[go: up one dir, main page]

CN114999910A - Directed deposition on patterned structures - Google Patents

Directed deposition on patterned structures Download PDF

Info

Publication number
CN114999910A
CN114999910A CN202210384497.6A CN202210384497A CN114999910A CN 114999910 A CN114999910 A CN 114999910A CN 202210384497 A CN202210384497 A CN 202210384497A CN 114999910 A CN114999910 A CN 114999910A
Authority
CN
China
Prior art keywords
plasma
deposition
chamber
etch
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210384497.6A
Other languages
Chinese (zh)
Inventor
亚历山大·卡班斯凯
萨曼莎·坦
杰弗里·马克斯
潘阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN114999910A publication Critical patent/CN114999910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0335Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76811Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving multiple stacked pre-patterned masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76813Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving a partial via etch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • H01L2224/11474Multilayer masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The invention relates to directional deposition on patterned structures. The present invention provides methods and related devices that facilitate patterning by performing highly non-conformal (directional) deposition on patterned structures. The method includes depositing a film on a patterned structure (e.g., a hard mask). The deposition may be substrate selective such that the film has a high etch selectivity relative to the underlying material to be etched, and pattern selective such that the film is directionally deposited to replicate the pattern of the patterned structure. In some embodiments, the deposition is performed in the same chamber as the chamber in which the subsequent etch is performed. In some embodiments, the deposition may be performed in a separate chamber (e.g., a PECVD deposition chamber) connected to the etch chamber by a vacuum transfer chamber. The deposition may be performed prior to or during selected intervals during the etch process. In some embodiments, the deposition involves multiple cycles of the deposition process and the treatment process.

Description

在图案化结构上的定向沉积Directed deposition on patterned structures

本申请是申请号为201611177683.3,申请日为2016年12月19日,申请人为朗姆研究公司,发明创造名称为“在图案化结构上的定向沉积”的发明专利申请的分案申请。This application is a divisional application for an invention patent application with the application number of 201611177683.3 and the application date of December 19, 2016, the applicant is Rum Research Corporation, and the invention and creation name is "directional deposition on patterned structures".

技术领域technical field

本发明总体上涉及半导体领域,并且更具体地,涉及在图案化结构上的定向沉积。The present invention relates generally to the field of semiconductors and, more particularly, to directional deposition on patterned structures.

背景技术Background technique

在3D-NAND和DRAM的缩放中,高达64对的ONON/OPOP被用于通道孔。蚀刻这些高深宽比孔中的关键挑战之一是蚀刻期间的掩模损失。典型的掩模选择比在蚀刻选择比的5-8倍的范围内,这导致需要在0.5至2微米的范围内的掩模高度,具体取决于孔的深度。较高的掩模增大了孔的深宽比,从而增大了蚀刻的难度。用于蚀刻这些高深宽比孔的逐渐增大的等离子体密度和离子能量降低了在蚀刻期间通过非选择性沉积碳氟基化合物的聚合物来减慢掩模腐蚀的常规实践的效率。In the scaling of 3D-NAND and DRAM, up to 64 pairs of ONON/OPOP are used for via holes. One of the key challenges in etching these high aspect ratio holes is mask loss during etching. Typical mask selectivity ratios are in the range of 5-8 times the etch selectivity ratio, which results in the need for mask heights in the range of 0.5 to 2 microns, depending on the depth of the holes. A taller mask increases the aspect ratio of the hole, which increases the difficulty of etching. The increasing plasma densities and ion energies used to etch these high aspect ratio holes reduce the efficiency of the conventional practice of slowing mask etching by non-selective deposition of fluorocarbon-based polymers during etching.

发明内容SUMMARY OF THE INVENTION

本发明提供了用于在图案化结构上定向沉积的方法和装置。在一些实施方案中,所述方法涉及执行多循环定向沉积工艺以在图案化结构上沉积掩模构建材料。每个循环可以包括(i)通过等离子体增强化学气相沉积(PECVD)工艺在图案化结构上沉积第一材料,以及(ii)等离子体处理第一材料以改善方向性。The present invention provides methods and apparatus for directional deposition on patterned structures. In some embodiments, the method involves performing a multi-cycle directional deposition process to deposit a mask building material on a patterned structure. Each cycle may include (i) depositing the first material on the patterned structure by a plasma enhanced chemical vapor deposition (PECVD) process, and (ii) plasma treating the first material to improve directionality.

根据多种实施方式,第一材料可以是基于硅的材料、基于碳的材料、基于硼的材料或其组合。在一些实施方式中,第一材料包括硅、碳、硼、磷、砷和硫中的两种或更多种。在一些实施方式中,第一材料是含金属材料。在一些实施方式中,等离子体处理包括将第一材料暴露于基于氮的等离子体、基于氧的等离子体、基于氢的等离子体、基于烃的等离子体、基于氩的等离子体、基于氦的等离子体、或其组合。According to various embodiments, the first material may be a silicon-based material, a carbon-based material, a boron-based material, or a combination thereof. In some embodiments, the first material includes two or more of silicon, carbon, boron, phosphorus, arsenic, and sulfur. In some embodiments, the first material is a metal-containing material. In some embodiments, the plasma treatment includes exposing the first material to nitrogen-based plasma, oxygen-based plasma, hydrogen-based plasma, hydrocarbon-based plasma, argon-based plasma, helium-based plasma body, or a combination thereof.

在一些实施方式中,该方法包括蚀刻由图案化结构掩蔽的层。该图案化结构可以包括具有特征顶部和特征侧壁的凸起特征。在这样的实施方式中,处理第一材料可以包括将第一材料从特征侧壁重新沉积到特征顶部。In some embodiments, the method includes etching the layer masked by the patterned structure. The patterned structure may include raised features with feature tops and feature sidewalls. In such embodiments, processing the first material may include redepositing the first material from the feature sidewalls to the feature tops.

在一些实施方式中,每个循环包括使第一材料反应以形成第二材料。在一些实施方式中,每个循环包括改变第一材料的材料性质。例如,改变第一材料的材料性质可以包括等离子体处理、暴露于紫外线辐射、或热退火中的一种或多种。In some embodiments, each cycle includes reacting the first material to form the second material. In some embodiments, each cycle includes changing a material property of the first material. For example, altering the material properties of the first material may include one or more of plasma treatment, exposure to ultraviolet radiation, or thermal annealing.

在一些实施方式中,通过PECVD工艺沉积包括将含硅前体、含碳前体、含硼前体或含金属前体引入等离子体反应器中。在一些实施方式中,通过PECVD工艺沉积包括引入选自硅烷、卤化硅烷、有机硅烷或氨基硅烷中的含硅前体。In some embodiments, depositing by a PECVD process includes introducing a silicon-containing precursor, a carbon-containing precursor, a boron-containing precursor, or a metal-containing precursor into a plasma reactor. In some embodiments, depositing by a PECVD process includes introducing a silicon-containing precursor selected from the group consisting of silanes, halosilanes, organosilanes, or aminosilanes.

在一些实施方式中,通过PECVD工艺沉积包括引入含硅前体,所述含硅前体选自甲基硅烷、乙基硅烷、异丙基硅烷、叔丁基硅烷、二甲基硅烷、二乙基硅烷、二叔丁基硅烷、烯丙基硅烷、仲丁基硅烷、叔己基硅烷(thexylsilane)、异戊基硅烷、叔丁基二硅烷、二叔丁基二硅烷、四氯硅烷、三氯硅烷、二氯硅烷、一氯硅烷、氯代烯丙基硅烷、氯甲基硅烷、二氯甲基硅烷、氯二甲基硅烷、氯乙基硅烷、叔丁基氯硅烷、二叔丁基氯硅烷、氯异丙基硅烷、氯仲丁基硅烷、叔丁基二甲基氯硅烷、叔己基二甲基氯硅烷,单氨基硅烷、二氨基硅烷、三氨基硅烷、四氨基硅烷、叔丁基氨基硅烷、甲基氨基硅烷、叔丁基硅烷胺、双(叔丁基氨基)硅烷或甲硅烷基氨基甲酸叔丁酯(tert-butyl silylcarbamate)。In some embodiments, depositing by a PECVD process includes introducing a silicon-containing precursor selected from the group consisting of methylsilane, ethylsilane, isopropylsilane, tert-butylsilane, dimethylsilane, diethylsilane Silane, di-tert-butylsilane, allylsilane, sec-butylsilane, thexylsilane, isopentylsilane, tert-butyldisilane, di-tert-butyldisilane, tetrachlorosilane, trichlorosilane Silane, dichlorosilane, monochlorosilane, chloroallylsilane, chloromethylsilane, dichloromethylsilane, chlorodimethylsilane, chloroethylsilane, tert-butyl chlorosilane, di-tert-butyl chloride Silane, chloroisopropylsilane, chlorosec-butylsilane, tert-butyldimethylchlorosilane, tert-hexyldimethylchlorosilane, monoaminosilane, diaminosilane, triaminosilane, tetraaminosilane, tert-butyl Aminosilane, methylaminosilane, tert-butylsilylamine, bis(tert-butylamino)silane or tert-butyl silylcarbamate.

在一些实施方式中,通过PECVD工艺沉积包括引入选自甲烷(CH4)、乙炔(C2H2)、乙烯(C2H4)、丙烯(C3H6)、丁烷(C4H10)、环己烷(C6H12)、苯(C6H6)和甲苯(C7H8)中的含碳前体。In some embodiments, depositing by a PECVD process includes introducing a material selected from the group consisting of methane (CH 4 ), acetylene (C 2 H 2 ), ethylene (C 2 H 4 ), propylene (C 3 H 6 ), butane (C 4 H ) 10 ), carbonaceous precursors in cyclohexane ( C6H12 ), benzene ( C6H6 ) and toluene ( C7H8 ).

在一些实施方式中,通过PECVD工艺沉积包括引入选自硼烷(BH3)、乙硼烷(B2H6)和三硼烷(B3H7)中的含硼前体。In some embodiments, depositing by a PECVD process includes introducing a boron-containing precursor selected from the group consisting of borane (BH 3 ), diborane (B 2 H 6 ), and triborane (B 3 H 7 ).

在一些实施方式中,通过PECVD工艺沉积包括引入选自五(二甲基酰氨基)钽、三甲基铝、四乙氧基钛、四-二甲基酰氨基钛、四(乙基甲基酰胺)铪、双(环戊二烯基)锰和双(正丙基环戊二烯基)镁中的含金属前体。In some embodiments, depositing by a PECVD process includes introducing a group selected from the group consisting of penta(dimethylamido)tantalum, trimethylaluminum, tetraethoxytitanium, tetra-dimethylamidotitanium, tetrakis(ethylmethyl) amide) metal-containing precursors in hafnium, bis(cyclopentadienyl)manganese and bis(n-propylcyclopentadienyl)magnesium.

在一些实施方式中,PECVD工艺和等离子体处理操作中的一者或两者使用感应耦合等离子体、或电容耦合等离子体、或微波等离子体。在一些实施方式中,PECVD工艺和等离子体处理操作中的一者或两者使用直接等离子体、或远程等离子体、或其组合。在一些实施方式中,PECVD工艺和等离子体处理操作中的一者或两者是离子辅助工艺、或自由基辅助工艺、或其组合。In some embodiments, one or both of the PECVD process and the plasma processing operation use inductively coupled plasma, or capacitively coupled plasma, or microwave plasma. In some embodiments, one or both of the PECVD process and the plasma treatment operation use direct plasma, or remote plasma, or a combination thereof. In some embodiments, one or both of the PECVD process and the plasma treatment operation is an ion-assisted process, or a radical-assisted process, or a combination thereof.

还提供了用于执行本文公开的方法的装置。该装置可以包括一个或多个处理室,例如感应耦合蚀刻室或电容耦合蚀刻室,以及具有用于执行该方法的机器可读指令的控制器。Apparatuses for performing the methods disclosed herein are also provided. The apparatus may include one or more processing chambers, such as an inductively coupled etch chamber or a capacitively coupled etch chamber, and a controller having machine-readable instructions for performing the method.

具体而言,本发明的一些方面可以阐述如下:In particular, some aspects of the present invention can be set forth as follows:

1.一种方法,其包括:1. A method comprising:

执行多循环定向沉积工艺以在图案化结构上沉积掩模构建材料,其中每个循环包括:A multi-cycle directional deposition process is performed to deposit mask build material on the patterned structure, where each cycle includes:

i)通过等离子体增强化学气相沉积(PECVD)工艺在所述图案化结构上沉积第一材料,以及i) depositing a first material on the patterned structure by a plasma enhanced chemical vapor deposition (PECVD) process, and

ii)等离子体处理所述第一材料以改善方向性。ii) Plasma treating the first material to improve directionality.

2.根据条款1所述的方法,其中所述第一材料是基于硅的材料、基于碳的材料、基于硼的材料或其组合。2. The method of clause 1, wherein the first material is a silicon-based material, a carbon-based material, a boron-based material, or a combination thereof.

3.根据条款1所述的方法,其中所述第一材料包括硅、碳、硼、磷、砷和硫中的两种或更多种。3. The method of clause 1, wherein the first material comprises two or more of silicon, carbon, boron, phosphorous, arsenic, and sulfur.

4.根据条款1所述的方法,其中所述第一材料是含金属材料。4. The method of clause 1, wherein the first material is a metal-containing material.

5.根据条款1所述的方法,其中(ii)包括将所述第一材料暴露于基于氮的等离子体、基于氧的等离子体、基于氢的等离子体、基于烃的等离子体、基于氩的等离子体、基于氦的等离子体、或其组合。5. The method of clause 1, wherein (ii) comprises exposing the first material to a nitrogen-based plasma, an oxygen-based plasma, a hydrogen-based plasma, a hydrocarbon-based plasma, an argon-based plasma plasma, helium-based plasma, or a combination thereof.

6.根据条款1所述的方法,其中(ii)包括将所述第一材料暴露于由含氢化合物产生的等离子体。6. The method of clause 1, wherein (ii) comprises exposing the first material to a plasma generated from a hydrogen-containing compound.

7.根据条款5所述的方法,其中所述含氢化合物是H2、CH4、NH3、C2H2和N2H2中的一种。7. The method of clause 5, wherein the hydrogen - containing compound is one of H2 , CH4 , NH3 , C2H2 , and N2H2 .

8.根据条款1所述的方法,其还包括蚀刻由所述图案化结构掩蔽的层。8. The method of clause 1, further comprising etching a layer masked by the patterned structure.

9.根据条款1所述的方法,其中所述图案化结构包括具有特征顶部和特征侧壁的凸起特征。9. The method of clause 1, wherein the patterned structure comprises raised features having feature tops and feature sidewalls.

10.根据条款9所述的方法,其中处理所述第一材料包括将所述第一材料从所述特征侧壁重新沉积到所述特征顶部。10. The method of clause 9, wherein processing the first material comprises redepositing the first material from the feature sidewalls to the feature tops.

11.根据条款1所述的方法,其中每个循环还包括使所述第一材料反应以形成第二材料。11. The method of clause 1, wherein each cycle further comprises reacting the first material to form a second material.

12.根据条款1所述的方法,其中每个循环还包括改变所述第一材料的材料性质。12. The method of clause 1, wherein each cycle further comprises changing a material property of the first material.

13.根据条款12所述的方法,其中所述改变所述第一材料的材料性质包括等离子体处理、暴露于紫外线辐射或热退火中的一种或多种。13. The method of clause 12, wherein the altering the material properties of the first material comprises one or more of plasma treatment, exposure to ultraviolet radiation, or thermal annealing.

14.根据条款1所述的方法,其中通过所述PECVD工艺沉积包括将含硅前体、含碳前体、含硼前体或含金属前体引入等离子体反应器。14. The method of clause 1, wherein depositing by the PECVD process comprises introducing a silicon-containing precursor, a carbon-containing precursor, a boron-containing precursor, or a metal-containing precursor into a plasma reactor.

15.根据条款14所述的方法,其中通过所述PECVD工艺沉积包括引入选自硅烷、卤化硅烷、有机硅烷或氨基硅烷中的含硅前体。15. The method of clause 14, wherein depositing by the PECVD process comprises introducing a silicon-containing precursor selected from the group consisting of silanes, halosilanes, organosilanes, or aminosilanes.

16.根据条款14所述的方法,其中通过所述PECVD工艺沉积包括引入含硅前体,所述含硅前体选自甲基硅烷、乙基硅烷、异丙基硅烷、叔丁基硅烷、二甲基硅烷、二乙基硅烷、二叔丁基硅烷、烯丙基硅烷、仲丁基硅烷、叔己基硅烷、异戊基硅烷、叔丁基二硅烷、二叔丁基二硅烷、四氯硅烷、三氯硅烷、二氯硅烷、一氯硅烷、氯代烯丙基硅烷、氯甲基硅烷、二氯甲基硅烷、氯二甲基硅烷、氯乙基硅烷、叔丁基氯硅烷、二叔丁基氯硅烷、氯异丙基硅烷、氯仲丁基硅烷、叔丁基二甲基氯硅烷、叔己基二甲基氯硅烷,单氨基硅烷、二氨基硅烷、三氨基硅烷、四氨基硅烷、叔丁基氨基硅烷、甲基氨基硅烷、叔丁基硅烷胺、双(叔丁基氨基)硅烷或甲硅烷基氨基甲酸叔丁酯。16. The method of clause 14, wherein depositing by the PECVD process comprises introducing a silicon-containing precursor selected from the group consisting of methylsilane, ethylsilane, isopropylsilane, tert-butylsilane, Dimethylsilane, diethylsilane, di-tert-butylsilane, allylsilane, sec-butylsilane, tert-hexylsilane, isopentylsilane, tert-butyldisilane, di-tert-butyldisilane, tetrachlorosilane Silane, trichlorosilane, dichlorosilane, monochlorosilane, chloroallylsilane, chloromethylsilane, dichloromethylsilane, chlorodimethylsilane, chloroethylsilane, tert-butylchlorosilane, dichlorosilane tert-butylchlorosilane, chloroisopropylsilane, chlorosec-butylsilane, tert-butyldimethylchlorosilane, t-hexyldimethylchlorosilane, monoaminosilane, diaminosilane, triaminosilane, tetraaminosilane , tert-butylaminosilane, methylaminosilane, tert-butylsilylamine, bis(tert-butylamino)silane or tert-butyl silylcarbamate.

17.根据条款14所述的方法,其中通过所述PECVD工艺沉积包括引入选自甲烷(CH4)、乙炔(C2H2)、乙烯(C2H4)、丙烯(C3H6)、丁烷(C4H10)、环己烷C6H12)、苯(C6H6)和甲苯(C7H8)中的含碳前体。17. The method of clause 14, wherein depositing by the PECVD process comprises introducing a material selected from the group consisting of methane ( CH4 ), acetylene (C2H2 ) , ethylene ( C2H4 ) , propylene ( C3H6 ) , butane (C 4 H 10 ), cyclohexane (C 6 H 12 ), benzene (C 6 H 6 ) and carbonaceous precursors in toluene (C 7 H 8 ).

18.根据条款14所述的方法,其中通过所述PECVD工艺沉积包括引入选自硼烷(BH3)、乙硼烷(B2H6)和三硼烷(B3H7)中的含硼前体。18. The method of clause 14, wherein depositing by the PECVD process comprises introducing a compound selected from the group consisting of borane ( BH3 ) , diborane ( B2H6 ) and triborane ( B3H7 ). Boron precursor.

19.根据条款14所述的方法,其中通过所述PECVD工艺沉积包括引入选自五(二甲基酰氨基)钽、三甲基铝、四乙氧基钛、四-二甲基酰氨基钛、四(乙基甲基酰胺)铪、双(环戊二烯基)锰和双(正丙基环戊二烯基)镁中的含金属前体。19. The method of clause 14, wherein depositing by the PECVD process comprises introducing a group selected from the group consisting of penta(dimethylamido)tantalum, trimethylaluminum, tetraethoxytitanium, tetra-dimethylamidotitanium Metal-containing precursors in tetrakis(ethylmethylamide) hafnium, bis(cyclopentadienyl)manganese, and bis(n-propylcyclopentadienyl)magnesium.

20.根据条款1所述的方法,其中所述PECVD工艺和所述等离子体处理操作中的一者或者两者使用感应耦合等离子体、或电容耦合等离子体或微波等离子体。20. The method of clause 1, wherein one or both of the PECVD process and the plasma treatment operation uses an inductively coupled plasma, or a capacitively coupled plasma, or a microwave plasma.

21.根据条款1所述的方法,其中所述PECVD工艺和所述等离子体处理操作中的一者或两者使用直接等离子体、或远程等离子体、或其组合。21. The method of clause 1, wherein one or both of the PECVD process and the plasma treatment operation uses a direct plasma, or a remote plasma, or a combination thereof.

22.根据条款1所述的方法,其中所述PECVD工艺和所述等离子体处理操作中的一者或两者是离子辅助工艺、或自由基辅助工艺、或其组合。22. The method of clause 1, wherein one or both of the PECVD process and the plasma treatment operation is an ion-assisted process, or a radical-assisted process, or a combination thereof.

23.一种装置,其包括:23. An apparatus comprising:

室,其被构造成保持衬底;a chamber configured to hold the substrate;

与所述室集成或连接到所述室的等离子体产生器;以及a plasma generator integrated with or connected to the chamber; and

控制器,其包括用于执行多循环定向沉积工艺以在图案化结构上沉积掩模构建材料的指令,其中所述指令包括:A controller including instructions for performing a multi-cycle directional deposition process to deposit a mask build material on a patterned structure, wherein the instructions include:

i)用于通过等离子体增强化学气相沉积(PECVD)工艺在所述图案化结构上沉积第一材料的指令,以及i) instructions for depositing a first material on the patterned structure by a plasma enhanced chemical vapor deposition (PECVD) process, and

ii)用于等离子体处理所述第一材料以改善方向性的指令。ii) Instructions for plasma treating the first material to improve directionality.

下面参考附图进一步描述这些和其他方面。These and other aspects are further described below with reference to the accompanying drawings.

附图说明Description of drawings

图1示出了包括在硬掩模上的定向沉积的集成工艺的示例的操作。FIG. 1 illustrates the operation of an example of an integrated process involving directional deposition on a hard mask.

图2示出了在高深宽比特征上定向沉积的方法的示例中的某些操作。2 illustrates certain operations in an example of a method of directional deposition on high aspect ratio features.

图3a-3d示出了在定向沉积工艺期间的三个高深宽比图案化硬掩模特征的示意性示例。3a-3d show schematic examples of three high aspect ratio patterned hardmask features during a directional deposition process.

图4示出了在高深宽比特征上定向沉积的方法的示例中的某些操作。4 illustrates certain operations in an example of a method of directional deposition on high aspect ratio features.

图5和图6是用于执行根据所公开的实施方式所述的方法的工艺室的示例的示意图。5 and 6 are schematic diagrams of examples of process chambers for performing methods according to disclosed embodiments.

具体实施方式Detailed ways

在以下描述中,阐述了许多具体细节以提供对所呈现的实施方式的透彻理解。可以在没有这些具体细节中的一些或全部的情况下实践所公开的实施方式。在其他情况下,没有详细描述公知的工艺操作以免不必要地使所公开的实施方式难以理解。虽然将结合具体实施方式描述所公开的实施方式,但是应当理解,其并不意在限制所公开的实施方式。In the following description, numerous specific details are set forth in order to provide a thorough understanding of the presented embodiments. The disclosed embodiments may be practiced without some or all of these specific details. In other instances, well-known process operations have not been described in detail so as not to unnecessarily obscure the disclosed embodiments. While the disclosed embodiments will be described in conjunction with specific embodiments, it will be understood that no limitation of the disclosed embodiments is intended.

在半导体加工中,掩蔽方法用于图案化和蚀刻衬底。蚀刻期间的掩模损耗(也称为掩模侵蚀)是蚀刻高深宽比特征(例如孔和沟槽)中的关键挑战。本文提供涉及在掩模上或在衬底图案上沉积膜的方法。沉积可以是衬底选择性的(使得膜相对于衬底具有高蚀刻选择性)和图案选择性的(使得膜定向沉积在图案上并且复制图案)。沉积的材料被称为掩模构建材料。在一些实施方式中,在与执行蚀刻的室相同的室中执行沉积,也称为原位沉积。在一些实施方式中,沉积可以在通过传送室连接到主蚀刻室的单独的室(例如,PECVD室或不同的蚀刻室)中执行。应当注意,尽管描述主要涉及在图案化的硬掩模上的沉积,但是本文公开的方法包括在任何图案化的结构上的定向沉积以复制结构图案。In semiconductor processing, masking methods are used to pattern and etch substrates. Mask loss during etching (also known as mask erosion) is a key challenge in etching high aspect ratio features such as holes and trenches. Provided herein are methods involving depositing films on masks or on substrate patterns. The deposition can be substrate-selective (so that the film has high etch selectivity with respect to the substrate) and pattern-selective (so that the film is directionally deposited on the pattern and replicates the pattern). The deposited material is referred to as the mask build material. In some embodiments, the deposition is performed in the same chamber as the etching is performed, also referred to as in-situ deposition. In some embodiments, the deposition may be performed in a separate chamber (eg, a PECVD chamber or a different etch chamber) connected to the main etch chamber through the transfer chamber. It should be noted that although the description primarily refers to deposition on a patterned hardmask, the methods disclosed herein include directional deposition on any patterned structure to replicate the structure pattern.

可以在蚀刻工艺期间之前或在蚀刻工艺期间的选定间隔执行掩模构建材料的沉积。图1示出了包括在硬掩模上的定向沉积的集成工艺的示例的操作。在图1中,在10处,在待蚀刻的材料101上形成硬掩模105和光致抗蚀剂109。硬掩模105可以是任何适当的材料,包括有机或无机硬掩模。有机硬掩模的示例包括掺杂或未掺杂的无定形碳(也称为可灰化硬掩模或AHM)和有机硅氧烷材料。无机硬掩模材料的示例包括多晶硅和非晶硅(poly-Si,a-Si)、氧化硅(SiO)、氮化硅(SiN)、氮氧化硅(SiON)、碳氮化硅(SiCN)、氮化钛(TiN)、钨(W)和在特征蚀刻之后可以选择性去除的其他金属。硬掩模可以是掺杂的,示例是硼掺杂的AHM。在一些实施方式中,硬掩模可以是金属硬掩模(MHM),其示例包括金属(例如铝(Al)、金属氮化物(例如TiN和氮化钽(TaN)、钨(W)和金属氧化物(例如氧化铝(Al2O3))。在一些实施方式中,硬掩模可以是陶瓷硬掩模(CHM)。The deposition of the mask build material may be performed before or at selected intervals during the etching process. FIG. 1 illustrates the operation of an example of an integrated process involving directional deposition on a hard mask. In FIG. 1, at 10, a hardmask 105 and photoresist 109 are formed over the material 101 to be etched. Hardmask 105 may be any suitable material, including organic or inorganic hardmasks. Examples of organic hardmasks include doped or undoped amorphous carbon (also known as an ashable hardmask or AHM) and organosiloxane materials. Examples of inorganic hardmask materials include polysilicon and amorphous silicon (poly-Si, a-Si), silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbon nitride (SiCN) , titanium nitride (TiN), tungsten (W), and other metals that can be selectively removed after feature etching. The hard mask can be doped, an example is a boron doped AHM. In some embodiments, the hard mask may be a metal hard mask (MHM), examples of which include metals such as aluminum (Al), metal nitrides such as TiN and tantalum nitride (TaN), tungsten (W), and metals Oxides such as alumina (Al 2 O 3 ). In some embodiments, the hard mask may be a ceramic hard mask (CHM).

然后,该工艺进行光致抗蚀剂显影(20)和硬掩模打开(30)以暴露待蚀刻的材料。在图1的示例中,在蚀刻材料101之前,将掩模构建材料111定向沉积在硬掩模105上以增大硬掩模105的图案化特征的深宽比。参见操作40。这使得随后的蚀刻能进行更长时间以提供更深的蚀刻。然后蚀刻材料101。参见操作50。在图1的示例中,在蚀刻期间完全去除掩模构建材料111。然而,在一些实施方式中,其中一些可以保留。在操作50,如果蚀刻完成,则可以通过适当的工艺去除硬掩模105。然而,在一些实施方式中,可以在50之后执行掩模构建材料的图案上定向沉积(an on-pattern directional deposition),以在继续蚀刻工艺之前增大硬掩模的图案化特征的深宽比。被腐蚀的掩模材料可以用相同或相似的材料或不同的材料恢复并根据需要恢复到相同或不同的轮廓。The process then proceeds with photoresist development (20) and hardmask opening (30) to expose the material to be etched. In the example of FIG. 1 , before etching material 101 , mask build material 111 is directionally deposited on hardmask 105 to increase the aspect ratio of the patterned features of hardmask 105 . See operation 40. This enables subsequent etchings to be performed for longer periods of time to provide deeper etchings. The material 101 is then etched. See operation 50. In the example of FIG. 1 , the mask build material 111 is completely removed during etching. However, in some embodiments, some of them may remain. At operation 50, if the etching is complete, the hard mask 105 may be removed by a suitable process. However, in some embodiments, an on-pattern directional deposition of the mask build material may be performed after 50 to increase the aspect ratio of the patterned features of the hardmask before continuing the etch process . The etched mask material can be restored with the same or a similar material or a different material and restored to the same or a different profile as desired.

图2示出了在高深宽比特征上定向沉积的方法中的某些操作。如上所述,定向沉积可以在蚀刻工艺之前或在蚀刻工艺的中间在蚀刻室中进行,以增大覆盖待蚀刻材料的掩模的深宽比。Figure 2 illustrates certain operations in a method of directional deposition on high aspect ratio features. As mentioned above, directional deposition can be performed in the etch chamber before or in the middle of the etch process to increase the aspect ratio of the mask covering the material to be etched.

在图2中,通过等离子体增强化学气相沉积(PECVD)工艺将掩模构建材料沉积在高深宽比特征上。见框201。掩模构建材料通常不同于掩模材料,可以通过PECVD沉积,并且对待蚀刻的材料具有至少一些蚀刻选择性。因此,掩模构建材料将取决于待蚀刻的材料和待使用的蚀刻化学过程。通常,掩模构建材料是介电材料。示例包括含硅膜和含碳膜及其组合。In Figure 2, the mask build material is deposited on the high aspect ratio features by a plasma enhanced chemical vapor deposition (PECVD) process. See box 201. The mask build material is typically different from the mask material, can be deposited by PECVD, and has at least some etch selectivity for the material to be etched. Therefore, the mask build material will depend on the material to be etched and the etch chemistry to be used. Typically, the mask build material is a dielectric material. Examples include silicon-containing films and carbon-containing films and combinations thereof.

为了促进定向沉积,在一些实施方式中,沉积化学品可以包括具有高粘着系数和低迁移率的分子。粘着系数是在相同时间段期间粘附于表面的吸附分子的数量与撞击表面的分子的总数的比率。粘着系数取决于尺寸(大分子具有较高粘着系数)和表面上吸附的倾向性。To facilitate directional deposition, in some embodiments, the deposition chemistry may include molecules with high adhesion coefficients and low mobility. The adhesion coefficient is the ratio of the number of adsorbed molecules adhering to the surface to the total number of molecules hitting the surface during the same time period. The adhesion coefficient depends on the size (large molecules have higher adhesion coefficients) and the propensity for adsorption on the surface.

迁移率是指分子的表面和气体扩散速率。在一些实施方式中,可以使用包括聚合物链的沉积化学品。这种链可以在PECVD工艺期间在等离子体中形成。例如,可以将带有氢(H2)的氯硅烷引入到室中。等离子体可以被激励,产生自由基(用a*表示)和离子,随后的反应产生氯化聚硅烷。Mobility refers to the surface and gas diffusion rates of molecules. In some embodiments, deposition chemistries that include polymer chains may be used. Such chains can be formed in the plasma during the PECVD process. For example, chlorosilane with hydrogen ( H2 ) can be introduced into the chamber. The plasma can be excited, producing free radicals (denoted by a*) and ions, and subsequent reactions produce chlorinated polysilanes.

等离子体反应的示例包括:Examples of plasma reactions include:

H2+e-→2H*+e- H 2 +e - →2H*+e -

SiCl4+e-→SiCl3+Cl*+e- SiCl 4 +e - →SiCl 3 +Cl*+e -

SiCl4+H*→SiCl3*+HClSiCl 4 +H*→SiCl 3 *+HCl

SiCl4+2H*→HSiCl3+HClSiCl 4 +2H*→HSiCl 3 +HCl

SiCl3*+2H*→SiCl2*+HCl+H*,SiCl 3 *+2H*→SiCl 2 *+HCl+H*,

或→HSiCl2*+Cl*+H*,or →HSiCl 2 *+Cl*+H*,

或→HSiCl3+H*,or →HSiCl 3 +H*,

或→H2SiCl*+2Cl*,or →H 2 SiCl*+2Cl*,

n(SiCl2*)+mSiCl3*→Si2Cl6+…→Si3Cl8+…→SinCl2n+2 n(SiCl 2 *)+mSiCl 3 *→Si 2 Cl 6 +…→Si 3 Cl 8 +…→Si n Cl 2n+2

n(HSiCl*)+mH2SiCl*→H2Si2Cl4+→HxSinCl2n+2-x n(HSiCl*)+mH 2 SiCl*→H 2 Si 2 Cl 4 +→H x Si n Cl 2n+2-x

还在表面上发生的类似反应使得沉积过程更复杂。Similar reactions also taking place on the surface complicate the deposition process.

氯化聚硅烷可以是大簇。氯硅烷和氯化聚硅烷都具有高粘着系数和低迁移率,这有助于提供图案上的定向沉积。下面进一步讨论其他示例性沉积化学过程。在框201之后,沉积在高深宽比特征上的掩模构建材料可以被定向沉积,沉积的材料在特征的顶部比沿着侧壁和在特征底部更厚。图3a示出了框201之后的高深宽比图案化硬掩模特征的示意性示例。在图3a的示例中,图案化硬掩模特征303被示出为覆盖待蚀刻的材料309。图案化硬掩模特征303可以被表征为具有特征顶部305和侧壁307。图案化硬掩模特征303形成高深宽比孔313,其可以是例如接触孔或沟槽。孔313的底部311可以被称为特征底部。Chlorinated polysilanes can be large clusters. Both chlorosilanes and chlorinated polysilanes have high adhesion coefficients and low mobility, which help provide directional deposition on patterns. Other exemplary deposition chemistries are discussed further below. After block 201, the mask build material deposited on the high aspect ratio features may be directionally deposited, with the deposited material being thicker at the top of the feature than along the sidewalls and at the bottom of the feature. FIG. 3a shows a schematic example of a high aspect ratio patterned hardmask feature after block 201 . In the example of Figure 3a, patterned hardmask features 303 are shown covering material 309 to be etched. Patterned hardmask features 303 may be characterized as having feature tops 305 and sidewalls 307 . The patterned hardmask features 303 form high aspect ratio holes 313, which may be, for example, contact holes or trenches. The bottom 311 of the hole 313 may be referred to as the feature bottom.

在一些实施方式中,在PECVD沉积期间将偏置电压施加到晶片。这可以增大等离子体中各种物质的粘着系数。例如,偏置电压可以增大氯硅烷离子基团的粘着系数。In some embodiments, a bias voltage is applied to the wafer during PECVD deposition. This can increase the adhesion coefficient of various species in the plasma. For example, the bias voltage can increase the adhesion coefficient of the chlorosilane ionic group.

在含硅前体和稀释气体的气体混合物中产生的等离子体301用于在硬掩模上沉积硅膜。示例性的等离子体物质包括SiHyClx*自由基302、H*原子308和氯化聚硅烷306。氯化氢(HCl)物质304作为副产物产生。含硅物质在图案化硬掩模特征303上沉积硅构建材料312。在图3a的示例中,沉积是定向的,因为在特征顶部305上比在侧壁上307和底部311上沉积了较多的构建材料312。构建材料312的厚度随着特征的深度增大而减小。The plasma 301 generated in the gas mixture containing the silicon precursor and the diluent gas is used to deposit the silicon film on the hard mask. Exemplary plasma species include SiH yCl x * radicals 302 , H* atoms 308 , and chlorinated polysilanes 306 . Hydrogen chloride (HCl) species 304 is produced as a by-product. The silicon-containing species deposits silicon build material 312 on patterned hardmask features 303 . In the example of FIG. 3a, the deposition is directional because more build material 312 is deposited on feature top 305 than on sidewalls 307 and bottom 311 . The thickness of the build material 312 decreases as the depth of the feature increases.

回到图2,然后处理所沉积的掩模构建材料以增强方向性。见框203。增强方向性可以增大掩模构建材料的深宽比。在一些实施方式中,掩模构建材料在图案化硬掩模的侧壁上不超过几纳米厚。方向性还可以用顶部:底部台阶覆盖率或顶部:侧壁台阶覆盖率来表征。在图3d中,例如,320表示顶部厚度,322表示底部厚度,而324表示侧壁厚度。台阶覆盖率是两个厚度的比率,例如,顶部:底部台阶覆盖率或顶部:侧壁台阶覆盖率。在测量侧壁厚度时,可以使用特征深度的中点处的厚度。在一些实施方式中,处理操作增大了顶部:底部台阶覆盖率或顶部:侧壁台阶覆盖率。在一些实施方式中,框203还修改沉积材料的材料性质(例如,密度、化学成分或蚀刻电阻率)。Returning to Figure 2, the deposited mask build material is then processed to enhance directionality. See box 203. Enhancing directionality can increase the aspect ratio of the mask build material. In some embodiments, the mask build material is no more than a few nanometers thick on the sidewalls of the patterned hardmask. Directionality can also be characterized by top:bottom step coverage or top:sidewall step coverage. In Figure 3d, for example, 320 represents the top thickness, 322 represents the bottom thickness, and 324 represents the sidewall thickness. Step coverage is the ratio of two thicknesses, for example, top:bottom step coverage or top:sidewall step coverage. When measuring sidewall thickness, the thickness at the midpoint of the feature depth can be used. In some embodiments, the processing operation increases the top:bottom step coverage or top:sidewall step coverage. In some embodiments, block 203 also modifies the material properties (eg, density, chemical composition, or etch resistivity) of the deposited material.

操作203可以包括将掩模构建材料暴露于具有高迁移率并且可以蚀刻掩模构建材料的等离子体物质。等离子体物质可以相对于待蚀刻的材料和/或相对于该硬掩模选择性地化学蚀刻掩模构建材料。在一些实施方式中,该化学蚀刻的反应产物作为构建材料再沉积在图案化硬掩模特征的上部上。Operation 203 can include exposing the mask build material to a plasma species having high mobility and can etch the mask build material. The plasma species may selectively chemically etch the mask build material relative to the material to be etched and/or relative to the hard mask. In some embodiments, the reaction product of the chemical etch is redeposited as a build material on the upper portion of the patterned hardmask features.

在一些实施方式中,使用基于氢的等离子体。基于氢的等离子体是一种等离子体,在该等离子体中,氢物质(主要是H自由基)是主要处理物质并且在一些实施方式中可以是主要蚀刻物质。在一些实施方式中,基于氢的等离子体可以由基本上由H2组成的气体形成。在一些实施方式中,一种或多种惰性气体可以与H2一起存在。一种基于氢的等离子体可以选择性地蚀刻硅而不蚀刻氧化物。In some embodiments, a hydrogen-based plasma is used. A hydrogen-based plasma is a plasma in which hydrogen species (primarily H radicals) are the primary process species and in some embodiments may be the primary etch species. In some embodiments, the hydrogen-based plasma can be formed from a gas consisting essentially of H2 . In some embodiments, one or more inert gases may be present with H 2 . A hydrogen-based plasma can selectively etch silicon without etching oxide.

在一些实施方式中,将包括下述中的一种或多种的等离子体产生气体引入等离子体产生器以产生等离子体物质。在一些实施方式中,该等离子体产生气体包括一种或多种含氢等离子体。这种气体的示例包括H2、CH4、NH3、C2H2和N2H2。所得等离子体可以是基于氢的等离子体。In some embodiments, a plasma generating gas including one or more of the following is introduced into a plasma generator to generate plasma species. In some embodiments, the plasma generating gas includes one or more hydrogen-containing plasmas. Examples of such gases include H2 , CH4 , NH3 , C2H2 , and N2H2 . The resulting plasma may be a hydrogen-based plasma.

在一些实施方式中,可以使用基于氮的等离子体、基于氧的等离子体、基于烃的等离子体,基于氩的等离子体或基于氦的等离子体。在基于氮的等离子体中,主要处理物质是氮,在基于氧的等离子体中,主要处理物质是氧等等。在一些实施方式中,这些可以是用于涉及蚀刻的处理的主要蚀刻物质。In some embodiments, nitrogen-based plasmas, oxygen-based plasmas, hydrocarbon-based plasmas, argon-based plasmas, or helium-based plasmas may be used. In nitrogen-based plasmas, the main treatment species is nitrogen, in oxygen-based plasmas, the main treatment species is oxygen, and so on. In some embodiments, these may be the primary etching species used for processes involving etching.

图3b示出了在框203之后的高深宽比图案化硬掩模特征的示意性示例。处理等离子体321可以包括例如Ar离子、Si离子、H*原子、N离子和Cl*原子中的一种或多种。从等离子体或从单独的UV源产生的紫外光也可以在室中。FIG. 3b shows a schematic example of a high aspect ratio patterned hardmask feature after block 203 . Process plasma 321 may include, for example, one or more of Ar ions, Si ions, H* atoms, N ions, and Cl* atoms. Ultraviolet light generated from the plasma or from a separate UV source can also be in the chamber.

在图3b中,处理等离子体包括H*原子308、N离子309和Ar离子310。这些可以深入到孔313中并且从特征的侧壁307和底部311蚀刻构建材料312。一些被蚀刻的构建材料可以重新沉积在特征的顶部305处。各种产品物质315可以形成并导致再沉积或作为副产品离开。产品物质的示例可包括SiClxHy物质、SixHy和NxHy物质。以这种方式,相比于朝向侧壁和底部而言,改善了掩模构建材料朝向图案化硬掩模特征的顶部的方向性。回到图2,框201和203可以重复一次或多次以获得期望的深宽比。框201可以执行时间仅仅长到足以在特征的侧壁和底部沉积仅仅薄层的掩模构建材料,使得其可以在框203中被去除。每个循环的示例性的顶部厚度可以在

Figure BDA0003594325990000101
Figure BDA0003594325990000102
Figure BDA0003594325990000103
Figure BDA0003594325990000104
的范围内。图3c示出了在第N和第(N+1)循环中图案化的硬掩模和掩模构建材料的示意性示例。In Figure 3b, the processing plasma includes H* atoms 308, N ions 309 and Ar ions 310. These can penetrate deep into hole 313 and etch build material 312 from sidewalls 307 and bottom 311 of the feature. Some of the etched build material may be redeposited at the top 305 of the feature. Various product species 315 may form and cause redeposition or leave as by-products. Examples of product species may include SiClxHy species, SixHy , and NxHy species . In this way, the directionality of the mask build material toward the top of the patterned hardmask features is improved compared to toward the sidewalls and bottom. Returning to Figure 2, blocks 201 and 203 may be repeated one or more times to achieve the desired aspect ratio. Block 201 may be performed only long enough to deposit only a thin layer of mask build material on the sidewalls and bottom of the feature so that it may be removed in block 203 . Exemplary top thicknesses for each cycle can be found at
Figure BDA0003594325990000101
to
Figure BDA0003594325990000102
or
Figure BDA0003594325990000103
to
Figure BDA0003594325990000104
In the range. Figure 3c shows a schematic example of a hardmask and mask build material patterned in the Nth and (N+1)th cycles.

图4示出了在高深宽比特征上定向沉积的方法中的某些操作。如上所述,定向沉积可以在蚀刻工艺之前或在蚀刻工艺的中间在蚀刻室中发生,以增加覆盖待蚀刻的材料的掩模的深宽比。图4中描述的工艺类似于相对于图2描述的工艺,其中操作201和203如上所述执行。然而,在图4的示例中,在处理沉积的材料以增大图案选择比之后,掩模构建材料可以发生反应以增大蚀刻选择比。参见框204。在一个示例中,硅掩模构建材料可暴露于含碳气体以形成碳化硅。这对于形成针对氧化物具有高蚀刻选择性的掩模构建材料是特别有用的。在其他示例中,硅掩模构建材料可以暴露于含氮气体以形成氮化硅。4 illustrates certain operations in a method of directional deposition on high aspect ratio features. As mentioned above, directional deposition can occur in the etch chamber before or in the middle of the etch process to increase the aspect ratio of the mask covering the material to be etched. The process described in FIG. 4 is similar to the process described with respect to FIG. 2, with operations 201 and 203 performed as described above. However, in the example of Figure 4, after processing the deposited material to increase the pattern selectivity, the mask build material may react to increase the etch selectivity. See block 204. In one example, the silicon mask build material may be exposed to a carbon-containing gas to form silicon carbide. This is particularly useful for forming mask build materials with high etch selectivity to oxides. In other examples, the silicon mask build material may be exposed to a nitrogen-containing gas to form silicon nitride.

在一些实施方式中,图4中的操作204可以在操作203之前执行,使得掩模构建材料在所述处理过程之前反应以形成另一种材料。在一些实施方式中,操作204可以仅在操作203和204的多个循环之后执行。例如,操作204可以在操作205之后执行。In some embodiments, operation 204 in FIG. 4 may be performed before operation 203, such that the mask building material reacts to form another material prior to the process. In some implementations, operation 204 may only be performed after multiple cycles of operations 203 and 204 . For example, operation 204 may be performed after operation 205 .

在一些实施方式中,可以在图2中的操作203或图4中的操作204之后执行可选的致密化操作。如果执行,致密化操作可以涉及例如热退火、暴露于紫外辐射、或等离子体致密化处理。在一些实施方式中,可以在图2或图4中的操作205之后执行可选的致密化操作。在一些实施方式中,操作203和204可以使用适当的化学物质同时执行。In some embodiments, an optional densification operation may be performed after operation 203 in FIG. 2 or operation 204 in FIG. 4 . If performed, the densification operation may involve, for example, thermal annealing, exposure to ultraviolet radiation, or plasma densification. In some embodiments, an optional densification operation may be performed after operation 205 in FIG. 2 or FIG. 4 . In some embodiments, operations 203 and 204 may be performed simultaneously using appropriate chemicals.

在沉积和处理期间,调整工艺条件以提供没有夹断的非共形沉积。夹断(pinch-off)指的是相邻特征一起生长以夹断特征之间的区域。如根据实验结果在下面进一步讨论的,可以调整各种工艺条件以在PECVD沉积期间提供定向沉积,以及在处理操作期间提供改善的方向性和竖直侧壁。循环(而不是连续PECVD)并使用处理操作已经显示出在一些实施方式中有助于良好限定的高深宽比的构建材料特征。在PECVD沉积期间的偏置电压也可增加非共形性并减少夹断。沉积期间的停留时间(流速)和等离子体功率也影响非共形性和夹断。在处理操作期间添加添加剂气体可以帮助防止蚀刻在特征顶部的先前沉积的材料。在处理期间的等离子体功率和暴露时间也可以被调整以限制对硬掩模壁和底部的蚀刻。During deposition and processing, process conditions are adjusted to provide non-conformal deposition without pinch-off. Pinch-off refers to adjacent features growing together to pinch off the area between the features. As discussed further below based on experimental results, various process conditions can be adjusted to provide directional deposition during PECVD deposition, as well as improved directionality and vertical sidewalls during processing operations. Cycling (rather than continuous PECVD) and using processing operations have been shown to facilitate well-defined high aspect ratio build material characteristics in some embodiments. Bias voltage during PECVD deposition can also increase non-conformity and reduce pinch off. Residence time (flow rate) and plasma power during deposition also affect non-conformity and pinch-off. Adding additive gases during processing operations can help prevent etching of previously deposited material on top of features. Plasma power and exposure time during processing can also be adjusted to limit etching of the hardmask walls and bottom.

虽然上述讨论集中于沉积基于硅的掩模构建材料,但是可以使用其他材料,例如碳膜。在沉积硅时,可以使用任何适当的含硅前体,包括硅烷(例如SiH4)、聚硅烷(H3Si-(SiH2)n-SiH3)(其中n>1)、有机硅烷、卤代硅烷和氨基硅烷。可以使用有机硅烷,如甲基硅烷、乙基硅烷、异丙基硅烷、叔丁基硅烷、二甲基硅烷、二乙基硅烷、二叔丁基硅烷、烯丙基硅烷、仲丁基硅烷、叔己基硅烷、异戊基硅烷、叔丁基二硅烷、二叔丁基二硅烷等。卤化硅烷含有至少一个卤素基团并且可以含有或可以不含有氢和/或碳基团。卤代硅烷的示例是碘代硅烷、溴代硅烷、氯代硅烷和氟代硅烷。具体的氯硅烷是四氯硅烷(SiCl4)、三氯硅烷(HSiCl3)、二氯硅烷(H2SiCl2)、单氯硅烷(ClSiH3)、氯烯丙基硅烷、氯甲基硅烷、二氯甲基硅烷、氯二甲基硅烷、氯乙基硅烷、叔丁基氯硅烷、二叔丁基氯硅烷、氯异丙基硅烷、氯仲丁基硅烷、叔丁基二甲基氯硅烷、叔丁基二甲基氯硅烷等。氨基硅烷包括与硅原子键合的至少一个氮原子,但也可以含有氢、氧、卤素和碳。氨基硅烷的示例是单氨基硅烷、二氨基硅烷、三氨基硅烷和四氨基硅烷(分别为H3Si(NH2)4、H2Si(NH2)2、HSi(NH2)3和Si(NH2)4),以及经取代的单氨基硅烷、二氨基硅烷、三氨基硅烷和四氨基硅烷,例如叔丁基氨基硅烷、甲基氨基硅烷、叔丁基硅烷胺、双(叔丁基氨基)硅烷(SiH2(NHC(CH3)3)2(BTBAS))、甲硅烷基氨基甲酸叔丁酯、SiH(CH3)-(N(CH3)2)2、SiHCl-(N(CH3)2)2、(Si(CH3)2NH)3等。While the above discussion has focused on depositing silicon-based mask building materials, other materials, such as carbon films, may be used. In depositing silicon, any suitable silicon-containing precursor may be used, including silanes (eg SiH4 ), polysilanes ( H3Si- (SiH2) n - SiH3 ) (where n>1), organosilanes, halogens Substituted silanes and amino silanes. Organosilanes such as methylsilane, ethylsilane, isopropylsilane, tert-butylsilane, dimethylsilane, diethylsilane, di-tert-butylsilane, allylsilane, sec-butylsilane, Tert-hexylsilane, isopentylsilane, tert-butyldisilane, di-tert-butyldisilane, etc. Halogenated silanes contain at least one halogen group and may or may not contain hydrogen and/or carbon groups. Examples of halosilanes are iodosilanes, bromosilanes, chlorosilanes and fluorosilanes. Specific chlorosilanes are tetrachlorosilane (SiCl4), trichlorosilane (HSiCl3 ) , dichlorosilane ( H2SiCl2 ), monochlorosilane ( ClSiH3 ) , chloroallylsilane, chloromethylsilane, Dichloromethylsilane, chlorodimethylsilane, chloroethylsilane, tert-butylchlorosilane, di-tert-butylchlorosilane, chloroisopropylsilane, chlorosec-butylsilane, tert-butyldimethylchlorosilane , tert-butyldimethylsilyl chloride, etc. Aminosilanes include at least one nitrogen atom bonded to a silicon atom, but may also contain hydrogen, oxygen, halogen and carbon. Examples of aminosilanes are mono-, di-, tri-, and tetra-amino silanes (H 3 Si(NH 2 ) 4 , H 2 Si(NH 2 ) 2 , HSi(NH 2 ) 3 and Si ( NH 2 ) 4 ), and substituted mono-, di-, tri- and tetra-amino silanes, such as tert-butylaminosilane, methylaminosilane, tert-butylsilylamine, bis(tert-butylamino) ) Silane (SiH 2 (NHC(CH 3 ) 3 ) 2 (BTBAS)), tert-butyl silylcarbamate, SiH(CH 3 )-(N(CH 3 ) 2 ) 2 , SiHCl-(N(CH ) 3 ) 2 ) 2 , (Si(CH 3 ) 2 NH) 3 and the like.

沉积膜通常是无定形的,膜组成将取决于所使用的特定前体和共反应物,有机硅烷导致a-SiC:H膜,而氨基硅烷将导致a-SiN:H或a-SiCN:H膜。The deposited films are generally amorphous and the film composition will depend on the specific precursors and co-reactants used, organosilanes will result in a-SiC:H films, while aminosilanes will result in a-SiN:H or a-SiCN:H membrane.

在沉积碳膜中,可以使用任何合适的含碳前体。在一些实施方式中,可以使用式为CxHy的烃前体,其中X为介于2和10之间的整数,而Y为介于2和24之间的整数。示例包括甲烷(CH4)、乙炔(C2H2)、乙烯(C2H4)、丙烯(C3H6)、丁烷(C4H10)、环己烷(C6H12)、苯(C6H6)和甲苯(C7H8)。In depositing carbon films, any suitable carbon-containing precursor may be used. In some embodiments, hydrocarbon precursors of the formula CxHy , where X is an integer between 2 and 10 and Y is an integer between 2 and 24, can be used. Examples include methane (CH 4 ), acetylene (C 2 H 2 ), ethylene (C 2 H 4 ), propylene (C 3 H 6 ), butane (C 4 H 10 ), cyclohexane (C 6 H 12 ) , benzene (C 6 H 6 ) and toluene (C 7 H 8 ).

在一些实施方式中,所述构建材料可以是掺杂的或包括诸如硼或磷之类的材料。附加的掺杂剂包括砷、硫和硒。以这种方式,可以改善对下伏膜的蚀刻选择性。例如,对于掺杂的电介质(特别是基于二氧化硅的电介质),工艺气体可以包括掺杂剂前体,例如含硼气体、含磷气体、含碳气体或其混合物。在一具体实施方案中,气体包含一种或多种含硼反应物和一种或多种含磷反应物,并且介电膜包括磷掺杂的和硼掺杂的氧化硅玻璃(BPSG)。合适的硼前体气体和磷前体气体的示例包括硼烷(BH3)、乙硼烷(B2H6)和三硼烷(B3H7)以及磷化氢(PH3)。含砷气体、含硫气体和含硒气体的示例包括硒化氢(H2Se),砷化氢(AsH3)和硫化氢(H2S)。In some embodiments, the build material may be doped or include materials such as boron or phosphorous. Additional dopants include arsenic, sulfur and selenium. In this way, the etch selectivity to the underlying film can be improved. For example, for doped dielectrics (especially silica-based dielectrics), the process gas may include dopant precursors such as boron-containing gases, phosphorus-containing gases, carbon-containing gases, or mixtures thereof. In a specific embodiment, the gas includes one or more boron-containing reactants and one or more phosphorus-containing reactants, and the dielectric film includes phosphorus-doped and boron-doped silica glass (BPSG). Examples of suitable boron and phosphorus precursor gases include borane ( BH3 ) , diborane ( B2H6 ) and triborane ( B3H7 ) , and phosphine (PH3). Examples of the arsenic-containing gas, the sulfur-containing gas, and the selenium-containing gas include hydrogen selenide (H 2 Se), arsine (AsH 3 ), and hydrogen sulfide (H 2 S).

如果电介质将包含氮氧化物(例如,氮氧化硅),则沉积气体可以包括含氮反应物,例如N2、NH3、NO、N2O及其混合物。所沉积的膜的示例包括被硼掺杂的硅、硼化硅、硼化硅碳等。If the dielectric is to contain oxynitride (eg, silicon oxynitride), the deposition gas may include nitrogen-containing reactants such as N2 , NH3 , NO, N2O , and mixtures thereof. Examples of deposited films include boron-doped silicon, silicon boride, silicon boride carbon, and the like.

也可以沉积含金属的膜。可以形成的含金属膜的示例包括铝、钛、铪、钽、钨、锰、镁、锶等的氧化物和氮化物,以及元素金属膜。示例性的前体可包括金属烷基胺、金属醇盐、金属烷基酰胺、金属卤化物、金属β-二酮酸盐、金属羰基化合物、有机金属化合物等。合适的含金属前体将包括被期望并入膜中的金属。例如,可以通过使五(二甲基酰氨基)钽与氨或另一种作为辅助反应物的还原剂反应来沉积含钽层。可使用的含金属前体的其他示例包括三甲基铝、四乙氧基钛、四-二甲基-酰氨基钛、四(乙基甲基酰胺)铪、双(环戊二烯基)锰和双(正丙基环戊二烯基)镁等。Metal-containing films can also be deposited. Examples of metal-containing films that may be formed include oxides and nitrides of aluminum, titanium, hafnium, tantalum, tungsten, manganese, magnesium, strontium, etc., as well as elemental metal films. Exemplary precursors may include metal alkylamines, metal alkoxides, metal alkylamides, metal halides, metal beta-diketonates, metal carbonyls, organometallic compounds, and the like. Suitable metal-containing precursors would include the metals desired to be incorporated into the film. For example, the tantalum-containing layer can be deposited by reacting penta(dimethylamido)tantalum with ammonia or another reducing agent as a secondary reactant. Other examples of metal-containing precursors that may be used include trimethylaluminum, tetraethoxytitanium, tetra-dimethyl-amidotitanium, tetrakis(ethylmethylamide)hafnium, bis(cyclopentadienyl) Manganese and bis(n-propylcyclopentadienyl)magnesium, etc.

除氢以外,处理化学物质的示例包括含氮的处理化学物质、含氧的处理化学物质、含碳的处理化学物质和含卤素的处理化学物质以及惰性气体。In addition to hydrogen, examples of treatment chemistries include nitrogen-containing treatment chemistries, oxygen-containing treatment chemistries, carbon-containing treatment chemistries, and halogen-containing treatment chemistries, and inert gases.

在一些实施方式中,可以组合框203和204。例如,操作可以包括将所沉积的材料暴露于含氢化合物,例如CH4、NH3、H2Se、H2S、AsH3或PH3,以同时处理所沉积的材料以及使所沉积的材料反应。In some implementations, blocks 203 and 204 may be combined. For example, operations may include exposing the deposited material to a hydrogen - containing compound , such as CH4 , NH3 , H2Se, H2S, AsH3 , or PH3 , to simultaneously process and expose the deposited material reaction.

装置device

在一些实施方式中,在蚀刻装置中执行定向沉积。例如,上述方法可以在感应耦合等离子体蚀刻装置中或电容耦合等离子体蚀刻装置中执行。In some embodiments, the directional deposition is performed in an etching apparatus. For example, the above-described method may be performed in an inductively coupled plasma etching apparatus or in a capacitively coupled plasma etching apparatus.

图5根据本文的某些实施方式示意性地示出了感应耦合等离子体蚀刻装置500的横截面图。由加利福尼亚州弗里蒙特的朗姆研究公司(Lam Research Corp.)生产的Kiyo TM反应器是可用于实施本文所描述的技术的合适的反应器的一个示例。所述感应耦合等离子体蚀刻装置500包括在结构上由室壁501和窗511限定的总处理室。室壁501可以由不锈钢或铝制成。窗511可以由石英或其他介电材料制成。任选的内部等离子体栅格550将总蚀刻室分为上副室502和下副室503。在大多数实施方式中,等离子体栅格550可以被移除,从而利用由副室502和503制成的室空间。卡盘517定位在下副室503中在底部内表面附近。卡盘517被配置成接收和保持在其上执行蚀刻工艺的半导体晶片519。卡盘517可以是当晶片519存在时用于支撑晶片519的静电卡盘。在一些实施方式中,边缘环(未示出)围绕卡盘517,并具有大致与晶片519(当晶片存在于卡盘517上方时)的顶表面在同一平面的上表面。卡盘517还包括用于夹紧和放松晶片的静电电极。可设置过滤器和DC钳位功率源(未示出)用于此目的。也可以提供其他的控制系统以用于提升晶片519使其离开卡盘517。卡盘517可以用RF功率源523充电。RF功率源523通过连接件527被连接到匹配电路521。匹配电路521通过连接件525连接到卡盘517。以这种方式,RF功率源523被连接到卡盘517上。5 schematically illustrates a cross-sectional view of an inductively coupled plasma etch apparatus 500 in accordance with certain embodiments herein. The Kiyo reactor, produced by Lam Research Corp. of Fremont, California, is one example of a suitable reactor that can be used to implement the techniques described herein. The inductively coupled plasma etch apparatus 500 includes an overall processing chamber that is structurally defined by chamber walls 501 and windows 511 . The chamber wall 501 may be made of stainless steel or aluminum. Window 511 may be made of quartz or other dielectric materials. An optional internal plasma grid 550 divides the overall etch chamber into an upper sub-chamber 502 and a lower sub-chamber 503 . In most embodiments, the plasma grid 550 can be removed to utilize the chamber space made by the secondary chambers 502 and 503 . The chuck 517 is positioned in the lower sub-chamber 503 near the bottom inner surface. The chuck 517 is configured to receive and hold the semiconductor wafer 519 on which the etching process is performed. Chuck 517 may be an electrostatic chuck for supporting wafer 519 when wafer 519 is present. In some embodiments, an edge ring (not shown) surrounds the chuck 517 and has an upper surface that is approximately in the same plane as the top surface of the wafer 519 (when the wafer is present over the chuck 517). Chuck 517 also includes electrostatic electrodes for clamping and loosening the wafer. A filter and DC clamp power source (not shown) can be provided for this purpose. Other control systems may also be provided for lifting wafer 519 off chuck 517 . Chuck 517 can be charged with RF power source 523 . RF power source 523 is connected to matching circuit 521 through connection 527 . Matching circuit 521 is connected to chuck 517 through connector 525 . In this manner, the RF power source 523 is connected to the chuck 517 .

线圈533位于窗511的上方。线圈533由导电材料制成,并包括至少一整匝。在图5中所示的示例性线圈533包括三匝。线圈533的横截面用符号示出,并且具有“X”的线圈533旋转地延伸到页面内,而具有“●”的线圈533从页面旋转地延伸出来。RF功率源541被配置为提供RF功率至线圈533。一般地,RF功率源541通过连接件545被连接到匹配电路539。匹配电路539通过连接件543连接到线圈533。以这种方式,RF功率源541被连接到线圈533。可选的法拉第屏蔽件549被定位在线圈533和窗511之间。法拉第屏蔽件549以相对于线圈533隔开的关系被保持。法拉第屏蔽件549被设置在窗511的正上方。线圈533、法拉第屏蔽件549和窗511各自被配置为基本上彼此平行。法拉第屏蔽件可以防止金属或其他物质沉积在等离子体室的介电窗上Coil 533 is located above window 511 . Coil 533 is made of conductive material and includes at least one full turn. The exemplary coil 533 shown in FIG. 5 includes three turns. Cross-sections of coils 533 are shown with symbols, and coils 533 with "X" extend rotationally into the page, while coils 533 with "-" extend rotationally out of the page. RF power source 541 is configured to provide RF power to coil 533 . Typically, RF power source 541 is connected to matching circuit 539 through connection 545 . The matching circuit 539 is connected to the coil 533 through the connector 543 . In this manner, RF power source 541 is connected to coil 533 . An optional Faraday shield 549 is positioned between coil 533 and window 511 . Faraday shield 549 is held in spaced relation relative to coil 533 . Faraday shield 549 is positioned directly above window 511 . Coil 533, Faraday shield 549, and window 511 are each configured to be substantially parallel to each other. Faraday shields prevent deposition of metals or other substances on the dielectric windows of the plasma chamber

工艺气体可以通过位于上室的主注入端口560和/或通过侧注入端口570供给,有时称作STG。在操作的等离子体处理过程中,通过使用封闭环控制的流量限制装置例如节流阀(未示出)或钟摆阀(未示出),真空泵(例如,一级或两级干式机械泵和/或涡轮分子泵540)可用于将工艺气体从处理室524抽出并维持处理室500内的压力。Process gas may be supplied through the main injection port 560 located in the upper chamber and/or through the side injection port 570, sometimes referred to as STG. During operational plasma processing, vacuum pumps (eg, one- or two-stage dry mechanical pumps and /or turbomolecular pump 540 ) may be used to draw process gas from process chamber 524 and maintain pressure within process chamber 500 .

在装置的操作过程中,一种或多种反应物气体可通过注入端口560和/或570供给。在某些实施方式中,气体可以仅通过主注入端口560供给,或者仅通过侧注入端口570供给。在一些情况下,注入端口可以由喷头替代。法拉第屏蔽件549和/或任选的栅格550可以包括使工艺气体能输送至室的内部通道和孔。法拉第屏蔽件549和任选的栅格550中的一者或两者可以作为用于输送工艺气体的喷头。During operation of the device, one or more reactant gases may be supplied through injection ports 560 and/or 570 . In certain embodiments, gas may be supplied only through the main injection port 560 , or only through the side injection port 570 . In some cases, the injection port may be replaced by a spray head. Faraday shield 549 and/or optional grid 550 may include internal channels and apertures that enable process gas delivery to the chamber. One or both of the Faraday shield 549 and optional grid 550 may act as a showerhead for delivering the process gas.

射频功率从RF功率源541供给到线圈533以使RF电流流过线圈533。流过线圈533的RF电流产生围绕线圈533的电磁场。电磁场产生在上副室502内的感应电流。在蚀刻工艺期间,所生成的各种离子和自由基与晶片519的物理和化学相互作用选择性地蚀刻晶片上的特征。RF power is supplied to coil 533 from RF power source 541 to cause RF current to flow through coil 533 . The RF current flowing through the coil 533 generates an electromagnetic field around the coil 533 . The electromagnetic field generates induced currents in the upper sub-chamber 502 . During the etching process, physical and chemical interactions of the various ions and radicals generated with the wafer 519 selectively etch features on the wafer.

如果使用等离子体栅格使得存在上副室502和下副室503二者,则感应电流作用于存在于上副室502中的气体上以在上副室502中产生电子-离子等离子体。任选的内部等离子体栅格550限制下副室503中的热电子的量。在一些实施方式中,设计和操作所述装置使得存在于下副室503中的等离子体是离子-离子等离子体。If a plasma grid is used such that both the upper sub-chamber 502 and the lower sub-chamber 503 are present, an induced current acts on the gas present in the upper sub-chamber 502 to generate electron-ion plasma in the upper sub-chamber 502 . An optional internal plasma grid 550 limits the amount of hot electrons in the lower sub-chamber 503 . In some embodiments, the apparatus is designed and operated such that the plasma present in the lower sub-chamber 503 is an ion-ion plasma.

上部的电子-离子等离子体和下部的离子-离子等离子体二者都可包含阳离子和阴离子,尽管离子-离子等离子体将具有更大的阴离子:阳离子的比率。挥发性的蚀刻的副产物可通过端口522从下副室503去除。Both the upper electron-ion plasma and the lower ion-ion plasma may contain cations and anions, although the ion-ion plasma will have a greater ratio of anions:cations. Volatile etch by-products may be removed from the lower secondary chamber 503 through port 522 .

本发明所公开的卡盘517可在约30℃至约250℃之间的升高的温度范围内操作。该温度将取决于蚀刻工艺操作和具体配方。在一些实施方式中,室501还可在介于约1毫托和约95毫托之间的范围内的压强下操作。在某些实施方式中,压强可以是较高的,如上所公开的。The disclosed chuck 517 can operate in an elevated temperature range between about 30°C to about 250°C. This temperature will depend on the etch process operation and the specific recipe. In some embodiments, chamber 501 may also operate at pressures ranging between about 1 mTorr and about 95 mTorr. In certain embodiments, the pressure may be higher, as disclosed above.

室501可以在设施(未示出)安装于洁净室或制造厂中时耦合到设施上。设施包括管道,管道提供处理气体、真空、温度控制和环境微粒控制。这些设施当安装在目标制造厂时耦合在室501上。此外,室501可耦合到传送室,从而允许使用典型的自动化由机械手进出室501传送半导体晶片。Chamber 501 may be coupled to a facility (not shown) when it is installed in a clean room or manufacturing plant. Facilities include piping that provides process gas, vacuum, temperature control, and environmental particulate control. These facilities are coupled to chamber 501 when installed at the target manufacturing plant. In addition, chamber 501 may be coupled to a transfer chamber, allowing for the transfer of semiconductor wafers in and out of chamber 501 by a robot using typical automation.

在一些实施方式中,系统控制器530(其可以包括一个或多个物理的或逻辑的控制器)控制蚀刻室的一些或所有操作。控制器在下文进一步描述。In some embodiments, system controller 530 (which may include one or more physical or logical controllers) controls some or all operations of the etch chamber. The controller is described further below.

图6是根据多种实施方式的电容耦合等离子体蚀刻装置的示例的示意图。等离子体蚀刻室600包括上电极602和下电极604,在上电极602和下电极604之间可产生等离子体。上面具有图案化的硬掩膜并如上所述的衬底699可以被放置在下电极604上并可以通过静电卡盘(ESC)固定在适当的位置。也可以采用其它夹持机构。等离子体蚀刻室600可以包括等离子体约束环606,其将等离子体维持在衬底上方并远离室壁。可以采用其他等离子体约束结构,例如作为充当内壁的护罩。在一些实施方式中,等离子体蚀刻室可以不包括任何这样的等离子体约束结构。6 is a schematic diagram of an example of a capacitively coupled plasma etching apparatus in accordance with various embodiments. The plasma etch chamber 600 includes an upper electrode 602 and a lower electrode 604 between which plasma can be generated. A substrate 699 with a patterned hard mask thereon and as described above can be placed on the lower electrode 604 and can be held in place by an electrostatic chuck (ESC). Other clamping mechanisms may also be used. The plasma etch chamber 600 may include a plasma confinement ring 606 that maintains the plasma above the substrate and away from the chamber walls. Other plasma confinement structures can be employed, such as as a shield that acts as an inner wall. In some embodiments, the plasma etch chamber may not include any such plasma confinement structures.

在图6的实施例中,等离子体蚀刻室600包括两个RF源,连接到上电极602的RF源610和连接到下电极604的RF源612。RF源610和612中的每一个可以包括任何适当的频率的一个或多个源,适当的频率包括2MHz、13.56MHz、27MHz和60MHz。气体可以从一个或多个气体源614、616和618被引入室。例如,气体源614可包括如上所述的沉积气体和蚀刻气体。气体可以通过入口620被引入到室,过量气体和反应副产物经由排放泵622排出。In the embodiment of FIG. 6 , plasma etch chamber 600 includes two RF sources, RF source 610 connected to upper electrode 602 and RF source 612 connected to lower electrode 604 . Each of RF sources 610 and 612 may include one or more sources at any suitable frequency, including 2 MHz, 13.56 MHz, 27 MHz, and 60 MHz. Gas may be introduced into the chamber from one or more gas sources 614 , 616 and 618 . For example, the gas source 614 may include deposition gases and etching gases as described above. Gases may be introduced into the chamber through inlet 620 , with excess gas and reaction by-products evacuated via exhaust pump 622 .

可以采用的等离子体蚀刻室的一个例子是从美国加州弗里蒙特的Lam ResearchCorp.可购得的

Figure BDA0003594325990000161
FlexTM反应离子蚀刻工具。等离子体蚀刻室的进一步描述可在美国专利No.6,841,943和No.8,552,334中找到,其全部内容通过引用并入本文。An example of a plasma etch chamber that can be used is commercially available from Lam Research Corp. of Fremont, CA, USA
Figure BDA0003594325990000161
Flex TM reactive ion etch tool. Further descriptions of plasma etch chambers can be found in US Pat. Nos. 6,841,943 and 8,552,334, the entire contents of which are incorporated herein by reference.

回到图6,控制器530被连接到RF源610和612以及与气体源614、616和618相关联的阀,以及排放泵622。在一些实施方式中,控制器530控制等离子体蚀刻室600的所有活动。Returning to FIG. 6 , the controller 530 is connected to the RF sources 610 and 612 and the valves associated with the gas sources 614 , 616 and 618 , and the exhaust pump 622 . In some embodiments, the controller 530 controls all activities of the plasma etch chamber 600 .

控制器530的下述讨论可以根据情况应用于图5和图6中的控制器530。控制器530可以执行在大容量存储装置中存储的、加载到存储器装置的、并在处理器上执行的控制软件。替代地,控制逻辑可被硬编码在控制器530中。替代地,控制逻辑可被硬编码在控制器530中。专用集成电路、可编程逻辑器件(例如,现场可编程门阵列,或FPGA)等可以用于这些目的。在下面的讨论中以及在图6中的控制器的讨论中,无论在哪里使用“软件”或“代码”,在它的位置就可使用功能上相当的硬编码逻辑。The following discussion of controller 530 may be applied to controller 530 in FIGS. 5 and 6 as appropriate. The controller 530 may execute control software stored in the mass storage device, loaded into the memory device, and executed on the processor. Alternatively, the control logic may be hard-coded in the controller 530 . Alternatively, the control logic may be hard-coded in the controller 530 . Application specific integrated circuits, programmable logic devices (eg, field programmable gate arrays, or FPGAs), etc. can be used for these purposes. In the following discussion and in the discussion of the controller in Figure 6, wherever "software" or "code" is used, functionally equivalent hardcoded logic may be used in its place.

控制软件可以包括用于控制以下室操作条件中的任何一个或多个的应用定时和/或大小的指令:气体的混合物和/或组成、室压强、室温度、晶片温度/晶片支撑件温度、施加到晶片的偏置、施加到线圈或其它等离子体产生部件的频率和功率、晶片位置、晶片移动速度以及由工具执行的特定过程的其它参数。控制软件可以以任何合适的方式配置。例如,可以编写各种处理工具部件子程序或控制对象以控制执行各种处理工具处理所需的处理工具部件的操作。控制软件可以以任何合适的计算可读编程语言来编码。The control software may include instructions for controlling application timing and/or magnitude of any one or more of the following chamber operating conditions: mixture and/or composition of gases, chamber pressure, chamber temperature, wafer temperature/wafer support temperature, Bias applied to the wafer, frequency and power applied to coils or other plasma generating components, wafer position, wafer movement speed, and other parameters of the particular process performed by the tool. The control software can be configured in any suitable way. For example, various process tool component subprograms or control objects may be written to control the operation of the process tool components required to perform various process tool processes. The control software may be coded in any suitable computer-readable programming language.

在一些实施方式中,控制软件可包括用于控制上述各种参数的输入/输出控制(IOC)测序指令。在一些实施方式中可以采用存储在与控制器530相关联的大容量存储装置和/或存储器设备上的其他计算机软件和/或程序。用于此目的的程序或程序的部分的例子包括工艺气体控制程序、压强控制程序以及RF源控制程序。In some embodiments, the control software may include input/output control (IOC) sequencing instructions for controlling the various parameters described above. Other computer software and/or programs stored on mass storage and/or memory devices associated with controller 530 may be employed in some implementations. Examples of programs or portions of programs used for this purpose include process gas control programs, pressure control programs, and RF source control programs.

工艺气体控制程序可包括用于控制气体组成(例如,如本文所述的沉积气体和处理气体)和流速以及任选用于在蚀刻之前使气体流入室以稳定室中的压强的代码。压强控制程序可包括用于通过调节例如在室的排放系统中的节流阀,流入室中的气体等来控制室中的压强的代码。RF源控制程序可包括用于根据本发明的实施方式设置施加至电极的RF功率电平的代码。The process gas control program may include code for controlling gas composition (eg, deposition and process gases as described herein) and flow rates and optionally for flowing gases into the chamber to stabilize the pressure in the chamber prior to etching. The pressure control program may include code for controlling the pressure in the chamber by adjusting, for example, a throttle valve in the chamber's exhaust system, gas flow into the chamber, and the like. The RF source control program may include code for setting the level of RF power applied to the electrodes in accordance with embodiments of the present invention.

在一些实施方式中,可以存在与系统控制器530相关联的用户界面。用户界面可以包括显示屏、装置和/或工艺条件的图形软件显示器、以及诸如定点设备、键盘、触摸屏、麦克风等用户输入设备。In some implementations, there may be a user interface associated with the system controller 530 . The user interface may include a display screen, a graphical software display of device and/or process conditions, and user input devices such as a pointing device, keyboard, touch screen, microphone, and the like.

在一些实施方式中,由系统控制器530调节的参数会涉及工艺条件。非限制性实例包括工艺气体组成和流速、温度、压力、等离子体条件(例如RF偏置功率电平)、压强、温度等。这些参数可以以配方的形式提供给用户,配方可以利用所述用户界面输入。In some embodiments, the parameters adjusted by the system controller 530 may relate to process conditions. Non-limiting examples include process gas composition and flow rate, temperature, pressure, plasma conditions (eg, RF bias power level), pressure, temperature, and the like. These parameters can be provided to the user in the form of recipes that can be entered using the user interface.

用于监控处理的信号可以通过系统控制器530的模拟和/或数字输入连接从各种处理工具传感器提供。用于控制处理的信号可以通过等离子体蚀刻室的模拟和数字输出连接件输出。可被监测的传感器的非限制性实例包括质量流量控制器、压强传感器(例如压强计)、热电偶、等等。经适当编程的反馈和控制算法可以与来自这些传感器的数据一起使用,以保持工艺条件。Signals for monitoring the process may be provided from various process tool sensors through the analog and/or digital input connections of the system controller 530 . Signals used to control the process can be output through the plasma etch chamber's analog and digital output connections. Non-limiting examples of sensors that can be monitored include mass flow controllers, pressure sensors (eg, manometers), thermocouples, and the like. Appropriately programmed feedback and control algorithms can be used with data from these sensors to maintain process conditions.

系统控制器530可以提供用于执行上述定向沉积工艺和随后的蚀刻工艺的程序指令。所述程序指令可以控制多种工艺参数,如RF偏置功率电平、压强、温度等。所述指令可以控制这些参数以根据本发明所描述的多种实施方式定向沉积掩模构建膜。System controller 530 may provide program instructions for performing the above-described directional deposition process and subsequent etching process. The program instructions can control various process parameters, such as RF bias power level, pressure, temperature, and the like. The instructions may control these parameters to orient the deposition mask build film according to various embodiments described herein.

控制器530将通常包括一个或多个存储器设备和被配置成执行指令的一个或多个处理器以使该装置将执行根据本发明所公开的实施方式的方法。例如,如上所述,包含用于控制根据本发明所公开的实施方式的工艺操作的指令的机器可读介质可以耦合到控制器530。The controller 530 will typically include one or more memory devices and one or more processors configured to execute instructions such that the apparatus will perform methods in accordance with the disclosed embodiments. For example, as described above, a machine-readable medium containing instructions for controlling process operations in accordance with the disclosed embodiments may be coupled to controller 530 .

在一些实现方式中,控制器530可以是系统控制器的一部分或形成系统控制器的一部分,该系统控制器是系统的一部分,该系统可以是上述实例的一部分。这种系统可以包括半导体处理设备,该半导体处理设备包括一个或多个处理工具、一个或多个处理室、用于处理的一个或多个平台和/或专用的处理组件(晶片基座、气流系统等)。这些系统可以与用于控制它们在处理半导体晶片或衬底之前、期间和之后的操作的电子器件一体化。电子器件可以称为“控制器”,该控制器可以控制一个或多个系统的各种部件或子部件。根据处理条件和/或系统的类型,系统控制器可以被编程以控制本发明所公开的任何工艺,包括控制工艺气体输送、温度设置(例如,加热和/或冷却)、压强设置、真空设置、功率设置、射频(RF)产生器设置、RF匹配电路设置、频率设置、流速设置、流体输送设置、位置及操作设置、晶片转移进出工具和其他转移工具和/或与专用系统连接或通过接口连接的装载锁。In some implementations, controller 530 may be part of or form part of a system controller that is part of a system, which may be part of the examples described above. Such systems may include semiconductor processing equipment including one or more processing tools, one or more processing chambers, one or more platforms for processing, and/or dedicated processing components (wafer pedestal, gas flow, etc.) system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing semiconductor wafers or substrates. Electronic devices may be referred to as "controllers," which may control various components or sub-components of one or more systems. Depending on process conditions and/or type of system, the system controller can be programmed to control any of the processes disclosed herein, including control of process gas delivery, temperature settings (eg, heating and/or cooling), pressure settings, vacuum settings, Power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, location and operation settings, wafer transfer in and out tools and other transfer tools and/or connection to dedicated systems or interfacing load lock.

宽泛地讲,系统控制器可以定义为具有接收指令、发布指令、控制操作、启用清洁操作、启用端点测量等等的各种集成电路、逻辑、存储器和/或软件的电子器件。集成电路可以包括存储程序指令的固件形式的芯片、数字信号处理器(DSP)、定义为专用集成电路(ASIC)的芯片和/或一个或多个微处理器或执行程序指令(例如,软件)的微控制器。程序指令可以是以各种单独设置(或程序文件)的形式传送到系统控制器的指令,该设置(或程序文件)定义用于在半导体晶片或系统上或针对半导体晶片或系统执行特定处理的操作参数。在一些实施方式中,操作参数可以是由工艺工程师定义的用于在制备晶片的一个或多个(种)层、材料、金属、氧化物、硅、二氧化硅、表面、电路和/或管芯期间完成一个或多个处理步骤的配方(recipe)的一部分。Broadly speaking, a system controller may be defined as an electronic device having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operations, enable cleaning operations, enable endpoint measurements, and the like. An integrated circuit may include a chip in the form of firmware that stores program instructions, a digital signal processor (DSP), a chip defined as an application specific integrated circuit (ASIC), and/or one or more microprocessors or execute program instructions (eg, software) 's microcontroller. Program instructions may be instructions that are communicated to the system controller in the form of various individual settings (or program files) that define instructions for performing specific processing on or for a semiconductor wafer or system. Operational parameters. In some embodiments, operating parameters may be defined by a process engineer for use in preparing one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or tubes in the fabrication of wafers Part of a recipe for completing one or more processing steps during core.

在一些实现方式中,系统控制器可以是与系统集成、耦接或者说是通过网络连接系统或它们的组合的计算机的一部分或者与该计算机耦接。例如,系统控制器可以在“云端”或者是可以允许远程访问晶片处理的晶片厂(fab)主机系统的全部或一部分。计算机可以启用对系统的远程访问以监测制造操作的当前进程,检查过去的制造操作的历史,检查多个制造操作的趋势或性能标准,改变当前处理的参数,设置处理步骤以跟随当前的处理或者开始新的工艺。在一些实例中,远程计算机(例如,服务器)可以通过网络给系统提供工艺配方,网络可以包括本地网络或互联网。远程计算机可以包括允许输入或编程参数和/或设置的用户界面,该参数和/或设置然后从远程计算机传输到系统。在一些实例中,系统控制器接收数据形式的指令,该指令指明在一个或多个操作期间将要执行的每个处理步骤的参数。应当理解,参数可以针对将要执行的工艺类型以及工具类型,系统控制器被配置成连接或控制该工具类型。因此,如上所述,系统控制器可以例如通过包括一个或多个分立的控制器而分布,这些分立的控制器通过网络连接在一起并且朝着共同的目标(例如,本发明所提供的工艺和控制)工作。用于这些目的的分布式控制器的实例可以是与一个或多个远程集成电路(例如,在平台水平或作为远程计算机的一部分)通信的室上的一个或多个集成电路,它们结合以控制室内工艺。In some implementations, the system controller may be part of or coupled to a computer that is integrated with, coupled to, or otherwise connected to the system or a combination thereof through a network. For example, the system controller may be in the "cloud" or all or part of a fab host system that may allow remote access to wafer processing. The computer may enable remote access to the system to monitor the current progress of a manufacturing operation, examine the history of past manufacturing operations, examine trends or performance criteria for multiple manufacturing operations, change parameters of the current process, set process steps to follow the current process, or Start a new craft. In some instances, a remote computer (eg, a server) may provide process recipes to the system over a network, which may include a local network or the Internet. The remote computer may include a user interface that allows for the entry or programming of parameters and/or settings, which are then transferred from the remote computer to the system. In some instances, the system controller receives instructions in the form of data specifying parameters for each processing step to be performed during one or more operations. It will be appreciated that the parameters may be specific to the type of process to be performed as well as the type of tool to which the system controller is configured to connect or control. Thus, as described above, system controllers may be distributed, for example, by including one or more discrete controllers that are networked together and directed toward a common goal (eg, the processes and processes provided by the present invention). control) work. An example of a distributed controller for these purposes may be one or more integrated circuits on a room in communication with one or more remote integrated circuits (eg, at the platform level or as part of a remote computer) that combine to control Indoor craft.

在一些实施方式中,PECVD沉积可采用远程的自由基辅助的等离子体或微波等离子体。这种沉积可以在配置有远程等离子体产生器或微波等离子体产生器的蚀刻室中进行,或者可以在真空下连接到蚀刻室的沉积室中进行。类似地,在一些实施方式中,可以使用远程的自由基辅助的等离子体或微波等离子体来执行处理操作。In some embodiments, PECVD deposition may employ remote radical assisted plasma or microwave plasma. Such deposition can be performed in an etch chamber equipped with a remote plasma generator or microwave plasma generator, or can be performed in a deposition chamber connected to the etch chamber under vacuum. Similarly, in some embodiments, remote radical assisted plasma or microwave plasma may be used to perform the processing operations.

示例性的工艺参数给出如下。示例性压强范围为5mT至1000mT,并且在一些实施方式中,介于40mT至100mT之间。在处理操作中,示例性的压强可以在5mT至300mT的范围内。Exemplary process parameters are given below. Exemplary pressures range from 5 mT to 1000 mT, and in some embodiments, between 40 mT and 100 mT. In processing operations, exemplary pressures may range from 5 mT to 300 mT.

用于感应耦合等离子体源(例如,可从加利福尼亚州弗里蒙特的Lam Research获得的变压器耦合等离子体(TCP)源)的示例性等离子体功率为10W至1200W,20W至500W或50W至300W。用于沉积操作的示例性等离子体功率范围为20W至200W。用于处理操作的示例性等离子体功率范围为20W至1200W。Exemplary plasma powers for inductively coupled plasma sources (eg, transformer coupled plasma (TCP) sources available from Lam Research of Fremont, CA) are 10W to 1200W, 20W to 500W, or 50W to 300W. An exemplary plasma power range for deposition operations is 20W to 200W. Exemplary plasma power ranges for processing operations are 20W to 1200W.

示例性偏置电压范围从0V到-500V,0到-80V,例如-50V。偏置电压也可以用幅度表示,例如0到500V,0到80V,或0至50V。沉积步骤的示例性流速为1sccm至2000sccm,1至300sccm或100sccm。在处理步骤的示例性流速范围为1至2000sccm,1至500sccm或300sccm。示例性衬底温度范围为40℃至250℃或60℃至120℃。在一些实施方式中,沉积和处理暴露时间可以为0.5s至20s,或3s至10s,或4s至6s,其中以多循环工艺的处理时间为例。在一些示例中,进行10至100个循环。Exemplary bias voltages range from 0V to -500V, 0 to -80V, eg -50V. The bias voltage can also be expressed in magnitude, such as 0 to 500V, 0 to 80V, or 0 to 50V. Exemplary flow rates for the deposition step are 1 seem to 2000 seem, 1 to 300 seem or 100 seem. Exemplary flow rates in the treatment step range from 1 to 2000 seem, 1 to 500 seem or 300 seem. Exemplary substrate temperature ranges are 40°C to 250°C or 60°C to 120°C. In some embodiments, the deposition and treatment exposure time may be 0.5s to 20s, or 3s to 10s, or 4s to 6s, with the treatment time of a multi-cycle process as an example. In some examples, 10 to 100 cycles are performed.

实验experiment

提供以下实施例以进一步说明各种实施方式的方面。提供这些实施例是为了举例说明和更清楚地说明一些方面,而不是限制性的。The following examples are provided to further illustrate aspects of the various implementations. These examples are offered to illustrate and more clearly illustrate some aspects, and not to be limiting.

感应耦合蚀刻反应器用于在硬掩模上沉积a-Si构建材料以在有处理的情况下和没有处理的情况下进行连续和循环的沉积。沉积工艺气体是SiCl4/H2,基于H2的等离子体用作处理步骤。压强在20mT和120mT之间变化。Inductively coupled etch reactors are used to deposit a-Si build materials on hard masks for continuous and cyclic deposition with and without processing. The deposition process gas was SiCl 4 /H 2 , and H 2 based plasma was used as the processing step. The pressure was varied between 20mT and 120mT.

对于连续PECVD,构建材料在40mT下沉积60秒(s)和120秒(s),而在60mT下沉积75s。在120s/40mT和75s/40mT下观察到掩模构建材料的夹断。沉积是非共形的。对于没有处理的循环PECVD,在40mT下的20个循环的3s(60s)和40个循环的3s(120s)以及在60mT下的25个循环的3s(75s)下沉积构建材料。对于60mT的情况观察到夹断。沉积是非共形的。该120s/40mT的结果(无夹断)与连续CVD的120s/40mT的结果的比较表明,循环有助于良好限定的高深宽比特征。对于具有等离子体处理的循环PECVD,以在40mT下20个循环的3s沉积+5s处理和40个循环的3s沉积+5s处理以及在60mT下25s个循环的3s沉积+5s处理来沉积构建材料。沉积是非共形的。未观察到夹断,表明处理有利于在宽压强范围内沉积高深宽比特征。For continuous PECVD, the build material was deposited at 40 mT for 60 sec(s) and 120 sec(s), while at 60 mT for 75 s. Pinch-off of the mask build material was observed at 120s/40mT and 75s/40mT. The deposition is non-conformal. For cyclic PECVD without treatment, build material was deposited at 20 cycles of 3s (60s) and 40 cycles of 3s (120s) at 40mT and 25 cycles of 3s (75s) at 60mT. Pinch off was observed for the 60 mT case. The deposition is non-conformal. A comparison of this 120s/40mT result (no pinch-off) with the 120s/40mT result of continuous CVD shows that cycling contributes to well-defined high aspect ratio features. For cyclic PECVD with plasma treatment, build materials were deposited with 20 cycles of 3s deposition + 5s treatment at 40 mT and 40 cycles of 3s deposition + 5s treatment and 25 s cycles of 3s deposition + 5s treatment at 60 mT. The deposition is non-conformal. No pinch-off was observed, indicating that the treatment favors the deposition of high aspect ratio features over a wide range of pressures.

通过使用感应耦合蚀刻反应器以使用多个沉积-处理循环在SiO2硬掩模上沉积a-Si构建材料。沉积工艺气体为SiCl4/H2,等离子体功率为50W,而压强为60mT。处理工艺气体为具有少量(约5体积%)N2的H2,等离子体功率为300W,并且在衬底上没有偏压。执行25个沉积-处理循环。改变偏置电压以进行沉积,结果如下:The a-Si build material was deposited on the SiO2 hardmask using multiple deposition-processing cycles by using an inductively coupled etch reactor. The deposition process gas was SiCl 4 /H 2 , the plasma power was 50W, and the pressure was 60mT. The process gas was H2 with a small amount (about 5 vol%) of N2 , the plasma power was 300W, and there was no bias on the substrate. 25 deposition-treatment cycles were performed. The bias voltage was varied for deposition with the following results:

Figure BDA0003594325990000201
Figure BDA0003594325990000201

Figure BDA0003594325990000211
Figure BDA0003594325990000211

利用感应耦合蚀刻反应器以使用多个沉积/处理循环在硬掩模上沉积a-Si构建材料。改变SiCl4/H2流速。对于较长停留时间(较低流速),观察到夹断。不受特定理论的约束,相信较长的SiClx物质停留时间导致夹断。H自由基清除Cl在等离子体中的反应。H自由基和离子消除悬垂(overhang)和夹断,从而提供有效的顶部掩模蚀刻和竖直侧壁轮廓。An inductively coupled etch reactor was utilized to deposit a-Si build material on the hardmask using multiple deposition/processing cycles. Change the SiCl4 / H2 flow rate. For longer residence times (lower flow rates), pinch-off was observed. Without being bound by a particular theory, it is believed that the longer residence time of the SiCl x species results in pinch off. H radical scavenging reaction of Cl in plasma. H radicals and ions eliminate overhang and pinch off, providing efficient top mask etch and vertical sidewall profiles.

利用感应耦合蚀刻反应器以使用多个沉积/处理循环将a-Si构建材料沉积在硬掩模上。改变沉积步骤期间的等离子体功率。用较高的功率实现较高的非共形性。不受特定理论的限制,相信,具有高粘着系数的SiClx自由基的浓度和防止悬垂和夹断的H自由基的浓度增大了。An inductively coupled etch reactor was utilized to deposit the a-Si build material on the hardmask using multiple deposition/processing cycles. Change the plasma power during the deposition step. Higher non-conformity is achieved with higher power. Without being bound by a particular theory, it is believed that the concentration of SiCl x radicals, which have high adhesion coefficients, and the concentration of H radicals, which prevent pendulous and pinch-off, are increased.

利用感应耦合蚀刻反应器以使用多个沉积/处理循环在硬掩模上沉积a-Si构建材料。改变处理步骤期间的气体组成。使用100%的H2导致颈缩的轮廓。不受特定理论的约束,相信H2等离子体使已经沉积的a-Si膜具有较低的反应性,从而降低粘着系数。沉积的膜被蚀刻并从沟槽底部重新沉积到顶部。通过添加添加剂气体(5体积%N2或5体积%CH4)观察到更竖直的轮廓。观察到在沟槽底部的更厚的沉积。An inductively coupled etch reactor was utilized to deposit a-Si build material on the hardmask using multiple deposition/processing cycles. Change the gas composition during the processing steps. Using 100% H2 resulted in a necked profile. Without being bound by a particular theory, it is believed that the H2 plasma makes the already deposited a-Si film less reactive, thereby reducing the adhesion coefficient. The deposited film is etched and redeposited from the bottom to the top of the trench. A more vertical profile was observed by adding additive gas (5 vol% N2 or 5 vol% CH4 ). Thicker deposits at the bottom of the trenches were observed.

利用感应耦合蚀刻反应器以使用多个沉积/处理循环在硬掩模上沉积a-Si构建材料。改变处理步骤期间的等离子体功率。处理气体为100%的H2。使用0W,50W,100W,200W和300W的功率。300W导致颈缩轮廓。降低功率导致更竖直的侧壁以及更厚的沟槽和侧壁沉积,而0W导致夹断。An inductively coupled etch reactor was utilized to deposit a-Si build material on the hardmask using multiple deposition/processing cycles. Change the plasma power during the processing steps. The process gas was 100% H2 . Use 0W, 50W, 100W, 200W and 300W power. 300W results in a necked profile. Lowering the power results in more vertical sidewalls and thicker trench and sidewall deposition, while 0W results in pinch off.

利用感应耦合蚀刻反应器以使用多个沉积/处理循环在硬掩模上沉积含Si构建材料。改变处理步骤期间的暴露时间。使用1s,2s,3s和5s。5s导致颈缩轮廓。减少暴露时间导致更竖直的侧壁以及更厚的沟槽和侧壁沉积。An inductively coupled etch reactor is utilized to deposit Si-containing build materials on the hardmask using multiple deposition/processing cycles. Change the exposure time during the processing steps. Use 1s, 2s, 3s and 5s. 5s results in a necked profile. Reducing the exposure time results in more vertical sidewalls and thicker trench and sidewall deposition.

结论in conclusion

虽然上述实施方式已经在一些细节为了清楚理解的目的进行了描述,但显而易见的是,某些变化和修改可在所附权利要求的范围内实施。应当注意,存在实现这些实施方式的处理、系统和装置的许多替代方式。因此,本实施方式应被认为是说明性的而不是限制性的,并且实施方式并不被受限于本发明给出的细节。Although the above-described embodiments have been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing the processes, systems and apparatus of these embodiments. Accordingly, the present embodiments are to be regarded as illustrative rather than restrictive, and the embodiments are not to be limited to the details given herein.

Claims (10)

1.一种方法,其包括:1. A method comprising: 执行多循环定向沉积工艺以在图案化结构上沉积掩模构建材料,其中每个循环包括:A multi-cycle directional deposition process is performed to deposit mask build material on the patterned structure, where each cycle includes: i)通过等离子体增强化学气相沉积(PECVD)工艺在所述图案化结构上沉积第一材料,以及i) depositing a first material on the patterned structure by a plasma enhanced chemical vapor deposition (PECVD) process, and ii)等离子体处理所述第一材料以改善方向性。ii) Plasma treating the first material to improve directionality. 2.根据权利要求1所述的方法,其中所述第一材料是基于硅的材料、基于碳的材料、基于硼的材料或其组合。2. The method of claim 1, wherein the first material is a silicon-based material, a carbon-based material, a boron-based material, or a combination thereof. 3.根据权利要求1所述的方法,其中所述第一材料包括硅、碳、硼、磷、砷和硫中的两种或更多种。3. The method of claim 1, wherein the first material comprises two or more of silicon, carbon, boron, phosphorus, arsenic, and sulfur. 4.根据权利要求1所述的方法,其中所述第一材料是含金属材料。4. The method of claim 1, wherein the first material is a metal-containing material. 5.根据权利要求1所述的方法,其中(ii)包括将所述第一材料暴露于基于氮的等离子体、基于氧的等离子体、基于氢的等离子体、基于烃的等离子体、基于氩的等离子体、基于氦的等离子体、或其组合。5. The method of claim 1, wherein (ii) comprises exposing the first material to nitrogen-based plasma, oxygen-based plasma, hydrogen-based plasma, hydrocarbon-based plasma, argon-based plasma plasma, helium-based plasma, or a combination thereof. 6.根据权利要求1所述的方法,其中(ii)包括将所述第一材料暴露于由含氢化合物产生的等离子体。6. The method of claim 1, wherein (ii) comprises exposing the first material to a plasma generated from a hydrogen-containing compound. 7.根据权利要求5所述的方法,其中所述含氢化合物是H2、CH4、NH3、C2H2和N2H2中的一种。7. The method of claim 5, wherein the hydrogen - containing compound is one of H2 , CH4 , NH3 , C2H2 , and N2H2 . 8.根据权利要求1所述的方法,其还包括蚀刻由所述图案化结构掩蔽的层。8. The method of claim 1, further comprising etching a layer masked by the patterned structure. 9.根据权利要求1所述的方法,其中所述图案化结构包括具有特征顶部和特征侧壁的凸起特征。9. The method of claim 1, wherein the patterned structure comprises raised features having feature tops and feature sidewalls. 10.根据权利要求9所述的方法,其中处理所述第一材料包括将所述第一材料从所述特征侧壁重新沉积到所述特征顶部。10. The method of claim 9, wherein processing the first material comprises redepositing the first material from the feature sidewalls to the feature tops.
CN202210384497.6A 2015-12-18 2016-12-19 Directed deposition on patterned structures Pending CN114999910A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562269696P 2015-12-18 2015-12-18
US62/269,696 2015-12-18
US15/061,359 2016-03-04
US15/061,359 US20170178899A1 (en) 2015-12-18 2016-03-04 Directional deposition on patterned structures
CN201611177683.3A CN107039264B (en) 2015-12-18 2016-12-19 Directed deposition on patterned structures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201611177683.3A Division CN107039264B (en) 2015-12-18 2016-12-19 Directed deposition on patterned structures

Publications (1)

Publication Number Publication Date
CN114999910A true CN114999910A (en) 2022-09-02

Family

ID=59066591

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210384497.6A Pending CN114999910A (en) 2015-12-18 2016-12-19 Directed deposition on patterned structures
CN201611177683.3A Active CN107039264B (en) 2015-12-18 2016-12-19 Directed deposition on patterned structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201611177683.3A Active CN107039264B (en) 2015-12-18 2016-12-19 Directed deposition on patterned structures

Country Status (4)

Country Link
US (2) US20170178899A1 (en)
KR (1) KR20170074777A (en)
CN (2) CN114999910A (en)
TW (1) TWI775734B (en)

Families Citing this family (425)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10325773B2 (en) 2012-06-12 2019-06-18 Novellus Systems, Inc. Conformal deposition of silicon carbide films
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US9922839B2 (en) 2015-06-23 2018-03-20 Lam Research Corporation Low roughness EUV lithography
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US20170178899A1 (en) 2015-12-18 2017-06-22 Lam Research Corporation Directional deposition on patterned structures
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
JP6757624B2 (en) * 2016-08-12 2020-09-23 東京エレクトロン株式会社 How to process the object to be processed
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) * 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR102762543B1 (en) 2016-12-14 2025-02-05 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR102700194B1 (en) 2016-12-19 2024-08-28 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) * 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102401446B1 (en) 2017-08-31 2022-05-24 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20190035036A (en) * 2017-09-25 2019-04-03 삼성전자주식회사 Apparatus for forming a layer on a substrate and method of forming an amorphous silicon layer on a substrate using the same
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
JP6833657B2 (en) * 2017-11-07 2021-02-24 東京エレクトロン株式会社 How to plasma etch the substrate
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7206265B2 (en) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. Equipment with a clean mini-environment
KR102597978B1 (en) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
TWI757565B (en) * 2017-12-22 2022-03-11 美商應用材料股份有限公司 Methods for depositing blocking layers on conductive surfaces
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
WO2019142055A2 (en) 2018-01-19 2019-07-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
JP2019134062A (en) * 2018-01-31 2019-08-08 東京エレクトロン株式会社 Selective film deposition method and film deposition apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
TWI716818B (en) 2018-02-28 2021-01-21 美商應用材料股份有限公司 Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
KR102600229B1 (en) 2018-04-09 2023-11-10 에이에스엠 아이피 홀딩 비.브이. Substrate supporting device, substrate processing apparatus including the same and substrate processing method
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
KR102670420B1 (en) * 2018-04-24 2024-05-28 어플라이드 머티어리얼스, 인코포레이티드 Plasma-enhanced chemical vapor deposition of carbon hard-masks
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10566194B2 (en) * 2018-05-07 2020-02-18 Lam Research Corporation Selective deposition of etch-stop layer for enhanced patterning
TWI843623B (en) 2018-05-08 2024-05-21 荷蘭商Asm Ip私人控股有限公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (en) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
CN112292477A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
TWI871083B (en) 2018-06-27 2025-01-21 荷蘭商Asm Ip私人控股有限公司 Cyclic deposition processes for forming metal-containing material
KR102686758B1 (en) 2018-06-29 2024-07-18 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
CN112469846B (en) * 2018-07-24 2023-10-27 朗姆研究公司 Conformal deposition of silicon carbide films using heterogeneous precursor interactions
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
KR102550326B1 (en) * 2018-07-26 2023-07-04 에이에스엠엘 네델란즈 비.브이. How to Determine the Etch Profile of a Wafer Layer for a Simulation System
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
JP7018849B2 (en) * 2018-08-17 2022-02-14 東京エレクトロン株式会社 Film formation method and film formation equipment
JP7065728B2 (en) * 2018-08-17 2022-05-12 東京エレクトロン株式会社 Film formation method and film formation equipment
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR102707956B1 (en) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
CN110970344B (en) 2018-10-01 2024-10-25 Asmip控股有限公司 Substrate holding apparatus, system comprising the same and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR20230085953A (en) 2018-10-19 2023-06-14 램 리써치 코포레이션 Doped or undoped silicon carbide deposition and remote hydrogen plasma exposure for gapfill
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US20200135464A1 (en) * 2018-10-30 2020-04-30 Applied Materials, Inc. Methods and apparatus for patterning substrates using asymmetric physical vapor deposition
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR102748291B1 (en) 2018-11-02 2024-12-31 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
JP7346218B2 (en) * 2018-12-06 2023-09-19 東京エレクトロン株式会社 Etching processing method and substrate processing equipment
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP7504584B2 (en) 2018-12-14 2024-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method and system for forming device structures using selective deposition of gallium nitride - Patents.com
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
TWI866480B (en) 2019-01-17 2024-12-11 荷蘭商Asm Ip 私人控股有限公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR102727227B1 (en) 2019-01-22 2024-11-07 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
US10886136B2 (en) 2019-01-31 2021-01-05 Tokyo Electron Limited Method for processing substrates
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
JP7603377B2 (en) 2019-02-20 2024-12-20 エーエスエム・アイピー・ホールディング・ベー・フェー Method and apparatus for filling recesses formed in a substrate surface - Patents.com
TWI845607B (en) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TWI838458B (en) 2019-02-20 2024-04-11 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for plug fill deposition in 3-d nand applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TWI842826B (en) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20210123404A (en) 2019-02-27 2021-10-13 램 리써치 코포레이션 Semiconductor Mask Reshaping Using a Sacrificial Layer
KR102782593B1 (en) 2019-03-08 2025-03-14 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR102762833B1 (en) 2019-03-08 2025-02-04 에이에스엠 아이피 홀딩 비.브이. STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door openers and substrate processing equipment provided with door openers
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP7612342B2 (en) 2019-05-16 2025-01-14 エーエスエム・アイピー・ホールディング・ベー・フェー Wafer boat handling apparatus, vertical batch furnace and method
JP7598201B2 (en) 2019-05-16 2024-12-11 エーエスエム・アイピー・ホールディング・ベー・フェー Wafer boat handling apparatus, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200141931A (en) 2019-06-10 2020-12-21 에이에스엠 아이피 홀딩 비.브이. Method for cleaning quartz epitaxial chambers
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP7499079B2 (en) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー Plasma device using coaxial waveguide and substrate processing method
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
TWI839544B (en) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 Method of forming topology-controlled amorphous carbon polymer film
KR20210010817A (en) * 2019-07-19 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Method of Forming Topology-Controlled Amorphous Carbon Polymer Film
TWI851767B (en) 2019-07-29 2024-08-11 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210015655A (en) 2019-07-30 2021-02-10 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
KR20210018761A (en) 2019-08-09 2021-02-18 에이에스엠 아이피 홀딩 비.브이. heater assembly including cooling apparatus and method of using same
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR102717194B1 (en) 2019-08-28 2024-10-14 삼성전자주식회사 DRAM Device Including an Air Gap and a Sealing layer and Method of Fabricating the Same
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR102733104B1 (en) 2019-09-05 2024-11-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
JP7323409B2 (en) * 2019-10-01 2023-08-08 東京エレクトロン株式会社 SUBSTRATE PROCESSING METHOD AND PLASMA PROCESSING APPARATUS
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TWI846953B (en) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
KR20210042810A (en) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. Reactor system including a gas distribution assembly for use with activated species and method of using same
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (en) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
KR20210050453A (en) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
KR20250004395A (en) * 2019-11-08 2025-01-07 어플라이드 머티어리얼스, 인코포레이티드 Methods to reduce material surface roughness
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP7527928B2 (en) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
JP2021097227A (en) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride layer and structure including vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
TW202142733A (en) 2020-01-06 2021-11-16 荷蘭商Asm Ip私人控股有限公司 Reactor system, lift pin, and processing method
TW202140135A (en) 2020-01-06 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Gas supply assembly and valve plate assembly
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR20210093163A (en) 2020-01-16 2021-07-27 에이에스엠 아이피 홀딩 비.브이. Method of forming high aspect ratio features
KR102675856B1 (en) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
KR102667792B1 (en) 2020-02-03 2024-05-20 에이에스엠 아이피 홀딩 비.브이. Method of forming structures including a vanadium or indium layer
KR20210100010A (en) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
KR20210103956A (en) 2020-02-13 2021-08-24 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus including light receiving device and calibration method of light receiving device
US20230081817A1 (en) 2020-02-13 2023-03-16 Lam Research Corporation High aspect ratio etch with infinite selectivity
TWI855223B (en) 2020-02-17 2024-09-11 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer
JP2023516588A (en) 2020-02-28 2023-04-20 ラム リサーチ コーポレーション Multilayer hard mask for defect reduction in EUV patterning
TW202203344A (en) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 System dedicated for parts cleaning
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR102775390B1 (en) 2020-03-12 2025-02-28 에이에스엠 아이피 홀딩 비.브이. Method for Fabricating Layer Structure Having Target Topological Profile
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
KR102755229B1 (en) 2020-04-02 2025-01-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
KR20210128343A (en) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR20210130646A (en) 2020-04-21 2021-11-01 에이에스엠 아이피 홀딩 비.브이. Method for processing a substrate
KR20210132612A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and apparatus for stabilizing vanadium compounds
CN113555279A (en) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 Methods of forming vanadium nitride-containing layers and structures comprising the same
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
TW202208671A (en) 2020-04-24 2022-03-01 荷蘭商Asm Ip私人控股有限公司 Methods of forming structures including vanadium boride and vanadium phosphide layers
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR102783898B1 (en) 2020-04-29 2025-03-18 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
TW202147543A (en) 2020-05-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Semiconductor processing system
KR102788543B1 (en) 2020-05-13 2025-03-27 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
TW202146699A (en) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system
TW202147383A (en) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210145079A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Flange and apparatus for processing substrates
TWI862836B (en) 2020-05-21 2024-11-21 荷蘭商Asm Ip私人控股有限公司 Structures including multiple carbon layers and methods of forming and using same
KR102702526B1 (en) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. Apparatus for depositing thin films using hydrogen peroxide
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
TW202212620A (en) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate
CN113808910A (en) * 2020-06-11 2021-12-17 中国科学院微电子研究所 In-situ atomic layer deposition method in etching chamber
TW202208659A (en) 2020-06-16 2022-03-01 荷蘭商Asm Ip私人控股有限公司 Method for depositing boron containing silicon germanium layers
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
TW202202649A (en) 2020-07-08 2022-01-16 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
KR20220011092A (en) 2020-07-20 2022-01-27 에이에스엠 아이피 홀딩 비.브이. Method and system for forming structures including transition metal layers
KR20220011093A (en) 2020-07-20 2022-01-27 에이에스엠 아이피 홀딩 비.브이. Method and system for depositing molybdenum layers
KR20220021863A (en) 2020-08-14 2022-02-22 에이에스엠 아이피 홀딩 비.브이. Method for processing a substrate
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TW202228863A (en) 2020-08-25 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method for cleaning a substrate, method for selectively depositing, and reaction system
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
TW202229601A (en) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system
TW202217045A (en) 2020-09-10 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Methods for depositing gap filing fluids and related systems and devices
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
KR20220036866A (en) 2020-09-16 2022-03-23 에이에스엠 아이피 홀딩 비.브이. Silicon oxide deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202218049A (en) 2020-09-25 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Semiconductor processing method
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (en) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. Deposition method and an apparatus for depositing a silicon-containing material
CN114293174A (en) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 Gas supply unit and substrate processing apparatus including the same
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220050048A (en) 2020-10-15 2022-04-22 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202229620A (en) 2020-11-12 2022-08-01 特文特大學 Deposition system, method for controlling reaction condition, method for depositing
TW202229795A (en) 2020-11-23 2022-08-01 荷蘭商Asm Ip私人控股有限公司 A substrate processing apparatus with an injector
TW202235649A (en) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Methods for filling a gap and related systems and devices
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
TW202233884A (en) 2020-12-14 2022-09-01 荷蘭商Asm Ip私人控股有限公司 Method of forming structures for threshold voltage control
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202226899A (en) 2020-12-22 2022-07-01 荷蘭商Asm Ip私人控股有限公司 Plasma treatment device having matching box
TW202242184A (en) 2020-12-22 2022-11-01 荷蘭商Asm Ip私人控股有限公司 Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
US11756790B2 (en) * 2021-03-09 2023-09-12 Tokyo Electron Limited Method for patterning a dielectric layer
CN113174582A (en) * 2021-04-22 2021-07-27 安徽新力电业科技咨询有限责任公司 Method for preparing diamond film by microwave plasma chemical vapor deposition method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11538692B2 (en) * 2021-05-21 2022-12-27 Tokyo Electron Limited Cyclic plasma etching of carbon-containing materials
JP2022185488A (en) * 2021-06-02 2022-12-14 東京エレクトロン株式会社 Film deposition method and film deposition apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US12106972B2 (en) * 2021-10-13 2024-10-01 Applied Materials, Inc. Selective silicon deposition
US12080516B2 (en) * 2021-11-23 2024-09-03 Applied Materials, Inc. High density plasma enhanced process chamber
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
US20240162043A1 (en) * 2022-11-16 2024-05-16 Tokyo Electron Limited Sidewall Inorganic Passivation for Dielectric Etching Via Surface Modification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072430A1 (en) * 2002-10-11 2004-04-15 Zhisong Huang Method for forming a dual damascene structure
US20060160366A1 (en) * 2005-01-19 2006-07-20 Promos Technologies Inc. Method for preparing a structure with high aspect ratio
CN102646585A (en) * 2011-02-17 2012-08-22 朗姆研究公司 Wiggling control for pseudo-hardmask
CN102844856A (en) * 2010-02-25 2012-12-26 Spts科技有限公司 Method of forming and patterning conformal insulation layer in vias and etched structures
US20140120727A1 (en) * 2012-10-29 2014-05-01 Lam Research Corporation Method of tungsten etching

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030881A (en) * 1998-05-05 2000-02-29 Novellus Systems, Inc. High throughput chemical vapor deposition process capable of filling high aspect ratio structures
US6846746B2 (en) 2002-05-01 2005-01-25 Applied Materials, Inc. Method of smoothing a trench sidewall after a deep trench silicon etch process
US6713365B2 (en) * 2002-09-04 2004-03-30 Macronix International Co., Ltd. Methods for filling shallow trench isolations having high aspect ratios
US7531679B2 (en) 2002-11-14 2009-05-12 Advanced Technology Materials, Inc. Composition and method for low temperature deposition of silicon-containing films such as films including silicon nitride, silicon dioxide and/or silicon-oxynitride
US20050170104A1 (en) 2004-01-29 2005-08-04 Applied Materials, Inc. Stress-tuned, single-layer silicon nitride film
FI117728B (en) * 2004-12-21 2007-01-31 Planar Systems Oy Multilayer structure and process for its preparation
US7241683B2 (en) 2005-03-08 2007-07-10 Lam Research Corporation Stabilized photoresist structure for etching process
US20070049017A1 (en) * 2005-08-29 2007-03-01 Chao-Ching Hsieh Plug fabricating method for dielectric layer
WO2007118026A2 (en) * 2006-03-31 2007-10-18 Applied Materials, Inc. Step coverage and pattern loading for dielectric films
JP2007281181A (en) 2006-04-06 2007-10-25 Elpida Memory Inc Process for fabricating semiconductor device
CN101473426A (en) * 2006-06-22 2009-07-01 应用材料股份有限公司 Dielectric deposition and etch back processes for bottom up gapfill
KR20090091307A (en) * 2006-11-22 2009-08-27 스미토모 세이미츠 고교 가부시키가이샤 A silicon structure having a high aspect ratio opening, a manufacturing method thereof, a manufacturing apparatus thereof, and a manufacturing program thereof, and a method of manufacturing an etching mask for the silicon structure thereof
TWI489547B (en) 2007-09-18 2015-06-21 Air Liquide Method of forming a ruthenium containing film
US7678715B2 (en) 2007-12-21 2010-03-16 Applied Materials, Inc. Low wet etch rate silicon nitride film
US8277670B2 (en) 2008-05-13 2012-10-02 Lam Research Corporation Plasma process with photoresist mask pretreatment
US8747684B2 (en) 2009-08-20 2014-06-10 Applied Materials, Inc. Multi-film stack etching with polymer passivation of an overlying etched layer
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US20110256734A1 (en) 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US8722543B2 (en) 2010-07-30 2014-05-13 Headway Technologies, Inc. Composite hard mask with upper sacrificial dielectric layer for the patterning and etching of nanometer size MRAM devices
US20140023794A1 (en) 2012-07-23 2014-01-23 Maitreyee Mahajani Method And Apparatus For Low Temperature ALD Deposition
FR3000602B1 (en) * 2012-12-28 2016-06-24 Commissariat A L Energie Atomique Et Aux Energies Alternatives METHOD FOR ETCHING A POROUS DIELECTRIC MATERIAL
US8987139B2 (en) * 2013-01-29 2015-03-24 Applied Materials, Inc. Method of patterning a low-k dielectric film
TW201441408A (en) 2013-03-15 2014-11-01 Applied Materials Inc PEALD of films comprising silicon nitride
CN104347490B (en) * 2013-08-09 2017-12-05 上海华虹宏力半导体制造有限公司 The method of silicon hole filling
US9034748B2 (en) 2013-09-04 2015-05-19 International Business Machines Corporation Process variability tolerant hard mask for replacement metal gate finFET devices
US10084016B2 (en) 2013-11-21 2018-09-25 Micron Technology, Inc. Cross-point memory and methods for fabrication of same
US9576792B2 (en) 2014-09-17 2017-02-21 Asm Ip Holding B.V. Deposition of SiN
US9214333B1 (en) 2014-09-24 2015-12-15 Lam Research Corporation Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD
US9355837B2 (en) 2014-09-25 2016-05-31 Micron Technology, Inc. Methods of forming and using materials containing silicon and nitrogen
US9922839B2 (en) 2015-06-23 2018-03-20 Lam Research Corporation Low roughness EUV lithography
US20170178899A1 (en) 2015-12-18 2017-06-22 Lam Research Corporation Directional deposition on patterned structures
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072430A1 (en) * 2002-10-11 2004-04-15 Zhisong Huang Method for forming a dual damascene structure
US20060160366A1 (en) * 2005-01-19 2006-07-20 Promos Technologies Inc. Method for preparing a structure with high aspect ratio
CN102844856A (en) * 2010-02-25 2012-12-26 Spts科技有限公司 Method of forming and patterning conformal insulation layer in vias and etched structures
CN102646585A (en) * 2011-02-17 2012-08-22 朗姆研究公司 Wiggling control for pseudo-hardmask
US20140120727A1 (en) * 2012-10-29 2014-05-01 Lam Research Corporation Method of tungsten etching

Also Published As

Publication number Publication date
US20170178899A1 (en) 2017-06-22
KR20170074777A (en) 2017-06-30
CN107039264A (en) 2017-08-11
CN107039264B (en) 2022-05-03
US10825680B2 (en) 2020-11-03
TWI775734B (en) 2022-09-01
US20180233357A1 (en) 2018-08-16
TW201732873A (en) 2017-09-16

Similar Documents

Publication Publication Date Title
US10825680B2 (en) Directional deposition on patterned structures
KR102510157B1 (en) Doped ald films for semiconductor patterning applications
TWI853925B (en) Atomic layer etch and selective deposition process for extreme ultraviolet lithography resist improvement
KR102384484B1 (en) Plasma enhanced atomic layer deposition with pulsed plasma exposure
US10832908B2 (en) Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US10074543B2 (en) High dry etch rate materials for semiconductor patterning applications
US9076646B2 (en) Plasma enhanced atomic layer deposition with pulsed plasma exposure
JP7555909B2 (en) Film stack simplification for high aspect ratio patterning and vertical scaling
CN111247269A (en) Geometrically selective deposition of dielectric films
TWI850340B (en) Semiconductor mask reshaping using a sacrificial layer
TWI874271B (en) Atomic layer etch and selective deposition process for extreme ultraviolet lithography resist improvement
CN113488379B (en) Doped ALD films for semiconductor patterning applications
KR20250006087A (en) Deposition of metal-containing films and chamber cleaning
KR20250006154A (en) Side gap filling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination