CN114984884A - Experimental platform for preparing fuel by reforming carbon dioxide with assistance of plasma synergistic catalyst - Google Patents
Experimental platform for preparing fuel by reforming carbon dioxide with assistance of plasma synergistic catalyst Download PDFInfo
- Publication number
- CN114984884A CN114984884A CN202210689783.3A CN202210689783A CN114984884A CN 114984884 A CN114984884 A CN 114984884A CN 202210689783 A CN202210689783 A CN 202210689783A CN 114984884 A CN114984884 A CN 114984884A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- plasma
- reaction
- gas
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 49
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 49
- 239000003054 catalyst Substances 0.000 title claims abstract description 35
- 239000000446 fuel Substances 0.000 title claims abstract description 24
- 238000002407 reforming Methods 0.000 title claims abstract description 22
- 230000002195 synergetic effect Effects 0.000 title claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 239000007789 gas Substances 0.000 claims abstract description 44
- 239000010453 quartz Substances 0.000 claims abstract description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 31
- 239000010935 stainless steel Substances 0.000 claims abstract description 31
- 230000004888 barrier function Effects 0.000 claims abstract description 26
- 230000005684 electric field Effects 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000002708 enhancing effect Effects 0.000 claims abstract description 5
- 239000000047 product Substances 0.000 claims description 21
- 239000012495 reaction gas Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000005485 electric heating Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 239000000523 sample Substances 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 10
- 238000002474 experimental method Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 229910003310 Ni-Al Inorganic materials 0.000 claims description 3
- 239000012263 liquid product Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000008016 vaporization Effects 0.000 claims description 3
- 238000009834 vaporization Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims 2
- 229920000742 Cotton Polymers 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 230000002035 prolonged effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 description 11
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000012494 Quartz wool Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000003748 differential diagnosis Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/0013—Controlling the temperature of the process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台,该装置包括供气系统、介质阻挡放电反应器、高压电源系统及产物检测系统。介质阻挡放电反应器包括催化剂及固定装置、切向进气口、石英管、外置不锈钢电极、内置不锈钢电极等。外置不锈钢电极紧紧包裹在外层石英流动管外壁,内置不锈钢电极表面包覆有第二层石英管。二氧化碳在等离子体和催化剂的协同作用下,将会实现二氧化碳的高效定向转化;二氧化碳等反应气通过外层石英流动管一侧的两个对称对冲切向进气口进入反应器,过程中形成的旋流可以有效地延长二氧化碳在等离子体放电区域的滞留时间,并引起放电扰动,增强石英管壁面的细丝放电,从而增强反应区内的电场强度的效果。
The experimental platform of the plasma synergistic catalyst assisted carbon dioxide reforming to make fuel of the present invention includes a gas supply system, a dielectric barrier discharge reactor, a high-voltage power supply system and a product detection system. The dielectric barrier discharge reactor includes catalysts and fixtures, tangential air inlets, quartz tubes, external stainless steel electrodes, and built-in stainless steel electrodes. The external stainless steel electrode is tightly wrapped on the outer wall of the outer quartz flow tube, and the surface of the internal stainless steel electrode is covered with a second layer of quartz tube. Under the synergistic effect of plasma and catalyst, carbon dioxide will achieve efficient directional conversion of carbon dioxide; reaction gases such as carbon dioxide enter the reactor through two symmetrically tangentially tangential inlets on one side of the outer quartz flow tube. The swirling flow can effectively prolong the residence time of carbon dioxide in the plasma discharge area, and cause the discharge disturbance to enhance the discharge of the filaments on the wall of the quartz tube, thereby enhancing the effect of the electric field strength in the reaction area.
Description
技术领域technical field
本发明属于二氧化碳催化重整技术领域,特别涉及一种等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台。The invention belongs to the technical field of carbon dioxide catalytic reforming, and particularly relates to an experimental platform for a plasma-cooperated catalyst assisted carbon dioxide reforming to produce fuel.
背景技术Background technique
二氧化碳是造成全球气候变化的最主要的温室气体,而化石燃料的燃烧则是二氧化碳排放的最大来源。在过去的数十年中,矿物燃料的使用逐年增长,导致二氧化碳排放大幅上升。开发可持续的绿色能源及二氧化碳排放的途径是十分必要的。为了减少碳排放,碳捕获和利用技术被视为最有潜力的减少碳排放的方法。通过一定的方法把二氧化碳变成了可以回收的燃料。Carbon dioxide is the most important greenhouse gas responsible for global climate change, and the burning of fossil fuels is the largest source of carbon dioxide emissions. Over the past few decades, the use of fossil fuels has increased year by year, leading to a dramatic rise in carbon dioxide emissions. It is necessary to develop sustainable green energy and carbon dioxide emission approaches. In order to reduce carbon emissions, carbon capture and utilization technology is regarded as the most potential way to reduce carbon emissions. Carbon dioxide is turned into a recyclable fuel by a certain method.
二氧化碳化学性能稳定,不易在温和的环境中进行转化,且而在高温条件下的转化率也非常低。近几年来,非平衡等离子体为一种新型的活化反应技术而受到人们的重视。这种非平衡等离子体中高能电子的含量高,其电子能量可以达到1-10eV,强大的电子能量可以使惰性分子被激活,促进化学反应。非平衡等离子体技术可以通过高能电子和活性粒子的相互作用,打破常规的热化学反应过程、降低反应所需要的温度,从而实现在常压、低温条件下二氧化碳的转化。The chemical properties of carbon dioxide are stable, and it is not easy to be converted in a mild environment, and the conversion rate under high temperature conditions is also very low. In recent years, non-equilibrium plasma has received attention as a new type of activation reaction technology. The content of high-energy electrons in this non-equilibrium plasma is high, and its electron energy can reach 1-10 eV. The strong electron energy can activate inert molecules and promote chemical reactions. Non-equilibrium plasma technology can break the conventional thermochemical reaction process and reduce the temperature required for the reaction through the interaction of high-energy electrons and active particles, thereby realizing the conversion of carbon dioxide under normal pressure and low temperature conditions.
产生等离子体的方式有多重,例如射频放电、滑动弧放电、微波放电和介质阻挡放电等,介质阻挡放电由于具有能耗低、放电均匀稳定、反应器结构简单、能与催化剂如Ni-Al2O3、Fe-石墨烯、Ru-Al2O3等协同作用等优势,在二氧化碳重整领域展现了良好的前景。There are many ways to generate plasma, such as radio frequency discharge, sliding arc discharge, microwave discharge and dielectric barrier discharge . The synergistic effects of O 3 , Fe-graphene, Ru-Al 2 O 3 and other advantages have shown a good prospect in the field of carbon dioxide reforming.
目前,等离子体辅助二氧化碳转化的研究中,由于产物的多样化难以实现定向转化;同时由于介质阻挡放电的结构和特性限制,对于能量的利用率偏低,有待提高。At present, in the research of plasma-assisted carbon dioxide conversion, it is difficult to achieve directional conversion due to the diversification of products; at the same time, due to the limitation of the structure and characteristics of dielectric barrier discharge, the utilization rate of energy is low and needs to be improved.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于改进现有实验平台的不足,提供一种等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台,具体是一种能够在等离子体及催化剂的双重作用下实现二氧化碳的低温高效转化,并对最终产物进行定性定量分析的实验系统。The purpose of the present invention is to improve the deficiencies of the existing experimental platform, and to provide an experimental platform for plasma-assisted catalyst-assisted carbon dioxide reforming to make fuel, specifically a low-temperature and high-efficiency conversion of carbon dioxide that can be realized under the dual action of plasma and catalyst. , and an experimental system for qualitative and quantitative analysis of the final product.
本发明采用如下的技术方案实现:The present invention adopts the following technical scheme to realize:
等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台,该实验平台包括燃料供给系统、介质阻挡放电反应器、高压电源系统及产物检测系统;An experimental platform for plasma co-catalyst-assisted carbon dioxide reforming to make fuel, the experimental platform includes a fuel supply system, a dielectric barrier discharge reactor, a high-voltage power supply system and a product detection system;
所述燃料供给系统,用于精准供应稀释气体及二氧化碳等反应气体;在产物中存在液体时对管道加热从而实现液体汽化;在实验的过程中控制反应器所需要的压力,并将反应产生的气体排出系统;The fuel supply system is used to precisely supply reaction gases such as dilution gas and carbon dioxide; when there is liquid in the product, the pipeline is heated to realize liquid vaporization; during the experiment, the pressure required by the reactor is controlled, and the reaction generated gas discharge system;
所述介质阻挡放电反应系统,提供实验所需的温度、压力的反应场所;在反应器的一侧设计有两个对冲切向进气口;并在双层放电结构之间填充有催化剂;同时提供双介质阻挡放电结构产生的均匀等离子体环境;The dielectric barrier discharge reaction system provides a reaction place for the temperature and pressure required for the experiment; two tangential air inlets are designed on one side of the reactor; and a catalyst is filled between the double-layer discharge structures; Provide a uniform plasma environment generated by the double dielectric barrier discharge structure;
所述高压电源系统,用于提供产生等离子体的持续电场,并检测反应时的电压电流变化;The high-voltage power supply system is used to provide a continuous electric field for generating plasma, and to detect the voltage and current changes during the reaction;
所述产物检测系统,用于收集并检测反应结束时的产物,实现二氧化碳重整过程中微分组分的诊断与分析。The product detection system is used for collecting and detecting the products at the end of the reaction, so as to realize the diagnosis and analysis of the differential components in the carbon dioxide reforming process.
本发明进一步的改进在于,燃料供给系统包括反应气体、质量流量计及控制软件、加热带、热电偶及温度控制器、微量调节阀;A further improvement of the present invention lies in that the fuel supply system includes reaction gas, mass flow meter and control software, heating belt, thermocouple and temperature controller, and micro-regulating valve;
反应气以及稀释气体在经过质量流量计及控制软件的精准控制后通入反应器的切向进气口;在热电偶及温度控制器的调控下,加热带包裹在管道外侧,实现液体产物的气化;并通过微量调节阀控制排入大气的气量,以维持反应系统中的压力恒定。The reaction gas and dilution gas are accurately controlled by the mass flow meter and control software, and then pass into the tangential air inlet of the reactor; under the control of the thermocouple and temperature controller, the heating belt is wrapped around the outside of the pipeline to realize the liquid product. Gasification; and control the amount of gas discharged into the atmosphere through a micro-regulating valve to maintain a constant pressure in the reaction system.
本发明进一步的改进在于,介质阻挡放电反应系统包括电加热炉、外层石英流动管、切向进气口、密封法兰、外置不锈钢电极、内置不锈钢棒电极以及包覆在不锈钢棒内电极上的内层石英管、催化剂及固定装置;A further improvement of the present invention is that the dielectric barrier discharge reaction system includes an electric heating furnace, an outer quartz flow tube, a tangential air inlet, a sealing flange, an external stainless steel electrode, a built-in stainless steel rod electrode, and an inner electrode wrapped in the stainless steel rod. The inner quartz tube, catalyst and fixing device on the upper;
整个反应器放置于电加热炉中,电加热炉为整个反应系统提供可控制的10cm的恒定温度区域;反应器的一侧设置有两个对冲切向进气口,从切向对冲进气口进入的二氧化碳等反应气会形成在内层石英管和外层石英管之间、绕着中心轴线螺旋前进的气流,延长反应气在等离子体区域的滞留时间、提供放电扰动增强石英管表面的细丝放电,增强反应区内的电场强度;反应器两端由密封法兰结合橡胶密封圈进行密封;外置不锈钢电极、外层石英流动管、内层石英管及内置不锈钢棒电极四个部分保持同轴度,双层的介质阻挡放电结构以确保产生均匀的等离子体;在反应器的等离子体放电区间放置相应的催化剂,并使用石英棉等材料进行固定;在密封法兰两侧轴心开孔,引出内置不锈钢棒电极与电源相连,同时在出气方向的法兰侧另开一孔用于出气。The entire reactor is placed in an electric heating furnace, which provides a controllable 10cm constant temperature area for the entire reaction system; two tangential air inlets are set on one side of the reactor, and the air inlets are flushed from the tangential direction. The incoming reaction gas such as carbon dioxide will form a gas flow spiraling around the central axis between the inner quartz tube and the outer quartz tube, prolonging the residence time of the reaction gas in the plasma area, providing discharge disturbance and enhancing the fineness of the quartz tube surface. wire discharge to enhance the electric field strength in the reaction zone; both ends of the reactor are sealed by sealing flanges combined with rubber sealing rings; external stainless steel electrodes, outer quartz flow tubes, inner quartz tubes and built-in stainless steel rod electrodes are maintained by four parts. Coaxiality, double-layer dielectric barrier discharge structure to ensure uniform plasma generation; corresponding catalysts are placed in the plasma discharge area of the reactor, and fixed with materials such as quartz wool; the shaft is opened on both sides of the sealing flange The built-in stainless steel rod electrode is connected to the power supply, and another hole is opened on the flange side of the gas outlet direction for gas outlet.
本发明进一步的改进在于,在外层和内层的石英管之间,与等离子体形成协同作用,提高二氧化碳的转化率和整体的能量利用率。A further improvement of the present invention lies in that, between the quartz tubes of the outer layer and the inner layer, a synergistic effect is formed with the plasma to improve the conversion rate of carbon dioxide and the overall energy utilization rate.
本发明进一步的改进在于,双层石英管能够产生均匀的电场。A further improvement of the present invention is that the double-layered quartz tube can generate a uniform electric field.
本发明进一步的改进在于,两个对冲切向进气口使反应气延长在等离子体区的滞留时间,并加强扰动增强石英管表面的细丝放电,增强反应区内的电场强度。A further improvement of the present invention is that the two tangential air inlets extend the residence time of the reactant gas in the plasma area, enhance the disturbance and enhance the discharge of the filaments on the surface of the quartz tube, and enhance the electric field strength in the reaction area.
本发明进一步的改进在于,电加热炉可以为反应提供298K-1273K的起始反应条件。A further improvement of the present invention is that the electric heating furnace can provide the initial reaction conditions of 298K-1273K for the reaction.
本发明进一步的改进在于,高压电源供电系统包括高压电源、高压探头、电流探头以及示波器;A further improvement of the present invention is that the high-voltage power supply system includes a high-voltage power supply, a high-voltage probe, a current probe and an oscilloscope;
高压电源的正、负电极分别接外置不锈钢电极、内置不锈钢棒电极,放电过程中产生的电压及电流由高压探头及电流探头检测,并于示波器上显示。The positive and negative electrodes of the high-voltage power supply are respectively connected to the external stainless steel electrode and the built-in stainless steel rod electrode. The voltage and current generated during the discharge process are detected by the high-voltage probe and the current probe, and displayed on the oscilloscope.
本发明的进一步改进在于,该实验平台对于高压电源的放电方式不做限制,高压交流电及高压纳秒脉冲电源等均可使用。A further improvement of the present invention is that the experimental platform does not limit the discharge mode of the high-voltage power supply, and both high-voltage alternating current and high-voltage nanosecond pulse power supply can be used.
本发明进一步的改进在于,产物检测系统包括气相色谱仪和气相色谱/质谱联用仪以及计算机控制系统;A further improvement of the present invention is that the product detection system includes a gas chromatograph, a gas chromatograph/mass spectrometer and a computer control system;
产物经管道外置的加热带气化后进入气相色谱仪及气相色谱/质谱联用仪,在计算机控制系统的控制之下进行微分诊断并显示。The product is vaporized by the heating belt outside the pipeline and then enters the gas chromatograph and the gas chromatograph/mass spectrometer, and carries out differential diagnosis and display under the control of the computer control system.
本发明至少具有如下有益的技术效果:The present invention at least has the following beneficial technical effects:
(1)本发明可用于二氧化碳在等离子体及催化剂协同的环境中实现高效定向转化,在提高二氧化碳的同时,提升能量的利用率;(1) The present invention can be used to realize efficient directional conversion of carbon dioxide in an environment where plasma and catalysts are synergized, and improve the utilization rate of energy while improving carbon dioxide;
(2)本发明的介质阻挡放电反应区对于实验所使用的催化剂不做限制,催化剂如Ni-Al2O3、Fe-石墨烯、Ru-Al2O3等均可使用;(2) The dielectric barrier discharge reaction zone of the present invention does not limit the catalyst used in the experiment, and catalysts such as Ni-Al 2 O 3 , Fe-graphene, Ru-Al 2 O 3 and the like can be used;
(3)本发明的双层介质阻挡放电系统,可以获得能量密度较大的非平衡等离子体、避免热等离子体的形成,并且更加有利于放电均匀以形成更加均匀的非平衡等离子体;(3) The double-layer dielectric barrier discharge system of the present invention can obtain non-equilibrium plasma with larger energy density, avoid the formation of thermal plasma, and is more conducive to uniform discharge to form a more uniform non-equilibrium plasma;
(4)本发明的石英流动管的切向进气口,使反应气延长在等离子体区的滞留时间,并加强扰动,增强石英管表面的细丝放电,从而增强反应区内的电场强度;(4) the tangential air inlet of the quartz flow tube of the present invention prolongs the residence time of the reaction gas in the plasma zone, and strengthens the disturbance, and enhances the discharge of the filaments on the surface of the quartz tube, thereby enhancing the electric field strength in the reaction zone;
(5)本发明的实验平台对于高压电源的放电方式不做限制,高压交流电及高压纳秒脉冲电源等均可进行使用。(5) The experimental platform of the present invention does not limit the discharge mode of the high-voltage power supply, and both high-voltage alternating current and high-voltage nanosecond pulse power supply can be used.
附图说明Description of drawings
图1为本发明等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台结构示意图。FIG. 1 is a schematic structural diagram of an experimental platform for the plasma synergistic catalyst-assisted carbon dioxide reforming to make fuel according to the present invention.
图2、3为介质阻挡放电反应器的细节结构示意图。2 and 3 are schematic diagrams of the detailed structure of the dielectric barrier discharge reactor.
附图标记说明:Description of reference numbers:
1-反应气体,2-质量流量计及控制软件,3-加热带,4-热电偶及温度控制器,5-微量调节阀,6-电子压力表,7-电加热炉,8-外层石英流动管,9-切向进气口,10-密封法兰,11-外置不锈钢电极,12-内置不锈钢电极,13-内层石英管,14-催化剂及固定装置,15-示波器,16-电压探头,17-电流监测环,18-高压电源,19-气相色谱仪,20-气相色谱/质谱联用仪,21-计算机控制系统。1- Reaction gas, 2- Mass flow meter and control software, 3- Heating belt, 4- Thermocouple and temperature controller, 5- Micro-control valve, 6- Electronic pressure gauge, 7- Electric heating furnace, 8- Outer layer Quartz flow tube, 9-tangential gas inlet, 10-sealing flange, 11-external stainless steel electrode, 12-internal stainless steel electrode, 13-inner quartz tube, 14-catalyst and fixture, 15-oscilloscope, 16 -Voltage probe, 17-Current monitoring ring, 18-High voltage power supply, 19-Gas chromatograph, 20-Gas chromatography/mass spectrometer, 21-Computer control system.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present disclosure will be more thoroughly understood, and will fully convey the scope of the present disclosure to those skilled in the art. It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict. The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
如图1至图3所示,本发明提供的等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台,包括供气系统、介质阻挡放电反应系统、高压电源系统及产物检测系统;供气系统,用于精准供应稀释气体及二氧化碳反应气体,在产物中存在液体时对管道加热从而实现液体汽化,在实验的过程中控制整个反应系统所需要的压力;介质阻挡放电反应系统,用于提供实验所需的温度、压力的反应场所,在反应器的一侧设计有两个对冲切向进气口,并在双层介质阻挡放电结构之间填充催化剂,同时提供双层介质阻挡放电结构产生的均匀的非平衡等离子体环境;高压电源系统,用于提供产生等离子体的持续电场,并监测反应时的电压电流变化;产物检测系统,用于收集并检测反应结束时的产物,实现二氧化碳重整过程中微分组分的测定与分析。As shown in FIG. 1 to FIG. 3 , the experimental platform of the plasma synergistic catalyst-assisted carbon dioxide reforming to make fuel provided by the present invention includes a gas supply system, a dielectric barrier discharge reaction system, a high-voltage power supply system and a product detection system; the gas supply system, It is used to accurately supply dilution gas and carbon dioxide reaction gas, heat the pipeline when there is liquid in the product to realize liquid vaporization, and control the pressure required by the entire reaction system during the experiment; dielectric barrier discharge reaction system, used to provide laboratory The reaction site of the required temperature and pressure, two opposite tangential air inlets are designed on one side of the reactor, and the catalyst is filled between the double-layer dielectric barrier discharge structure, and at the same time, the uniformity produced by the double-layer dielectric barrier discharge structure is provided. The non-equilibrium plasma environment; the high-voltage power supply system is used to provide a continuous electric field for generating plasma and monitor the voltage and current changes during the reaction; the product detection system is used to collect and detect the products at the end of the reaction to realize the carbon dioxide reforming process Determination and analysis of middle and differential components.
燃料供给系统中包括反应气体1,质量流量计及控制软件2,加热带3,热电偶及温度控制器4,微量调节阀5及电子压力表6。The fuel supply system includes reaction gas 1 , mass flow meter and
反应气体1以及稀释气体在经过质量流量计及控制软件2的精准控制后通入反应器的切向进气口,在热电偶及温度控制器4的调控下,加热带3将管道加热到指定温度,实现反应温度的控制及液体产物的气,并通过微量调节阀5及电子压力表6控制排出相应气量,以维持反应系统中的压力恒定。The reaction gas 1 and the dilution gas pass into the tangential air inlet of the reactor after being precisely controlled by the mass flow meter and the
介质阻挡放电系统中反应器的主体结构为电加热炉7,外层石英流动管8,切向进气口9,密封法兰10,外置不锈钢电极11,内置不锈钢电极12,内层石英管13,催化剂及固定装置14。催化剂如Ni-Al2O3、Fe-石墨烯、Ru-Al2O3等均可使用。The main structure of the reactor in the dielectric barrier discharge system is an
整个反应器放置于电加热炉7中;反应器的一侧设置有两个对冲切向进气口9,从切向对冲进气口进入的二氧化碳反应气会形成在内层石英管13和外层石英流动管8之间绕着中心轴线螺旋前进的气流,从而延长反应气在等离子体区域的滞留时间,提供放电扰动,增强石英管表面的细丝放电,增强反应区内的电场强度;外置不锈钢电极11、外层石英流动管8、内层石英管13及内置不锈钢电极12四个部分保持同轴,双层的介质阻挡放电结构确保产生均匀的非平衡等离子体;在反应器的等离子体放电区间放置相应的催化剂,并使用石英棉材料进行固定;在密封法兰10两侧轴心开孔,引出内置不锈钢电极与电源相连,同时在出气方向的法兰侧另开一孔用于出气。The whole reactor is placed in the
在放电的电极之间存在两层石英管后形成双层介质阻挡放电系统,可以获得能量密度较大的非平衡等离子体、避免热等离子体的形成,并且更加有利于放电均匀;反应系统中包含了一个切向进气口9,用于延长反应气在等离子体区的滞留时间,并加强扰动,增强石英管表面的细丝放电,从而增强反应区内的电场强度,提高电能的利用率。After there are two layers of quartz tubes between the discharge electrodes, a double-layer dielectric barrier discharge system is formed, which can obtain non-equilibrium plasma with high energy density, avoid the formation of thermal plasma, and is more conducive to uniform discharge; the reaction system contains A
高压电源供电系统包括高压电源18、电压探头16、电流监测环17以及示波器15;高压电源18的正、负电极分别接外置不锈钢电极、内置不锈钢电极,放电过程中产生的电压和电流变化由电压探头16及电流监测环17检测,并于示波器15上显示。The high-voltage power supply system includes a high-
在电源供电系统中,可以方便地更换高压电源18,根据不同的研究需求,高压交流电及高压纳秒脉冲电等均可在实验平台使用。In the power supply system, the high-
产物检测系统由气相色谱仪19,气相色谱/质谱联用仪20,计算机控制系统21组成,产物经管道外置的加热带3气化后进入气相色谱仪19及气相色谱/质谱联用仪20,在计算机控制系统21的控制之下进行微分测定并显示,每组实验重复三次以上,以确保实验结果的准确性。The product detection system is composed of a
本发明等离子体协同催化剂辅助二氧化碳重整制燃料的实验平台的操作方式,具体为:二氧化碳等反应器及稀释气通过石英流动管上的对冲切向进气口进入介质阻挡放电反应器内,打开高压电源选取研究需要的放电方式;反应气绕着反应器中心轴旋转前进,经过等离子体放电区及催化剂后流向反应器出口,在微量调节阀的调节作用下一部分进入产物检测系统进行定性定量的检测。The operation mode of the experimental platform of the plasma synergistic catalyst assisted carbon dioxide reforming to make fuel of the present invention is specifically as follows: the carbon dioxide and other reactors and the dilution gas enter the dielectric barrier discharge reactor through the tangential air inlet on the quartz flow tube, open the The high-voltage power supply selects the discharge method required by the research; the reaction gas rotates around the central axis of the reactor, passes through the plasma discharge area and the catalyst, and flows to the outlet of the reactor. detection.
本发明的具体工作过程如下:The concrete working process of the present invention is as follows:
(1)首先将电热炉、加热带加热至实验设定的温度条件;(1) First, the electric heating furnace and the heating belt are heated to the temperature conditions set by the experiment;
(2)反应气体通过质量流量计及控制软件精准控制设定进气量,通过两个对冲的切向进气口进入外层石英流动管后形成旋流,使用微量调节阀调整反应器内的气压状态,装置内的压力由电子压力表检测并显示;(2) The reaction gas precisely controls and sets the intake air volume through the mass flow meter and control software, and enters the outer quartz flow tube through the two hedged tangential intake ports to form a swirling flow, and use a micro-control valve to adjust the air flow in the reactor. Air pressure state, the pressure in the device is detected and displayed by an electronic pressure gauge;
(3)接着通过对放电电源进行放电参数设置,在外置不锈钢电极和内置不锈钢电极之间施加电压开始放电,放电电压和放电电流分别通过电压探头和电流监测环探测并在示波器上显示;(3) Then, by setting the discharge parameters of the discharge power supply, a voltage is applied between the external stainless steel electrode and the built-in stainless steel electrode to start the discharge, and the discharge voltage and discharge current are respectively detected by the voltage probe and the current monitoring ring and displayed on the oscilloscope;
(4)放电过程稳定后,将反应后的气体通入气相色谱仪和气相色谱/质谱联用仪进行产物组分的测定并将检测结果反馈在计算机控制系统上。通过对实验结果数据的分析,可以得到二氧化碳在不同边界条件下转化过程中表现出的化学反应动力学特性,并根据结果探究最适合二氧化碳转化、最优能量利用率的条件。(4) After the discharge process is stable, the reacted gas is passed into a gas chromatograph and a gas chromatograph/mass spectrometer to measure the product components, and the detection results are fed back to the computer control system. Through the analysis of the experimental data, the chemical reaction kinetic characteristics of carbon dioxide in the process of carbon dioxide conversion under different boundary conditions can be obtained, and the most suitable conditions for carbon dioxide conversion and optimal energy utilization can be explored according to the results.
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail above with general description and specific embodiments, it is obvious to those skilled in the art that some modifications or improvements can be made on the basis of the present invention. Therefore, these modifications or improvements made without departing from the spirit of the present invention fall within the scope of the claimed protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210689783.3A CN114984884A (en) | 2022-06-17 | 2022-06-17 | Experimental platform for preparing fuel by reforming carbon dioxide with assistance of plasma synergistic catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210689783.3A CN114984884A (en) | 2022-06-17 | 2022-06-17 | Experimental platform for preparing fuel by reforming carbon dioxide with assistance of plasma synergistic catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114984884A true CN114984884A (en) | 2022-09-02 |
Family
ID=83035811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210689783.3A Pending CN114984884A (en) | 2022-06-17 | 2022-06-17 | Experimental platform for preparing fuel by reforming carbon dioxide with assistance of plasma synergistic catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114984884A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115684423A (en) * | 2022-11-10 | 2023-02-03 | 西安交通大学 | Ammonia hydrogen production experiment platform with plasma synergistic catalyst |
CN115724404A (en) * | 2022-11-14 | 2023-03-03 | 山东大学 | A low-pressure carbon dioxide discharge conversion oxygen experimental device and method |
CN117482746A (en) * | 2023-11-08 | 2024-02-02 | 浙江大学 | A system and method for pressurized low-temperature plasma coupled catalytic CO2 gas |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140145893A (en) * | 2013-06-14 | 2014-12-24 | 한국가스공사 | The Hydrogen Manufacturing Device And Method Using Carbon Dioxide Reforming |
CN109663556A (en) * | 2019-01-27 | 2019-04-23 | 浙江大学 | Disturb the reaction unit and method of enhanced dielectric barrier discharge activation carbon dioxide |
CN112897463A (en) * | 2021-04-21 | 2021-06-04 | 山东大学 | Device and method for preparing synthesis gas by electrocatalysis of methane-carbon dioxide |
CN213699399U (en) * | 2020-11-11 | 2021-07-16 | 山东师范大学 | A fluidized bed dielectric barrier discharge plasma catalytic reforming greenhouse gas device |
CN113533583A (en) * | 2021-08-13 | 2021-10-22 | 西安交通大学 | Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform |
WO2021255423A1 (en) * | 2020-06-15 | 2021-12-23 | The University Of Liverpool | Plasma conversion reactor of c02 with c1 to c4 hydrocarbon to c1 to c5 oxygenate and method thereof |
-
2022
- 2022-06-17 CN CN202210689783.3A patent/CN114984884A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140145893A (en) * | 2013-06-14 | 2014-12-24 | 한국가스공사 | The Hydrogen Manufacturing Device And Method Using Carbon Dioxide Reforming |
CN109663556A (en) * | 2019-01-27 | 2019-04-23 | 浙江大学 | Disturb the reaction unit and method of enhanced dielectric barrier discharge activation carbon dioxide |
WO2021255423A1 (en) * | 2020-06-15 | 2021-12-23 | The University Of Liverpool | Plasma conversion reactor of c02 with c1 to c4 hydrocarbon to c1 to c5 oxygenate and method thereof |
CN213699399U (en) * | 2020-11-11 | 2021-07-16 | 山东师范大学 | A fluidized bed dielectric barrier discharge plasma catalytic reforming greenhouse gas device |
CN112897463A (en) * | 2021-04-21 | 2021-06-04 | 山东大学 | Device and method for preparing synthesis gas by electrocatalysis of methane-carbon dioxide |
CN113533583A (en) * | 2021-08-13 | 2021-10-22 | 西安交通大学 | Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform |
Non-Patent Citations (3)
Title |
---|
郑小明等: "冷等离子体协同催化反应", 《中国科学:化学》 * |
黄守发: "非平衡等离子体协同催化CH4/CO2重整实验研究", 《北京交通大学硕士学位论文》 * |
黄珍: "介质阻挡放电条件下甲烷二氧化碳重整制备合成气的研究", 《大连理工大学硕士学位论文》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115684423A (en) * | 2022-11-10 | 2023-02-03 | 西安交通大学 | Ammonia hydrogen production experiment platform with plasma synergistic catalyst |
CN115724404A (en) * | 2022-11-14 | 2023-03-03 | 山东大学 | A low-pressure carbon dioxide discharge conversion oxygen experimental device and method |
CN117482746A (en) * | 2023-11-08 | 2024-02-02 | 浙江大学 | A system and method for pressurized low-temperature plasma coupled catalytic CO2 gas |
CN117482746B (en) * | 2023-11-08 | 2025-03-07 | 浙江大学 | A system and method for pressurized low-temperature plasma coupled catalytic CO2 gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114984884A (en) | Experimental platform for preparing fuel by reforming carbon dioxide with assistance of plasma synergistic catalyst | |
Liu et al. | Nonoxidative conversion of methane in a dielectric barrier discharge reactor: prediction of reaction performance based on neural network model | |
CN109663556B (en) | Reaction device and method for activation of carbon dioxide by disturbance-enhanced dielectric barrier discharge | |
CN113533583B (en) | An experimental platform for plasma-assisted oxidation, pyrolysis and reforming of gas-liquid fuels | |
Kheirollahivash et al. | Hydrogen production from methane decomposition using a mobile and elongating arc plasma reactor | |
Raja et al. | Selective production of hydrogen and solid carbon via methane pyrolysis using a swirl-induced point–plane non-thermal plasma reactor | |
CN109663555B (en) | Systems and methods for synergistic conversion of greenhouse gases and biochar with pulsating jet plasma | |
CN205065743U (en) | Combustor is rolled up by combustion -supporting switzerland of plasma | |
CN105180183A (en) | Plasma combustion-supporting Swiss roll combustor | |
Kai et al. | Experimental investigation on the cracking of pre-combustion cracking gas with gliding arc discharge plasma | |
Xie et al. | Characteristics of dielectric barrier discharge and ozone production in synthetic air | |
RU2317943C2 (en) | Process of producing carbon and hydrogen from hydrocarbon gas and apparatus | |
CN114272858B (en) | Plasma catalysis system and method for efficient conversion of biomass tar | |
Zhou et al. | Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor | |
CN114538373A (en) | Hydrogen production system and method for decomposing alcohols by microwave plasma under normal pressure | |
CN117482746B (en) | A system and method for pressurized low-temperature plasma coupled catalytic CO2 gas | |
De Felice et al. | On design of plasma jet reactor for non-oxidative methane conversion | |
CN112430477A (en) | Low-temperature plasma coal or biomass gasification system and method | |
CN215641053U (en) | Plasma-assisted gas-liquid fuel oxidation, pyrolysis and reforming experiment platform | |
Yang et al. | Dielectric barrier discharge plasma reforming of methane in rocket engine: Characteristics and technical feasibility | |
CN110049611A (en) | A kind of micropore bipolar electrode plasmaassisted head-on collision diffusion combustion burner | |
RU2390493C1 (en) | Device for producing carbon and hydrogen from hydrocarbon gas | |
CN115665961A (en) | Multifunctional in-situ microwave plasma generating device and application thereof | |
Ravari et al. | Kinetic model study of dry reforming of methane using cold plasma | |
CN111690426A (en) | Device for preparing synthesis gas from cellulose biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220902 |