CN114975084A - Thin film material integration method - Google Patents
Thin film material integration method Download PDFInfo
- Publication number
- CN114975084A CN114975084A CN202210604165.4A CN202210604165A CN114975084A CN 114975084 A CN114975084 A CN 114975084A CN 202210604165 A CN202210604165 A CN 202210604165A CN 114975084 A CN114975084 A CN 114975084A
- Authority
- CN
- China
- Prior art keywords
- layer
- substrate
- functional material
- material layer
- rigid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 63
- 230000010354 integration Effects 0.000 title claims abstract description 9
- 239000010409 thin film Substances 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 81
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 41
- 239000003292 glue Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229910052732 germanium Inorganic materials 0.000 claims description 11
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 238000000231 atomic layer deposition Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 238000005240 physical vapour deposition Methods 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 3
- 239000003302 ferromagnetic material Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 139
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000004299 exfoliation Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 238000010329 laser etching Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明属于集成电路制造领域,特别涉及一种薄膜材料集成方法。The invention belongs to the field of integrated circuit manufacturing, and particularly relates to a method for integrating thin film materials.
背景技术Background technique
集成电路制造需要将多种不同的功能材料层依次集成在半导体衬底上,制作出预先设计的材料结构以实现所需的器件及电路功能。Integrated circuit manufacturing needs to integrate a variety of different functional material layers on a semiconductor substrate in turn, and fabricate a pre-designed material structure to realize the required device and circuit functions.
传统工艺使用电子束蒸发、磁控溅射、原子层沉积、金属-有机化学气相沉积、等离子体增强化学气相沉积等方式进行功能材料在半导体衬底上的沉积,并通过反应离子刻蚀等方式对功能材料层进行图形化。Traditional processes use electron beam evaporation, magnetron sputtering, atomic layer deposition, metal-organic chemical vapor deposition, plasma-enhanced chemical vapor deposition, etc. to deposit functional materials on semiconductor substrates, and use reactive ion etching and other methods to deposit functional materials on semiconductor substrates. The functional material layer is patterned.
传统工艺通常用于在硅衬底上进行集成电路加工,工艺步骤涉及高温高能过程,难以直接应用于新型材料衬底的加工,包括对高温过程敏感的钙钛矿、PET等衬底,以及对高能过程敏感的MoS2、石墨烯等衬底。Traditional processes are usually used for integrated circuit processing on silicon substrates. The process steps involve high-temperature and high-energy processes, which are difficult to directly apply to the processing of new material substrates, including substrates such as perovskite and PET that are sensitive to high-temperature processes. High-energy process-sensitive substrates such as MoS 2 and graphene.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种薄膜材料集成方法。The technical problem to be solved by the present invention is to provide a method for integrating thin film materials.
本发明提供了一种薄膜材料集成方法,包括如下步骤:The invention provides a method for integrating thin film materials, comprising the following steps:
提供一基底;provide a base;
形成石墨烯层于所述基底的上表面;forming a graphene layer on the upper surface of the substrate;
形成至少一功能材料层于所述石墨烯层的上表面;forming at least one functional material layer on the upper surface of the graphene layer;
形成刚性临时基底层于所述石墨烯层的上表面,所述刚性临时基底层覆盖所述功能材料层;其中,在所述刚性临时基底层表面形成临时键合胶层;将所述刚性临时基底层与所述功能材料层进行临时键合;forming a rigid temporary base layer on the upper surface of the graphene layer, the rigid temporary base layer covering the functional material layer; wherein, a temporary bonding adhesive layer is formed on the surface of the rigid temporary base layer; the rigid temporary base layer is The base layer is temporarily bonded with the functional material layer;
将由所述刚性临时基底层、所述功能材料层组成的叠层结构从所述石墨烯层表面机械剥离;mechanically peeling off the laminated structure consisting of the rigid temporary base layer and the functional material layer from the surface of the graphene layer;
将所述叠层结构转移至目标衬底,所述功能材料层与所述目标衬底的表面接触;transferring the laminated structure to a target substrate, the functional material layer being in contact with the surface of the target substrate;
去除所述刚性临时基底层,并使所述功能材料层留在所述目标衬底的表面。The rigid temporary base layer is removed and the functional material layer is left on the surface of the target substrate.
所述基底包括锗层、碳化硅层、锗硅层、硅层、铜层、镍层、陶瓷层及玻璃层中的至少一种。The substrate includes at least one of a germanium layer, a silicon carbide layer, a germanium silicon layer, a silicon layer, a copper layer, a nickel layer, a ceramic layer and a glass layer.
所述石墨烯层包括单层石墨烯及多层石墨烯中的一种或多种。The graphene layer includes one or more of single-layer graphene and multi-layer graphene.
形成所述石墨烯层的方法包括化学气相沉积、等离子体增强化学气相沉积、机械剥离、湿法转移、干法转移中的至少一种。The method for forming the graphene layer includes at least one of chemical vapor deposition, plasma enhanced chemical vapor deposition, mechanical exfoliation, wet transfer, and dry transfer.
所述功能材料层包括金属材料、介电材料、铁电材料、半导体材料、铁磁材料中的至少一种。The functional material layer includes at least one of metal materials, dielectric materials, ferroelectric materials, semiconductor materials, and ferromagnetic materials.
形成所述功能材料层的方法包括物理气相沉积、原子层沉积、分子束外延、化学气相沉积中的至少一种。The method for forming the functional material layer includes at least one of physical vapor deposition, atomic layer deposition, molecular beam epitaxy, and chemical vapor deposition.
所述功能材料层可以是图形化的功能材料层。The functional material layer may be a patterned functional material layer.
图形化方法包括光刻、电子束光刻、硬掩膜沉积、硬掩膜刻蚀、反应离子刻蚀、氩离子刻蚀、溶液腐蚀、激光刻蚀。Patterning methods include photolithography, electron beam lithography, hard mask deposition, hard mask etching, reactive ion etching, argon ion etching, solution etching, and laser etching.
所述功能材料层可以是多个功能材料层组成的复合功能材料层。The functional material layer may be a composite functional material layer composed of multiple functional material layers.
所述化学气相沉积法包括金属有机物化学气相沉积法、等离子体增强化学气相沉积;所述物理气相沉积法包括电子束蒸发法、热蒸发、磁控溅射;所述原子层沉积法包括等离子增强原子层沉积法。The chemical vapor deposition method includes metal organic chemical vapor deposition method, plasma enhanced chemical vapor deposition method; the physical vapor deposition method includes electron beam evaporation method, thermal evaporation, magnetron sputtering; the atomic layer deposition method includes plasma enhanced chemical vapor deposition method Atomic Layer Deposition.
所述刚性临时基底层包括玻璃片、蓝宝石片、金属片、硅片、锗片中的至少一种。The rigid temporary base layer includes at least one of a glass sheet, a sapphire sheet, a metal sheet, a silicon sheet, and a germanium sheet.
所述临时键合胶层包括热滑移胶、可溶性胶、激光胶中的至少一种。The temporary bonding glue layer includes at least one of thermal slip glue, soluble glue and laser glue.
通过真空环境下对所述刚性临时基底与所述功能材料层加热加压完成临时键合。The temporary bonding is completed by heating and pressing the rigid temporary substrate and the functional material layer in a vacuum environment.
掀起所述刚性临时基底层,或者通过塞尺插入所述刚性临时基底层与功能材料层之间,以将所述功能材料层从所述石墨烯层表面机械剥离。The rigid temporary base layer is lifted, or a feeler gauge is inserted between the rigid temporary base layer and the functional material layer to mechanically peel the functional material layer from the surface of the graphene layer.
去除所述刚性临时基底层的方法包括热滑移法、化学溶解法、激光解键合法中的至少一种。The method for removing the rigid temporary base layer includes at least one of thermal slip method, chemical dissolution method, and laser debonding method.
所述功能材料层与所述目标衬底表面的接触包括范德华接触。The contact of the functional material layer with the surface of the target substrate includes a van der Waals contact.
可选的,将所述叠层结构以对准方式转移至目标衬底。Optionally, the stacked structure is transferred to the target substrate in an aligned manner.
所述目标衬底包括柔性衬底、二维材料衬底、钙钛矿衬底中的至少一种。The target substrate includes at least one of a flexible substrate, a two-dimensional material substrate, and a perovskite substrate.
所述薄膜材料集成方法可以连续多次或间续多次使用于所述目标衬底。The thin-film material integration method can be applied to the target substrate for multiple times in succession or multiple times in succession.
有益效果beneficial effect
本发明通过选用刚性临时基底,有利于减小功能材料层在工艺过程中的变形,实现与目标衬底的晶圆级对准集成;同时,通过临时键合工艺形成刚性临时基底,有利于将功能材料层从临时基底释放,完成与目标衬底的集成,具有良好的市场应用前景。In the present invention, by selecting a rigid temporary substrate, it is beneficial to reduce the deformation of the functional material layer during the process, and realize the wafer-level alignment and integration with the target substrate; meanwhile, the rigid temporary substrate is formed by a temporary bonding process, which is beneficial to the The functional material layer is released from the temporary substrate to complete the integration with the target substrate, which has a good market application prospect.
附图说明Description of drawings
图1显示为本发明的制备方法的工艺流程图。Figure 1 shows a process flow diagram of the preparation method of the present invention.
图2-8显示为本发明的多层结构示意图。2-8 are schematic diagrams showing the multilayer structure of the present invention.
元件标号说明Component label description
S1~S7 步骤;S1~S7 steps;
1 刚性基底;1 rigid base;
2 石墨烯层;2 graphene layers;
3 功能材料层;3 functional material layers;
4 临时键合胶层;4 Temporary bonding adhesive layer;
5 刚性临时基底层;5 Rigid temporary base layer;
6 目标衬底。6 Target substrate.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
实施例1Example 1
本实施例提供了一种薄膜材料集成方法,参阅图1,显示为该方法的工艺流程图,包括以下步骤:This embodiment provides a method for integrating thin film materials. Referring to FIG. 1 , a process flow diagram of the method is shown, including the following steps:
S1:提供一基底;S1: provide a base;
S2:形成石墨烯层于所述基底的上表面;S2: forming a graphene layer on the upper surface of the substrate;
S3:形成至少一功能材料层于所述石墨烯层的上表面;S3: forming at least one functional material layer on the upper surface of the graphene layer;
S4:形成刚性临时基底层于所述石墨烯层的上表面,所述刚性临时基底层覆盖所述功能材料层;其中,在所述刚性临时基底层表面形成临时键合胶层;将所述刚性临时基底层与所述功能材料层进行临时键合;所述临时键合胶层位于所示刚性临时基底层和所述功能材料层之间;S4: forming a rigid temporary base layer on the upper surface of the graphene layer, the rigid temporary base layer covering the functional material layer; wherein, a temporary bonding adhesive layer is formed on the surface of the rigid temporary base layer; the The rigid temporary base layer is temporarily bonded with the functional material layer; the temporary bonding adhesive layer is located between the rigid temporary base layer and the functional material layer;
S5:将由所述刚性临时基底层、所述功能材料层组成的叠层结构从所述石墨烯层表面机械剥离;S5: mechanically peel off the laminated structure composed of the rigid temporary base layer and the functional material layer from the surface of the graphene layer;
S6:将所述叠层结构转移至目标衬底,所述功能材料层与所述目标衬底的表面接触;S6: transferring the laminated structure to a target substrate, and the functional material layer is in contact with the surface of the target substrate;
S7:去除所述刚性临时基底层,并使所述功能材料层留在所述目标衬底的表面。S7: Remove the rigid temporary base layer and leave the functional material layer on the surface of the target substrate.
如图2所示,提供一刚性基底1。As shown in FIG. 2, a
作为示例,所述基底采用刚性基底1,以为后续制作的各层材料提供良好的支撑。所述刚性基底1包括但不限于锗层、碳化硅层、锗硅层、硅层、铜层、镍层、陶瓷层及玻璃层中的至少一种,例如可以是单一的锗层或碳化硅层,也可以是硅层/铜层叠层、硅层/镍层叠层、陶瓷层/铜层叠层、陶瓷层/镍层叠层、玻璃层/铜层叠层、玻璃层/镍层叠层、硅层/锗硅层/锗层叠层、硅层/锗层叠层等。As an example, the base adopts a
如图3所示,形成石墨烯层2于所述刚性基底1的上表面。As shown in FIG. 3 , a
作为示例,可采用化学气相沉积、等离子体增强化学气相沉积、机械剥离、湿法转移、干法转移或其他合适的方法形成所述石墨烯层于所述基底的上表面,所述石墨烯层包括但不限于单层石墨烯、多层石墨烯中的一种或多种。As an example, chemical vapor deposition, plasma-enhanced chemical vapor deposition, mechanical exfoliation, wet transfer, dry transfer or other suitable methods can be used to form the graphene layer on the upper surface of the substrate, and the graphene layer Including but not limited to one or more of single-layer graphene and multi-layer graphene.
本实施例中,优选采用锗基底,并采用化学气相沉积法在所述锗基底表面生长得到单层石墨烯。In this embodiment, a germanium substrate is preferably used, and a single-layer graphene is grown on the surface of the germanium substrate by a chemical vapor deposition method.
也可采用碳化硅基底直接生长得到所述石墨烯层2,其中,在加热过程中,碳化硅基底表面的碳析出并重组得到所述石墨烯层2。The
如图4所示,形成功能材料层3于所述石墨烯层2上表面。采用物理气相沉积、原子层沉积、分子束外延、化学气相沉积或其他合适的方法。As shown in FIG. 4 , a
作为示例,所述功能材料层3包括但不限于金属材料、介电材料、铁电材料、半导体材料、铁磁材料中的至少一种。As an example, the
作为示例,也可以在所述石墨烯层2表面形成图形化的功能材料层,图形化方法包括但不限于包括光刻、电子束光刻、硬掩膜沉积、硬掩膜刻蚀、反应离子刻蚀、氩离子刻蚀、溶液腐蚀、激光刻蚀。As an example, a patterned functional material layer can also be formed on the surface of the
如图5所示,形成刚性临时基底层5于所述石墨烯层3的上表面,所述刚性临时基底层5覆盖所述功能材料层3;其中,在所述刚性临时基底层5表面形成临时键合胶层4;将所述刚性临时基底层5与所述功能材料层3进行临时键合;所述临时键合胶层4位于所示刚性临时基底层5和所述功能材料层3之间。As shown in FIG. 5 , a rigid
作为示例,可通过涂布临时键合胶与所述功能材料层表面将功能材料层3与刚性临时基底层进行临时键合。所述临时键合胶包括但不限于热滑移胶、可溶性胶、激光胶。所述刚性临时基底层包括但不限于玻璃片、蓝宝石片、金属片、硅片、锗片中的至少一种。As an example, the
如图6所示,将由所述刚性临时基底层、所述功能材料层组成的叠层结构从所述石墨烯层表面机械剥离。As shown in FIG. 6 , the laminated structure composed of the rigid temporary base layer and the functional material layer is mechanically peeled off from the surface of the graphene layer.
将所述功能材料层与所述刚性临时基底层作为整体从所述石墨烯层表面剥离,剥离方式包括但不限于直接机械剥离、塞尺插入剥离。The functional material layer and the rigid temporary base layer are exfoliated from the surface of the graphene layer as a whole, and the exfoliation methods include but are not limited to direct mechanical exfoliation and feeler gauge insertion exfoliation.
具体的,由于石墨烯无悬挂键的范德华表面与功能材料层之间的弱结合力,使得功能材料层容易从石墨烯表面完整的剥离,避免强结合力导致功能材料层无法剥离或剥离过程中容易发生碎裂的情形。所述刚性临时基底层在剥离过程中提供刚性临时支撑,保证功能材料层不会发生变形,有利于实现晶圆级材料的完整剥离。需要指出的是,临时键合工艺通常仅用于对目标衬底进行背部减薄,将其用于材料剥离与转移的集成工艺是一种创新性的技术方法。Specifically, due to the weak bonding force between the van der Waals surface of graphene without dangling bonds and the functional material layer, the functional material layer can be easily peeled off from the graphene surface completely, so as to prevent the functional material layer from being peeled off due to strong bonding force or during the peeling process. Fragmentation easily occurs. The rigid temporary base layer provides rigid temporary support during the peeling process, so as to ensure that the functional material layer will not be deformed, which is beneficial to realize the complete peeling of the wafer-level material. It should be pointed out that the temporary bonding process is usually only used for backside thinning of the target substrate, and it is an innovative technical method to use it for the integrated process of material lift-off and transfer.
如图7所示,将剥离的功能材料层/刚性临时基底层转移至目标衬底,并使所述功能材料层与所述目标衬底贴合,通过真空条件下加热加压使所述功能材料层与所述目标衬底形成充分的接触。As shown in FIG. 7 , the peeled functional material layer/rigid temporary base layer is transferred to the target substrate, the functional material layer is attached to the target substrate, and the functional material layer is heated and pressurized under vacuum conditions to make the functional material layer The material layer forms sufficient contact with the target substrate.
作为示例,所述目标衬底包括但不限于柔性衬底、二维材料衬底、钙钛矿衬底。As an example, the target substrate includes, but is not limited to, a flexible substrate, a two-dimensional material substrate, and a perovskite substrate.
需要指出的是,所述刚性临时基底层保证了所述功能材料层在剥离与转移过程中不会发生变形,因而可以与所述目标衬底进行晶圆级对准集成。所述功能材料层可以在所述石墨烯层上预先完成图形化,使得所述目标衬底不需要再经过图形化工艺工程,规避了所述目标衬底与图形化工艺不兼容的情形,可以完成传统工艺无法实现的材料集成结构。It should be pointed out that the rigid temporary base layer ensures that the functional material layer will not be deformed during the peeling and transfer process, so that it can be aligned and integrated with the target substrate at the wafer level. The functional material layer can be pre-patterned on the graphene layer, so that the target substrate does not need to go through a patterning process, which avoids the incompatibility between the target substrate and the patterning process. Complete material integration structures that cannot be achieved by traditional processes.
如图8所示,通过解键合工艺将所述功能材料层与所述刚性临时基底层分离,所述功能材料层留在所述目标衬底表面,完成材料集成过程。所述解键合工艺包括但不限于热滑移法、化学溶解法、激光解键合法。As shown in FIG. 8 , the functional material layer is separated from the rigid temporary base layer through a debonding process, and the functional material layer is left on the surface of the target substrate to complete the material integration process. The debonding process includes, but is not limited to, thermal glide, chemical dissolution, and laser debonding.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210604165.4A CN114975084A (en) | 2022-05-31 | 2022-05-31 | Thin film material integration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210604165.4A CN114975084A (en) | 2022-05-31 | 2022-05-31 | Thin film material integration method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114975084A true CN114975084A (en) | 2022-08-30 |
Family
ID=82958331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210604165.4A Pending CN114975084A (en) | 2022-05-31 | 2022-05-31 | Thin film material integration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114975084A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115472492A (en) * | 2022-09-20 | 2022-12-13 | 中国科学院光电技术研究所 | Super-resolution lithography structure, preparation method and pattern transfer method |
CN116143111A (en) * | 2023-01-17 | 2023-05-23 | 中国科学院上海微系统与信息技术研究所 | Graphene transfer method |
NL2035299B1 (en) * | 2023-07-07 | 2025-01-13 | Applied Nanolayers B V | Carrier stack for transferring a two-dimensional, 2D, material to a target substrate, and method for transferring the 2D material to a target substrate |
FR3155951A1 (en) * | 2023-11-27 | 2025-05-30 | Commissariat A L' Energie Atomique Et Aux Energies Alternatives | PROCESS FOR THE PRODUCTION AND TRANSFER OF A TWO-DIMENSIONAL MATERIAL |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040241958A1 (en) * | 2003-06-02 | 2004-12-02 | International Business Machines Corporation | Method of fabricating silicon devices on sapphire with wafer bonding at low temperature |
CN106298466A (en) * | 2016-09-18 | 2017-01-04 | 西安电子科技大学 | The two-dimentional transient metal chalcogenide compound transfer method of adhesive tape is released based on heat |
CN107887319A (en) * | 2017-11-16 | 2018-04-06 | 中国科学院上海微系统与信息技术研究所 | The preparation method of graphene on a kind of insulator |
CN107946186A (en) * | 2017-11-01 | 2018-04-20 | 中国电子科技集团公司第五十五研究所 | A kind of Buddha's warrior attendant ground mass GaN HEMTs preparation methods |
KR20210055903A (en) * | 2019-11-08 | 2021-05-18 | 한국과학기술연구원 | Method for forming bi-layer graphene |
CN113078044A (en) * | 2021-03-25 | 2021-07-06 | 中国科学院上海微系统与信息技术研究所 | Preparation method of dielectric material and semiconductor structure |
-
2022
- 2022-05-31 CN CN202210604165.4A patent/CN114975084A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040241958A1 (en) * | 2003-06-02 | 2004-12-02 | International Business Machines Corporation | Method of fabricating silicon devices on sapphire with wafer bonding at low temperature |
CN106298466A (en) * | 2016-09-18 | 2017-01-04 | 西安电子科技大学 | The two-dimentional transient metal chalcogenide compound transfer method of adhesive tape is released based on heat |
CN107946186A (en) * | 2017-11-01 | 2018-04-20 | 中国电子科技集团公司第五十五研究所 | A kind of Buddha's warrior attendant ground mass GaN HEMTs preparation methods |
CN107887319A (en) * | 2017-11-16 | 2018-04-06 | 中国科学院上海微系统与信息技术研究所 | The preparation method of graphene on a kind of insulator |
KR20210055903A (en) * | 2019-11-08 | 2021-05-18 | 한국과학기술연구원 | Method for forming bi-layer graphene |
CN113078044A (en) * | 2021-03-25 | 2021-07-06 | 中国科学院上海微系统与信息技术研究所 | Preparation method of dielectric material and semiconductor structure |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115472492A (en) * | 2022-09-20 | 2022-12-13 | 中国科学院光电技术研究所 | Super-resolution lithography structure, preparation method and pattern transfer method |
CN116143111A (en) * | 2023-01-17 | 2023-05-23 | 中国科学院上海微系统与信息技术研究所 | Graphene transfer method |
NL2035299B1 (en) * | 2023-07-07 | 2025-01-13 | Applied Nanolayers B V | Carrier stack for transferring a two-dimensional, 2D, material to a target substrate, and method for transferring the 2D material to a target substrate |
WO2025014364A1 (en) * | 2023-07-07 | 2025-01-16 | Applied Nanolayers B.V. | Carrier stack for transferring a two-dimensional, 2d, material to a target substrate, and method for transferring the 2d material to a target substrate |
FR3155951A1 (en) * | 2023-11-27 | 2025-05-30 | Commissariat A L' Energie Atomique Et Aux Energies Alternatives | PROCESS FOR THE PRODUCTION AND TRANSFER OF A TWO-DIMENSIONAL MATERIAL |
WO2025114242A1 (en) * | 2023-11-27 | 2025-06-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for producing and transferring a two-dimensional material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114975084A (en) | Thin film material integration method | |
JP5097172B2 (en) | Graphene layer peeling method, graphene wafer manufacturing method, and graphene element manufacturing method | |
CN102060292B (en) | Methods of manufacturing and transferring larger-sized graphene | |
US9496155B2 (en) | Methods of selectively transferring active components | |
CN104103567B (en) | Wafer-scale epitaxial graphene transfer | |
JP5303957B2 (en) | Graphene substrate and manufacturing method thereof | |
JP5140635B2 (en) | Thin film element manufacturing method | |
CN103268056A (en) | Flexible mask plate and preparation method thereof | |
US10083850B2 (en) | Method of forming a flexible semiconductor layer and devices on a flexible carrier | |
WO2020199299A1 (en) | Method for manufacturing piezoelectric thin film resonator on non-silicon substrate | |
CN116143111A (en) | Graphene transfer method | |
CN113078044A (en) | Preparation method of dielectric material and semiconductor structure | |
CN113488373B (en) | A dry method for preparing a single-layer two-dimensional semiconductor array | |
CN100573959C (en) | A method for preparing an organic thin film transistor with patterned active layer | |
KR20150086037A (en) | Method of manufacturing graphene encapsulation film and method of organic electronic device having the same. | |
CN113078054B (en) | A method for preparing an electrode layer and a semiconductor structure | |
CN117293028A (en) | Two-dimensional thyristor construction method based on electrode and dielectric layer common transfer | |
CN113078052B (en) | A transistor structure and a method for manufacturing the same | |
CN113078053A (en) | Preparation method of top gate structure and semiconductor structure | |
JP2007508683A (en) | Lamination through a mask | |
CN116581021A (en) | Method for transferring electrode by using fluorine crystal mica | |
CN119409186A (en) | Method for exfoliating ultra-thin layers of two-dimensional materials | |
CN120319664A (en) | Electrode stripping and positioning transfer method assisted by metal copper film sacrificial layer and electronic or optoelectronic device | |
CN119521699A (en) | A high voltage twist angle electrical device and its preparation method | |
CN119409185A (en) | Method for preparing thin two-dimensional material islands |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |