CN114989275B - Application of OsERF940 protein in improving rice blast resistance - Google Patents
Application of OsERF940 protein in improving rice blast resistance Download PDFInfo
- Publication number
- CN114989275B CN114989275B CN202110147976.1A CN202110147976A CN114989275B CN 114989275 B CN114989275 B CN 114989275B CN 202110147976 A CN202110147976 A CN 202110147976A CN 114989275 B CN114989275 B CN 114989275B
- Authority
- CN
- China
- Prior art keywords
- oserf940
- protein
- rice
- sequence
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域Technical field
本发明属于生物技术领域,具体涉及OsERF940蛋白在提高水稻稻瘟病抗性中的应用。The invention belongs to the field of biotechnology, and specifically relates to the application of OsERF940 protein in improving rice blast resistance.
背景技术Background technique
乙烯应答因子(ethylene response factors,ERF)属于ERF/AP2超家族中的一个亚家族,它们的共同特点是含有一个保守的ERF结构域,调控植物对生物胁迫和非生物胁迫的应答。从不同的植物中也分离出了大量编码ERF因子的基因。围绕这些基因的相关研究已成为植物基因组学领域的新亮点。国内外大量研究表明ERF在植物抗病应答中有重要作用。如,美国密苏里大学研究表明ERF因子ERF6在拟南芥灰霉病的抗性形成中有重要作用。中国农业科学院作物研究所张增艳课题组发现过表达小麦ERF因子ERF1可以显著抑制谷丝核菌生长提高小麦对纹枯病的抗性。德国耶拿大学的研究表明过表达水稻ERF因子OsEREBP1提高水稻的白叶枯病的抗性。东北农业大学张淑珍课题组的研究发现大豆ERF因子提高大豆对疫霉根腐病的抗性。上述国内外的研究表明EFR因子在不同作物中对多种作物病害抗性均具有重要调控作用。Ethylene response factors (ERF) belong to a subfamily of the ERF/AP2 superfamily. Their common feature is that they contain a conserved ERF domain, which regulates plant responses to biotic and abiotic stresses. A large number of genes encoding ERF factors have also been isolated from different plants. Related research around these genes has become a new highlight in the field of plant genomics. A large number of studies at home and abroad have shown that ERF plays an important role in plant disease resistance responses. For example, research at the University of Missouri in the United States has shown that the ERF factor ERF6 plays an important role in the formation of resistance to gray mold in Arabidopsis. Zhang Zengyan’s research group at the Crop Research Institute of the Chinese Academy of Agricultural Sciences found that overexpression of the wheat ERF factor ERF1 can significantly inhibit the growth of Rhizoctonia glutinosa and improve wheat resistance to sheath blight. Research from the University of Jena in Germany shows that overexpression of the rice ERF factor OsEREBP1 improves rice resistance to bacterial blight. Research by Zhang Shuzhen’s research group at Northeast Agricultural University found that soybean ERF factors improve soybean resistance to Phytophthora root rot. The above-mentioned domestic and foreign studies have shown that EFR factors play an important role in regulating resistance to various crop diseases in different crops.
但相对于拟南芥中ERF基因功能的广泛研究,而目前大部分水稻ERF家族基因的功能以及在抗病应答中的调控关系还并不清楚。However, compared with the extensive research on ERF gene functions in Arabidopsis, the functions of most rice ERF family genes and their regulatory relationships in disease resistance responses are still unclear.
发明内容Contents of the invention
本发明的目的是提供OsERF940蛋白在提高水稻稻瘟病抗性中的应用。The purpose of the present invention is to provide the application of OsERF940 protein in improving rice blast resistance.
本发明要求保护OsERF940蛋白的应用,为增加水稻稻瘟病抗性。The present invention claims the application of OsERF940 protein to increase rice blast resistance.
本发明还保护OsERF940基因在培育增加稻瘟病抗性的转基因植物中的应用。The present invention also protects the application of OsERF940 gene in cultivating transgenic plants with increased rice blast resistance.
本发明还保护一种植物育种方法,包括如下步骤:提高目的植物中OsERF940蛋白的活性和/或含量,从而提高植物稻瘟病抗性。The invention also protects a plant breeding method, which includes the following steps: increasing the activity and/or content of OsERF940 protein in target plants, thereby improving the plant's rice blast resistance.
本发明还保护一种制备转基因植物的方法,包括如下步骤:在出发植物中导入OsERF940基因,得到与所述出发植物相比稻瘟病抗性增加的转基因植物。The invention also protects a method for preparing transgenic plants, which includes the following steps: introducing the OsERF940 gene into the starting plant to obtain a transgenic plant with increased rice blast resistance compared with the starting plant.
OsERF940蛋白具体来源于稻属亚洲栽培稻种中花11品种(Oryza sativaL.Zhonghua 11)。The OsERF940 protein is specifically derived from Oryza sativa L. Zhonghua 11, an Asian cultivated rice species.
以上任一所述OsERF940蛋白为如下(a)或(b)或(c)或(d)或(e):Any of the above OsERF940 proteins is as follows (a) or (b) or (c) or (d) or (e):
(a)序列表的序列1所示的蛋白质;(a) The protein shown in Sequence 1 of the sequence listing;
(b)将序列1进行一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与植物稻瘟病增大相关的由其衍生的蛋白质;(b) Proteins derived from Sequence 1 that are related to the increase in plant blast disease, obtained by substituting and/or deleting and/or adding one or several amino acid residues in Sequence 1;
(c)来源于水稻且与(a)具有95%以上同一性且与水稻稻瘟病抗性相关的蛋白质;(c) A protein derived from rice that has more than 95% identity with (a) and is related to rice blast resistance;
以上任一所述OsERF940基因为编码所述OsERF940蛋白的基因。Any of the above OsERF940 genes is a gene encoding the OsERF940 protein.
以上任一所述OsERF940基因具体为如下(1)或(2)或(3)或(4)所述的DNA分子:Any of the above OsERF940 genes is specifically a DNA molecule as described in (1) or (2) or (3) or (4) as follows:
(1)编码区如序列表中序列2所示的DNA分子;(1) The DNA molecule whose coding region is as shown in Sequence 2 in the sequence listing;
(2)与(1)具有75%以上同一性且编码与植物稻瘟病抗病性相关的蛋白的DNA分子;(2) A DNA molecule that has more than 75% identity with (1) and encodes a protein related to plant rice blast disease resistance;
(3)来源于水稻且与(1)具有90%以上同一性且编码与稻瘟病抗病性相关的蛋白的DNA分子;(3) DNA molecules derived from rice and having more than 90% identity with (1) and encoding proteins related to rice blast disease resistance;
(4)在严格条件下与(1)杂交且编码植物与植物稻瘟病抗病性相关的蛋白的DNA分子;(4) DNA molecules that hybridize with (1) under stringent conditions and encode proteins related to plants and plant blast disease resistance;
以上任一所述植物为单子叶植物或双子叶植物。所述单子叶植物为禾本科植物。所述禾本科植物为水稻属植物。所述水稻属植物为水稻,例如水稻中花11。Any of the above mentioned plants is a monocotyledonous plant or a dicotyledonous plant. The monocotyledonous plant is a gramineous plant. The gramineous plant is a plant of the genus Oryza. The Oryza plant is rice, such as Oryza sativa 11.
以上任一所述方法中,“在出发植物中导入OsERF940基因”是通过将重组表达载体导入出发植物实现的。所述重组表达载体为将所述OsERF940基因插入植物表达载体得到的可以表达所述OsERF940基因的质粒。所述重组表达载体具体可为:在pCAMBIA3301载体的多克隆位点(例如Sac I与BamH I酶切位点之间)插入序列表的序列2第1-954位核苷酸所示双链DNA分子得到的重组质粒pCAMBIA3301-OsERF940。In any of the above methods, "introducing the OsERF940 gene into the starting plant" is achieved by introducing the recombinant expression vector into the starting plant. The recombinant expression vector is a plasmid obtained by inserting the OsERF940 gene into a plant expression vector and capable of expressing the OsERF940 gene. The recombinant expression vector can be specifically: insert the double-stranded DNA shown in the 1-954th nucleotides of Sequence 2 of the sequence list into the multiple cloning site of the pCAMBIA3301 vector (for example, between the Sac I and BamHI restriction sites). The molecularly obtained recombinant plasmid pCAMBIA3301-OsERF940.
本发明实验证明,本发明过表达OsERF940基因显著增加水稻抗病相关基因的转录表达,增加水稻稻瘟病抗性。表明OsERF940蛋白对提高水稻稻瘟病抗性具有重要作用。本发明对于培育抗稻瘟病水稻品种具有重大的应用价值。Experiments of the present invention prove that overexpression of the OsERF940 gene of the present invention significantly increases the transcriptional expression of rice disease resistance-related genes and increases rice blast resistance. It shows that OsERF940 protein plays an important role in improving rice blast resistance. The invention has great application value for cultivating rice varieties resistant to rice blast.
附图说明Description of drawings
图1为重组质粒pCAMBIA3301-OsERF940的元件示意图。Figure 1 is a schematic diagram of the components of the recombinant plasmid pCAMBIA3301-OsERF940.
图2为转基因株系中OsERF940基因的相对表达水平,M:核酸分子Marker,Control:对照(野生型),T1-T8:为T0代植株系的RT-PCR检测结果。Figure 2 shows the relative expression level of OsERF940 gene in transgenic lines, M: nucleic acid molecule marker, Control: control (wild type), T1-T8: RT-PCR detection results of T0 generation plant lines.
图3为qPCR检测OsERF940过表达株系OE3和OE5中抗病基因表达水平。Figure 3 shows the qPCR detection of disease resistance gene expression levels in OsERF940 overexpression lines OE3 and OE5.
图4为转基因水稻株系田间和实验室接种稻瘟病图片,WT表示野生型对照,OE3,OE4,OE5表示不同的转基因株系;(A)表示转基因材料在病谱田里的抗病表型;(B)表示转基因材料在室内接种条件下的抗病表型。Figure 4 is a picture of transgenic rice lines inoculated with rice blast in the field and laboratory. WT represents the wild-type control, OE3, OE4, and OE5 represent different transgenic lines; (A) represents the disease resistance phenotype of transgenic materials in the disease spectrum field. ; (B) Represents the disease resistance phenotype of transgenic materials under indoor inoculation conditions.
具体实施方式Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。Materials, reagents, etc. used in the following examples can all be obtained from commercial sources unless otherwise specified.
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are all conventional methods unless otherwise specified. The test materials used in the following examples were all purchased from conventional biochemical reagent stores unless otherwise specified. The quantitative experiments in the following examples were repeated three times, and the results were averaged.
将序列表的序列1所示的蛋白质命名为OsERF940蛋白,水稻cDNA中,OsERF940蛋白的编码区如序列表的序列2所示,将其命名为OsERF940基因。The protein shown in Sequence 1 of the sequence listing is named OsERF940 protein. In the rice cDNA, the coding region of OsERF940 protein is shown in Sequence 2 of the sequence listing, which is named OsERF940 gene.
pCAMBIA3301载体,全称为pCAMBIA3301-myc植物过表达载体:上海吉然生物科技有限公司,产品目录号为JR13080311。pCAMBIA3301 vector, the full name is pCAMBIA3301-myc plant overexpression vector: Shanghai Jiran Biotechnology Co., Ltd., product catalog number is JR13080311.
农杆菌LBA4404:行知生物科技有限公司,产品目录号为AABV02-03。Agrobacterium LBA4404: Xingzhi Biotechnology Co., Ltd., product catalog number is AABV02-03.
水稻中花11记载在如下文献中:Kwon CT,Kim SH,Kim D,Paek NC.The RiceFloral Repressor Early flowering1 Affects Spikelet Fertility By ModulatingGibberellin Signaling.Rice(N Y).2015Dec;8(1):58.doi:10.1186/s12284-015-0058-1,公众可从申请人处获得。Rice Floral Repressor Early flowering1 Affects Spikelet Fertility By ModulatingGibberellin Signaling.Rice(N Y).2015Dec;8(1):58.doi: 10.1186/s12284-015-0058-1, available to the public from the applicant.
稻瘟菌菌株(菌种GD08-T13),湖南省农科院水稻所李小湘赠;记载在如下文献中:Liu Q,Li X,Yan S,Yu T,Yang J,Dong J,Zhang S,Zhao J,Yang T,Mao X,Zhu X,LiuB.OsWRKY67 positively regulates blast and bacteria blight resistance bydirect activation of PR genes in rice.BMC Plant Biol.2018Oct26;18(1):257.doi:10.1186/s12870-018-1479-y,公众可从申请人处获得。Magnaporthe oryzae strain (strain GD08-T13) was donated by Li Xiaoxiang, Institute of Rice, Hunan Academy of Agricultural Sciences; recorded in the following documents: Liu Q, Li X, Yan S, Yu T, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu 1479-y, available to the public from the applicant.
实施例1、转基因植物的获得Example 1. Obtaining transgenic plants
一、重组质粒的构建1. Construction of recombinant plasmid
1、提取水稻日本晴的总RNA,然后反转录得到cDNA。1. Extract total RNA from rice Nipponbare and then reverse-transcribe to obtain cDNA.
2、以步骤1得到的cDNA为模板,采用F1和R1组成的引物对进行PCR扩增,回收236bp的PCR扩增产物。2. Use the cDNA obtained in step 1 as a template, use the primer pair composed of F1 and R1 to perform PCR amplification, and recover a 236bp PCR amplification product.
F1:5'-CGGTAGGATCCATGGTGCCCTCTTCACGGAAAG-3'F1: 5'-CGGTA GGATCC ATGGTGCCCTCTTCACGGGAAAG-3'
R1:5'-CCCCGAGCTCAAGACAGTTGAGTTCTTGTTCCA-3'。R1: 5'- CCCCGAGCTC AAGACAGTTGAGTTCTTGTTCCA-3'.
3、用限制性内切酶Sac I与BamH双酶切步骤2得到的PCR扩增产物,回收酶切产物。3. Double-digest the PCR amplification product obtained in step 2 with restriction endonuclease Sac I and BamH, and recover the digested product.
4、用限制性内切酶Sac I与BamH双酶切pCAMBIA3301载体,回收载体骨架。4. Use restriction endonuclease Sac I and BamH to double-digest the pCAMBIA3301 vector and recover the vector backbone.
5、将步骤3得到的酶切产物和步骤4得到的载体骨架连接,得到重组质粒pCAMBIA3301-OsERF940。5. Connect the enzyme digestion product obtained in step 3 to the vector backbone obtained in step 4 to obtain the recombinant plasmid pCAMBIA3301-OsERF940.
根据测序结果,重组质粒pCAMBIA3301-OsERF940为在pCAMBIA3301载体的Sac I与BamH酶切位点之间插入了序列表的序列2第1-951位所示的DNA分子,得到的质粒,该质粒含有OsERF940基因的编码序列,表达蛋白OsERF940。According to the sequencing results, the recombinant plasmid pCAMBIA3301-OsERF940 is a plasmid obtained by inserting the DNA molecule shown in positions 1-951 of Sequence 2 of the sequence list between the Sac I and BamH restriction sites of the pCAMBIA3301 vector. This plasmid contains OsERF940 Coding sequence of the gene, expressing protein OsERF940.
重组质粒pCAMBIA3301-OsERF940的元件示意图见图1。The schematic diagram of the components of the recombinant plasmid pCAMBIA3301-OsERF940 is shown in Figure 1.
二、转OsERF940基因水稻的获得2. Obtaining OsERF940 transgenic rice
1、将重组质粒pCAMBIA3301-OsERF940导入农杆菌LBA4404,得到重组农杆菌。1. Introduce the recombinant plasmid pCAMBIA3301-OsERF940 into Agrobacterium LBA4404 to obtain the recombinant Agrobacterium.
2、将步骤1得到的重组农杆菌悬浮于液体ASAA培养基中,得到OD600nm值=0.3的菌液。2. Suspend the recombinant Agrobacterium obtained in step 1 in the liquid ASAA culture medium to obtain a bacterial liquid with an OD 600nm value = 0.3.
液体ASAA培养基:含2mg/L 2,4-D和100μM/L AS的液体NB培养基。Liquid ASAA medium: liquid NB medium containing 2 mg/L 2,4-D and 100 μM/L AS.
3、取水稻中花11(以下称为野生型水稻)的种子,用75%乙醇灭菌,然后置于固体NB培养基平板上,28℃暗培养2周,然后将愈伤组织转移到新的固体NB培养基平板上28℃暗培养2周,然后将愈伤组织转移到新的固体NB培养基平板上28℃暗培养2周。3. Take the seeds of rice Zhonghua 11 (hereinafter referred to as wild-type rice), sterilize them with 75% ethanol, then place them on a solid NB medium plate, cultivate them in the dark at 28°C for 2 weeks, and then transfer the calli to a new medium. The callus was cultured on a solid NB medium plate at 28°C in the dark for 2 weeks, and then the calli were transferred to a new solid NB medium plate and cultured in the dark at 28°C for 2 weeks.
4、完成步骤3后,将愈伤组织中自然分散、颜色淡黄的胚性愈伤颗粒置于继代培养基平板上,28℃暗培养3天。4. After completing step 3, place the naturally dispersed, light yellow embryogenic callus particles in the callus on the subculture medium plate and culture them in the dark at 28°C for 3 days.
继代培养基:含2mg/L 2,4-D的固体NB培养基。Subculture medium: solid NB medium containing 2 mg/L 2,4-D.
5、完成步骤4后,取愈伤组织,置于步骤2得到的菌液中浸泡10-20分钟,其间轻轻摇动。5. After completing step 4, take the callus and soak it in the bacterial solution obtained in step 2 for 10-20 minutes, shaking gently during this period.
6、完成步骤5后,取愈伤组织,用滤纸吸干表面菌液,然后置于共培养培养基平板上,21℃-22℃暗培养3天。6. After completing step 5, take the callus tissue, use filter paper to absorb the bacterial liquid on the surface, and then place it on the co-culture medium plate and cultivate it in the dark at 21°C-22°C for 3 days.
共培养培养基:含2mg/L 2,4-D和100μM AS的固体NB培养基。Co-culture medium: solid NB medium containing 2 mg/L 2,4-D and 100 μM AS.
7、完成步骤6后,取愈伤组织,置于筛选培养基平板上28℃暗培养2周,然后将愈伤组织转移到新的筛选培养基平板上28℃暗培养2周,然后将愈伤组织转移到新的筛选培养基平板上28℃暗培养2周。7. After completing step 6, take the callus and place it on the screening medium plate and cultivate it in the dark at 28°C for 2 weeks. Then transfer the callus to a new screening medium plate and cultivate it in the dark at 28°C for 2 weeks. Then put the callus The injured tissue was transferred to a new screening medium plate and cultured in the dark at 28°C for 2 weeks.
筛选培养基:含2mg/L 2,4-D和50mg/L Bar的固体NB培养基。Screening medium: solid NB medium containing 2 mg/L 2,4-D and 50 mg/L Bar.
8、完成步骤7后,取生长旺盛,呈乳白色或微黄色的新鲜愈伤组织,置于预分化培养基平板上,先28℃暗培养1周再28℃光照培养2周,然后转移到分化培养基平板上,28℃光照培养,得到分化苗。8. After completing step 7, take the vigorously growing, milky white or slightly yellow fresh callus, place it on the pre-differentiation medium plate, culture it in the dark at 28°C for 1 week and then in the light at 28°C for 2 weeks, and then transfer to the differentiation medium. On the medium plate, culture at 28°C under light to obtain differentiated seedlings.
预分化培养基:含5mg/L ABA和0.5mg/L NAA的固体NB培养基。Predifferentiation medium: solid NB medium containing 5 mg/L ABA and 0.5 mg/L NAA.
分化培养基:含0.5mg/L NAA和3mg/L 6-BA的固体NB培养基。Differentiation medium: solid NB medium containing 0.5 mg/L NAA and 3 mg/L 6-BA.
9、完成步骤8后,将长势好的分化成苗转移至装有固体MS培养基的三角瓶内,28℃光照培养1-2周后移栽至温室,持续培养至收获种子,即为T1代种子。9. After completing step 8, transfer the well-differentiated seedlings to an Erlenmeyer flask containing solid MS culture medium. Cultivate in the light at 28°C for 1-2 weeks and then transplant to the greenhouse. Continue cultivating until the seeds are harvested, which is T 1st generation seeds.
10、将T1代种子培育为植株,即为T1代植株,T1代植株自交,得到T2代种子。10. Cultivate T 1 generation seeds into plants, which are T 1 generation plants. The T 1 generation plants are selfed to obtain T 2 generation seeds.
12、将T2代种子培育为植株,即为T2代植株,T2代植株自交,得到T3代种子。12. Cultivate T 2 generation seeds into plants, which are T 2 generation plants. The T 2 generation plants are selfed to obtain T 3 generation seeds.
13、将T3代种子培育为植株,即为T3代植株。13. Cultivate the T 3rd generation seeds into plants, which are T 3rd generation plants.
对于某一T1代植株来说,如果满足如下两个条件,该T1代植株即为单拷贝插入的转基因植株:①该T1代植株具有Bar抗性(田间用2%Basta(公司:北京华越洋生物货号:W9062-100ml)喷3叶一心龄水稻苗,处理1周后,筛选绿色水稻苗,为阳性转基因材料);②该T1代植株自交得到的T2代植株中,Bar抗性植株与非Bar抗性植株的数量比基本符合3:1(Basta筛选后,株系中水稻植株(约50株)的Basta抗性苗:Basta敏感苗≈3:1)。For a certain T 1 generation plant, if the following two conditions are met, the T 1 generation plant is a single-copy inserted transgenic plant: ① The T 1 generation plant has Bar resistance (2% Basta is used in the field (Company: Beijing Huayueyang Biological Product No.: W9062-100ml) sprayed three-leaf one-year-old rice seedlings, and after 1 week of treatment, screened green rice seedlings, which were positive transgenic materials); ② Among the T 2- generation plants obtained from self-crossing of the T 1- generation plants , the number ratio of Bar-resistant plants to non-Bar-resistant plants is basically consistent with 3:1 (after Basta screening, the Basta-resistant seedlings of rice plants (about 50 plants) in the strain: Basta-sensitive seedlings ≈ 3:1).
对于某一T2代植株来说,如果满足如下三个条件,该T2代植株及其自交后代为一个纯合的转基因株系:①该T2代植株具有Bar抗性(田间用2%Basta喷3叶一心龄水稻苗,处理1周后水稻苗保持绿色);②其T1代植株为单拷贝插入的转基因植株(Basta筛选后,株系中水稻植株(约50株)的Basta抗性苗:Basta敏感苗≈3:1);③其抽样检测的T3代植株均具有Bar抗性(田间用2%Basta喷3叶一心龄水稻苗,处理1周后水稻苗保持绿色)。For a certain T 2 generation plant, if the following three conditions are met, the T 2 generation plant and its selfed progeny are a homozygous transgenic line: ① The T 2 generation plant is Bar resistant (field use 2 % Basta was sprayed on 3-leaf and one-center-old rice seedlings, and the rice seedlings remained green after 1 week of treatment); ② Its T 1 generation plants are single-copy inserted transgenic plants (after Basta screening, the Basta of the rice plants in the line (about 50 plants) Resistant seedlings: Basta-sensitive seedlings ≈ 3:1); ③ The T 3- generation plants sampled and tested are all Bar-resistant (3-leaf one-year-old rice seedlings were sprayed with 2% Basta in the field, and the rice seedlings remained green after 1 week of treatment) .
三、PCR鉴定3. PCR identification
随机从步骤二得到的纯合的转基因株系中取2个株系,OE1株系和OE2株系,对T2代植株进行鉴定。将水稻中花11作为转基因株系的野生型对照。Randomly select two lines from the homozygous transgenic lines obtained in step 2, the OE1 line and the OE2 line, and identify the T 2 generation plants. Rice Zhonghua 11 was used as the wild-type control of the transgenic line.
提取植株(4周苗)中的总RNA,反转录为cDNA,将cDNA作为模板,通过定量PCR鉴定OsERF940基因的表达水平。Total RNA from plants (4-week-old seedlings) was extracted and reverse transcribed into cDNA. The cDNA was used as a template to identify the expression level of OsERF940 gene by quantitative PCR.
qPCR鉴定OsERF940基因的引物如下:The primers for qPCR identification of OsERF940 gene are as follows:
F2:5'-GATGAGATTCCTGTGAGCAAC-3';F2: 5'-GATGAGATTCCTGTGAGCAAC-3';
R2:5'-GTTCCAATGAAGCAAAGTCGA-3'。R2: 5'-GTTCCAATGAAGCAAAGTCGA-3'.
将水稻中花11中OsERF940的表达水平作为1,计算纯合的转基因株系中OsERF940基因的相对表达水平。Taking the expression level of OsERF940 in rice Zhonghua 11 as 1, the relative expression level of OsERF940 gene in homozygous transgenic lines was calculated.
结果见图2所示,可以看出,8个T2代株系中ERF940的表达量均高于对照,表明获得8个T2代株系为阳性转OsERF940基因水稻。The results are shown in Figure 2. It can be seen that the expression levels of ERF940 in the eight T2 generation lines are higher than those in the control, indicating that the eight T2 generation lines obtained are positive OsERF940 transgenic rice.
实施例2、转OsERF940基因水稻中抗病相关基因表达情况的检测Example 2. Detection of disease resistance-related gene expression in rice transgenic with OsERF940 gene
阳性转OsERF940基因水稻的T2代植株作为下面供试植株。The T2 generation plants of positive OsERF940 transgenic rice were used as the test plants below.
供试植株:OE3株系的T2代植株、OE5株系的T2代植株和水稻中花11植株(WT)。Test plants: T 2 generation plants of OE3 strain, T 2 generation plants of OE5 strain and rice Zhonghua 11 plant (WT).
提取供试植株叶片(4周苗)的总RNA,反转录为cDNA,将cDNA作为模板,通过定量PCR鉴定各个相关基因的表达水平。将水稻中花11中抗病相关基因的表达水平作为1,计算转基因株系中抗病相关基因的相对表达水平。Total RNA was extracted from the test plant leaves (4-week-old seedlings), reverse transcribed into cDNA, and the cDNA was used as a template to identify the expression levels of each related gene through quantitative PCR. Taking the expression level of disease resistance-related genes in rice Zhonghua 11 as 1, the relative expression levels of disease resistance-related genes in transgenic lines were calculated.
用于鉴定OsMYC2基因的引物如下:The primers used to identify the OsMYC2 gene are as follows:
上游引物:5'-ATCATGACTAGAGAGGAGCA-3';Upstream primer: 5'-ATCATGACTAGAGAGGAGCA-3';
下游引物:5'-CCAACACGAGCCTCACAATCA-3';Downstream primer: 5'-CCAACACGAGCCTCACAATCA-3';
用于鉴定PR1基因的引物如下:The primers used to identify the PR1 gene are as follows:
上游引物:5'-GCGCTGCAGGAGGACTACGTA-3';Upstream primer: 5'-GCGCTGCAGGAGGACTACGTA-3';
下游引物:5'-CCCTCCGGCACAAGTATACA-3'。Downstream primer: 5'-CCCTCCGGCACAAGTATACA-3'.
用于鉴定PR4基因的引物如下:The primers used to identify the PR4 gene are as follows:
上游引物:5'-CTTCAAGAAGATCGACACAGA-3';Upstream primer: 5'-CTTCAAGAAGATCGACACAGA-3';
下游引物:5'-CAGAGTGCCAACCTCTTCCA-3'。Downstream primer: 5'-CAGAGTGCCAACCTCTTCCA-3'.
用于鉴定Chitinase基因的引物如下:The primers used to identify the Chitinase gene are as follows:
上游引物:5'-TTGGCGGCGGTGCAGTGAACA-3';Upstream primer: 5'-TTGGCGGCGGTGCAGTGAACA-3';
下游引物:5'-CATGCATATATATCGGTTTCA-3'。Downstream primer: 5'-CATGCATATATATCGGTTTCA-3'.
将水稻中花11中基因的表达水平作为1,计算转基因株系中相应基因的相对表达水平。Taking the expression level of 11 genes in rice flowers as 1, the relative expression level of the corresponding genes in the transgenic lines was calculated.
结果见图3所示,T2代转OsERF940基因水稻中抗病相关基因的相对表达量均高于野生型水稻品种中花11植株中的表达量,表明过表达OsERF940基因可以显著提高OsMYC2、PR1、PR4和Chitinase等水稻抗病相关基因表达。The results are shown in Figure 3. The relative expression levels of disease resistance-related genes in the T 2- generation OsERF940 transgenic rice were higher than those in the wild-type rice variety Zhonghua 11 plants, indicating that overexpression of the OsERF940 gene can significantly increase OsMYC2 and PR1. , PR4 and Chitinase and other rice disease resistance related genes expression.
上述结果显示,OsERF940基因对水稻抗病相关基因的表达有重要的调控作用,过表达OsERF940基因可以通过增加抗病相关基因表达,提高水稻稻瘟病抗性。The above results show that the OsERF940 gene plays an important role in regulating the expression of rice disease resistance-related genes. Overexpression of the OsERF940 gene can improve rice blast resistance by increasing the expression of disease resistance-related genes.
实施例3、转基因植株稻瘟病性分析Example 3. Analysis of rice blast disease of transgenic plants
供试植株:水稻中花11植株(WT,对照),OE1-OE8株系的T2代转OsERF940基因水稻植株。Test plants: rice Zhonghua 11 plant (WT, control), T 2 -generation OsERF940 transgenic rice plants of OE1-OE8 lines.
1、田间检测1. Field testing
供试植株种植于试验场田间,按生产和接种规范要求种植。The test plants were planted in the experimental field and were planted according to the requirements of production and inoculation specifications.
图4A是OE3、OE4、OE5和水稻中花11的水稻稻瘟病发病情况的照片。Figure 4A is a photograph of rice blast disease in OE3, OE4, OE5 and rice Zhonghua 11.
检测田间供试植株的抗病性,方法参考国际水稻所稻瘟病抗性分级标准(中南大学肖军治2011.5月硕士论文《湖南同名异种地方稻资源核心种质遴选》)。The disease resistance of field test plants was tested according to the International Rice Research Institute rice blast resistance classification standard (Master's thesis of Xiao Junzhi of Central South University in May 2011 "Selection of core germplasm of heterogeneous local rice resources in Hunan").
结果如下表1所示,可以看出,与对照相比,转基因株系均具有叶瘟病抗性。The results are shown in Table 1 below. It can be seen that compared with the control, the transgenic lines are all resistant to leaf blast.
表1为转基因株系稻瘟病菌接种抗病性统计Table 1 shows the statistics of disease resistance of transgenic lines of Magnaporthe oryzae inoculated
2、室内检测:2. Indoor testing:
将保存有稻瘟菌菌株(菌种GD08-T13)的滤纸片接种至淀粉培养基(酵母提取物2g,可溶性淀粉10g,琼脂粉15g,加水定容于1L水),26℃活化培养7天,再将活化后的菌丝接种至燕麦培养基(无糖燕麦片50g/打碎至粉末,蔗糖20g,琼脂20g,加水定容至1L),26℃黑暗培养7天,待菌丝长满培养基之后刮去菌丝,于持续光照下保湿继续培养3-4天产孢。之后对处于三叶一心期的供试植株水稻中花11、T2代转OsERF940基因水稻OE3和T2代转OsERF940基因水稻OE5幼苗分别进行稻瘟菌接种:用灭菌水洗下培养基上的孢子,调节孢子浓度至5×105个/mL,并加入万分之二的Tween20,用小型喷雾器将孢子液均匀的喷洒至水稻叶片(三叶一心期水稻苗)表面(剂量为使叶片均湿润)。Inoculate the filter paper piece containing the blast fungus strain (strain GD08-T13) into the starch medium (2g yeast extract, 10g soluble starch, 15g agar powder, add water to make the volume to 1L water), and activate and culture at 26°C for 7 days , then inoculate the activated mycelium into oat culture medium (sugar-free oatmeal 50g/beat to powder, 20g sucrose, 20g agar, add water to make the volume to 1L), and cultivate in the dark at 26°C for 7 days until the mycelium is full. After the culture medium, the hyphae are scraped off, and the culture is continued to produce spores for 3-4 days under constant light and moisture. After that, the test plant rice Zhonghua 11, the T 2- generation OsERF940 gene-transformed rice OE3 and the T 2 -generation OsERF940 gene-transformed rice OE5 seedlings in the three-leaf and one-heart stage were respectively inoculated with M. oryzae: wash the growth medium on the culture medium with sterilized water. spores, adjust the spore concentration to 5 × 10 5 /mL, and add 2/10,000 Tween20, use a small sprayer to evenly spray the spore solution onto the surface of the rice leaves (three-leaf, one-heart stage rice seedlings) (the dosage is to make the leaves uniform moist).
立即用定制的有机玻璃罩子盖住幼苗,放入人工气候箱中25℃黑暗处理24h,随后转为正常光照条件。接种后5-7天调查发病情况。Immediately cover the seedlings with a custom-made plexiglass cover and place them in an artificial climate box in the dark at 25°C for 24 hours, and then switch to normal light conditions. The incidence of disease will be investigated 5-7 days after vaccination.
结果如图4B所示,不同材料水稻稻瘟病实验室接种后的照片,可以看出,与水稻中花11(WT)相比,T2代转OsERF940基因水稻植株稻瘟病发病均显著弱于水稻中花11,转基因植株稻瘟病抗性显著高于野生型对照,表明过表达OsERF940基因对提高水稻稻瘟病抗病性有重要作用。OsERF940基因可以通过增加水稻抗病相关基因表达,提高水稻的稻瘟病抗性。The results are shown in Figure 4B. Photos of rice blast diseases of different materials after laboratory inoculation. It can be seen that compared with rice Zhonghua 11 (WT), the incidence of rice blast disease in T 2- generation OsERF940 gene rice plants is significantly weaker than that of rice plants. In Zhonghua 11, the rice blast resistance of transgenic plants was significantly higher than that of the wild-type control, indicating that overexpression of the OsERF940 gene plays an important role in improving rice blast resistance. The OsERF940 gene can improve rice blast resistance by increasing the expression of rice disease resistance-related genes.
SEQUENCE LISTING SEQUENCE LISTING
<110> 中国农业科学院生物技术研究所<110> Institute of Biotechnology, Chinese Academy of Agricultural Sciences
<120> OsERF940蛋白在提高水稻稻瘟病抗性中的应用<120> Application of OsERF940 protein in improving rice blast resistance
<160> 2<160> 2
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 317<211> 317
<212> PRT<212> PRT
<213> Oryza sativa L.<213> Oryza sativa L.
<400> 1<400> 1
Met Val Pro Ser Ser Arg Lys Val Arg Val Phe Cys Ser Asp Pro AspMet Val Pro Ser Ser Arg Lys Val Arg Val Phe Cys Ser Asp Pro Asp
1 5 10 151 5 10 15
Ala Thr Asp Ser Ser Asp Glu Asp Asp Gln Asn Lys Lys Glu Arg ArgAla Thr Asp Ser Ser Asp Glu Asp Asp Gln Asn Lys Lys Glu Arg Arg
20 25 30 20 25 30
Phe Ser Arg Glu Ile Leu Ile Pro Met Glu Asn Ser Lys Ala Ser LysPhe Ser Arg Glu Ile Leu Ile Pro Met Glu Asn Ser Lys Ala Ser Lys
35 40 45 35 40 45
Pro Val Lys Thr Leu Val Gln Cys Gly Thr Lys Thr Val Lys Asp SerPro Val Lys Thr Leu Val Gln Cys Gly Thr Lys Thr Val Lys Asp Ser
50 55 60 50 55 60
Glu Lys Glu Pro Thr Ser Lys Tyr Arg Gly Val Arg Arg Arg Ala TrpGlu Lys Glu Pro Thr Ser Lys Tyr Arg Gly Val Arg Arg Arg Ala Trp
65 70 75 8065 70 75 80
Gly Lys Trp Ala Ala Glu Ile Arg Asp Pro Val Arg Lys Ser Arg LysGly Lys Trp Ala Ala Glu Ile Arg Asp Pro Val Arg Lys Ser Arg Lys
85 90 95 85 90 95
Trp Ile Gly Thr Phe Asn Ser Glu Glu Glu Ala Ala Ala Ala Tyr LeuTrp Ile Gly Thr Phe Asn Ser Glu Glu Glu Ala Ala Ala Ala Tyr Leu
100 105 110 100 105 110
Ala Gln Ser Asn Gln Phe His Glu Glu Leu Met Ala Leu Lys Ile GlnAla Gln Ser Asn Gln Phe His Glu Glu Leu Met Ala Leu Lys Ile Gln
115 120 125 115 120 125
Ser Ser Val Ser Glu Gln Glu Asp Leu Ser Ser Ser Val Thr Ile SerSer Ser Val Ser Glu Gln Glu Asp Leu Ser Ser Ser Val Thr Ile Ser
130 135 140 130 135 140
Cys Val Ser Ser Ser Gln Ser Cys Asp Gln Lys Ile Gln Ala Lys ProCys Val Ser Ser Ser Gln Ser Cys Asp Gln Lys Ile Gln Ala Lys Pro
145 150 155 160145 150 155 160
Gln Glu His Lys Arg Val Ser Val Val Val Asn Arg Glu Thr Val GluGln Glu His Lys Arg Val Ser Val Val Val Asn Arg Glu Thr Val Glu
165 170 175 165 170 175
Gln Lys Phe Lys Ala Gln Pro Gln Ala Gln Lys Ile Lys Ala Gln ProGln Lys Phe Lys Ala Gln Pro Gln Ala Gln Lys Ile Lys Ala Gln Pro
180 185 190 180 185 190
Glu Val Gln Lys Arg Val Ser Val Lys Ile Ser His Glu Thr Glu AspGlu Val Gln Lys Arg Val Ser Val Lys Ile Ser His Glu Thr Glu Asp
195 200 205 195 200 205
Glu His Leu Leu Asn Leu Pro Ser Thr Pro Lys Gly Lys Glu Ile SerGlu His Leu Leu Asn Leu Pro Ser Thr Pro Lys Gly Lys Glu Ile Ser
210 215 220 210 215 220
Met Gly Ala Val Leu Gly Arg Ile Asp Glu Ile Pro Val Ser Asn CysMet Gly Ala Val Leu Gly Arg Ile Asp Glu Ile Pro Val Ser Asn Cys
225 230 235 240225 230 235 240
Val Gly His Ile Asp Glu Phe Pro Pro Asp Asp Phe Thr Arg Leu AlaVal Gly His Ile Asp Glu Phe Pro Pro Asp Asp Phe Thr Arg Leu Ala
245 250 255 245 250 255
Asp Ala Phe Pro Val Ser Asp Phe Ile Gly Met Ala Asp Val Pro LeuAsp Ala Phe Pro Val Ser Asp Phe Ile Gly Met Ala Asp Val Pro Leu
260 265 270 260 265 270
Gly Asp Asp Tyr Ile Gly Leu Ala Asp Ile Ser His Leu Pro Leu ProGly Asp Asp Tyr Ile Gly Leu Ala Asp Ile Ser His Leu Pro Leu Pro
275 280 285 275 280 285
Ile Thr Asp Leu Lys Phe Asp Leu Asn Ala Glu Leu Asn Trp Asp GlyIle Thr Asp Leu Lys Phe Asp Leu Asn Ala Glu Leu Asn Trp Asp Gly
290 295 300 290 295 300
Phe Asp Phe Ala Ser Leu Glu Gln Glu Leu Asn Cys LeuPhe Asp Phe Ala Ser Leu Glu Gln Glu Leu Asn Cys Leu
305 310 315305 310 315
<210> 2<210> 2
<211> 954<211> 954
<212> DNA<212> DNA
<213> Oryza sativa L.<213> Oryza sativa L.
<400> 2<400> 2
atggtgccct cttcacggaa agtccgtgtt ttctgctctg atcctgatgc cactgactcc 60atggtgccct cttcacggaa agtccgtgtt ttctgctctg atcctgatgc cactgactcc 60
tctgatgaag atgaccagaa taagaaggaa aggagatttt caagggaaat actaattcca 120tctgatgaag atgaccagaa taagaaggaa aggagattt caagggaaat actaattcca 120
atggaaaact ccaaggcatc caaacctgtt aagacccttg ttcaatgtgg cacaaagact 180atggaaaact ccaaggcatc caaacctgtt aagacccttg ttcaatgtgg cacaaagact 180
gtaaaggatt ccgagaagga accgacgagc aaatacaggg gtgtgcgccg gcgggcgtgg 240gtaaaggatt ccgagaagga accgacgagc aaatacaggg gtgtgcgccg gcgggcgtgg 240
ggcaaatggg ctgcagaaat acgtgaccct gtgcgaaaat caaggaaatg gattggcaca 300ggcaaatggg ctgcagaaat acgtgaccct gtgcgaaaat caaggaaatg gattggcaca 300
tttaacagtg aggaggaggc cgctgcggca tatcttgcac aatcaaacca gttccatgaa 360tttaacagtg aggaggaggc cgctgcggca tatcttgcac aatcaaacca gttccatgaa 360
gagttgatgg ccttgaaaat ccaatcttct gtatcagagc aggaagattt gtcaagctct 420gagttgatgg ccttgaaaat ccaatcttct gtatcagagc aggaagattt gtcaagctct 420
gttactatat cctgcgtgtc ctcatctcag tcatgtgacc agaagattca ggcaaagcca 480gttactatat cctgcgtgtc ctcatctcag tcatgtgacc agaagattca ggcaaagcca 480
caagaacaca agagagtgtc agtggtggtt aaccgtgaga ccgttgagca gaagtttaag 540caagaacaca agagagtgtc agtggtggtt aaccgtgaga ccgttgagca gaagtttaag 540
gcacagccac aagctcagaa gattaaggca cagccagaag tgcagaagag agtgtcagtg 600gcacagccac aagctcagaa gattaaggca cagccagaag tgcagaagag agtgtcagtg 600
aagattagcc atgagactga ggatgagcac ttgctgaact tgccgtccac gcctaaaggc 660aagattagcc atgagactga ggatgagcac ttgctgaact tgccgtccac gcctaaaggc 660
aaagagattt cgatgggcgc tgttcttggc aggatagatg agattcctgt gagcaactgt 720aaagagattt cgatgggcgc tgttcttggc aggatagatg agattcctgt gagcaactgt 720
gtgggccata ttgatgaatt tccacctgat gatttcacta ggcttgcaga tgcgttccca 780gtgggccata ttgatgaatt tccacctgat gatttcacta ggcttgcaga tgcgttccca 780
gttagtgatt ttatcggcat ggcagatgtg ccactgggcg atgattacat tggccttgca 840gttagtgatt ttatcggcat ggcagatgtg ccactgggcg atgattacat tggccttgca 840
gacatcagcc acctgccgct gcctatcaca gatctgaagt tcgacctcaa tgcagaactc 900gacatcagcc acctgccgct gcctatcaca gatctgaagt tcgacctcaa tgcagaactc 900
aactgggacg ggttcgactt tgcttcattg gaacaagaac tcaactgtct ttga 954aactgggacg ggttcgactt tgcttcattg gaacaagaac tcaactgtct ttga 954
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110147976.1A CN114989275B (en) | 2021-02-03 | 2021-02-03 | Application of OsERF940 protein in improving rice blast resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110147976.1A CN114989275B (en) | 2021-02-03 | 2021-02-03 | Application of OsERF940 protein in improving rice blast resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114989275A CN114989275A (en) | 2022-09-02 |
CN114989275B true CN114989275B (en) | 2024-01-02 |
Family
ID=83018137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110147976.1A Active CN114989275B (en) | 2021-02-03 | 2021-02-03 | Application of OsERF940 protein in improving rice blast resistance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114989275B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118085050B (en) * | 2024-04-08 | 2024-11-26 | 四川农业大学 | Application of rice transcription factor ERF and its encoding gene in regulating plant disease resistance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001269179A (en) * | 2000-03-27 | 2001-10-02 | Natl Inst Of Advanced Industrial Science & Technology Meti | Peptides having the function of suppressing gene transcription |
JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | Plant full-length cDNA and use thereof |
CN1854154A (en) * | 2005-04-26 | 2006-11-01 | 中国农业科学院生物技术研究所 | Rice blast resistant related protein, its coding gene and use |
KR20110082973A (en) * | 2010-01-13 | 2011-07-20 | 충남대학교산학협력단 | Mapping and Identification of High Density Quantitative Genetic Mapping of Rice Blast Resistance Genes |
CN103525856A (en) * | 2012-07-02 | 2014-01-22 | 华中农业大学 | Ethylene responsive factor gene OsERF3 and application of promoter thereof in regulating and controlling development of rice roots |
CN108517333A (en) * | 2018-04-16 | 2018-09-11 | 中国农业科学院植物保护研究所 | Application of the rice Os BBTI4 protein gene on improving rice anti-rice blast |
CN111979250A (en) * | 2020-08-13 | 2020-11-24 | 袁隆平农业高科技股份有限公司 | Method for improving rice blast resistance of rice |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040060081A1 (en) * | 2001-10-19 | 2004-03-25 | Leong Sally A. | Plant genes that confer resistance to strains of magnaporthe grisea having avri co39 cultivar specificity gene |
US20190352652A1 (en) * | 2017-10-04 | 2019-11-21 | The Broad Institute, Inc. | Crispr-systems for modifying a trait of interest in a plant |
-
2021
- 2021-02-03 CN CN202110147976.1A patent/CN114989275B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001269179A (en) * | 2000-03-27 | 2001-10-02 | Natl Inst Of Advanced Industrial Science & Technology Meti | Peptides having the function of suppressing gene transcription |
JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | Plant full-length cDNA and use thereof |
CN1854154A (en) * | 2005-04-26 | 2006-11-01 | 中国农业科学院生物技术研究所 | Rice blast resistant related protein, its coding gene and use |
KR20110082973A (en) * | 2010-01-13 | 2011-07-20 | 충남대학교산학협력단 | Mapping and Identification of High Density Quantitative Genetic Mapping of Rice Blast Resistance Genes |
CN103525856A (en) * | 2012-07-02 | 2014-01-22 | 华中农业大学 | Ethylene responsive factor gene OsERF3 and application of promoter thereof in regulating and controlling development of rice roots |
CN108517333A (en) * | 2018-04-16 | 2018-09-11 | 中国农业科学院植物保护研究所 | Application of the rice Os BBTI4 protein gene on improving rice anti-rice blast |
CN111979250A (en) * | 2020-08-13 | 2020-11-24 | 袁隆平农业高科技股份有限公司 | Method for improving rice blast resistance of rice |
Non-Patent Citations (5)
Title |
---|
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor GeneOsERF922;Wang F 等;PLOS ONE;第11卷(第4期);1-18 * |
The rice ethylene response factor OsERF83 positively regulates disease resistance toMagnaporthe oryzae;Daisuke Tezuka等;Plant Physiology and Biochemistry(第135期);263–271 * |
XM_015795790.2.GenBank,2018,1-2. * |
利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性;徐鹏等;中国水稻科学;第33卷(第4期);313-322 * |
早稻品种稻瘟病抗性基因检测及中早39稻瘟病抗性改良;曹 妮;中国优秀硕士学位论文全文数据库 农业科技辑(第1期);D046-144 * |
Also Published As
Publication number | Publication date |
---|---|
CN114989275A (en) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8940961B2 (en) | Plant transformed with hardy (HRD) gene having enhanced drought tolerance | |
US20090158466A1 (en) | Plants having increased tolerance to heat stress | |
CN112226455B (en) | Rice grain length and grain weight related protein, and coding gene and application thereof | |
US20090089892A1 (en) | Generation of plants with improved pathogen resistance | |
CN109111514A (en) | And the breeding method and its relevant biological material of the transgenic wheat of anti-banded sclerotial blight and root rot | |
CN101781362A (en) | Plant development associated protein, encoding gene and application thereof | |
CN108948169B (en) | Protein and gene for promoting synthesis of cotton fiber green pigment, and coding sequence and application thereof | |
CN108997487B (en) | Application of stress resistance-related protein Z76 in regulating plant stress resistance | |
CN107641627A (en) | H gene, H protein and its application that a kind of regulation and control tomato I types glandular hairs are formed | |
CN114989275B (en) | Application of OsERF940 protein in improving rice blast resistance | |
CN113372420B (en) | Application of OsSG2 in regulating plant seed grain shape | |
CN114790449A (en) | Application of calcium-dependent protein kinase gene GhCPK4 in resisting verticillium wilt of plants | |
CN101781363B (en) | Protein regulating development of plants and encoding gene and application thereof | |
CN107033228B (en) | Obtained from the flavanols and anthocyanin modulin MsMYBPA1 and its encoding gene of functional form apple and application | |
CN101824078B (en) | Protein for controlling growth of plants as well as coding gene and application thereof | |
CN102115751A (en) | Rape BnPABP 5 gene and application of promoter thereof | |
CN104844700B (en) | New paddy rice hybrid disadvantage gene and its application | |
CN117802151B (en) | Application of rice root-knot nematode disease gene OsThil in aspect of regulating and controlling resistance of rice to root-knot nematodes | |
CN102533788A (en) | EADT1 gene capable of improving drought resistance of rice in growth period, coding sequence and application | |
CN111850031B (en) | Application of protein GmFULc in regulation and control of plant yield | |
AU2009304669A1 (en) | Transgenic plant having increased seed size | |
US20220042030A1 (en) | A method to improve the agronomic characteristics of plants | |
CN107022013B (en) | Obtained from the MsMYBL2 albumen and its encoding gene of functional form apple and application | |
CN103255153B (en) | Date tree 2-cysteine oxidordeuctase gene | |
CN119082166A (en) | Use of NAC102 transcription factor to inhibit plant necrosis after pathogen infection and its products and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |