CN115046578A - Circuit structure integrating multiple sensing assemblies and terminal comprising circuit structure - Google Patents
Circuit structure integrating multiple sensing assemblies and terminal comprising circuit structure Download PDFInfo
- Publication number
- CN115046578A CN115046578A CN202111237598.2A CN202111237598A CN115046578A CN 115046578 A CN115046578 A CN 115046578A CN 202111237598 A CN202111237598 A CN 202111237598A CN 115046578 A CN115046578 A CN 115046578A
- Authority
- CN
- China
- Prior art keywords
- acceleration
- acceleration sensing
- sensing assembly
- processing module
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B19/00—Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/10—Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B31/00—Predictive alarm systems characterised by extrapolation or other computation using updated historic data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/30—Arrangements in telecontrol or telemetry systems using a wired architecture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/40—Arrangements in telecontrol or telemetry systems using a wireless architecture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/60—Planning or developing urban green infrastructure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/12—Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/248—UPS systems or standby or emergency generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
Landscapes
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Emergency Management (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Business, Economics & Management (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Medical Informatics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
技术领域technical field
本发明属于传感器的电路结构领域,具体涉及一种融合多传感器的电路结构,尤其是一种集成了振动传感器的电路结构及包含该电路结构的终端。终端可以用于传感振动和/或轨迹和/或姿态等。The invention belongs to the field of circuit structures of sensors, and in particular relates to a circuit structure integrating multiple sensors, in particular to a circuit structure integrating a vibration sensor and a terminal including the circuit structure. The terminal can be used to sense vibration and/or trajectory and/or gesture, etc.
背景技术Background technique
振动传感器可以采集被测物体的振动数据分析尤其是高频振动,将这些数据通过云端或者本地电脑,便可以实现很多操作,包括但不限于:工业设备故障诊断。当被测目标振动超过设定阈值时,这些异常数据就会被振动传感器采集,发出报警信号,从而通知相关人员进行检查,避免造成财物损失。Vibration sensors can collect vibration data analysis of the measured object, especially high-frequency vibration. By passing these data through the cloud or local computer, many operations can be realized, including but not limited to: industrial equipment fault diagnosis. When the vibration of the measured target exceeds the set threshold, these abnormal data will be collected by the vibration sensor, and an alarm signal will be issued, so as to notify the relevant personnel to conduct inspection and avoid property damage.
轨迹传感器用于测量物体实时运行,摆动轨迹,将这些数据通过云端或者本地电脑,便可以实现很多操作,包括但不限于:电力线检测,地质灾害如山体滑坡报警等。传感器会将被侧目标运行轨迹实时发送至服务器,当检测到异常数据时,通知相关人员采取对应措施,如疏散群众等。Trajectory sensors are used to measure the real-time running and swinging trajectories of objects. By passing these data through the cloud or local computer, many operations can be realized, including but not limited to: power line detection, geological disasters such as landslide alarms, etc. The sensor will send the running trajectory of the target on the side to the server in real time. When abnormal data is detected, it will notify the relevant personnel to take corresponding measures, such as evacuating the masses.
姿态传感器用于分析目标的静态倾角,将这些数据通过云端或者本地电脑,便可以实现很多操作,包括但不限于:危墙检测,当传感器检测到被测目标的倾斜角度超过阈值时,就判定该目标有发生危险的可能,从而通知相关人员采取相应措施。The attitude sensor is used to analyze the static inclination of the target. By passing these data through the cloud or local computer, many operations can be realized, including but not limited to: dangerous wall detection. When the sensor detects that the inclination angle of the measured target exceeds the threshold, it will determine The target may be in danger, so the relevant personnel are notified to take appropriate measures.
现有的传感器技术功能单一,只能测量振动、轨迹、姿态的其中一种,无法满足需求较多的场景。The existing sensor technology has a single function and can only measure one of vibration, trajectory, and attitude, which cannot meet the needs of many scenarios.
在需要测量参数较多的场景下,现有技术是通过将多种不同的传感器组合在一起的方式来满足测量需求。但此方式导致系统功耗和成本较高,费事费力,不能统一管理,更甚者会出现一种传感器配一种专用数据采集终端,极大的增加了时间、人力、财力成本。In a scenario where many measurement parameters are required, the prior art meets the measurement requirements by combining a variety of different sensors. However, this method leads to high system power consumption and cost, which is labor-intensive and cannot be managed in a unified manner. What's more, there will be a sensor equipped with a dedicated data acquisition terminal, which greatly increases the cost of time, manpower and financial resources.
公开号为CN106840095A的专利一种并行多个倾角传感器芯片提高倾角仪测量精度的方法,首先采用多个MEMS倾角传感器芯片测量重力加速度倾角数据,并利用白噪声叠加原理提高系统信噪比,再将每个轴的重力加速度值转换成角度值从而得到高精度的倾角值,为保证测量精度,在PCB板上绘制定位丝印,保证每个MEMS倾角传感器芯片的轴对齐。该发明专利只是针对多个倾角传感器芯片进行设计,属于同一种传感器配置多个,只能采集一种参数,提高了精度。该发明并不能同时采集多种参数。The patent publication number CN106840095A is a method for improving the measurement accuracy of inclinometers by paralleling multiple inclination sensor chips. First, a plurality of MEMS inclination sensor chips are used to measure the gravitational acceleration inclination data, and the white noise superposition principle is used to improve the system signal-to-noise ratio, and then the The gravitational acceleration value of each axis is converted into an angle value to obtain a high-precision inclination value. In order to ensure the measurement accuracy, a positioning silk screen is drawn on the PCB board to ensure the axis alignment of each MEMS inclination sensor chip. The invention patent is only designed for multiple inclination sensor chips, which belong to the same sensor configuration and can only collect one parameter, which improves the accuracy. This invention cannot collect multiple parameters simultaneously.
专利公开号为CN103479361B的发明公开了一种设置有惯性传感器的智能眼镜及利用智能眼镜监测运动、预防近视、矫正坐姿的方法。其惯性传感器采用加速度计或者角速度传感器,或者由加速度计或者角速度传感器的单、双、三轴组合的惯性测量单元或者航姿参考系统。该发明只能测量姿态数据。The invention with the patent publication number CN103479361B discloses smart glasses provided with an inertial sensor and a method for monitoring movement, preventing myopia and correcting sitting posture by using the smart glasses. The inertial sensor adopts an accelerometer or an angular velocity sensor, or an inertial measurement unit or an attitude reference system combined with a single, dual, and three-axis combination of an accelerometer or an angular velocity sensor. This invention can only measure attitude data.
公开号为CN205506187U的专利公开了了一种叉装车动态称重系统。同时使用了姿态传感器和压力传感器。该专利将多个姿态传感器和压力传感器分别独立的安装在不同的位置再通过控制单元处理采集到的数据。此专利能够采集多种数据但不能将各传感器统一安装,需单独安装,无法快速部署。Patent Publication No. CN205506187U discloses a dynamic weighing system for forklift trucks. Both attitude sensors and pressure sensors are used. In this patent, multiple attitude sensors and pressure sensors are independently installed in different positions, and the collected data is processed by the control unit. This patent can collect a variety of data but cannot install all sensors in a unified way, it needs to be installed separately and cannot be deployed quickly.
公开号为CN209625014U的专利涉及一种地铁车辆的轨道图像和惯性信息采集装置。该装置包括:包括CCD相机、加速度传感器、倾角传感器、陀螺仪、主机模块、脉冲模块、ADC板卡、DAC板卡、硬盘以及用以供电的电源模块。其所述的加速度传感器和倾角传感器分别通过ADC板卡与主机模块连接。DAC板卡分别与ADC板卡和主机模块连接。CCD相机、陀螺仪和硬盘分别与主机模块连接。脉冲模块分别与CCD相机和主机模块连接。该专利处理的数据信号种类繁多。针对不同的传感器还需要设置不同的数据转换板卡。使用主机处理数据,使用硬盘存储数据导致该装置体安装费时费力,运营成本高,数据不易统一管理。The patent publication number CN209625014U relates to a track image and inertial information collection device of a subway vehicle. The device includes a CCD camera, an acceleration sensor, an inclination sensor, a gyroscope, a host module, a pulse module, an ADC board, a DAC board, a hard disk, and a power supply module for power supply. The acceleration sensor and the inclination sensor are respectively connected with the host module through the ADC board card. The DAC board is respectively connected with the ADC board and the host module. The CCD camera, gyroscope and hard disk are respectively connected with the host module. The pulse module is respectively connected with the CCD camera and the host module. The patent handles a wide variety of data signals. Different data conversion boards need to be set for different sensors. Using a host to process data and using a hard disk to store data results in time-consuming and labor-intensive installation of the device, high operating costs, and difficulty in unified management of data.
参考文献[1]吉大海.训练航行体水中轨迹和姿态测量方法[J].舰船科学技术,2014,36(01):147-151.该文献利用惯性测量物体的轨迹和姿态。该文献将测量组件安装在被测目标上,通过数学解算实现对目标的运动轨迹和姿态的测量。References [1] Ji Dahai. The measurement method of underwater trajectory and attitude of training vehicle [J]. Ship Science and Technology, 2014, 36(01): 147-151. This document uses inertia to measure the trajectory and attitude of objects. In this document, the measurement component is installed on the measured target, and the movement trajectory and attitude of the target are measured through mathematical calculation.
综上所述现有技术存在以下缺点:In summary, the prior art has the following disadvantages:
1.现有技术采用一个单独的加速度传感器,无法满足物体振动,高精度轨迹分析,高精度姿态分析,三种不同场合的应用。1. The existing technology uses a single acceleration sensor, which cannot meet the application of object vibration, high-precision trajectory analysis, high-precision attitude analysis, and three different occasions.
2.现有技术采用将多种不同的传感器组合在一起的方式,导致系统功耗较高且成本,在物体运动的时候传感器与传感器之间因物理因素存在一定的安装偏差,数据的轴向难以对齐。2. The existing technology adopts a method of combining a variety of different sensors, which leads to high system power consumption and cost. When the object is moving, there is a certain installation deviation between the sensor and the sensor due to physical factors, and the axial direction of the data. Difficult to align.
3.现有技术采用将多种不同的传感器组合在一起的方式,安装费时费力,运营成本高,采集的数据种类繁多不易统一管理。3. The prior art adopts a method of combining a variety of different sensors, which is time-consuming and labor-intensive in installation, high in operating cost, and difficult to manage in a unified manner due to the wide variety of collected data.
此外,一方面由于对本领域技术人员的理解存在差异;另一方面由于申请人做出本发明时研究了大量文献和专利,但篇幅所限并未详细罗列所有的细节与内容,然而这绝非本发明不具备这些现有技术的特征,相反本发明已经具备现有技术的所有特征,而且申请人保留在背景技术中增加相关现有技术之权利。In addition, on the one hand, there are differences in the understanding of those skilled in the art; on the other hand, because the applicant has studied a large number of documents and patents when making the present invention, but due to space limitations, all details and contents are not listed in detail, but this is by no means The present invention does not possess the features of the prior art, on the contrary, the present invention already possesses all the features of the prior art, and the applicant reserves the right to add relevant prior art to the background art.
发明内容SUMMARY OF THE INVENTION
针对现有技术之不足,本发明提供了一种融合多传感组件的终端。本发明提供的终端可以包括第一加速度传感组件、第二加速度传感组件和处理模块。所述第一加速度传感组件和所述第二加速度传感组件通过通信协议接口与所述处理模块连接。所述第一加速度传感组件和所述第二加速度传感组件按照彼此轴向平齐使得采集到的数据对齐的方式设置于同一板体,便于所述处理模块对所述第一加速度传感组件和所述第二加速度传感组件采集的数据进行处理。优选地,所述第一加速度传感组件和所述第二加速度传感组件通过轴对齐的方式设置在同一板体后,所述第一加速度传感组件和所述第二加速度传感组件在进行数据采集时至少有一个基准参数是相同的,便于终端的处理模块对来自不同传感组件的数据进行融合处理。优选地,终端上可以融合包括第一加速度传感组件、第二加速度传感组件、惯性测量传感组件、倾角传感组件在内的多种传感组件。优选地,第一加速度传感组件、第二加速度传感组件、惯性测量传感组件、倾角传感组件的核心器件都包括加速度计。本发明的终端将多个以加速度计为核心器件的传感组件按照轴对齐的方式设置在同一电路结构的板体上,使得众传感组件的至少一个参数(例如位置高度、相对坐标等)相同,从而能够减少终端的处理模块在对众传感组件所采集数据进行融合处理时所需要处理的参数,实现快速处理。Aiming at the deficiencies of the prior art, the present invention provides a terminal that integrates multi-sensing components. The terminal provided by the present invention may include a first acceleration sensing component, a second acceleration sensing component and a processing module. The first acceleration sensing component and the second acceleration sensing component are connected with the processing module through a communication protocol interface. The first acceleration sensing assembly and the second acceleration sensing assembly are arranged on the same plate body in a manner that is axially flush with each other so that the collected data are aligned, so that the processing module can sense the first acceleration. The component and the data collected by the second acceleration sensing component are processed. Preferably, after the first acceleration sensing assembly and the second acceleration sensing assembly are arranged on the same plate body in a shaft-aligned manner, the first acceleration sensing assembly and the second acceleration sensing assembly During data collection, at least one reference parameter is the same, which is convenient for the processing module of the terminal to perform fusion processing on data from different sensing components. Preferably, a variety of sensing components including a first acceleration sensing component, a second acceleration sensing component, an inertial measurement sensing component, and an inclination angle sensing component can be fused on the terminal. Preferably, the core components of the first acceleration sensing assembly, the second acceleration sensing assembly, the inertial measurement sensing assembly, and the inclination sensing assembly all include accelerometers. In the terminal of the present invention, a plurality of sensing assemblies with accelerometers as the core device are arranged on the board body of the same circuit structure in an axis-aligned manner, so that at least one parameter of the sensing assemblies (such as position height, relative coordinates, etc.) In the same way, the processing module of the terminal can reduce the parameters that need to be processed when the processing module of the terminal performs fusion processing on the data collected by the multi-sensing components, so as to realize fast processing.
根据一种优选实施方式,所述第一加速度传感组件在采集的数据超出预设阈值的情况下,能够产生中断将处于休眠状态的所述处理模块唤醒,所述处理模块响应于所述第一加速度传感组件的唤醒中断,打开所述所述第二加速度传感组件进行数据采集。优选地,所述终端的所述处理模块还可以唤醒终端上融合的包括惯性测量传感组件、倾角传感组件在内的其他传感组件。According to a preferred embodiment, when the collected data exceeds a preset threshold, the first acceleration sensing component can generate an interrupt to wake up the processing module in a dormant state, and the processing module responds to the first The wake-up of an acceleration sensing component is interrupted, and the second acceleration sensing component is turned on for data collection. Preferably, the processing module of the terminal can also wake up other sensing components fused on the terminal including the inertial measurement sensing component and the inclination sensing component.
根据一种优选实施方式,所述第一加速度传感组件至少包括第一加速度传感器,所述第一加速度传感器能够直接将采集的直流多轴向数据通过通信协议接口传输至所述处理模块进行处理。优选地,第一加速度传感组件的第一加速度传感器不会进入休眠状态。所述第一加速度传感器保持对目标对象的实时数据采集。优选地,所述第一加速度传感器设置有至少包括第一阈值和大于第一阈值的第二阈值两个数据采集阈值。当第一加速度传感器采集到的数据低于第一阈值时,第一加速度传感器保持对目标对象的实时数据采集,但不向处理模块发送唤醒中断,所述处理模块保持休眠状态。当第一加速度传感器采集到的数据高于第一阈值但低于第二阈值时,第一加速度传感器在保持对目标对象进行实时数据采集的同时向处理模块发送“第一唤醒中断”,所述处理模块响应于“第一唤醒中断之收到”从休眠状态进入工作状态,进入工作状态的处理模块对通过通信协议接口接收到的第一加速度传感器采集数据进行处理。当第一加速度传感器采集到的数据高于第二阈值时,第一加速度传感器在保持对目标对象进行实时数据采集的同时向处理模块发送“第二唤醒中断”,所述处理模块响应于“第二唤醒中断之收到”从休眠状态进入工作状态,进入工作状态的处理模块通过运行预设程序唤醒终端融合的多种传感组件中的第二加速度传感组件,由较第一加速度传感组件(即第一加速度传感器)具有更高带宽能够采集更高频率数据的第二加速度传感组件对目标对象进行数据采集。According to a preferred embodiment, the first acceleration sensing component includes at least a first acceleration sensor, and the first acceleration sensor can directly transmit the collected DC multi-axial data to the processing module for processing through a communication protocol interface . Preferably, the first acceleration sensor of the first acceleration sensing assembly will not enter a sleep state. The first acceleration sensor keeps real-time data collection of the target object. Preferably, the first acceleration sensor is provided with at least two data acquisition thresholds including a first threshold and a second threshold greater than the first threshold. When the data collected by the first acceleration sensor is lower than the first threshold, the first acceleration sensor keeps real-time data collection of the target object, but does not send a wakeup interrupt to the processing module, and the processing module maintains a sleep state. When the data collected by the first acceleration sensor is higher than the first threshold but lower than the second threshold, the first acceleration sensor sends a "first wake-up interrupt" to the processing module while maintaining real-time data collection of the target object, and the said The processing module enters the working state from the sleep state in response to the "reception of the first wake-up interrupt", and the processing module entering the working state processes the data collected by the first acceleration sensor received through the communication protocol interface. When the data collected by the first acceleration sensor is higher than the second threshold, the first acceleration sensor sends a "second wake-up interrupt" to the processing module while maintaining real-time data collection on the target object, and the processing module responds to the "second wake-up interrupt". 2. "Receipt of wake-up interrupt" enters the working state from the dormant state, and the processing module entering the working state wakes up the second acceleration sensing component among the various sensing components integrated by the terminal by running the preset program, which is compared with the first acceleration sensing component. The component (ie, the first acceleration sensor) has a higher bandwidth and is capable of collecting higher frequency data. The second acceleration sensor component collects data on the target object.
根据一种优选实施方式,所述第二加速度传感组件至少包括第二加速度传感器、滤波器、电压跟随器和高速ADC,所述第二加速度传感器将采集到的采集交流单轴向的数据需依次经过所述滤波器、所述电压跟随器和所述高速ADC后通过通信协议接口传输至所述处理模块进行处理。优选地,在初次安装融合多种传感组件的终端对目标对象进行数据采集时所述第二加速度传感组件处于休眠状态。当且仅当多种传感组件的终端中设置的第一加速度传感组件向终端的处理模块发送需要唤醒第二加速度传感组件指令时,处理模块才会唤醒第二加速度传感组件进行数据采集并对通过通信协议接口接收到的第二加速度传感组件的采集数据进行处理。According to a preferred embodiment, the second acceleration sensing component includes at least a second acceleration sensor, a filter, a voltage follower and a high-speed ADC, and the second acceleration sensor will collect the collected AC uniaxial data which needs to be After passing through the filter, the voltage follower and the high-speed ADC in sequence, it is transmitted to the processing module through a communication protocol interface for processing. Preferably, the second acceleration sensing assembly is in a dormant state when the terminal that integrates multiple sensing assemblies is initially installed to collect data on the target object. If and only when the first acceleration sensing component set in the terminal of multiple sensing components sends an instruction to wake up the second acceleration sensing component to the processing module of the terminal, the processing module will wake up the second acceleration sensing component for data processing. Collect and process the collected data of the second acceleration sensing component received through the communication protocol interface.
根据一种优选实施方式,所述第一加速度传感组件和所述第二加速度传感组件设置在板体上远离周围机械安装孔的位置,从而避免外部的应力传递到传感器上。本发明提供的融合多种传感组件的终端将各传感组件传居中靠内放置在电路板上,避免因对终端进行封装使电路板产生的应力传递到电路板上放置传感组件导致传感组件的采集数据结果不准确。According to a preferred embodiment, the first acceleration sensing assembly and the second acceleration sensing assembly are disposed on the board at positions away from the surrounding mechanical mounting holes, so as to prevent external stress from being transmitted to the sensor. In the terminal that integrates various sensing components provided by the present invention, each sensing component is placed on the circuit board in the center, so as to avoid the stress generated by the circuit board being transmitted to the circuit board due to encapsulation of the terminal. The data collected by the sensor component is inaccurate.
根据一种优选实施方式,所述第一加速度传感组件、所述第二加速度传感组件配置为通过所述处理模块的I/O口的电流来驱动以控制开启/关闭。所述融合多种传感组件的终端的处理模块在被所述第一加速度传感组件唤醒后可以通过运行预设程序使得处理模块通过与第二加速度传感组件的I/O口向第二加速度传感组件供电,从而开启第二加速度传感组件使得第二加速度传感组件进行数据采集。According to a preferred embodiment, the first acceleration sensing component and the second acceleration sensing component are configured to be driven by the current of the I/O port of the processing module to control on/off. The processing module of the terminal integrating multiple sensing components can run a preset program after being awakened by the first acceleration sensing component so that the processing module communicates with the second acceleration sensing component through the I/O port of the second acceleration sensing component. The acceleration sensing assembly is powered, so that the second acceleration sensing assembly is turned on so that the second acceleration sensing assembly performs data collection.
根据一种优选实施方式,所述处理模块包括处理芯片、随机存储器和只读存储器。所述处理模块通过处理芯片、随机存储器和只读存储器共同完成对终端上融合的多种传感器所采集数据的处理。According to a preferred embodiment, the processing module includes a processing chip, a random access memory and a read-only memory. The processing module completes the processing of the data collected by the various sensors fused on the terminal through the processing chip, the random access memory and the read-only memory.
根据一种优选实施方式,所述终端还能够集成温度传感组件、惯性测量传感组件、倾角传感组件以实现对被测对象温度、轨迹和姿态数据的采集。优选地,本发明提供的融合多种传感组件的终端的处理模块可以通过通信协议接口接收温度传感组件、惯性测量传感组件、倾角传感组件采集的数据。处理模块还可以通过I/O口设置中断来唤醒/关闭温度传感组件、惯性测量传感组件、倾角传感组件。According to a preferred embodiment, the terminal can also integrate a temperature sensing component, an inertial measurement sensing component, and an inclination sensing component to collect the temperature, trajectory and attitude data of the measured object. Preferably, the processing module of the terminal that integrates multiple sensing components provided by the present invention can receive data collected by the temperature sensing component, the inertial measurement sensing component, and the inclination sensing component through a communication protocol interface. The processing module can also wake up/close the temperature sensing component, the inertial measurement sensing component, and the inclination sensing component by setting an interrupt through the I/O port.
根据一种优选实施方式,所述第一加速度传感组件能够采集的数据的频率低于所述第二加速度传感组件能够采集的数据的频率。优选地,本发明的终端通过融合第一加速度传感组件和能够采集的更高频率数据的第二加速度传感组件实现比单一传感组件更宽的频谱采集范围。本发明的终端融合了第一加速度传感组件和第二加速度传感组件二者互补,使得测量数据精度更高。According to a preferred embodiment, the frequency of data that can be collected by the first acceleration sensing assembly is lower than the frequency of data that can be collected by the second acceleration sensing assembly. Preferably, the terminal of the present invention realizes a wider spectrum acquisition range than a single sensing component by fusing the first acceleration sensing component and the second acceleration sensing component capable of collecting higher frequency data. The terminal of the present invention integrates the complementarity of the first acceleration sensing component and the second acceleration sensing component, so that the measurement data accuracy is higher.
本发明还提供一种融合多传感组件的电路结构。所述电路结构至少包括第一加速度传感组件、第二加速度传感组件和处理模块。所述第一加速度传感组件和所述第二加速度传感组件通过通信协议接口与所述处理模块连接。所述第一加速度传感组件和所述第二加速度传感组件按照彼此轴向对齐使得采集到的数据对齐的方式设置于同一板体。优选地,所述电路结构上可以集成第一加速度传感组件、第二加速度传感组件、温度传感组件、惯性测量传感组件、倾角传感组件中的一种或几种的组合。The invention also provides a circuit structure for fusing the multi-sensing components. The circuit structure includes at least a first acceleration sensing component, a second acceleration sensing component and a processing module. The first acceleration sensing component and the second acceleration sensing component are connected with the processing module through a communication protocol interface. The first acceleration sensing assembly and the second acceleration sensing assembly are arranged on the same plate body in a manner of being axially aligned with each other so that the collected data are aligned. Preferably, the circuit structure can integrate one or a combination of a first acceleration sensing component, a second acceleration sensing component, a temperature sensing component, an inertial measurement sensing component, and an inclination sensing component.
附图说明Description of drawings
图1是本发明终端的一个优选实施方式示意图;Fig. 1 is a schematic diagram of a preferred embodiment of the terminal of the present invention;
图2是本发明终端的一个优选的处理模块的处理芯片的电路示意图;2 is a schematic circuit diagram of a processing chip of a preferred processing module of the terminal of the present invention;
图3是本发明终端的一个优选的第一加速度传感组件电路示意图;3 is a schematic diagram of a preferred first acceleration sensing component circuit of the terminal of the present invention;
图4是本发明终端的一个优选的温度传感组件电路示意图;4 is a schematic diagram of a preferred temperature sensing component circuit of the terminal of the present invention;
图5是本发明终端的一个优选的惯性测量传感组件电路示意图;5 is a schematic diagram of a preferred inertial measurement sensing component circuit of the terminal of the present invention;
图6是本发明终端的一个优选的倾角传感组件电路示意图;FIG. 6 is a schematic circuit diagram of a preferred tilt angle sensing component of the terminal of the present invention;
图7是本发明终端的一个优选的第二加速度传感组件电路示意图;7 is a schematic diagram of a preferred second acceleration sensing component circuit of the terminal of the present invention;
图8是本发明电路结构的一个优选实施方式的示意图;8 is a schematic diagram of a preferred embodiment of the circuit structure of the present invention;
图9是本发明实施例3一个优选实施方式的电路结构示意图;FIG. 9 is a schematic diagram of the circuit structure of a preferred embodiment of
图10是本发明实施例4一个优选实施方式的终端示意图;FIG. 10 is a schematic diagram of a terminal in a preferred implementation manner of
图11本发明实施例4一个优选实施方式的电路结构示意图。FIG. 11 is a schematic diagram of the circuit structure of a preferred implementation manner of
附图标记列表List of reference signs
100:终端;110:处理模块;111:处理芯片;112:随机存储器;113:只读存储器;120:第一加速度传感组件;130:温度传感组件;140:惯性测量传感组件;150:倾角传感组件;160:第二加速度传感组件;161:第二加速度传感器;162:滤波器;163:电压跟随器;164:高速ADC。100: terminal; 110: processing module; 111: processing chip; 112: random access memory; 113: read-only memory; 120: first acceleration sensing component; 130: temperature sensing component; 140: inertial measurement sensing component; 150 : tilt sensor assembly; 160: second acceleration sensor assembly; 161: second acceleration sensor; 162: filter; 163: voltage follower; 164: high-speed ADC.
具体实施方式Detailed ways
下面结合附图1至11进行详细说明。A detailed description will be given below in conjunction with FIGS. 1 to 11 .
随着传感器技术的发展,越来越多的传感器被使用。但传感器技术功能单一。在需要采集多种数据的情况下,通常采用设置多种传感器的方式或对一种传感器采集的数据进行数学分析得到多种数据。在机械故障诊断及预测性维护领域需要拥有振动数据采集功能的传感器,分析机械设备的高频振动加速度数据。在地质灾害监测及预警领域需要拥有轨迹数据采集及振动数据采集功能的传感器,分析泥石流、崩塌、滑坡等运动,计算岩石或泥土的振动幅度、滑动幅度,分析危险数据。在海洋灾害监测及预警领域需要拥有轨迹数据采集功能的传感器,分析海洋浪高数据。在土木工程结构安全监测领域需要拥有振动数据采集、姿态数据采集、轨迹数据采集功能的传感器,分析土木结构安全性,如桥梁振动分析,建筑物危墙倾斜监测。在输电线工程安全监测及预警领域需要拥有姿态数据采集、轨迹数据采集功能的传感器,分析电力铁塔倾斜、电力线椭圆舞动,检测电力铁塔,电力线舞动的危险情况。本发明通过对电路结构进行设计将多种传感器融合到一个终端上,使得在需要采集多种数据的情况下,仅需要设置一个终端便可以实现多种数据的采集。本发明提供的终端,能在机械故障诊断及预测性维护、地质灾害监测及预警、海洋灾害监测及预警、土木工程结构安全监测及预警、输电线路工程安全监测及预警等行业中解决物体的振动、轨迹、姿态分析问题。With the development of sensor technology, more and more sensors are used. But sensor technology has a single function. When multiple kinds of data need to be collected, multiple kinds of data are usually obtained by setting multiple sensors or by mathematically analyzing the data collected by one sensor. In the field of mechanical fault diagnosis and predictive maintenance, sensors with vibration data acquisition function are needed to analyze the high-frequency vibration acceleration data of mechanical equipment. In the field of geological disaster monitoring and early warning, sensors with trajectory data acquisition and vibration data acquisition functions are needed to analyze movements such as debris flows, collapses, and landslides, calculate the vibration amplitude and sliding amplitude of rocks or soil, and analyze hazard data. In the field of marine disaster monitoring and early warning, sensors with trajectory data collection function are needed to analyze ocean wave height data. In the field of civil engineering structural safety monitoring, sensors with vibration data collection, attitude data collection, and trajectory data collection functions are needed to analyze the safety of civil engineering structures, such as bridge vibration analysis, and building dangerous wall tilt monitoring. In the field of power transmission line engineering safety monitoring and early warning, sensors with the functions of attitude data collection and trajectory data collection are needed to analyze the inclination of power towers and elliptical galloping of power lines, and to detect the dangerous situation of power towers and galloping power lines. The invention integrates various sensors into one terminal by designing the circuit structure, so that in the case of needing to collect various data, only one terminal needs to be set to realize the acquisition of various data. The terminal provided by the invention can solve the vibration of objects in industries such as mechanical fault diagnosis and predictive maintenance, geological disaster monitoring and early warning, marine disaster monitoring and early warning, civil engineering structure safety monitoring and early warning, power transmission line engineering safety monitoring and early warning, etc. , trajectory, attitude analysis problems.
本发明实现同时进行振动分析、高精度轨迹分析和高精度姿态分析的原理是设计一种融合多传感组件的电路结构,可以包括第一加速度传感组件、惯性测量传感组件和倾角传感组件。每个传感组件均与处理模块连接,当被检测设备产生数据时,比如检测到设备震动,振动传感器便会产生一个信号通知处理模块,处理模块唤醒相应传感器采集数据,并将采集数据发送给数据终端检测。The principle of the present invention to realize simultaneous vibration analysis, high-precision trajectory analysis and high-precision attitude analysis is to design a circuit structure that integrates multi-sensing components, which can include a first acceleration sensing component, an inertial measurement sensing component and an inclination sensor. components. Each sensing component is connected to the processing module. When the detected device generates data, such as vibration of the device is detected, the vibration sensor will generate a signal to notify the processing module. The processing module wakes up the corresponding sensor to collect data and sends the collected data to Data terminal detection.
实施例1Example 1
在机械故障诊断及预测性维护、地质灾害监测及预警、海洋灾害监测及预警、土木工程结构安全监测及预警、输电线路工程安全监测及预警等行业中都需要传感器解决物体的振动、轨迹、姿态分析问题。目前现有技术用一件传感器同时测量物体振动、轨迹、姿态(静态倾角)参数的方法有以下两种:In mechanical fault diagnosis and predictive maintenance, geological disaster monitoring and early warning, marine disaster monitoring and early warning, civil engineering structure safety monitoring and early warning, transmission line engineering safety monitoring and early warning and other industries, sensors are needed to solve the vibration, trajectory, attitude of objects. analyse problem. At present, there are two methods for simultaneously measuring the vibration, trajectory, and attitude (static inclination) parameters of an object with a single sensor:
a.一种是采用加速度传感器,可以计算物体的振动与物体的倾角(对比重力加速度分析),同时采用加速度数据可以通过数学积分计算每个轴的位移量。a. One is to use an acceleration sensor, which can calculate the vibration of the object and the inclination of the object (compared to the analysis of gravitational acceleration). At the same time, the acceleration data can be used to calculate the displacement of each axis through mathematical integration.
b.另一种是通过将几款完整的传感器设备整机组合在一起实现对物体振动、轨迹、姿态(静态倾角)参数的同时测量,例如将惯性测量传感器与加速度传感器组合在一起,加速度传感器测量物体振动与姿态,惯性测量传感器测量物体的轨迹运动。b. The other is to measure the vibration, trajectory, and attitude (static inclination) parameters of objects at the same time by combining several complete sensor devices, such as combining inertial measurement sensors and acceleration sensors, acceleration sensors Measure the vibration and attitude of the object, and the inertial measurement sensor measures the trajectory motion of the object.
综上现有技术存在的缺陷如下:To sum up, the defects existing in the prior art are as follows:
1.现有技术采用一个单独的加速度传感器,无法满足物体振动,高精度轨迹分析,高精度姿态分析,三种不同场合的应用。1. The existing technology uses a single acceleration sensor, which cannot meet the application of object vibration, high-precision trajectory analysis, high-precision attitude analysis, and three different occasions.
2.现有技术采用将多种不同的传感器组合在一起的方式,导致系统功耗较高且成本,在物体运动的时候传感器与传感器之间因物理因素存在一定的安装偏差,数据的轴向难以对齐。2. The existing technology adopts a method of combining a variety of different sensors, which leads to high system power consumption and cost. When the object is moving, there is a certain installation deviation between the sensor and the sensor due to physical factors, and the axial direction of the data. Difficult to align.
3.现有技术采用将多种不同的传感器组合在一起的方式,安装费时费力,运营成本高,数据不易统一管理。3. The prior art adopts a method of combining a variety of different sensors, which is time-consuming and labor-intensive in installation, high in operating cost, and difficult to manage in a unified manner.
4.现有传感器功能单一,只能直接测量振动、轨迹、姿态的其中一种。4. The existing sensor has a single function and can only directly measure one of vibration, trajectory and attitude.
现有的传感终端技术功能单一,只能测量振动、轨迹、姿态、温度、湿度、气压、气体、风速、声波和光照其中的一种数据。针对上述不足,本实施例公开了一种融合多传感组件的终端。本实施例可以用于传感振动、轨迹、姿态、温度、湿度、气压、气体、风速、声波和光照的传感器。优选地,本发明提供的终端内部设置有融合多传感组件的电路结构,该电路结构可以集成振动传感器、轨迹传感器和姿态传感器。本发明能够同时测量物体振动、轨迹、姿态(静态倾角)的参数。如图1所示是本实施例终端100的一个优选实施方式示意图。本发明提供一种终端100可以包括处理模块110、第一加速度传感组件120、温度传感组件130、惯性测量传感组件140、倾角传感组件150和第二加速度传感组件160。The existing sensor terminal technology has a single function, and can only measure one of the data of vibration, trajectory, attitude, temperature, humidity, air pressure, gas, wind speed, sound wave and light. In view of the above deficiencies, this embodiment discloses a terminal that integrates multi-sensing components. This embodiment can be used for sensors that sense vibration, trajectory, attitude, temperature, humidity, air pressure, gas, wind speed, sound waves, and light. Preferably, the terminal provided by the present invention is provided with a circuit structure integrating multi-sensing components, and the circuit structure can integrate a vibration sensor, a trajectory sensor and an attitude sensor. The present invention can simultaneously measure the parameters of object vibration, trajectory and attitude (static inclination). FIG. 1 is a schematic diagram of a preferred implementation manner of the terminal 100 in this embodiment. The present invention provides a terminal 100 that may include a
优选地,终端100配置有处理模块110。处理模块110主要由处理芯片111、随机存储器112和只读存储器113组成。处理模块110通过通信协议接口接收到传感组件发送的数据,从而对接收到的数据进行处理。图2所示的是处理模块110的处理芯片111的电路结构示意图。优选地,处理芯片111可以是STM32F446ZET6。优选地,随机存储器112可以是SDRAM。优选地,只读存储器113可以是FLASH。优选地,通信协议接口可以是SPI通信协议接口和/或I/O接口。Preferably, the terminal 100 is configured with a
优选地,终端100配置有第一加速度传感组件120。第一加速度传感组件120通过通信协议接口与处理模块110连接。第一加速度传感组件120将测量到的振动数据通过通信协议接口传输给处理模块110。优选地,通信协议可以是SPI通信协议。优选地,第一加速度传感组件120至少包括第一加速度传感器。优选地,第一加速度传感器可以是MEMS高频加速度传感器。图3是一个优选地第一加速度传感组件120电路示意图。优选地,MEMS高频加速度传感器采用高频加速度传感器KX132。此传感器专门针对于高频振动分析设计,传感器输出频率最高达到25.6KHz,输出带宽最高达到8.2KHz,相比于传统的加速度传感器,本发明使用的高频加速度传感器测量高频振动效果更好,通过传感器的加速度信号分析振动频率的准确度更高。Preferably, the terminal 100 is configured with a first
优选地,终端100配置有温度传感组件130。温度传感组件130通过通信协议接口与处理模块110连接。温度传感组件130将测量到的温度数据通过通信协议接口传输给处理模块110。优选地,通信协议接口可以是I/F接口。图4是一个优选地温度传感组件电路示意图。优选地,温度传感组件130可以是MEMS温度传感器。优选地,MEMS温度传感器采用NST1001。NST1001具有脉冲计数型数字输出以及在宽温度范围内高精度的特性。NST1001可直接与处理模块110连接使用,使得终端在保障测量精度的同时降低开销。NST1001器件在–50℃至150℃的温度范围内支持±0.5℃的最大测量精度,同时具有极高的分辨率(0.0625℃),在使用中无需借助系统校准或软硬件补偿。Preferably, the terminal 100 is configured with a
优选地,终端100配置有惯性测量传感组件140。惯性测量传感组件140通过通信协议接口与处理模块110连接。惯性测量传感组件140将测量到的轨迹数据通过通信协议接口传输给处理模块110。优选地,通信协议可以是SPI通信协议。图5是一个优选地惯性测量传感组件电路示意图。优选地,惯性测量传感组件140可以是MEMS惯性测量传感器。优选地,MEMS惯性测量传感器采用6轴传感器BMI085。此6轴传感器集成了加速度与角速度传感器,加速度噪声低于角速度噪声低于 本发明使用6轴传感器独立分析物体的运动轨迹,角速度与加速度的轴向在芯片出厂时已校准,运动轨迹分析准确度更高。Preferably, the terminal 100 is configured with an inertial
优选地,终端100配置有倾角传感组件150。倾角传感组件150通过通信协议接口与处理模块110连接。倾角传感组件150将测量到的姿态数据通过通信协议接口传输给处理模块110。优选地,通信协议可以是SPI通信协议。图6是一个优选地倾角传感组件电路示意图。优选地,倾角传感组件150可以是MEMS倾角传感器。优选地,MEMS倾角传感器采用倾角传感器SCL3300-D01。测量的角度精度达到0.0055°,噪声低于0.001°√Hz,传感器内部经过校准,比使用传统的加速度传感器计算的准确度更高。Preferably, the terminal 100 is configured with an
优选地,终端100配置有第二加速度传感组件160。第二加速度传感组件160通过通信协议接口与处理模块110连接。第二加速度传感组件160将测量到的振动数据通过通信协议接口传输给处理模块110。优选地,通信协议可以是SPI通信协议。第二加速度传感组件160至少由第二加速度传感器161、滤波器162、电压跟随器163和高速ADC164组成。优选地,第二加速度传感器161可以是MEMS-IEPE高频加速度传感器。优选地,MEMS-IEPE高频加速度传感器采用加速度传感器ADXL100X。第二加速度传感器161输出模拟信号,经过滤波器162,电压跟随器163,高速ADC164采样,输出至处理模块110处理信号。Preferably, the terminal 100 is configured with a second
图7是一个优选地第二加速度传感组件160电路示意图。优选地,第二加速度传感组件160电路至少包括第二加速度传感器161、滤波器162、电压跟随器163和高速ADC164。如图7所示,第二加速度传感器161经过滤波器162,电压跟随器163后,通过高速ADC164采样第二加速度传感器161的电压信号,再通过SPI总线连至处理模块110,实现对第二加速度传感器161电压信号采集,第二加速度传感组件160系统高度集成。优选地,第二加速度传感器161可以是ADXL100X系列MEMS-IEPE芯片。优选地,滤波器162可以是带限滤波器。优选地,带限滤波器电路主要由运算放大器和至少一个电阻以及至少一个电容组成。优选地,电压跟随器163由至少两个运算放大器组成。优选地,运算放大器可以是OPA4325。优选地,高速ADC芯片可以是MCP3561。ADXL100X芯片在供电电压为5V的情况下噪声最低。为了提高第二加速度传感组件160的数据采集准确度,本实施例将系统供电DC转DC到5V后给ADXL100X供电。MEMS-IEPE芯片后级接入带限滤波器,增加传感器的高频响应的准确度。高速ADC164单元,供电为3V3。通过带限滤波器电路将放大器的输出经过电阻分压后输出到电压跟随器使得5V信号线性缩小到3V3范围,经过电压跟随器163后,MEMS-IEPE芯片信号的阻抗降低,使得高速ADC164采样更加准确。FIG. 7 is a schematic circuit diagram of a preferred second
优选地,第一加速度传感组件120、惯性测量传感组件140、倾角传感组件150和第二加速度传感组件160均采用SPI端口传输数据。含有加速度计的传感组件采用相同的通信协议。优选地,通讯协议可以是SPI通讯协议。Preferably, the first
优选地,本发明对于kx132加速度传感器采用SPI端口传输数据。优选地,本发明将与kx132加速度传感器连接的SPI端口的通信速度设置为10MHZ,避免因传感器采样率设置的过高而通信速度过低导致数据溢出的情况发生。Preferably, the present invention uses the SPI port to transmit data for the kx132 acceleration sensor. Preferably, the present invention sets the communication speed of the SPI port connected to the kx132 accelerometer to 10MHZ, so as to avoid the situation of data overflow caused by too high sensor sampling rate setting and too low communication speed.
优选地,考虑到终端100的功耗问题,每个传感组件配置为在使用时才会工作,未使用时均保持关闭状态。此方法未采用常规的mos管控制电源通断方式,而是通过I/O口的电流来驱动,这样在降低功耗的同时有进一步减小了体积。Preferably, in consideration of the power consumption of the terminal 100, each sensing component is configured to work only when it is in use, and is kept off when not in use. This method does not use the conventional MOS tube to control the on-off mode of the power supply, but is driven by the current of the I/O port, which further reduces the size while reducing the power consumption.
优选地,第一加速度传感组件120在采集的数据超出预设阈值的情况下,能够产生中断将处于休眠状态的处理模块110唤醒。处理模块110响应于第一加速度传感组件120的唤醒中断,打开第二加速度传感组件160进行数据采集。优选地,终端100的处理模块110还可以唤醒终端100上融合的包括惯性测量传感组件140、倾角传感组件150在内的其他传感组件。Preferably, when the collected data exceeds a preset threshold, the first
实施例2Example 2
本实施例公开了一种融合多传感组件的电路结构。本实施例的电路结构至少包括第一加速度传感组件120、惯性测量传感组件140和倾角传感组件150。This embodiment discloses a circuit structure of a fusion multi-sensing component. The circuit structure of this embodiment at least includes a first
图8是本发明提供的一种融合多传感组件的电路结构的一个优选实施方式的示意图。FIG. 8 is a schematic diagram of a preferred embodiment of the circuit structure of a fusion multi-sensing assembly provided by the present invention.
图8所示第一加速度传感组件120、惯性测量传感组件140和倾角传感组件150设置在同一电路板上。传感组件需要安装在远离周围的机械安装孔的位置,避免外部的应力传递到传感组件上。三种传感组件按照轴对齐的方式摆放,便于数据处理时保持数据对齐,实现高精度的数据融合。As shown in FIG. 8 , the first
优选地,在只需要对物体进行振动分析的情况下,电路板上可只设置第一加速度传感组件120。第一加速度传感组件120安装的位置远离周围的机械安装孔,减少外部的应力传递到第一加速度传感组件120上。Preferably, only the first
优选地,在只需要对物体进行运动轨迹分析的情况下,电路板上可只设置惯性测量传感组件140。优选地,本发明为减少外部的应力传递到惯性测量传感组件140上,惯性测量传感组件140居中放置。Preferably, only the inertial
优选地,在只需要对物体进行姿态分析的情况下,电路板上可只设置倾角传感组件150。优选地,倾角传感组件150的放置位置设置在远离电路板的边缘安装孔的位置,从而能够减少外部的应力传递到倾角传感组件150上。Preferably, only the
优选地,在需要对物体进行振动分析和运动轨迹分析的情况下,电路板上可以只设置第一加速度传感组件120和惯性测量传感组件140。第一加速度传感组件120和惯性测量传感组件140按照轴对齐的方式摆放在电路板上远离安装孔的位置,从而避免安装孔处的应力传递到第一加速度传感组件120和惯性测量传感组件140上。第一加速度传感组件120和惯性测量传感组件140按照轴对齐的方式设置,进而采集到的数据保持数据对齐,实现高精度的数据融合。Preferably, in the case where vibration analysis and motion trajectory analysis of the object are required, only the first
优选地,在需要对物体进行振动分析和运动轨迹分析并且对运动轨迹分析精度要求较低的情况下,电路板上可以只设置第一加速度传感组件120。第一加速度传感组件120能够计算物体的振动,同时通过加速度数据可以通过数学积分计算每个轴的位移量,进而对物体的运动轨迹进行分析。第一加速度传感组件120安装在电路板的中部远离边缘的位置能够避免受到边缘安装孔处的应力。Preferably, only the first
优选地,在需要对物体进行振动分析和姿态分析的情况下,电路板上至少设置第一加速度传感组件120和倾角传感组件150。第一加速度传感组件120和倾角传感组件150在电路板上满足轴对齐。第一加速度传感组件120和倾角传感组件150放置在电路板中部。第一加速度传感组件120和倾角传感组件150远离电路板上的安装孔,从而能够避免因受到安装孔处的应力而影响传感组件的数据采集。第一加速度传感组件120和倾角传感组件150在电路板上轴对齐。第一加速度传感组件120和倾角传感组件150采集的数据在数据处理时保持数据对齐,实现高精度的数据融合。Preferably, when vibration analysis and attitude analysis of an object are required, at least a first
优选地,在需要对物体进行振动分析和姿态分析并且对运动轨迹分析精度要求较低的情况下,电路板上可以只设置第一加速度传感组件120。第一加速度传感组件120能够计算物体的振动,同时通过对比重力加速度分析得到物体的姿态。第一加速度传感组件120的安装位置远离安装孔,从而避免第一加速度传感组件120受到边缘安装孔处的应力。Preferably, only the first
优选地,在需要对物体进行姿态分析和运动轨迹分析的情况下,电路板上设置有倾角传感组件150和惯性测量传感组件140。倾角传感组件150和惯性测量传感组件140安装的位置远离周围的机械安装孔,减少外部的应力传递到倾角传感组件150和惯性测量传感组件140。倾角传感组件150和惯性测量传感组件140保持轴对齐,便于数据处理时保持数据对齐,实现高精度的数据融合。Preferably, in the case where attitude analysis and motion trajectory analysis of an object are required, an
优选地,在需要对物体进行姿态分析和运动轨迹分析的情况下,电路板上可只配置惯性测量传感组件140。通过数学解算实现对物体的姿态分析和运动轨迹分析。惯性测量传感组件140安装在远离电路板安装孔的位置,位于电路板中部,从而能够避免因受到安装孔处的应力而影响传感组件的数据采集。Preferably, in the case where attitude analysis and motion trajectory analysis of the object are required, only the inertial
优选地,在需要对物体进行振动分析、运动轨迹分析和姿态分析并且对数据采集精度要求较低的情况下,电路板上可只配置第一加速度传感组件120。第一加速度传感组件120远离电路板上的安装孔,从而能够避免因受到安装孔处的应力而影响传感组件的数据采集。Preferably, only the first
优选地,在需要对物体进行振动分析、高精度运动轨迹分析和高精度姿态分析的情况下,第一加速度传感组件120、惯性测量传感组件140和倾角传感组件150同时设置在电路板上。传感组件需要安装在远离周围的机械安装孔的位置,避免外部的应力传递到传感组件上。三种传感组件按照轴对齐的方式摆放。同时在出厂的时候将传感器校准好,保证传感器的轴向对齐在一定的误差范围内。传感组件采集的数据在数据处理时保持数据对齐,实现高精度的数据融合。Preferably, in the case where vibration analysis, high-precision motion trajectory analysis and high-precision attitude analysis of the object are required, the first
根据实际使用需求,电路板上可只设置第一加速度传感组件120、惯性测量传感组件140和倾角传感组件150三种传感组件中的一种或两种,也可以全部设置在电路板上。According to actual use requirements, only one or two of the three sensing components of the first
优选地,第一加速度传感组件120可以是MEMS高频加速度传感器。优选的,惯性测量传感组件140可以是MEMS惯性测量传感器。优选的,倾角传感组件150可以是MEMS倾角传感器。如图8所示,在一个电路板上集成MEMS高频加速度传感器(即第一加速度传感器)、MEMS惯性测量传感器和MEMS倾角传感器。电路板的尺寸较小。优选地,整个电路板尺寸约40×27.7mm。传感器需要安装在远离周围的机械安装孔的位置,避免外部的应力传递到传感器上。三种传感器按照轴对齐的方式摆放,便于数据处理时保持数据对齐,实现高精度的数据融合。Preferably, the first
优选地,第一加速度传感组件120、惯性测量传感组件140和倾角传感组件150能够设置在单独的电路板上。在实际使用时再将需要的前述电路板安装的一块电路板上。Preferably, the first
优选地,本实施例所采用的第一加速度传感组件120、惯性测量传感组件140和倾角传感组件150及其连接的零部件与实施例1相同,在此不再赘述。Preferably, the first
实施例3Example 3
本实施例是对实施例1、2及其结合的进一步改进,重复的内容不再赘述。This embodiment is a further improvement of
优选地,如图9所示为只安装了配置有第二加速度传感组件160的电路板。第二加速度传感组件160将测量到的振动数据通过通信协议接口传输给处理模块110。优选地,通信协议可以是SPI通信协议。第二加速度传感组件160至少由第二加速度传感器161、滤波器162、电压跟随器163和高速ADC164组成。优选地,第二加速度传感器161可以是MEMS-IEPE高频加速度传感器。优选地,MEMS-IEPE高频加速度传感器采用ADXL100X系列MEMS IEPE芯片。第二加速度传感器161输出模拟信号,经过滤波器162,电压跟随器163,高速ADC164采样,输出至处理模块110处理信号。电路板尺寸较小。优选地,整个电路板尺寸约40×27.7mm。传感器安装在远离周围的机械安装孔的位置,避免外部的应力传递到传感器上。传感器居中放置,背后没有安装器件,保证传感器受到外力的干扰最低。Preferably, as shown in FIG. 9 , only the circuit board configured with the second
优选地,本实施例所采用的第二加速度传感组件160及其连接的零部件与实施例1和实施例2相同,在此不再赘述。Preferably, the second
实施例4Example 4
本实施例是对实施例1、2、3及其结合的进一步改进,重复的内容不再赘述。This embodiment is a further improvement to
现有技术关于振动信号的测量有2种方案,一是使用单一的ACC加速度计,但单一的ACC加速度计只能测量直流的频率在10KHz以内的振动信号,此方案缺点在于无法测量高频振动;二是使用IEPE加速度计,由于IEPE自身限制,此方案只能测量交流、高频(不低于10KHz)的单向振动。无论哪种方案都存在局限性。想要同时测量交流、直流、高频、低频、多轴加速度就要在被测设备上同时安装两种传感器。本实施例提供一种可以用于振动测量的终端100。本实施例的终端100只一套设备上实现ACC加速度计和IEPE加速度计二者的优点,实现既能测交流信号又能测直流,既能测低频又能测高频,同时测量方向不单一。本实施例的终端100提供对电路结构进行设计将多个传感器融合在一块电路板上并且使得传感器免受外部的应力、电磁等干扰。There are two solutions for the measurement of vibration signals in the prior art. One is to use a single ACC accelerometer, but a single ACC accelerometer can only measure vibration signals with a DC frequency within 10KHz. The disadvantage of this solution is that it cannot measure high-frequency vibration. The second is to use the IEPE accelerometer. Due to the limitation of IEPE itself, this solution can only measure the unidirectional vibration of AC and high frequency (not less than 10KHz). Either option has limitations. If you want to measure AC, DC, high frequency, low frequency, and multi-axis acceleration at the same time, it is necessary to install two sensors on the device under test at the same time. This embodiment provides a terminal 100 that can be used for vibration measurement. The
参见图10,本实施例的终端100可以包括第一加速度传感组件120,第二传感组件160和处理模块110。本发明第一加速度传感组件120和第二加速度传感组件160通过通信协议接口与处理模块110连接。优选地,第一加速度传感组件120至少包括第一加速度传感器,第一加速度传感器能够直接将采集的直流多轴向数据通过通信协议接口传输至处理模块110进行处理。优选地,第一加速度传感组件120的第一加速度传感器不会进入休眠状态。第一加速度传感器保持对目标对象的实时数据采集。优选地,第一加速度传感器设置有至少包括第一阈值和大于第一阈值的第二阈值两个数据采集阈值。当第一加速度传感器采集到的数据低于第一阈值时,第一加速度传感器保持对目标对象的实时数据采集,但不向处理模块110发送唤醒中断,处理模块110保持休眠状态。当第一加速度传感器采集到的数据高于第一阈值但低于第二阈值时,第一加速度传感器在保持对目标对象进行实时数据采集的同时向处理模块110发送“第一唤醒中断”,处理模块110响应于“第一唤醒中断之收到”从休眠状态进入工作状态,进入工作状态的处理模块110对通过通信协议接口接收到的第一加速度传感器采集数据进行处理。当第一加速度传感器采集到的数据高于第二阈值时,第一加速度传感器在保持对目标对象进行实时数据采集的同时向处理模块110发送“第二唤醒中断”,处理模块110响应于“第二唤醒中断之收到”从休眠状态进入工作状态,进入工作状态的处理模块110通过运行预设程序唤醒终端100融合的多种传感组件中的第二加速度传感组件160,由较第一加速度传感组件120(即第一加速度传感器)具有更高带宽能够采集更高频率数据的第二加速度传感组件160对目标对象进行数据采集。Referring to FIG. 10 , the
优选地,第二加速度传感组件160至少包括第二加速度传感器161、滤波器162、电压跟随器163和高速ADC164。第二加速度传感器161将采集到的采集交流单轴向的数据需依次经过滤波器162、电压跟随器163和高速ADC164后通过通信协议接口传输至处理模块110进行处理。优选地,在初次安装融合多种传感组件的终端100对目标对象进行数据采集时第二加速度传感组件160处于休眠状态。当且仅当多种传感组件的终端100中设置的第一加速度传感组件120向终端100的处理模块110发送需要唤醒第二加速度传感组件160指令时,处理模块110才会唤醒第二加速度传感组件160进行数据采集并对通过通信协议接口接收到的第二加速度传感组件160的采集数据进行处理。Preferably, the second
第一加速度传感组件120和第二加速度传感组件160按照彼此轴向平齐使得采集到的数据对齐的方式设置于同一板体,便于处理模块110对第一加速度传感组件120和第二加速度传感组件160采集的数据进行处理。具体地,参见图11,第一加速度传感组件120的第一加速度传感器和第二加速度传感组件160的第二加速度传感器161按照轴向对齐的方式设置在同一板体上。优选地,第一加速度传感器可以是是MEMS高频加速度传感器,具体型号可以是KX132。优选地,第二加速度传感器161可以是ADXL100X系列MEMS-IEPE芯片。The first
优选地,第一加速度传感组件120和第二加速度传感组件160通过轴对齐的方式设置在同一板体后,第一加速度传感组件120和第二加速度传感组件160在进行数据采集时至少有一个基准参数是相同的,便于终端100的处理模块110对来自不同传感组件的数据进行融合处理。优选地,第一加速度传感组件120和第二加速度传感组件160的核心器件都包括加速度计。本发明的终端100可以将多个以加速度计为核心器件的传感组件按照轴对齐的方式设置在同一电路结构的板体上,使得众传感组件的至少一个参数(例如位置高度、相对坐标等)相同,从而能够减少终端100的处理模块110在对众传感组件所采集数据进行融合处理时所需要处理的参数,实现快速处理。Preferably, after the first
优选地,第一加速度传感组件120和第二加速度传感组件160设置在板体上远离周围机械安装孔的位置,从而避免外部的应力传递到传感器上。本发明提供的融合多种传感组件的终端100将各传感组件传居中靠内放置在电路板上,避免因对终端100进行封装使电路板产生的应力传递到电路板上放置传感组件导致传感组件的采集数据结果不准确。Preferably, the first
优选地,第一加速度传感组件120、第二加速度传感组件160配置为通过处理模块110的I/O口的电流来驱动以控制开启/关闭。融合多种传感组件的终端100的处理模块110在被第一加速度传感组件120唤醒后可以通过运行预设程序使得处理模块110通过与第二加速度传感组件160的I/O口向第二加速度传感组件160供电,从而开启第二加速度传感组件160使得第二加速度传感组件160进行数据采集。Preferably, the first
优选地,处理模块110包括处理芯片111、随机存储器112和只读存储器113。处理模块110通过处理芯片111、随机存储器112和只读存储器113共同完成对终端100上融合的多种传感器所采集数据的处理。Preferably, the
优选地,第一加速度传感组件120能够采集的数据的频率低于第二加速度传感组件160能够采集的数据的频率。优选地,本发明的终端100通过融合第一加速度传感组件120和能够采集的更高频率数据的第二加速度传感组件160实现比单一传感组件更宽的频谱采集范围。本发明的终端融合了第一加速度传感组件120和第二加速度传感组件160二者互补,使得测量数据精度更高。第一加速度传感组件120利用第一加速度传感器可以测量3轴向、直流信号、频率为10KHz以内的振动信号,但是无法测量10KHz以上的振动信号。第二加速度传感组件160能够测量交流信号、单轴向、频率为10KHz以上的振动。本发明将两种加速度传感组件结合,完美的将二者优点结合,不仅应用广泛,而且可测量范围大大提高。Preferably, the frequency of data that can be collected by the first
需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。在全文中,“优选地”所引导的特征仅为一种可选方式,不应理解为必须设置,故此申请人保留随时放弃或删除相关优选特征之权利。本发明说明书包含多项发明构思,诸如“优选地”、“根据一个优选实施方式”或“可选地”均表示相应段落公开了一个独立的构思,申请人保留根据每项发明构思提出分案申请的权利。It should be noted that the above-mentioned specific embodiments are exemplary, and those skilled in the art can come up with various solutions inspired by the disclosure of the present invention, and these solutions also belong to the disclosure scope of the present invention and fall within the scope of the present invention. within the scope of protection of the invention. It should be understood by those skilled in the art that the description of the present invention and the accompanying drawings are illustrative rather than limiting to the claims. The protection scope of the present invention is defined by the claims and their equivalents. In the whole text, the features introduced by "preferably" are only an optional way, and should not be construed as a mandatory setting, so the applicant reserves the right to abandon or delete the relevant preferred features at any time. The description of the present invention contains multiple inventive concepts, such as "preferably", "according to a preferred embodiment" or "optionally" all indicate that the corresponding paragraph discloses a separate concept, and the applicant reserves the right to propose divisions according to each inventive concept the right to apply.
Claims (10)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2021104085225 | 2021-04-15 | ||
CN202110410058 | 2021-04-15 | ||
CN202110408406 | 2021-04-15 | ||
CN2021104084063 | 2021-04-15 | ||
CN2021104086069 | 2021-04-15 | ||
CN202110409915 | 2021-04-15 | ||
CN2021104100583 | 2021-04-15 | ||
CN202110408606 | 2021-04-15 | ||
CN202110408522 | 2021-04-15 | ||
CN2021104099158 | 2021-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115046578A true CN115046578A (en) | 2022-09-13 |
Family
ID=79466321
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211112754.7A Active CN115497255B (en) | 2021-04-15 | 2021-10-22 | Geological disaster monitoring and early warning system |
CN202111237598.2A Pending CN115046578A (en) | 2021-04-15 | 2021-10-22 | Circuit structure integrating multiple sensing assemblies and terminal comprising circuit structure |
CN202210935244.3A Pending CN115314853A (en) | 2021-04-15 | 2021-10-22 | Mechanical fault diagnosis and predictive maintenance system |
CN202211389350.2A Pending CN116017339A (en) | 2021-04-15 | 2021-10-22 | A Civil Engineering Structure Safety Monitoring and Early Warning System |
CN202211301220.9A Pending CN115665687A (en) | 2021-04-15 | 2021-10-22 | A marine disaster monitoring and early warning system |
CN202211545264.6A Pending CN116437307A (en) | 2021-04-15 | 2021-10-22 | A transmission line engineering safety monitoring and early warning system |
CN202111237684.3A Pending CN113964926A (en) | 2021-04-15 | 2021-10-22 | Multi-power management method and terminal |
CN202111237623.7A Pending CN115052255A (en) | 2021-04-15 | 2021-10-22 | General object motion analysis system based on intelligent motion sensing terminal |
CN202111237682.4A Pending CN114866973A (en) | 2021-04-15 | 2021-10-22 | A low-power waveform data acquisition method and terminal |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211112754.7A Active CN115497255B (en) | 2021-04-15 | 2021-10-22 | Geological disaster monitoring and early warning system |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210935244.3A Pending CN115314853A (en) | 2021-04-15 | 2021-10-22 | Mechanical fault diagnosis and predictive maintenance system |
CN202211389350.2A Pending CN116017339A (en) | 2021-04-15 | 2021-10-22 | A Civil Engineering Structure Safety Monitoring and Early Warning System |
CN202211301220.9A Pending CN115665687A (en) | 2021-04-15 | 2021-10-22 | A marine disaster monitoring and early warning system |
CN202211545264.6A Pending CN116437307A (en) | 2021-04-15 | 2021-10-22 | A transmission line engineering safety monitoring and early warning system |
CN202111237684.3A Pending CN113964926A (en) | 2021-04-15 | 2021-10-22 | Multi-power management method and terminal |
CN202111237623.7A Pending CN115052255A (en) | 2021-04-15 | 2021-10-22 | General object motion analysis system based on intelligent motion sensing terminal |
CN202111237682.4A Pending CN114866973A (en) | 2021-04-15 | 2021-10-22 | A low-power waveform data acquisition method and terminal |
Country Status (1)
Country | Link |
---|---|
CN (9) | CN115497255B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115342944A (en) * | 2022-09-15 | 2022-11-15 | 上海城建信息科技有限公司 | High temperature resistant multi-sensor fusion device and system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116524684A (en) * | 2023-04-11 | 2023-08-01 | 广西电网有限责任公司柳州供电局 | Disaster early-warning front-end device and disaster early-warning system |
CN116499461A (en) * | 2023-06-27 | 2023-07-28 | 中国科学院深海科学与工程研究所 | Marine animal behavior monitoring device and method |
CN118067191A (en) * | 2024-01-26 | 2024-05-24 | 成都理工大学 | Collapse disaster monitoring device and method based on unmanned aerial vehicle throwing technology |
CN118612680B (en) * | 2024-03-04 | 2025-01-28 | 广州宏憬电子科技有限公司 | A wireless distributed geological disaster data acquisition method and system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255962B1 (en) * | 1998-05-15 | 2001-07-03 | System Excelerator, Inc. | Method and apparatus for low power, micro-electronic mechanical sensing and processing |
CN102841371A (en) * | 2012-09-20 | 2012-12-26 | 中北大学 | Compound intelligent vibration sensor and vibration source test and location method |
CN103776448A (en) * | 2014-02-17 | 2014-05-07 | 刘超军 | Posture course reference system |
CN104316723A (en) * | 2014-10-21 | 2015-01-28 | 暨南大学 | Universal high-precision signal conditioning device for IEPE type acceleration sensor |
CN105632137A (en) * | 2014-10-29 | 2016-06-01 | 上海市特种设备监督检验技术研究院 | MEMS-based integrated scooter vibration data acquisition system |
CN207816340U (en) * | 2018-01-15 | 2018-09-04 | 蒋文荣 | Intelligent integrated sensor and articles from the storeroom detecting system |
CN110587603A (en) * | 2019-09-05 | 2019-12-20 | 北京工业大学 | Pose self-induction joint module motion control system based on multi-sensor data fusion |
CN111896098A (en) * | 2020-07-31 | 2020-11-06 | 河北工业大学 | A vibration signal embedded remote monitoring system |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2497692B1 (en) * | 2011-03-07 | 2013-03-06 | Autoliv Development AB | An airbag control arrangement |
CN103218031A (en) * | 2012-01-20 | 2013-07-24 | 宏碁股份有限公司 | Electronic device and sleep method |
CN202735788U (en) * | 2012-03-31 | 2013-02-13 | 广东电网公司电力科学研究院 | Wind generating set running state remote-monitoring and fault diagnosis system |
CN202887420U (en) * | 2012-08-22 | 2013-04-17 | 南京合一健康咨询服务有限公司 | Large-scale movement data acquisition system |
CN203217098U (en) * | 2013-04-16 | 2013-09-25 | 肖兰 | Low power consumption wireless rain detection device |
CN103228031A (en) * | 2013-05-02 | 2013-07-31 | 黄晓峰 | Low power consumption wireless data acquisition device |
CN103487600B (en) * | 2013-09-04 | 2015-12-09 | 杭州中瑞思创科技股份有限公司 | Wireless acceleration sensor device |
CN103713726B (en) * | 2014-01-08 | 2016-06-01 | 闽南师范大学 | A kind of SCM system with power-saving working mode |
CN204029140U (en) * | 2014-08-19 | 2014-12-17 | 中国十七冶集团有限公司 | Tower crane based on the ZigBee wireless technology monitoring device that topples over |
CN104267815B (en) * | 2014-09-25 | 2018-03-27 | 黑龙江节点动画有限公司 | Motion capture system and method based on inertia sensing technology |
JP6472328B2 (en) * | 2015-05-28 | 2019-02-20 | 三菱電機株式会社 | Disaster monitoring system, monitoring apparatus, sensor device, and disaster monitoring method |
CN105446328B (en) * | 2016-01-15 | 2017-12-12 | 东莞团诚自动化设备有限公司 | Generating set remote fault diagnosis and health monitoring systems and data capture method |
CN106253943B (en) * | 2016-08-12 | 2018-06-08 | 长江水利委员会长江科学院 | Sensor collector, network system and communication means based on LoRa technologies |
CN106840095A (en) * | 2016-12-23 | 2017-06-13 | 江西飞尚科技有限公司 | A kind of method that parallel multiple obliquity sensor chips improve inclinator certainty of measurement |
US11406288B2 (en) * | 2017-01-06 | 2022-08-09 | Philips Healthcare Informatics, Inc. | Activity monitoring via accelerometer threshold interrupt method |
CN207163500U (en) * | 2017-09-14 | 2018-03-30 | 广州粤建三和软件股份有限公司 | A kind of tall and big support shuttering safety monitoring system |
CN207460377U (en) * | 2017-10-12 | 2018-06-05 | 中傲智能科技(苏州)有限公司 | Low-power consumption based on Lora wireless transmissions shakes monitoring system |
CN107681765B (en) * | 2017-11-10 | 2024-11-29 | 常州欧迈斯新能源科技有限公司 | Solar direct-current energy storage power supply device and control method thereof |
CN108108007B (en) * | 2017-12-21 | 2019-11-19 | 维沃移动通信有限公司 | A processing method for reducing power consumption and a mobile terminal |
CN108460959A (en) * | 2018-04-09 | 2018-08-28 | 重庆甲虫网络科技有限公司 | A kind of building and geological disaster monitoring system based on low-power consumption Internet of Things |
CN208291429U (en) * | 2018-05-08 | 2018-12-28 | 西安交通大学 | A kind of ocean monitoring buoy system |
CN109443421A (en) * | 2018-09-13 | 2019-03-08 | 东南大学 | A kind of NB-IoT wireless humiture sensor |
TWI712878B (en) * | 2019-04-17 | 2020-12-11 | 美律實業股份有限公司 | Wearable device and power saving method for wearable device |
CN110126877B (en) * | 2019-05-21 | 2021-05-28 | 山东交通学院 | A railway track vibration monitoring system and method based on Internet of Things technology |
CN210128765U (en) * | 2019-06-20 | 2020-03-06 | 华电重工股份有限公司 | Noise on-line monitoring device and system |
KR102290850B1 (en) * | 2019-08-07 | 2021-08-19 | 주식회사 지오멕스소프트 | Multi-sensor data acquisition and spread devices and safety monitoring systems |
CN110650451B (en) * | 2019-09-20 | 2024-11-05 | 浙江同禾传感技术有限公司 | Wireless low-power sensing network system for geological disaster early warning and its use method |
CN110830943A (en) * | 2019-11-06 | 2020-02-21 | 湖南银河电气有限公司 | Equipment state monitoring system based on edge calculation and big data analysis |
CN110852512A (en) * | 2019-11-13 | 2020-02-28 | 杭州鲁尔物联科技有限公司 | Sea wave prediction system, method and equipment |
CN111090252A (en) * | 2019-12-11 | 2020-05-01 | 中建八局第二建设有限公司 | Engineering machinery attitude monitoring system based on big data of Internet of things |
CN111031595B (en) * | 2019-12-17 | 2022-07-05 | 北京必创科技股份有限公司 | Wireless dormancy control system and method |
CN111275931B (en) * | 2019-12-24 | 2022-03-18 | 湖北民族大学 | A method and system for early warning of dangerous rock mass fracture |
CN111031069A (en) * | 2019-12-26 | 2020-04-17 | 广东省智能制造研究所 | Vibration acquisition and analysis terminal with edge calculation function and method |
CN111243241A (en) * | 2020-03-10 | 2020-06-05 | 山东省地质矿产勘查开发局八〇一水文地质工程地质大队 | Landslide early warning system |
CN111193812A (en) * | 2020-03-21 | 2020-05-22 | 上海骥丁智能科技有限公司 | A detection system and method capable of intelligently analyzing motion trajectory |
CN111578902A (en) * | 2020-05-08 | 2020-08-25 | 哈尔滨理工大学 | A geological disaster detection device |
CN111885535A (en) * | 2020-07-28 | 2020-11-03 | 重庆甲虫网络科技有限公司 | Low-power-consumption Internet of things monitoring system applied to geological disaster group survey and group defense |
-
2021
- 2021-10-22 CN CN202211112754.7A patent/CN115497255B/en active Active
- 2021-10-22 CN CN202111237598.2A patent/CN115046578A/en active Pending
- 2021-10-22 CN CN202210935244.3A patent/CN115314853A/en active Pending
- 2021-10-22 CN CN202211389350.2A patent/CN116017339A/en active Pending
- 2021-10-22 CN CN202211301220.9A patent/CN115665687A/en active Pending
- 2021-10-22 CN CN202211545264.6A patent/CN116437307A/en active Pending
- 2021-10-22 CN CN202111237684.3A patent/CN113964926A/en active Pending
- 2021-10-22 CN CN202111237623.7A patent/CN115052255A/en active Pending
- 2021-10-22 CN CN202111237682.4A patent/CN114866973A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255962B1 (en) * | 1998-05-15 | 2001-07-03 | System Excelerator, Inc. | Method and apparatus for low power, micro-electronic mechanical sensing and processing |
CN102841371A (en) * | 2012-09-20 | 2012-12-26 | 中北大学 | Compound intelligent vibration sensor and vibration source test and location method |
CN103776448A (en) * | 2014-02-17 | 2014-05-07 | 刘超军 | Posture course reference system |
CN104316723A (en) * | 2014-10-21 | 2015-01-28 | 暨南大学 | Universal high-precision signal conditioning device for IEPE type acceleration sensor |
CN105632137A (en) * | 2014-10-29 | 2016-06-01 | 上海市特种设备监督检验技术研究院 | MEMS-based integrated scooter vibration data acquisition system |
CN207816340U (en) * | 2018-01-15 | 2018-09-04 | 蒋文荣 | Intelligent integrated sensor and articles from the storeroom detecting system |
CN110587603A (en) * | 2019-09-05 | 2019-12-20 | 北京工业大学 | Pose self-induction joint module motion control system based on multi-sensor data fusion |
CN111896098A (en) * | 2020-07-31 | 2020-11-06 | 河北工业大学 | A vibration signal embedded remote monitoring system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115342944A (en) * | 2022-09-15 | 2022-11-15 | 上海城建信息科技有限公司 | High temperature resistant multi-sensor fusion device and system |
Also Published As
Publication number | Publication date |
---|---|
CN115497255B (en) | 2024-02-02 |
CN116017339A (en) | 2023-04-25 |
CN113964926A (en) | 2022-01-21 |
CN114866973A (en) | 2022-08-05 |
CN115314853A (en) | 2022-11-08 |
CN116437307A (en) | 2023-07-14 |
CN115497255A (en) | 2022-12-20 |
CN115665687A (en) | 2023-01-31 |
CN115052255A (en) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115046578A (en) | Circuit structure integrating multiple sensing assemblies and terminal comprising circuit structure | |
CN110108279B (en) | A tower tilt measurement system and tilt calculation method | |
CN102507121B (en) | Building structure seismic damage assessment system and method based on wireless sensor network | |
CN104613923B (en) | A kind of deformation monitoring safety estimation system and appraisal procedure | |
CN110806193A (en) | Subway Tunnel Deformation Detection System | |
CN102411440A (en) | A wireless head-controlled mouse based on accelerometer and gyroscope sensors | |
WO2020228307A1 (en) | Fall detection method and apparatus, and wearable device | |
CN204255494U (en) | Bridge vibration monitoring device | |
CN202903327U (en) | A kind of debris flow geoacoustic monitoring device | |
CN104392504A (en) | Inspection and monitoring system and method as well as inspection system | |
CN103513296A (en) | Method for detecting initial posture and motion states of weather detecting sonde based on three-dimensional acceleration sensor | |
CN106338272A (en) | Testing device and testing method for measuring inclination angle of component | |
CN106223966A (en) | There is duct piece assembling machine spatial attitude measurement apparatus and the shield machine of inertial sensor | |
CN105737793A (en) | Roll angle measurement unit and measurement method | |
CN104121981A (en) | Remote wireless vibration monitoring device applied to offshore jacket ocean platform | |
CN106767763A (en) | Environment compensation device and method for plane attitude measurement sensor | |
CN207850389U (en) | It is tethered at the flight control system and its attitude angle device of ship | |
CN104748734B (en) | A kind of vehicle electronics height above sea level compass of compensation with angle | |
CN108051003B (en) | Personnel pose monitoring method and system | |
CN107063294A (en) | A kind of motion state detection system of elevating fire truck arm support | |
CN203687928U (en) | Dual-axis gradient testing device with high stability and high precision | |
CN107607119B (en) | Passive combined positioning device based on space environment magnetic field characteristics | |
CN206174952U (en) | Drilling deviational survey device | |
CN204649977U (en) | Seismic intensity self-operated measuring unit | |
CN115628801A (en) | Laser measuring device based on DataSocket communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |