CN115019935A - Nutritional decision method and system for sepsis patient - Google Patents
Nutritional decision method and system for sepsis patient Download PDFInfo
- Publication number
- CN115019935A CN115019935A CN202210543113.0A CN202210543113A CN115019935A CN 115019935 A CN115019935 A CN 115019935A CN 202210543113 A CN202210543113 A CN 202210543113A CN 115019935 A CN115019935 A CN 115019935A
- Authority
- CN
- China
- Prior art keywords
- patient
- nutrition
- auxiliary
- data
- energy metabolism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000016709 nutrition Nutrition 0.000 title claims abstract description 149
- 238000000034 method Methods 0.000 title claims abstract description 60
- 206010040047 Sepsis Diseases 0.000 title claims abstract description 33
- 230000035764 nutrition Effects 0.000 claims abstract description 107
- 230000037149 energy metabolism Effects 0.000 claims abstract description 62
- 235000016236 parenteral nutrition Nutrition 0.000 claims abstract description 18
- 230000006378 damage Effects 0.000 claims abstract description 17
- 238000011156 evaluation Methods 0.000 claims abstract description 17
- 230000009525 mild injury Effects 0.000 claims abstract description 6
- 230000009526 moderate injury Effects 0.000 claims abstract description 6
- 208000037974 severe injury Diseases 0.000 claims abstract description 6
- 230000009528 severe injury Effects 0.000 claims abstract description 6
- 230000002496 gastric effect Effects 0.000 claims abstract description 4
- 206010061172 Gastrointestinal injury Diseases 0.000 claims description 15
- 230000000284 resting effect Effects 0.000 claims description 15
- 238000003066 decision tree Methods 0.000 claims description 11
- 238000012549 training Methods 0.000 claims description 9
- 230000007661 gastrointestinal function Effects 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 5
- 210000004369 blood Anatomy 0.000 claims description 5
- 230000000004 hemodynamic effect Effects 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 230000036760 body temperature Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 230000035487 diastolic blood pressure Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 235000015097 nutrients Nutrition 0.000 claims description 2
- 230000000241 respiratory effect Effects 0.000 claims description 2
- 230000035488 systolic blood pressure Effects 0.000 claims description 2
- 230000000968 intestinal effect Effects 0.000 claims 2
- 230000000153 supplemental effect Effects 0.000 claims 2
- 230000029058 respiratory gaseous exchange Effects 0.000 claims 1
- 208000014674 injury Diseases 0.000 description 13
- 208000027418 Wounds and injury Diseases 0.000 description 12
- 230000008569 process Effects 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 201000010099 disease Diseases 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 235000018823 dietary intake Nutrition 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 230000004872 arterial blood pressure Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000007160 gastrointestinal dysfunction Effects 0.000 description 3
- 235000008935 nutritious Nutrition 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- 208000028399 Critical Illness Diseases 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 238000007707 calorimetry Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000002106 pulse oximetry Methods 0.000 description 2
- 230000036387 respiratory rate Effects 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 208000031648 Body Weight Changes Diseases 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 208000010718 Multiple Organ Failure Diseases 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 238000012084 abdominal surgery Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003339 best practice Methods 0.000 description 1
- 235000000332 black box Nutrition 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000004579 body weight change Effects 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000021196 dietary intervention Nutrition 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 208000026425 severe pneumonia Diseases 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/60—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Nutrition Science (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,具体涉及一种用于脓毒症患者的营养决策方法及系统。The invention relates to the field of computer technology, in particular to a nutritional decision-making method and system for sepsis patients.
背景技术Background technique
脓毒症是由细菌等病原微生物侵入机体引起的全身炎症反应综合征。是烧伤、创伤、休克、感染、大手术等临床急危重患者的严重并发症之一。是诱发脓毒性休克、多器官功能障碍综合征的重要因素,脓毒症病理机制复杂,涉及病原体侵入、炎性因子释放、凝血机制紊乱和微循环功能障碍导致组织代谢紊乱及器官功能衰竭,而细胞能量耗竭是诸多脓毒症治疗方式失败的潜在原因,对脓毒症患者进行营养干预,可有效改善脓毒症患者的预后情况,减少病死率。Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms such as bacteria into the body. It is one of the serious complications of burns, trauma, shock, infection, major surgery and other clinically critically ill patients. It is an important factor that induces septic shock and multiple organ dysfunction syndrome. The pathological mechanism of sepsis is complex, involving pathogen invasion, inflammatory factor release, coagulation mechanism disorder and microcirculation dysfunction leading to tissue metabolic disorder and organ failure. Cellular energy depletion is a potential reason for the failure of many sepsis treatments. Nutritional interventions for sepsis patients can effectively improve the prognosis of sepsis patients and reduce the mortality rate.
目前在不使用间接测热法的情况下,医生大多使用公式法对患者进行静息代谢值的计算,公式法多是先计算出其健康状况下的静息代谢(比如Harris-Benedict公式),再乘以应激因子。但是不同的疾病、不同的应激因素、药物的应用等均会对能量消耗产生难以预测的影响。应激因子的使用常由临床医生判断,导致带有主观因素,影响最终的结果。公式预测既难以准确评估静息能量代谢值又无法监测静息能量代谢值的变化规律,也难以指导个体化营养。At present, without the use of indirect calorimetry, doctors mostly use the formula method to calculate the resting metabolic value of the patient. Multiply by the stress factor. However, different diseases, different stress factors, and the application of drugs will all have unpredictable effects on energy consumption. The use of stressors is often judged by clinicians, resulting in subjective factors that affect the final outcome. Formula prediction is difficult to accurately assess resting energy metabolism value, monitor the changing law of resting energy metabolism value, and guide individualized nutrition.
间接测热法,即IC法,是计算患者能量代谢的金标准,能够精准的测量患者在某一段时间内的静息能量代谢值,从而掌握重症患者静息代谢值的变化趋势,根据患者的不同情况指定个性化的营养供给策略。Indirect calorimetry, i.e. IC method, is the gold standard for calculating the energy metabolism of patients. It can accurately measure the resting energy metabolism value of patients in a certain period of time, so as to grasp the changing trend of the resting metabolic value of critically ill patients. Different situations specify individualized nutrition supply strategies.
计算机技术在临床医学领域的应用,不仅提高效率,而且准确度、及时性都相对于人工较好,目前医学领域的营养决策系统主要分为两类:基于数据建模的临床营养决策系统和基于临床指南的临床营养决策系统,基于知识的通常以临床指南和最佳实践为知识来源,手动或者自动转换为基于规则的专家知识(IF-THEN规则)来进行推断决策支持。这种方法的主要缺点是规则无法完备地枚举全部临床情况,规则对于非确定性的东西的表达能力有限。另一方面,数据建模的方法运用了机器学习的方法,这类方法由于准确率高、构建相对容易等原因而发展迅速。然而,此类方法的关键缺点是所产生的结果的可解释性(黑匣子行为)有限,这导致卫生专业人员对其接受度不高。The application of computer technology in the field of clinical medicine not only improves efficiency, but also has better accuracy and timeliness than manual labor. At present, nutrition decision-making systems in the medical field are mainly divided into two categories: clinical nutrition decision-making systems based on data modeling and clinical nutrition decision-making systems based on data modeling. The clinical nutrition decision-making system of clinical guidelines, based on knowledge, usually takes clinical guidelines and best practices as knowledge sources, and manually or automatically converts it into rule-based expert knowledge (IF-THEN rules) for inference decision support. The main disadvantage of this method is that the rules cannot fully enumerate all clinical situations, and the rules have limited expressive power for non-deterministic things. On the other hand, data modeling methods use machine learning methods, which have developed rapidly due to high accuracy and relatively easy construction. However, a key disadvantage of such methods is the limited interpretability of the results produced (black-box behavior), which leads to low acceptance by health professionals.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本发明提供一种用于脓毒症患者的营养决策方法及系统。In order to solve the above technical problems, the present invention provides a nutritional decision-making method and system for sepsis patients.
本发明技术解决方案为:一种用于脓毒症患者的营养决策方法,包括:The technical solution of the present invention is: a nutritional decision-making method for sepsis patients, comprising:
步骤S1:获取患者的基本信息与住院期间指标,构建患者的信息记录;Step S1: obtain the patient's basic information and indicators during hospitalization, and construct the patient's information record;
步骤S2:将所述信息记录中的数据输入辅助判断模型,对患者进行喂养可行性评估,如果可以进行营养喂养则转入S3,否则患者进入观察期;Step S2: Input the data in the information record into the auxiliary judgment model, evaluate the feeding feasibility of the patient, and transfer to S3 if nutritional feeding can be performed, otherwise the patient enters the observation period;
步骤S3:根据所述信息记录中的数据判断患者的肠胃损伤程度,确定营养供给方式:若是重度损伤,则推荐肠外营养方式,若是轻度或中度损伤,则推荐肠内营养方式;Step S3: Judging the degree of gastrointestinal injury of the patient according to the data in the information record, and determining the nutrition supply method: if the injury is severe, the parenteral nutrition method is recommended, and if the injury is mild or moderate, the enteral nutrition method is recommended;
步骤S4:将所述信息记录中的数据输入辅助推荐模型,得到能量代谢值的辅助数据,结合所述基本信息以及所述住院期间指标,确定最终的能量代谢数值;将所述最终的能量代谢数值结合所述营养供给方式,得到最终的辅助营养推荐方案。Step S4: Input the data in the information record into the auxiliary recommendation model to obtain auxiliary data of energy metabolism value, and determine the final energy metabolism value in combination with the basic information and the indicators during hospitalization; The numerical value is combined with the nutrition supply method to obtain the final recommended supplementary nutrition scheme.
本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明公开了一种用于脓毒症患者的营养决策方法,根据脓毒症患者静息能量代谢值的精准测量,智能的为患者提供个性化的辅助营养决策方案,实现营养治疗过程进行流程化、规范化、信息化,提升整个医院临床营养治疗的效率。The invention discloses a nutrition decision-making method for patients with sepsis. According to the accurate measurement of the resting energy metabolism value of the patients with sepsis, a personalized auxiliary nutrition decision-making scheme is intelligently provided for the patients, and the nutrition treatment process is realized. To improve the efficiency of clinical nutrition treatment in the whole hospital.
附图说明Description of drawings
图1为本发明实施例一的一种用于脓毒症患者的营养决策方法的流程图;1 is a flowchart of a nutritional decision-making method for sepsis patients according to Embodiment 1 of the present invention;
图2为本发明实施例二的一种用于脓毒症患者的营养决策方法的流程图;2 is a flowchart of a nutritional decision-making method for sepsis patients according to Embodiment 2 of the present invention;
图3为本发明实施例三的一种用于脓毒症患者的营养决策系统的结构框图;3 is a structural block diagram of a nutrition decision-making system for sepsis patients according to Embodiment 3 of the present invention;
图4为本发明实施例四的一种用于脓毒症患者的营养决策系统的结构框图。FIG. 4 is a structural block diagram of a nutrition decision-making system for sepsis patients according to Embodiment 4 of the present invention.
具体实施方式Detailed ways
本发明提供了一种用于脓毒症患者的营养决策方法,可智能的为患者提供个性化的辅助营养决策方案,实现营养决策过程流程化、规范化、信息化,提升整个医院临床营养治疗的效率。The invention provides a nutrition decision-making method for patients with sepsis, which can intelligently provide patients with a personalized auxiliary nutrition decision-making scheme, realizes the process, standardization and informationization of the nutrition decision-making process, and improves the clinical nutrition treatment in the whole hospital. efficiency.
为了使本发明的目的、技术方案及优点更加清楚,以下通过具体实施,并结合附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below through specific implementation and in conjunction with the accompanying drawings.
实施例一Example 1
如图1所示,本发明实施例提供的一种用于脓毒症患者的营养决策方法,包括下述步骤:As shown in FIG. 1 , a nutritional decision-making method for sepsis patients provided by an embodiment of the present invention includes the following steps:
步骤S1:获取患者的基本信息与住院期间指标,构建患者的信息记录;Step S1: obtain the patient's basic information and indicators during hospitalization, and construct the patient's information record;
步骤S2:将信息记录中的数据输入辅助判断模型,对患者进行喂养可行性评估,如果可以进行营养喂养则转入S3,否则患者进入观察期;Step S2: Input the data in the information record into the auxiliary judgment model, and evaluate the feeding feasibility of the patient. If nutritious feeding can be performed, transfer to S3, otherwise the patient enters the observation period;
步骤S3:根据信息记录中的数据判断患者的肠胃损伤程度,确定营养供给方式:若是重度损伤,则推荐肠外营养方式,若是轻度或中度损伤,则推荐肠内营养方式;Step S3: Judging the degree of gastrointestinal injury of the patient according to the data in the information record, and determining the nutrition supply method: if the injury is severe, the parenteral nutrition method is recommended, and if the injury is mild or moderate, the enteral nutrition method is recommended;
步骤S4:将信息记录中的数据输入辅助推荐模型,得到能量代谢值的辅助数据,结合基本信息以及住院期间指标,确定最终的能量代谢数值;将最终的能量代谢数值结合营养供给方式,得到最终的辅助营养推荐方案。Step S4: Input the data in the information record into the auxiliary recommendation model, obtain auxiliary data of energy metabolism value, and determine the final energy metabolism value by combining the basic information and indicators during hospitalization; combine the final energy metabolism value with the nutrition supply method to obtain the final energy metabolism value. supplementary nutrition recommendations.
在一个实施例中,上述步骤S1:获取患者的基本信息与住院期间指标,构建患者信息记录,具体包括:In one embodiment, the above-mentioned step S1: obtaining the basic information of the patient and the indicators during hospitalization, and constructing the patient information record, which specifically includes:
步骤S11:获取患者的基本信息,包括:患者入院时所测的患者的直接信息和由专业设备测得的患者的能量代谢信息;其中,Step S11: Acquire the basic information of the patient, including: the patient's direct information measured when the patient is admitted to the hospital and the patient's energy metabolism information measured by professional equipment; wherein,
患者入院时所测的患者的直接信息包括:性别、意识水平、年龄、身高、体重、BMI、和入院时间;The patient's direct information measured at the time of admission includes: gender, level of consciousness, age, height, weight, BMI, and time of admission;
患者入院时由专业设备包括测得能量代谢信息包括:静息能量代谢值、呼吸商以及对应的测量时间;When the patient is admitted to the hospital, the energy metabolism information measured by professional equipment includes: resting energy metabolism value, respiratory quotient and corresponding measurement time;
步骤S12:获取患者住院期间指标,包括:化验室检查数据、生命体征数据、入ICU时长以及营养供给时长,其中,Step S12: Obtain the indicators of the patient during hospitalization, including: laboratory inspection data, vital sign data, duration of ICU admission, and duration of nutritional supply, wherein,
化验室检查数据包括:血常规、血糖、肝肾功能、电解质水平和凝血功能;Laboratory examination data include: blood routine, blood glucose, liver and kidney function, electrolyte level and coagulation function;
生命体征数据包括:心率、体温、收缩压、舒张压、脉搏、脉搏血氧饱和度、呼吸速率、平均动脉压、体液平衡(出入水量:尿量、各种引流量、摄入量)、体重变化、膳食摄入情况、白蛋白、伴生病种种类和营养供给方式;Vital signs data include: heart rate, body temperature, systolic blood pressure, diastolic blood pressure, pulse, pulse oximetry, respiratory rate, mean arterial pressure, fluid balance (water in and out: urine volume, various drainage volumes, intake), body weight Changes, dietary intake, albumin, types of concomitant diseases and nutrient supply;
以及患者入ICU时长和营养供给时长;As well as the length of the patient's admission to the ICU and the length of nutritional supply;
本发明实施例将上述采集到的患者基本信息与住院期间指标,均存入中国急诊专科医联体多中心急诊分诊数据相关数据库(CETAT数据库)。In the embodiment of the present invention, the above-mentioned collected basic information of patients and indicators during hospitalization are stored in the multi-center emergency triage data related database (CETAT database) of the China Emergency Specialist Medical Association.
在一个实施例中,上述步骤S11中静息能量代谢值的计算,具体包括:In one embodiment, the calculation of the resting energy metabolism value in the above step S11 specifically includes:
步骤S111:获取患者在特定时间内的摄氧量VO2和二氧化碳呼出量VCO2;Step S111: Acquire the oxygen uptake VO 2 and the carbon dioxide exhalation VCO 2 of the patient within a specific time;
步骤S112:利用公式(1)计算静息能量代谢值Y:Step S112: Calculate the resting energy metabolism value Y using formula (1):
Y(kcal/day)=1.44×([VO2(ml/min)×3.94]+[VCO2(ml/min)×1.11]) (1)。Y(kcal/day)=1.44×([VO 2 (ml/min)×3.94]+[VCO 2 (ml/min)×1.11]) (1).
在一个实施例中,上述步骤S2:将信息记录中的数据输入辅助判断模型,对患者进行喂养可行性评估,如果可以进行营养喂养则转入S3,否则患者进入观察期,具体包括:In one embodiment, the above step S2: the data in the information record is input into the auxiliary judgment model, the feeding feasibility assessment is performed on the patient, and if nutritious feeding can be performed, it is transferred to S3, otherwise the patient enters the observation period, which specifically includes:
步骤S21:将信息记录中数据进行数据清洗,得到清洗后的数据集;Step S21: performing data cleaning on the data in the information record to obtain a cleaned data set;
本发明实施例从中国急诊专科医联体多中心急诊分诊数据相关数据库(CETAT数据库)抽取2020年1月-2021年7月间中国科学技术大学附属第一医院收住脓毒症患者的信息记录,共计48575条患者信息,包括生命体征数据,化验室数据,人口统计学数据等。The embodiment of the present invention extracts information on patients with sepsis admitted to the First Affiliated Hospital of the University of Science and Technology of China from January 2020 to July 2021 from the multi-center emergency triage data related database (CETAT database) of the China Emergency Specialist Medical Association Records, a total of 48,575 patient information, including vital signs data, laboratory data, demographic data, etc.
首先,对信息记录中数据的缺失值清洗:去除数据集中重要性低且缺失值超过80%的数据,对重要性高的缺失数据以缺失数据的中位数进行填充。First, clean the missing values of the data in the information records: remove the data with low importance and more than 80% missing values in the data set, and fill in the missing data with high importance with the median of the missing data.
其次,对数据集中数据的格式内容清洗:Second, clean the format and content of the data in the dataset:
1)时间、日期、数值等显示格式不一致,皆统一标准格式;1) The display formats of time, date, numerical value, etc. are inconsistent, and they are all unified in standard format;
2)内容中有不该存在的字符,例如在姓名中出现英文字母的情况;2) There are characters that should not exist in the content, such as English letters appearing in the name;
3)内容与该字段应有内容不符,例如在姓名中出现空格,或者心率信息中出现中文汉字。3) The content does not match the expected content of this field, such as spaces in the name, or Chinese characters in the heart rate information.
最后,对非必要的医疗数据进行清洗,例如去除身份证等信息。Finally, the non-essential medical data is cleaned, such as removing information such as ID cards.
经过上述数据清洗,得到包含有效数据的清洗后的数据集,用于后续的模型训练。After the above data cleaning, a cleaned data set containing valid data is obtained, which is used for subsequent model training.
步骤S22:根据NRS-2002营养风险筛查表从数据集中选择辅助判断特征值,训练辅助判断模型,直到得到训练好的辅助判断模型;Step S22: Select the auxiliary judgment feature value from the data set according to the NRS-2002 nutritional risk screening table, and train the auxiliary judgment model until the trained auxiliary judgment model is obtained;
本发明实施例根据NRS-2002营养风险筛查表从步骤S21构建的数据集中选择辅助判断特征值:性别、年龄、BMI、膳食摄入情况、白蛋白、伴生病种种类;本发明实施例对上述辅助判断特征值的选取不做限定,可根据具体需求进行选取;According to the NRS-2002 nutritional risk screening table, the embodiment of the present invention selects auxiliary judgment characteristic values from the data set constructed in step S21: gender, age, BMI, dietary intake, albumin, and types of concomitant diseases; The selection of the above-mentioned auxiliary judgment eigenvalues is not limited, and can be selected according to specific needs;
将辅助判断特征值进行one-hot编码处理:Perform one-hot encoding on the auxiliary judgment eigenvalues:
膳食摄入情况:是否一周膳食摄入减少>25%:0表示否,1表示是;Dietary intake: Whether the weekly dietary intake is reduced by > 25%: 0 means no, 1 means yes;
白蛋白:是否<30g/L:0表示否,1表示是;Albumin: Whether it is <30g/L: 0 means no, 1 means yes;
BMI评分:按照BMI值划分三个等级:BMI<18.5,24.0>BMI>18.50,BMI>24.0,进行one-hot编码;BMI score: divided into three grades according to BMI value: BMI<18.5, 24.0>BMI>18.50, BMI>24.0, one-hot encoding;
伴生病种种类:體骨骨折,慢性疾病有急性并发症,肝硬化,C0PD,血液透析,糖尿病,腹部大手术,脑卒中,严重肺炎,血液恶性疾病,颅脑损伤,骨髓移植,对伴生病种种类进行one-hot编码,0表示有,1表示没有;Types of concomitant diseases: bone fractures, acute complications of chronic diseases, liver cirrhosis, COPD, hemodialysis, diabetes, major abdominal surgery, stroke, severe pneumonia, hematological malignancies, craniocerebral injury, bone marrow transplantation, and concomitant diseases One-hot encoding is performed for various types, 0 means yes, 1 means no;
年龄:分为10个等级,每10岁一个等级,进行one-hot编码;Age: divided into 10 grades, one grade per 10 years old, one-hot encoding;
性别:男为1,女为0;Gender: 1 for male, 0 for female;
经上述one-hot编码处理后,总共有28个辅助判断特征,用于辅助判断模型训练。模型训练过程中,使用营养风险评分作为标签,将上述28个辅助判断特征用于构建决策树进行训练,用于预测患者的营养风险评分,将预测的营养风险评分和患者对应的真实营养风险评分进行对比,不断优化辅助判断模型的参数,直到得到训练好的辅助判断模型;After the above one-hot encoding process, there are a total of 28 auxiliary judgment features, which are used to assist judgment model training. In the model training process, the nutritional risk score is used as a label, and the above 28 auxiliary judgment features are used to construct a decision tree for training, which is used to predict the nutritional risk score of the patient, and the predicted nutritional risk score and the actual nutritional risk score corresponding to the patient are combined. Compare and continuously optimize the parameters of the auxiliary judgment model until a trained auxiliary judgment model is obtained;
步骤S23:将待预测的患者辅助判断特征值输入训练好的辅助判断模型;输出预测的营养风险评分,如果营养风险评分大于阈值,且满足血流动力学稳定条件,则转入步骤S3,否则进入观察期。Step S23: Input the auxiliary judgment characteristic value of the patient to be predicted into the trained auxiliary judgment model; output the predicted nutritional risk score, if the nutritional risk score is greater than the threshold value and the hemodynamic stability condition is met, then go to step S3, otherwise enter the observation period.
本发明实施例对采用何种决策树模型的不做具体限制。获取待预测的患者的信息记录,提取对应的辅助判断特征值输入辅助判断模型,输出为预测的营养风险评分,评分值大于等于3分或者小于3分。营养风险评分<3的患者进入观察期;当营养风险评分≥3时,辅助判断模型进一步判断患者的血流动力学稳定条件:平均动脉压>65mmHg,血乳酸<4mmol/L,去甲肾上腺素<0.2μg·min-1·kg-1,如果患者满足上述血流动力学稳定条件,进入步骤S3。This embodiment of the present invention does not specifically limit which decision tree model is adopted. Obtain the information record of the patient to be predicted, extract the corresponding auxiliary judgment feature value and input it into the auxiliary judgment model, and the output is the predicted nutritional risk score, and the score value is greater than or equal to 3 points or less than 3 points. Patients with nutritional risk score < 3 entered the observation period; when nutritional risk score ≥ 3, the auxiliary judgment model further judged the patient's hemodynamic stability conditions: mean arterial pressure > 65 mmHg, blood lactate < 4 mmol/L, norepinephrine <0.2 μg·min-1·kg-1, if the patient meets the above-mentioned hemodynamic stability conditions, go to step S3.
在一个实施例中,上述步骤S3:根据信息记录中的数据判断患者的肠胃损伤程度,确定营养供给方式:若是重度损伤,则推荐肠外营养方式,若是轻度或中度损伤,则推荐肠内营养方式,具体包括:In one embodiment, the above step S3: according to the data in the information record, the degree of gastrointestinal injury of the patient is judged, and the nutrition supply method is determined: if the injury is severe, parenteral nutrition is recommended, and if the injury is mild or moderate, enteral nutrition is recommended Internal nutrition, including:
评估指标根据2012年欧洲危重症学会对急性胃肠损伤的定义进行选取,对信息记录中的评估指标进行评估,评估结果按照患者的肠胃损伤程度进行分级,得到分级结果是I级~Ⅲ级为轻度或中度损伤,推荐肠内营养方式,Ⅳ级为重度损伤,推荐肠外营养方式。The evaluation indicators were selected according to the definition of acute gastrointestinal injury by the European Critical Care Society in 2012, and the evaluation indicators in the information records were evaluated. The evaluation results were graded according to the degree of gastrointestinal injury of the patients. Mild or moderate injury, enteral nutrition is recommended, grade IV is severe injury, parenteral nutrition is recommended.
本发明实施例使用2012年欧洲危重症学会对急性胃肠损伤(AGI)的定义,按照待测患者的肠胃损伤程度进行分级,评估指标为:胃滞留量,腹腔内高压IAP,腹腔灌注压APP,是否腹泻。根据评估指标对患者进行分级,I级:存在胃肠功能障碍和衰竭的风险,Ⅱ级:胃肠功能障碍,Ⅲ级:胃肠功能衰竭,Ⅳ级:胃肠功能衰竭伴有远隔器官功能障碍。将I级~Ⅲ级定为轻度或中度损伤,推荐肠内营养方式,Ⅳ级定为重度损伤,推荐肠外营养方式,同时将患者的评估结果保存在CETAT数据库中。The embodiment of the present invention uses the definition of acute gastrointestinal injury (AGI) by the European Society of Critical Care in 2012, and is graded according to the degree of gastrointestinal injury of the patient to be tested. , whether diarrhea. The patients are graded according to the evaluation index, grade I: there is a risk of gastrointestinal dysfunction and failure, grade II: gastrointestinal dysfunction, grade III: gastrointestinal failure, grade IV: gastrointestinal dysfunction with distant organ function obstacle. Grades I to III were defined as mild or moderate injury, and enteral nutrition was recommended, and grade IV was defined as severe injury, and parenteral nutrition was recommended, and the patient's assessment results were stored in the CETAT database.
在一个实施例中,上述步骤S4:将信息记录中的数据输入辅助推荐模型,得到能量代谢值的辅助数据,结合基本信息以及住院期间指标,确定最终的能量代谢数值;将最终的能量代谢数值结合营养供给方式,得到最终的辅助营养推荐方案,具体包括:In one embodiment, the above step S4: input the data in the information record into the auxiliary recommendation model to obtain auxiliary data of the energy metabolism value, and combine the basic information and indicators during hospitalization to determine the final energy metabolism value; Combined with the nutrition supply method, the final recommended supplementary nutrition plan is obtained, including:
步骤S41:对数据集进行主成分析,选取辅助推荐特征值,用于训练基于K-means决策树的辅助推荐模型,直到得到训练好的辅助推荐模型;Step S41: Perform principal component analysis on the data set, and select the auxiliary recommendation feature value for training the auxiliary recommendation model based on the K-means decision tree, until the trained auxiliary recommendation model is obtained;
使用PCA主成分分析技术,从步骤S21得到的数据集提取能够反映脓毒症患者特性的特征属性,保留因子方差值大于1的辅助推荐特征值:心率、体温、脉搏血氧饱和度、收缩压、舒张压、平均动脉压、呼吸速率、碳酸氢根HCO3、血糖。Using PCA principal component analysis technology, extract characteristic attributes that can reflect the characteristics of sepsis patients from the data set obtained in step S21, and retain auxiliary recommended characteristic values with a factor variance value greater than 1: heart rate, body temperature, pulse oximetry, contraction blood pressure, diastolic blood pressure, mean arterial pressure, respiratory rate, bicarbonate HCO 3 , blood glucose.
本发明实施例中基于K-means决策树的辅助推荐模型训练流程为:The training process of the auxiliary recommendation model based on the K-means decision tree in the embodiment of the present invention is:
首先,令由辅助推荐特征值构成的数据集为S,使用能量代谢值作为标签,随机选取k个样本作为初始均值,利用K-means均值算法将数据集分组;其中,参数k的调整过程为:令S={X1,X2,…,Xn},n为数据集S中样本个数,从S中选择初始聚类中心,将其表示为c1,计算聚类中心和S中数据Xi的最短距离,该距离表示为公式(2):First, let the data set consisting of auxiliary recommendation feature values be S, use the energy metabolism value as the label, randomly select k samples as the initial mean, and use the K-means mean algorithm to group the data set; among them, the adjustment process of parameter k is: : Let S={X 1 , X 2 ,...,X n }, n be the number of samples in the data set S, select the initial cluster center from S, denote it as c 1 , calculate the cluster center and S The shortest distance of data Xi, which is expressed as formula (2):
D(Xi)=min{dis(Xi,cj)} (2)D(X i )=min{dis(X i ,c j )} (2)
其中,i=1…n,j=1…k;Among them, i=1...n, j=1...k;
计算每一个样本成为下一个聚类中心的概率P,如公式(3)所示,将概率最大的样本作为下一个聚类中心:Calculate the probability P that each sample becomes the next cluster center, as shown in formula (3), and take the sample with the highest probability as the next cluster center:
重复上述步骤,直到选出的k个符合要求的聚类中心。但是,该k值可能不是最优值,因此使用“手肘法”,选取最优k值。本发明实施例将误差平方和作为选择最优k值的指标,如公式(4)所示:Repeat the above steps until k selected cluster centers that meet the requirements. However, the k value may not be the optimal value, so the "elbow method" is used to select the optimal k value. In the embodiment of the present invention, the error sum of squares is used as an index for selecting the optimal k value, as shown in formula (4):
其中,Ci是第i个簇,p是Ci中的样本,ci是簇Ci的聚类中心,SSE是所有样本的聚类误差,表示聚类效果的好坏。根据本发明实施例样本集的患者数据,得到最优k值为4。Among them, C i is the ith cluster, p is the sample in C i , c i is the cluster center of cluster C i , and SSE is the clustering error of all samples, indicating the quality of the clustering effect. According to the patient data of the sample set in the embodiment of the present invention, the optimal k value is 4.
根据公式(5),计算聚类效果的评价指标DBI:According to formula (5), the evaluation index DBI of the clustering effect is calculated:
其中,表示的是任意的两个簇的距离的平方和,ci和cj分别是两个簇的聚类中心;DBI值越大,则表示两个簇之间的距离远。in, It represents the sum of the squares of the distances of any two clusters, c i and c j are the cluster centers of the two clusters respectively; the larger the DBI value, the farther the distance between the two clusters is.
从上述得到的4个簇中随机抽取样本形成子集Y,输入基于ID3决策树算法构建的辅助推荐模型,对聚类后的数据进行决策分析,以信息嫡下降的速度为标准,选择测试属性标准,在每一个决策节点选择尚未选择的信息增益最高的属性为决策树的划分标准,直至最终生成决策树。Randomly select samples from the 4 clusters obtained above to form a subset Y, input the auxiliary recommendation model constructed based on the ID3 decision tree algorithm, and perform decision analysis on the clustered data, and select the test attribute based on the speed of information descending. In each decision node, the attribute with the highest information gain that has not yet been selected is selected as the dividing standard of the decision tree, until the decision tree is finally generated.
ID3决策树算法中计算样本的总信息熵如公式(6)所示:The total information entropy of the sample calculated in the ID3 decision tree algorithm is shown in formula (6):
其中,假设样本集为Y,一共包含y个样本,类别属性为能量代谢值,具有m个不同的值即为bi(i=1,2,3,…,m),Bi是bi中的样本数,Pi=Bi/y表示样本属于bi的概率。Among them, assuming that the sample set is Y, it contains y samples in total, the category attribute is energy metabolism value, and there are m different values, which is b i (i=1,2,3,...,m), and B i is b i The number of samples in , P i =B i /y represents the probability that the sample belongs to bi .
计算各个辅助推荐特征值的信息熵,将其表示为,如公式(7)所示:Calculate the information entropy of each auxiliary recommendation feature value, and express it as, as shown in formula (7):
其中,D为辅助推荐特征值,有k个不同的值,其中Bij是子集Bj中类别为Di的样本数,信息增益如公式(8)所示:Among them, D is the auxiliary recommendation feature value, and there are k different values, where B ij is the number of samples with the category D i in the subset B j , and the information gain is shown in formula (8):
Gain(D)=I(B1,B2,…,Bm)-E(D) (8)Gain(D)=I(B 1 ,B 2 ,...,B m )-E(D) (8)
按照信息增益最大的特征值进行决策树划分,依次类推,最终构建得到辅助推荐模型。The decision tree is divided according to the eigenvalue with the largest information gain, and so on, and finally the auxiliary recommendation model is constructed.
将辅助推荐特征值输入辅助推荐模型进行训练,得出预测的能量代谢值的辅助数据X,将预测的X与患者真实的能量代谢值进行对比,不断优化辅助推荐模型的参数,直到得到训练好的辅助推荐模型;Input the auxiliary recommendation feature value into the auxiliary recommendation model for training, obtain the auxiliary data X of the predicted energy metabolism value, compare the predicted X with the patient's real energy metabolism value, and continuously optimize the parameters of the auxiliary recommendation model until the training is completed. The auxiliary recommendation model of ;
步骤S42:将待预测患者的辅助推荐特征值输入到训练好的辅助推荐模型中,得出能量代谢值的辅助数据X;Step S42: Input the auxiliary recommendation feature value of the patient to be predicted into the trained auxiliary recommendation model, and obtain auxiliary data X of the energy metabolism value;
将步骤S23中的待测患者对应的辅助推荐特征值输入训练好的辅助推荐模型中,得到该患者的所需的能量代谢值的辅助数据X;Input the auxiliary recommendation feature value corresponding to the patient to be tested in step S23 into the trained auxiliary recommendation model to obtain auxiliary data X of the required energy metabolism value of the patient;
步骤S43:将静息能量代谢值Y,结合能量代谢值的辅助数据X,以及入ICU时长T,可以得到最终的能量代谢数值Z,并根据Z值算出对应的糖、脂肪、氨基酸的热卡量;结合步骤S3得到的肠道营养方式,得到最终的辅助营养推荐方案。Step S43: Combine the resting energy metabolism value Y, the auxiliary data X of the energy metabolism value, and the ICU length of time T to obtain the final energy metabolism value Z, and calculate the corresponding calories of sugar, fat, and amino acids according to the Z value. amount; combined with the enteral nutrition method obtained in step S3, the final recommended supplementary nutrition scheme is obtained.
本发明实施例基于静息能量代谢值Y,能量代谢值的辅助数据X,以及入ICU时长T(单位:天),定义最终的能量代谢数值Z,如表1所示:The embodiment of the present invention defines the final energy metabolism value Z based on the resting energy metabolism value Y, the auxiliary data X of the energy metabolism value, and the ICU admission time T (unit: day), as shown in Table 1:
表1最终的能量代谢数值ZTable 1 Final energy metabolism value Z
举例来说,一名待测患者根据步骤S2得到其营养风险评分为5且满足血流动力学稳定,表明该患者可以进行营养喂养,则进入步骤S3判断该患者的肠胃损伤程度,如果判定该患者为重度损伤,推荐肠外营养方式。根据步骤S4得到该患者所需的能量代谢值的辅助数据X=2000kcal,由步骤S11可计算静息能量代谢值Y=2300kcal,入ICU天数为2天,根据表1可知提供患者的最终的能量代谢的Z=110%X=2000×110%=2200kcal。For example, a patient to be tested obtains that its nutritional risk score is 5 according to step S2 and satisfies the stability of hemodynamics, indicating that the patient can carry out nutritional feeding, then enter step S3 to determine the degree of gastrointestinal damage of the patient, if it is determined that the patient is The patient is severely injured, and parenteral nutrition is recommended. According to step S4, the auxiliary data X=2000kcal of the energy metabolism value required by the patient is obtained, and the resting energy metabolism value Y=2300kcal can be calculated in step S11, and the number of days in ICU is 2 days. According to Table 1, it can be known that the final energy of the patient is provided. Metabolized Z = 110% X = 2000 x 110% = 2200 kcal.
根据公式:每日需要蛋白质的量P=6.25×24小时患者尿氮量(g),1g蛋白质产生4.3kcal的能量,即糖和脂肪热卡含量=Z-4.3×P,和已知24小时患者尿氮量=12g,可计算得到患者每日需要蛋白质的量P=6.25×12=75g;糖和脂肪热卡含量=Z-4.3×P=2200-4.3×75=1877.5kcal。According to the formula: the daily protein requirement P = 6.25 × 24 hours the patient's urine nitrogen amount (g), 1 g of protein produces 4.3 kcal of energy, that is, the sugar and fat calorie content = Z-4.3 × P, and the known 24 hours The patient's urine nitrogen amount=12g, the daily protein requirement of the patient can be calculated P=6.25×12=75g; sugar and fat calorie content=Z-4.3×P=2200-4.3×75=1877.5kcal.
确定患者的最终的辅助营养推荐方案为:推荐肠外营养方式,蛋白质所需量P=75g,糖和脂肪热卡含量=1877.5kcal。Determine the patient's final recommended supplementary nutrition scheme: recommended parenteral nutrition, protein requirement P=75g, sugar and fat calorie content=1877.5kcal.
实施例二Embodiment 2
如图2所示,本发明实施例提供一种用于脓毒症患者的营养决策方法,包括如下步骤:As shown in FIG. 2 , an embodiment of the present invention provides a nutritional decision-making method for patients with sepsis, comprising the following steps:
步骤S1:获取患者的基本信息与住院期间指标,构建患者的信息记录;Step S1: obtain the patient's basic information and indicators during hospitalization, and construct the patient's information record;
步骤S2:将信息记录中的数据输入辅助判断模型,对患者进行喂养可行性评估,如果可以进行营养喂养则转入S3,否则患者进入观察期;Step S2: Input the data in the information record into the auxiliary judgment model, and evaluate the feeding feasibility of the patient. If nutritious feeding can be performed, transfer to S3, otherwise the patient enters the observation period;
步骤S3:根据信息记录中的数据判断患者的肠胃损伤程度,确定营养供给方式:若是重度损伤,则推荐肠外营养方式,若是轻度或中度损伤,则推荐肠内营养方式;Step S3: Judging the degree of gastrointestinal injury of the patient according to the data in the information record, and determining the nutrition supply method: if the injury is severe, the parenteral nutrition method is recommended, and if the injury is mild or moderate, the enteral nutrition method is recommended;
步骤S4:将信息记录中的数据输入辅助推荐模型,得到能量代谢值的辅助数据,结合基本信息以及住院期间指标,确定最终的能量代谢数值;将最终的能量代谢数值结合营养供给方式,得到最终的辅助营养推荐方案;Step S4: Input the data in the information record into the auxiliary recommendation model, obtain auxiliary data of energy metabolism value, and determine the final energy metabolism value by combining the basic information and indicators during hospitalization; combine the final energy metabolism value with the nutrition supply method to obtain the final energy metabolism value. recommended supplementary nutrition programs;
S5:根据肠内营养耐受性评分表对患者进行耐受性评估,根据评估结果对最终的辅助营养推荐方案进行调整。S5: Tolerance assessment of patients is carried out according to the enteral nutrition tolerance score table, and the final recommended supplementary nutrition scheme is adjusted according to the assessment results.
上述步骤S1~S4具体实施细节同实施例中步骤S1~S4;The specific implementation details of the above steps S1 to S4 are the same as the steps S1 to S4 in the embodiment;
步骤S5:根据肠内营养耐受性评分表对患者进行耐受性评估,根据评估结果对最终的辅助营养推荐方案进行调整,具体包括:Step S5: Evaluate the patient's tolerance according to the enteral nutrition tolerance score table, and adjust the final recommended supplementary nutrition scheme according to the evaluation results, including:
根据肠内营养耐受性评分表对患者进行评估,评估指标为:腹痛NRS分级,腹胀分级,腹内压分级,腹泻分级,肠鸣音,误吸情况,呕吐情况。The patients were evaluated according to the enteral nutrition tolerance scale, and the evaluation indicators were: abdominal pain NRS grade, abdominal distension grade, intra-abdominal pressure grade, diarrhea grade, bowel sounds, aspiration, vomiting.
若患者营养供给方式为肠内营养供给,根据肠内营养耐受性评分表的评分结果分为:0~6分:肠内营养维持原速度,7~12分:肠内营养减慢速度,≥13分:停止肠内营养。If the patient's nutrition supply method is enteral nutrition supply, according to the score results of the enteral nutrition tolerance scale, it is divided into: 0-6 points: enteral nutrition maintains the original speed, 7-12 points: enteral nutrition slows down the speed, ≥13 points: Stop enteral nutrition.
若患者营养供给方式为肠外营养供给,根据患者的肠胃损伤程度,评估结果为I到Ⅲ级,推荐医生肠内营养与肠外营养供给结合,之后每天进行营养供给方式调整,调整方式为:根据肠内营养耐受性评分表的评分结果分为:0~6分:肠外营养提供量减少10%,由肠内营养提供;7~12分:不提供额外肠内营养,≥13分:停止肠内营养。不断调整营养供给方式,直至患者完全采用肠内营养。If the patient's nutritional supply method is parenteral nutrition supply, according to the degree of gastrointestinal injury of the patient, the evaluation result is grade I to III, it is recommended that doctors combine enteral nutrition and parenteral nutrition supply, and then adjust the nutritional supply method every day. The adjustment method is as follows: According to the scoring results of the enteral nutrition tolerance scale, it is divided into: 0-6 points: the amount of parenteral nutrition is reduced by 10%, provided by enteral nutrition; 7-12 points: no additional enteral nutrition is provided, ≥ 13 points : Stop enteral nutrition. Continue to adjust the nutrition supply method until the patient is completely on enteral nutrition.
本发明提供了一种用于脓毒症患者的营养决策方法,可智能的为患者提供个性化的辅助营养决策方案,实现营养决策过程流程化、规范化、信息化,提升整个医院临床营养治疗的效率。The invention provides a nutrition decision-making method for patients with sepsis, which can intelligently provide patients with a personalized auxiliary nutrition decision-making scheme, realizes the process, standardization and informationization of the nutrition decision-making process, and improves the clinical nutrition treatment in the whole hospital. efficiency.
实施例三Embodiment 3
如图3所示,本发明实施例提供了一种用于脓毒症患者的营养决策系统,包括下述模块:As shown in FIG. 3 , an embodiment of the present invention provides a nutrition decision-making system for patients with sepsis, including the following modules:
基本信息获取模块61,用于获取患者的基本信息与住院期间指标,构建患者信息记录;The basic
患者喂养可行性评估模块62,用于将信息记录中数据输入辅助判断模型,对患者进行喂养可行性评估;如果可以进行营养喂养则转入患者肠胃功能评估模块,否则患者进入观察期;The patient feeding
患者肠胃功能评估模块63,用于根据信息记录中的数据判断患者的肠胃损伤程度,确定营养供给方式:若是重度损伤,则推荐肠外营养方式,若是轻度或中度损伤,则推荐肠内营养方式;The patient's gastrointestinal
患者辅助营养推荐方案模块64,用于将信息记录中数据输入辅助推荐模型,得到能量代谢值的辅助数据,结合基本信息以及住院期间指标,确定最终的能量代谢数值;将最终的能量代谢数值结合肠道营养方式,得到最终的辅助营养推荐方案。The patient auxiliary nutrition
实施例四Embodiment 4
如图4所示,本发明实施例提供了一种用于脓毒症患者的营养决策系统,包括下述模块:As shown in FIG. 4 , an embodiment of the present invention provides a nutrition decision-making system for patients with sepsis, including the following modules:
基本信息获取模块61,用于获取患者的基本信息与住院期间指标,构建患者信息记录;The basic
患者喂养可行性评估模块62,用于将信息记录中数据输入辅助判断模型,对患者进行喂养可行性评估;如果可以进行营养喂养则转入患者肠胃功能评估模块,否则患者进入观察期;The patient feeding
患者肠胃功能评估模块63,用于根据信息记录中的数据判断患者的肠胃损伤程度,确定营养供给方式:若是重度损伤,则推荐肠外营养方式,若是轻度或中度损伤,则推荐肠内营养方式;The patient's gastrointestinal
患者辅助营养推荐方案模块64,用于将信息记录中数据输入辅助推荐模型,得到能量代谢值的辅助数据,结合基本信息以及住院期间指标,确定最终的能量代谢数值;将最终的能量代谢数值结合肠道营养方式,得到最终的辅助营养推荐方案;The patient auxiliary nutrition
营养供给方式调整模块65:根据肠内营养耐受性评分表对患者进行耐受性评估,根据评估结果对最终的辅助营养推荐方案进行调整。Nutritional supply mode adjustment module 65 : evaluate the patient's tolerance according to the enteral nutrition tolerance score table, and adjust the final recommended supplementary nutrition program according to the evaluation result.
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。The above embodiments are provided for the purpose of describing the present invention only, and are not intended to limit the scope of the present invention. The scope of the invention is defined by the appended claims. Various equivalent replacements and modifications made without departing from the spirit and principle of the present invention should be included within the scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210543113.0A CN115019935A (en) | 2022-05-18 | 2022-05-18 | Nutritional decision method and system for sepsis patient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210543113.0A CN115019935A (en) | 2022-05-18 | 2022-05-18 | Nutritional decision method and system for sepsis patient |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115019935A true CN115019935A (en) | 2022-09-06 |
Family
ID=83068688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210543113.0A Pending CN115019935A (en) | 2022-05-18 | 2022-05-18 | Nutritional decision method and system for sepsis patient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115019935A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2484467C1 (en) * | 2012-02-02 | 2013-06-10 | Олег Геннадьевич Сивков | Method for appraisal of possibility of enteral nutrition in patients with abdominal sepsis |
CN107833634A (en) * | 2017-11-01 | 2018-03-23 | 浙江中医药大学附属第医院 | A kind of acute gastrointestinal damage evaluating apparatus of pyemia |
CN111445981A (en) * | 2020-03-28 | 2020-07-24 | 华中科技大学同济医学院附属协和医院 | Cancer patient nutrition management system |
CN112885454A (en) * | 2020-12-31 | 2021-06-01 | 复旦大学附属华山医院 | System and method for monitoring nutritional status of dialysis patient |
-
2022
- 2022-05-18 CN CN202210543113.0A patent/CN115019935A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2484467C1 (en) * | 2012-02-02 | 2013-06-10 | Олег Геннадьевич Сивков | Method for appraisal of possibility of enteral nutrition in patients with abdominal sepsis |
CN107833634A (en) * | 2017-11-01 | 2018-03-23 | 浙江中医药大学附属第医院 | A kind of acute gastrointestinal damage evaluating apparatus of pyemia |
CN111445981A (en) * | 2020-03-28 | 2020-07-24 | 华中科技大学同济医学院附属协和医院 | Cancer patient nutrition management system |
CN112885454A (en) * | 2020-12-31 | 2021-06-01 | 复旦大学附属华山医院 | System and method for monitoring nutritional status of dialysis patient |
Non-Patent Citations (2)
Title |
---|
范骁钦: "1.川芎嗪对脓毒症大鼠急性肺损伤的保护作用 2.老年危重病患者营养支持的临床研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》, no. 5, 15 May 2009 (2009-05-15), pages 057 - 40 * |
邸洁等: "基于喂养流程的脓毒症病人早期肠内营养耐受性的评估与管理", 肠外与肠内营养, vol. 27, no. 1, 31 January 2020 (2020-01-31), pages 50 - 55 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit | |
CN110827993A (en) | Early death risk assessment model establishing method and device based on ensemble learning | |
Lee et al. | Open-access MIMIC-II database for intensive care research | |
Vinayak et al. | Usefulness of the external jugular vein examination in detecting abnormal central venous pressure in critically ill patients | |
US20140316220A1 (en) | Personal Health Monitoring System | |
CN112890816A (en) | Health index scoring method and device for individual user | |
CN106372439A (en) | Method for acquiring and processing disease symptoms and weight knowledge thereof based on case library | |
CN114023441A (en) | Severe AKI early risk assessment model and device based on interpretable machine learning model and development method thereof | |
US20210098099A1 (en) | Systems and methods for selecting a treatment schema based on user willingness | |
CN101554322A (en) | System for estimating state of critically ill patient in obstetrical department | |
JP2019509101A (en) | System and method for determining a hemodynamic instability risk score for pediatric subjects | |
CN113539486A (en) | Health state identification system based on traditional Chinese medicine facial and tongue manifestation dynamic change | |
CN112967803A (en) | Early mortality prediction method and system for emergency patients based on integrated model | |
Muttalib et al. | Performance of pediatric mortality prediction models in low-and middle-income countries: a systematic review and meta-analysis | |
US20060259329A1 (en) | System and Method for Determining the Degree of Abnormality of a Patient's Vital Signs | |
CN118919079A (en) | Painless gastroscope diagnosis and treatment preoperative anesthesia evaluation method and system | |
Zahid et al. | Mortality prediction with self normalizing neural networks in intensive care unit patients | |
CN110415777A (en) | An electronic follow-up system for patients with rheumatoid arthritis | |
CN115641939A (en) | Intelligent suggestion system for clinical nutrition state assessment, diagnosis and nutrition treatment of old people | |
CN113066547B (en) | ARDS early dynamic early warning method and system based on conventional noninvasive parameters | |
CN118430834A (en) | Intelligent medical decision model training method based on gynecological clinic | |
CN115019935A (en) | Nutritional decision method and system for sepsis patient | |
CN116864062A (en) | Health physical examination report data analysis management system based on Internet | |
WO2022141928A1 (en) | Covid-19 detection device, intervention device, and detection-intervention system | |
CN115662574A (en) | Method, system, electronic device and storage medium for assessing skeletal muscle content-oriented caloric card intake dose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |