体与细胞外配体相结合的识别位点,介导细胞与细胞外基质及细胞之间的相互作用,能够促进细胞对于支架的识别及粘附。
而3D打印是一种一体化成型增材制造技术,改变了传统的减材制作技术,可以大幅度提高打印效率,并且能够精确的设计产品的结构,满足个性化治疗的需要。聚(己内酯-co-丙交酯)、柞蚕丝素蛋白和羟基磷灰石通过3D打印获得具有准确结构、良好力学性能和促进细胞黏附性能的骨组织工程支架的基体。
海洋贻贝通过足丝分泌黏附蛋白,蛋白中含有丰富的L-3,4-二羟基苯丙氨酸(DOPA)具有超强的黏附能力,而与DOPA结构类似的多巴胺可以模拟贻贝的黏附性能,能在基质表面沉淀聚多巴胺涂层,直接将多种成分等进行固定,方法简单,反应不使用有机溶剂,条件温和。
ε-多聚赖氨酸、L-多聚精氨酸等多肽抗菌剂具有与纳米无机银、季铵盐等化学抗菌剂同样的抗菌与消炎作用,可水解病菌细胞壁不溶性黏多糖,也可与带负电荷的病毒蛋白直接结合使多种病毒失活,且这类抗菌肽稳定性较好,对高等动物的正常细胞几乎无毒害作用。
壳聚糖/聚乙烯醇共混材料在许多方面的性能优于纯壳聚糖,该共混体系在一定条件下具有温敏性,在体温时发生凝胶-溶胶转变,随着因子和/或药物的扩散和凝胶自身降解,可以使得因子和/或药物缓慢平稳释放。
与现有技术相比,本发明的有益效果是:
(1)本发明制备的仿生骨组织工程支架具有良好的力学性能以及生物降解性,可通过己内酯和丙交酯的比例调整其降解速度,通过调整基体各组分的比例和选择3D打印技术,获得了优异的力学性能。据研究,人类密质骨压缩强度为133-197MPa,现有技术中很多骨支架材料的压缩强度都非常小,而本发明通过选择基体的组分和3D打印技术,使得本发明的仿生骨组织工程支架材料的压缩强度可以达到135-158MPa,与人体骨压缩强度近似,可以起到良好的支撑作用。而3D打印技术使得可以制得与骨缺损形状相近的仿生骨组织工程支架,解决了临床中供体缺乏问题,为复杂形状骨缺损的手术提供了性能优异的供体。
(2)本发明制备的仿生骨组织工程支架中的羟基磷灰石与I型胶原纤维与天然骨组织的ECM的主要成分类似,对多种组织的修复都具有较好的促进作用,骨组织中的相关细胞(成骨细胞、骨髓间充质干细胞等)对于纤维拓扑结构也具有一定的识别功能,因此本发明的仿生骨组织工程支架能够为细胞黏附生长及骨组织修复提供适宜的三维环境。而多巴胺可以模拟贻贝的黏附性能,能在基质表面沉淀聚多巴胺涂层,直接将多种成分等进行固定,方法简单,反应不使用有机溶剂,绿色环保。
(3)本发明使用的多肽抗菌剂具有与纳米无机银、季铵盐等化学抗菌剂同样的抗菌与消炎作用,可水解病菌细胞壁不溶性黏多糖,也可与带负电荷的病毒蛋白直接结合使多种病毒失活,且这类抗菌肽稳定性较好,对高等动物的正常细胞几乎无毒害作用。同时选用具有良好生物温敏性水凝胶缓释抗菌药物预防术后感染,可以在仿生骨组织工程支架植入的第一时间释放抗菌肽,并且在24小时内持续释放,在术后刚开始的一段时间中抗菌肽与降解的壳聚糖共同作用以预防术后感染,而在之后剩余壳聚糖的降解过程中,由于壳聚糖具有抗菌作用,依然能够在一定时间内起到抗菌作用。而水凝胶对骨生长因子BMP-2进行了缓释,增加了因子的释放时间。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明实施例的限制。而且在整个附图中,用相同的参考符号表示相同的部件。
图1是实施例1的仿生骨组织工程支架的电镜图片。
具体实施方式
实施例1:
第1步、基体的制备。
根据所获取的拟修复的自体骨CT扫描断层数据,通过三维重建技术获得骨缺损的三维模型。将20g分子量为500KPa、己内酯与丙交酯单体比为30:70的聚(己内酯-co-丙交酯)、3g柞蚕丝素蛋白与20g羟基磷灰石依次加入三氟乙醇中,使其混合均匀形成浆料。利用浆料通过3D打印的方法制备基体材料;使用3D打印时选择挤压速度0.008mm/s,XY平台运动速度2.5mm/s。将3D打印得到的支架进行冷冻干燥处理16h得到基体支架。
第2步、具有仿生层的基体支架的制备。
将第1步制备得到的基体支架放入pH值为7.5,浓度为0.5wt%的多巴胺Tris-HCl溶液,反应时间为2h,形成黏附有多巴胺的基体支架材料。然后取3g I型胶原短纤维均匀分散于浓度为质量体积百分比为5%-25%海藻酸钠水溶液中,将黏附有多巴胺的多孔基体支架材料浸渍于I型胶原纤维和海藻酸钠的混合水溶液中,I型胶原短纤维与海藻酸钠的质量比为70:30,浸渍12h后再取出,冷冻干燥6h,在基体支架外形成仿生层。
第3步、制备含有BMP-2和ε-多聚赖氨酸的壳聚糖/聚乙烯醇混合凝胶液进而制备仿生骨组织工程支架材料。
将浓度0.5mol/L的NaHCO3溶液与浓度为0.5%的聚乙烯醇溶液混合,取一定量的1.6%的壳聚糖盐酸溶液,均于冰浴下放置15min,在冰浴及磁力搅拌下,向壳聚糖盐酸溶液中缓慢滴加NaHCO3与聚乙烯醇的混合液,滴加完毕后,按照凝胶液中BMP-2和ε-多聚赖氨酸的浓度分别为150μg/ml和300μg/ml的比例将BMP-2和ε-多聚赖氨酸直接加入到混合液中,继续搅拌20min至混合均匀,得到含有BMP-2和ε-多聚赖氨酸的壳聚糖/聚乙烯醇混合凝胶液。
将第2步制备的具有仿生层的基体支架材料通过物理溶液法在负压环境下浸没在第3步所制备的含有BMP-2和ε-多聚赖氨酸的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12-24小时,再将其置于37℃温育箱中,6小时后形成凝胶。
实施例2:
第1步、基体的制备。
根据所获取的拟修复的自体骨CT扫描断层数据,通过三维重建技术获得骨缺损的三维模型。将25g分子量为750KPa的、己内酯与丙交酯单体比为50:50的聚(己内酯-co-丙交酯)、4g柞蚕丝素蛋白与18g羟基磷灰石依次加入100ml三氟乙醇中,使其混合均匀形成浆料。利用浆料通过3D打印的方法制备基体材料;使用3D打印时选择挤压速度0.008mm/s,XY平台运动速度2.5mm/s。将3D打印得到的支架进行冷冻干燥处理16h得到基体支架。
第2步、具有仿生层的基体支架的制备。
将第1步制备得到的基体支架放入pH值为8,浓度为1wt%的多巴胺Tris-HCl溶液,反应时间为12h,形成黏附有多巴胺的基体支架材料。然后取3g I型胶原短纤维均匀分散于浓度为质量体积百分比为5%海藻酸钠水溶液中,将黏附有多巴胺的多孔基体支架材料浸渍于I型胶原纤维和海藻酸钠的混合水溶液中,I型胶原短纤维与海藻酸钠的质量比为70:30,浸渍12h后再取出,冷冻干燥6h,在基体支架外形成仿生层。
第3步、制备含有BMP-2和L-多聚精氨酸的壳聚糖/聚乙烯醇混合凝胶液进而制备仿生骨组织工程支架材料。
将浓度0.5mol/L的NaHCO3溶液与浓度为1.5%的聚乙烯醇溶液混合,取一定量的1.8wt%的壳聚糖盐酸溶液,均于冰浴下放置15min,在冰浴及磁力搅拌下,向壳聚糖盐酸溶液中缓慢滴加NaHCO3与聚乙烯醇的混合液,滴加完毕后,按照凝胶液中BMP-2和L-多聚精氨酸的浓度分别为180μg/ml和360μg/ml的比例将BMP-2和L-多聚精氨酸直接加入到混合液中,继续搅拌20min至混合均匀,得到含有BMP-2和L-多聚精氨酸的壳聚糖/聚乙烯醇混合凝胶液。
将第2步制备的具有仿生层的基体支架材料通过物理溶液法在负压环境下浸没在第3步所制备的含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12小时,再将其置于37℃温育箱中,2小时后形成凝胶。
实施例3:
第1步、基体的制备。
根据所获取的拟修复的自体骨CT扫描断层数据,通过三维重建技术获得骨缺损的三维模型。将35g分子量为1000KPa的、己内酯与丙交酯单体比为70:30的聚(己内酯-co-丙交酯)、5g柞蚕丝素蛋白与15g羟基磷灰石依次加入三氟乙醇中,使其混合均匀形成浆料。利用浆料通过3D打印的方法制备基体材料;使用3D打印时选择挤压速度0.01mm/s,XY平台运动速度2.5mm/s。将3D打印得到的支架进行冷冻干燥处理12h得到基体支架。
第2步、具有仿生层的基体支架的制备。
将第1步制备得到的基体支架放入pH值为8.5,浓度为1.5wt%的多巴胺Tris-HCl溶液,反应时间为24h,形成黏附有多巴胺的基体支架材料。然后取3g I型胶原短纤维均匀分散于浓度为质量体积百分比为15wt%海藻酸钠水溶液中,将黏附有多巴胺的多孔基体支架材料浸渍于I型胶原纤维和海藻酸钠的混合水溶液中,I型胶原短纤维与海藻酸钠的质量比为70:30,浸渍12h后再取出,冷冻干燥6h,在基体支架外形成仿生层。
第3步、制备含有BMP-2和聚L-谷氨酸的壳聚糖/聚乙烯醇混合凝胶液进而制备仿生骨组织工程支架材料。
将浓度0.6mol/L的NaHCO3溶液与浓度为3wt%的聚乙烯醇溶液混合,取一定量的1.6%-2wt%的壳聚糖盐酸溶液,均于冰浴下放置15min,在冰浴及磁力搅拌下,向壳聚糖盐酸溶液中缓慢滴加NaHCO3与聚乙烯醇的混合液,滴加完毕后,按照凝胶液中BMP-2和聚L-谷氨酸的浓度分别为200μg/ml和400μg/ml的比例将BMP-2和聚L-谷氨酸直接加入到混合液中,继续搅拌20min至混合均匀,得到含有BMP-2和聚L-谷氨酸的壳聚糖/聚乙烯醇混合凝胶液。
将第2步制备的具有仿生层的基体支架材料通过物理溶液法在负压环境下浸没在第3步所制备的含有BMP-2和聚L-谷氨酸的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12-24小时,再将其置于37℃温育箱中,12小时后形成凝胶。
实施例4:
制备方法同实施例3,不同之处在于将实施例3的BMP-2替换为替换为促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的混合物,促骨生长因子BMP-2和血管内皮细胞生长因子VEGF的质量比为9:1,其中,促骨生长因子BMP-2在凝胶液中的浓度为180μg/ml,VEGF在凝胶液中的浓度为20μg/ml。
实施例5:支架性能测试。
将实施例1的仿生骨组织工程支架材料在扫描电镜(购自日本公司,型号为JSM-7500)下进行表征,扫描电镜图如图1所示。
压缩强度测试:仿生骨组织工程支架材料通过电子万能材料试验机(购自英斯特朗公司,型号为INSTRON 3365)进行压缩强度测试,实施例1-4的支架测得的压缩强度分别为135MPa,146MPa,158MPa和158MPa,与人体密质骨压缩强度相似,且经压缩测试后,样品没有被损坏。
抗菌实验:抑菌实验按照“JISZ2801-2000《抗菌加工制品-抗菌性试验方法和抗菌效果》”的标准,采用以下实验菌株:①大肠埃希菌(Escherichia coli ATCC 25922)、②肺炎链球菌(Streptococcus pneumoniae ATCC 49619)、和③金黄葡萄球菌(Staphylococcusaureu ATCC 25923)。本实施例1-4制得的仿生骨组织工程支架对①、②、③号菌株的抗菌率如下表所示。本发明得到的仿生骨组织工程支架具有优异的抗菌效果。
大肠埃希菌 肺炎链球菌 金黄葡萄球菌
实施例1 95% 96% 95%
实施例2 97% 98% 97%
实施例3 99% 99% 99%
实施例4 99% 99% 99%
表1:实施例1-4的仿生骨组织工程支架的抗菌实验结果
将实施例3的骨组织工程支架置于模拟人体体液中,分别测试降解第24h、第48h和第7天时骨组织工程支架对金黄葡萄球菌的抗菌性能,结果如下。
0h 24h 48h 7d
实施例3 99% 98% 98% 80%
表2:实施例3的仿生骨组织工程支架降解不同时间后的抗菌实验结果
由实验结果可知,在降解初期,壳聚糖与抗菌肽的共同作用实现抗菌,由于缓释作用的存在,抗菌性能一直比较稳定,到第七天,抗菌肽已基本释放完,而由于壳聚糖自身的抗菌作用,整个仿生骨组织工程支架依然显示出良好的抗菌性能。
实施例6:体外释放实验。
由于本发明的BMP-2/BMP-2与VEGF混合物和抗菌肽的缓释主要是借助壳聚糖/聚乙烯醇混合凝胶实现的,所以主要考察了含有BMP-2/BMP-2与VEGF混合物和抗菌肽的壳聚糖/聚乙烯醇凝胶的体外释放情况。
将实施例1-4中的含有BMP-2/BMP-2与VEGF混合物和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液分别置于37℃温育箱中,6小时后形成凝胶。在PH7.4磷酸缓冲液中,于37℃环境条件下,对这四种含有BMP-2/BMP-2与VEGF混合物和抗菌肽的凝胶进行体外释放实验测试发现,四者均有明显的缓释行为发生,而且体外释放速率随着载药量增加而变得缓慢,这可能是由于随着载药量的增加,BMP-2和抗菌肽与材料的相互作用增强的缘故。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (4)

1.一种仿生骨组织工程支架的制备方法,其特征在于,这种仿生骨组织工程支架,由基体、仿生层、以及含有促骨生长生长因子BMP-2和抗菌肽的凝胶层组成,基体由聚(己内酯-co-丙交酯)、柞蚕丝素蛋白与羟基磷灰石通过3D打印的方法获得,然后再用多巴胺修饰基体,得到经多巴胺修饰的基体,再将I型胶原短纤维均匀分散于海藻酸钠水溶液中,将经多巴胺修饰的基体浸渍于I型胶原纤维和海藻酸钠的水溶液中再取出,进行冷冻干燥,在基体外形成仿生层得到具有仿生层的支架;将具有仿生层的支架在负压环境在浸没在含有促骨生长因子BMP-2和抗菌肽的壳聚糖/聚乙烯醇凝胶液中,于4℃静置12-24h中,再将其置于37℃的温育箱中形成凝胶从而得到仿生骨组织工程支架;
其中,基体中的聚(己内酯-co-丙交酯)、柞蚕丝素蛋白与羟基磷灰石的质量比为(40-70):(6-10):(30-40),制备聚(己内酯-co-丙交酯)所使用的己内酯与丙交酯的单体摩尔比为(70-30):(30-70),聚(己内酯-co-丙交酯)的分子量为500-1000kDa;I型胶原短纤维的长度为0.1mm-2mm;I型胶原短纤维与海藻酸钠的质量比为(70-80):(30-20);含有促骨生长因子BMP-2和抗菌肽的壳聚糖/聚乙烯醇凝胶液中BMP-2和抗菌肽的浓度分别为180-200μg/ml和300-400μg/ml;
该制备方法包括以下步骤:
(1)将聚(己内酯-co-丙交酯)、柞蚕丝素蛋白与羟基磷灰石按质量比依次加入三氟乙醇中,混合均匀形成浆料,进行3D打印,然后将打印出来的支架进行冷冻干燥处理12h以上得到基体;
(2)把基体放入多巴胺Tris-HCl溶液中反应得到经多巴胺修饰的基体;再将I型胶原短纤维均匀分散于海藻酸钠水溶液中,将经多巴胺修饰的基体浸渍于I型胶原纤维和海藻酸钠的水溶液中再取出,进行冷冻干燥处理4-8h从而在基体外形成仿生层,得到将具有仿生层的基体支架;其中,I型胶原短纤维的制备方法为将I型胶原加入0.5-2mol/L的醋酸溶液中,搅拌至I型胶原完全溶解,脱泡得到纺丝原液,纺丝原液中的胶原浓度为3-5wt%,采用静电纺丝的方法形成I型胶原纤维,并通过切割获得I型胶原短纤维;I型胶原短纤维的长度为0.1mm-2mm;多巴胺Tris-HCl溶液的pH值为7.5~8.5,浓度为0.5wt%~1.5wt%,反应时间为2-24h;
(3)将具有仿生层的基体支架通过物理溶液法在负压环境下浸没在含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12-24h,再将其置于37℃的温育箱中形成凝胶,从而得到仿生骨组织工程支架;
步骤(3)中含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液的制备方法为:1)将浓度0.5-0.6mol/L的NaHCO3溶液与浓度为0.5-3wt%的聚乙烯醇溶液混合,取一定量的1.5-2.5%的壳聚糖盐酸溶液,于冰浴下放置15min,在冰浴及磁力搅拌下,向壳聚糖盐酸溶液中缓慢滴加NaHCO3与聚乙烯醇的混合液,滴加完毕后,将BMP-2和抗菌肽直接加入到混合液中,继续搅拌至混合均匀,得到含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液。
2.如权利要求1所述的一种仿生骨组织工程支架的制备方法,其特征在于,步骤(1)中3D打印的方法为:根据所获取的拟修复的自体骨CT扫描断层数据,通过三维重建技术获得骨缺损的三维模型;然后利用复合浆料根据三维模型打印成所需形状,再将打印出来的支架进行冷冻干燥处理12h以上,得到骨组织工程支架的基体。
3.如权利要求2所述的一种仿生骨组织工程支架的制备方法,其特征在于,3D打印时选择挤压速度0.008mm/s,XY平台运动速度2.5mm/s。
4.如权利要求1所述的一种仿生骨组织工程支架的制备方法,其特征在于,步骤(3)中,具有仿生层的基体支架通过物理溶液法在负压环境下浸没在含有BMP-2和抗菌肽的壳聚糖/聚乙烯醇混合凝胶液中,于4℃静置12-24小时,将其置于37℃温育箱中,2-24小时即可形成凝胶。
CN202210841681.9A 2022-07-18 2022-07-18 一种仿生骨组织工程支架材料及其制备方法 Active CN115054728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210841681.9A CN115054728B (zh) 2022-07-18 2022-07-18 一种仿生骨组织工程支架材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210841681.9A CN115054728B (zh) 2022-07-18 2022-07-18 一种仿生骨组织工程支架材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115054728A CN115054728A (zh) 2022-09-16
CN115054728B true CN115054728B (zh) 2023-11-07

Family

ID=83205275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210841681.9A Active CN115054728B (zh) 2022-07-18 2022-07-18 一种仿生骨组织工程支架材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115054728B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116102637B (zh) * 2022-09-26 2023-09-26 西北大学 一种稳定的i型重组胶原蛋白及其应用
CN115581805A (zh) * 2022-10-13 2023-01-10 苏州大学附属第一医院 一种促进骨再生的水坝样双相仿生骨膜的制备方法
CN115998948B (zh) * 2022-12-08 2024-09-03 中国科学院宁波材料技术与工程研究所 一种人工关节假体及其制备方法
CN116392639B (zh) * 2023-02-17 2024-02-13 无锡市中医医院 一种全层修复双层支架及其制备方法及应用
CN116328044A (zh) * 2023-02-21 2023-06-27 青岛大学 一种杂化纤维增强水凝胶支架的制备方法及其促成骨应用
CN116271247A (zh) * 2023-04-07 2023-06-23 东南大学 一种半定制化分层多孔镁基支架及其制备方法
CN117618654B (zh) * 2023-12-08 2024-12-27 中维化纤股份有限公司 一种抗菌促血管生成尼龙6材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001292503A1 (en) * 2000-10-02 2002-04-15 Astrazeneca Ab New oxabispidine compound useful in the treatment of cardiac arrhythmias
ITPD20030286A1 (it) * 2003-11-27 2005-05-28 Fidia Advanced Biopolymers Srl Strutture composite multistrato contenenti acido ialuronico
WO2007055431A1 (en) * 2005-11-14 2007-05-18 Seoul National University Industry Foundation Method for producing collagen/apatite composite membrane for guided bone regeneration
CN102188753A (zh) * 2011-05-10 2011-09-21 中原工学院 一种含有柞蚕丝素的纳米骨仿生材料及其制备方法
KR20140025221A (ko) * 2012-08-22 2014-03-04 가톨릭대학교 산학협력단 점진적인 무기물 농도를 갖는 이중층 구조의 조직 재생용 지지체 및 이의 제조방법
CN103990182A (zh) * 2014-05-30 2014-08-20 东华大学 一种用于骨组织修复的三维支架材料及其制备方法
CN105343936A (zh) * 2015-11-05 2016-02-24 深圳市第二人民医院 一种plcl三维多孔支架、plcl-col复合支架及其制备方法
CN105999406A (zh) * 2016-06-02 2016-10-12 温州医科大学 一种高效抗菌季铵盐壳聚糖复合凝胶涂层的制备方法
CN107137774A (zh) * 2017-06-06 2017-09-08 上海理工大学 一种具有三维结构的丝素蛋白/羟基磷灰石复合支架及其制备方法
CN107670115A (zh) * 2017-10-20 2018-02-09 上海纳米技术及应用国家工程研究中心有限公司 丝素蛋白/羟基磷灰石/聚(消旋乳酸‑co‑己内酯)复合纳米纤维膜的制备方法
CN111375088A (zh) * 2020-04-29 2020-07-07 陕西巨子生物技术有限公司 双层骨软骨组织修复支架及其制备方法
CN112043871A (zh) * 2020-08-31 2020-12-08 西南交通大学 一种用于骨/软骨修复的仿生定向双层水凝胶的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005286B2 (en) * 2012-02-21 2015-04-14 Thierry Giorno PLGA/HA hydroxyapatite composite bone grafts and method of making

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001292503A1 (en) * 2000-10-02 2002-04-15 Astrazeneca Ab New oxabispidine compound useful in the treatment of cardiac arrhythmias
ITPD20030286A1 (it) * 2003-11-27 2005-05-28 Fidia Advanced Biopolymers Srl Strutture composite multistrato contenenti acido ialuronico
WO2007055431A1 (en) * 2005-11-14 2007-05-18 Seoul National University Industry Foundation Method for producing collagen/apatite composite membrane for guided bone regeneration
CN102188753A (zh) * 2011-05-10 2011-09-21 中原工学院 一种含有柞蚕丝素的纳米骨仿生材料及其制备方法
KR20140025221A (ko) * 2012-08-22 2014-03-04 가톨릭대학교 산학협력단 점진적인 무기물 농도를 갖는 이중층 구조의 조직 재생용 지지체 및 이의 제조방법
CN103990182A (zh) * 2014-05-30 2014-08-20 东华大学 一种用于骨组织修复的三维支架材料及其制备方法
CN105343936A (zh) * 2015-11-05 2016-02-24 深圳市第二人民医院 一种plcl三维多孔支架、plcl-col复合支架及其制备方法
CN105999406A (zh) * 2016-06-02 2016-10-12 温州医科大学 一种高效抗菌季铵盐壳聚糖复合凝胶涂层的制备方法
CN107137774A (zh) * 2017-06-06 2017-09-08 上海理工大学 一种具有三维结构的丝素蛋白/羟基磷灰石复合支架及其制备方法
CN107670115A (zh) * 2017-10-20 2018-02-09 上海纳米技术及应用国家工程研究中心有限公司 丝素蛋白/羟基磷灰石/聚(消旋乳酸‑co‑己内酯)复合纳米纤维膜的制备方法
CN111375088A (zh) * 2020-04-29 2020-07-07 陕西巨子生物技术有限公司 双层骨软骨组织修复支架及其制备方法
CN112043871A (zh) * 2020-08-31 2020-12-08 西南交通大学 一种用于骨/软骨修复的仿生定向双层水凝胶的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
广东省科学技术协会.《2005广东高性能、功能材料研究与产业化及发展循环经济研讨会论文集》.2005,第247页. *
徐志康等编著.《中国战略性新兴产业 新材料 高性能分离膜材料》.中国铁道出版社,2017,第94页. *

Also Published As

Publication number Publication date
CN115054728A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN115054728B (zh) 一种仿生骨组织工程支架材料及其制备方法
Yao et al. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair
Cao et al. Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing
Pei et al. Effectively promoting wound healing with cellulose/gelatin sponges constructed directly from a cellulose solution
JP4214051B2 (ja) エラスチン架橋体およびその製造方法
Singh et al. Natural polymer-based hydrogels as scaffolds for tissue engineering
CN108310467B (zh) 一种组装型细胞衍生细胞外基质膜复合骨修复材料及其制备方法和应用
EP2811987B1 (en) Multi-layer biomaterial for tissue regeneration and wound healing
Maghdouri-White et al. Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin–collagen type I electrospun scaffolds
Zhang et al. Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering
Song et al. Electrospinning/3D printing drug-loaded antibacterial polycaprolactone nanofiber/sodium alginate-gelatin hydrogel bilayer scaffold for skin wound repair
Salehi et al. Kaolin-loaded chitosan/polyvinyl alcohol electrospun scaffold as a wound dressing material: In vitro and in vivo studies
Datta et al. Oleoyl-chitosan-based nanofiber mats impregnated with amniotic membrane derived stem cells for accelerated full-thickness excisional wound healing
WO2015074176A1 (zh) 用于组织再生的亲水性静电纺生物复合支架材料及其制法与应用
CN102277737A (zh) 聚己内酯/天然高分子复合多孔支架的制备方法及应用
Deng et al. A new type of bilayer dural substitute candidate made up of modified chitin and bacterial cellulose
Xie et al. Adult stem cells seeded on electrospinning silk fibroin nanofiberous scaffold enhance wound repair and regeneration
Zheng et al. Highly stable collagen scaffolds crosslinked with an epoxidized natural polysaccharide for wound healing
CN107213529B (zh) 一种用于提高成骨细胞粘附和成骨性能的可降解医用高分子三维材料的制备方法
CN111437441A (zh) 一种载药kgn纳米纤维支架及其制备方法和应用
Singh et al. Chitin, chitosan, and silk fibroin electrospun nanofibrous scaffolds: a prospective approach for regenerative medicine
ES2906715T3 (es) Dispositivos de biomaterial para la regeneración de tejidos guiada
Ray et al. Enhanced bone regeneration using Antheraea mylitta silk fibroin and chitosan based scaffold: in-vivo and in-vitro study
Sah et al. Eggshell membrane protein modified silk fibroin-poly vinyl alcohol scaffold for bone tissue engineering: in vitro and in vivo study
JP5374496B2 (ja) 医療用組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant