CN114965106A - Rapid testing device and method for GIS free metal particle rebound recovery coefficient - Google Patents
Rapid testing device and method for GIS free metal particle rebound recovery coefficient Download PDFInfo
- Publication number
- CN114965106A CN114965106A CN202210620522.6A CN202210620522A CN114965106A CN 114965106 A CN114965106 A CN 114965106A CN 202210620522 A CN202210620522 A CN 202210620522A CN 114965106 A CN114965106 A CN 114965106A
- Authority
- CN
- China
- Prior art keywords
- gis
- free metal
- metal particles
- preamplifier
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
- G01N3/303—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated only by free-falling weight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0032—Generation of the force using mechanical means
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及GIS技术领域,具体涉及一种GIS自由金属微粒反弹恢复系数的快速测试装置和方法。The invention relates to the technical field of GIS, in particular to a rapid testing device and method for the rebound recovery coefficient of GIS free metal particles.
背景技术Background technique
金属微粒的存在对气体绝缘组合电器(GIS)绝缘可靠性造成巨大威胁,金属微粒通过感应带电并在电场力作用下从壳体表面跳起,对GIS电极间隙的空间电场造成畸变,从而导致GIS的绝缘性能大幅下降,给GIS的正常运行带来巨大威胁。The existence of metal particles poses a huge threat to the insulation reliability of gas-insulated combined electrical appliances (GIS). The metal particles are charged by induction and jump up from the surface of the shell under the action of the electric field force, causing distortion to the spatial electric field in the GIS electrode gap, resulting in GIS The insulation performance of GIS is greatly reduced, which brings a huge threat to the normal operation of GIS.
目前很少有关于微粒碰撞系数测量及标定的装置以及测量方法的研究,在先前的关于微粒运动规律以及微粒碰撞声信号测量中,研究人员往往使用一固定经验系数代替微粒碰撞恢复系数,然而,由于根据实际测量环境、微粒材质、大小以及GIS管道材质的不同,微粒碰撞恢复系数也存在差异。已有的关于微粒碰撞恢复系数的测量,采用电磁铁吸附金属微粒,通过控制电磁铁的通断电实现对微粒的吸附并使其自由下落,然而实际运行工况中,金属微粒的材质大部分是非磁性材质,如金属铝,上述测量装置无法对铝微粒进行碰撞恢复系数测量及标定。At present, there are few researches on the measurement and calibration device and measurement method of particle collision coefficient. In the previous measurement of particle motion law and particle collision acoustic signal, researchers often use a fixed empirical coefficient instead of particle collision restitution coefficient. However, Due to the differences in the actual measurement environment, particle material, size, and GIS pipeline material, the particle collision restitution coefficient also varies. The existing measurement of the particle collision restitution coefficient uses electromagnets to adsorb metal particles, and controls the on-off of the electromagnet to realize the adsorption of particles and make them fall freely. However, in actual operating conditions, most of the material of metal particles is It is a non-magnetic material, such as metal aluminum, and the above-mentioned measuring device cannot measure and calibrate the collision restitution coefficient of aluminum particles.
由此可见,由于当前对微粒碰撞恢复系数的测量存在较多不足,使用单一的碰撞恢复系数无法精确对不同材质金属微粒碰撞恢复系数进行统一,采用电磁铁吸附金属微粒使其自由下落的标定测量方法不适用于GIS内常见的金属铝微粒,因此有必要研制出一种适用于不同材质、形状以及实际运行环境的标定测量装置。It can be seen that due to the current measurement of particle collision restitution coefficients, there are many deficiencies, and it is impossible to use a single collision restitution coefficient to accurately unify the collision restitution coefficients of metal particles of different materials. The method is not suitable for the common metal aluminum particles in GIS, so it is necessary to develop a calibration measurement device suitable for different materials, shapes and actual operating environments.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述不足,提供一种GIS自由金属微粒反弹恢复系数的快速测试装置和方法,本发明的结构简单,使用方便,同时鲁棒性较好等优点,能够对不同材质以及几何形状的金属微粒恢复系数进行快速测量。The purpose of the present invention is to overcome the above deficiencies, and to provide a rapid test device and method for the rebound recovery coefficient of GIS free metal particles. Shape restitution coefficient of metal particles for rapid measurement.
为了达到上述目的,一种GIS自由金属微粒反弹恢复系数的快速测试装置,包括GIS外壳,GIS外壳上设置有升降平台,升降平台中部开设有通孔,升降平台上设置有数显游标卡尺,升降平台与GIS外壳间用于放置GIS自由金属微粒,GIS外壳上设置有声发射信号传感器,声发射信号传感器连接前置放大器,前置放大器连接采集卡,采集卡连接上位机;In order to achieve the above purpose, a rapid test device for the rebound recovery coefficient of GIS free metal particles includes a GIS shell, a lifting platform is arranged on the GIS shell, a through hole is opened in the middle of the lifting platform, a digital vernier caliper is arranged on the lifting platform, and the lifting platform is It is used to place GIS free metal particles between it and the GIS shell. The GIS shell is provided with an acoustic emission signal sensor. The acoustic emission signal sensor is connected to the preamplifier, the preamplifier is connected to the acquisition card, and the acquisition card is connected to the host computer;
声发射信号传感器用于采集GIS自由金属微粒与GIS外壳的碰撞声信号,并发送到前置放大器中;The acoustic emission signal sensor is used to collect the collision acoustic signal of the GIS free metal particles and the GIS shell, and send it to the preamplifier;
前置放大器用于接收声发射信号传感器的电压信号,输出放大后的模拟信号至采集卡;The preamplifier is used to receive the voltage signal of the acoustic emission signal sensor, and output the amplified analog signal to the acquisition card;
采集卡用于采集前置放大器的输出信号,并转发至上位机中;The acquisition card is used to collect the output signal of the preamplifier and forward it to the upper computer;
上位机用于根据接收到的信号进行数据处理。The upper computer is used for data processing according to the received signal.
GIS外壳的内壁为圆弧形,GIS自由金属微粒采用球形金属微粒。The inner wall of the GIS shell is arc-shaped, and the free metal particles of the GIS are spherical metal particles.
GIS自由金属微粒采用铝、钢或铜材质。GIS free metal particles are available in aluminium, steel or copper.
声发射信号传感器采用声华科技公司的SR40M声发射传感器,频率响应为15kHz~70kHz,谐振频率为40kHz,灵敏度峰值大于-75dB。The acoustic emission signal sensor adopts the SR40M acoustic emission sensor of Shenghua Technology Company, the frequency response is 15kHz ~ 70kHz, the resonance frequency is 40kHz, and the sensitivity peak value is greater than -75dB.
前置放大器采用PAI型宽带放大器,工作带宽为10kHz-2MHz,放大器增益40dB,输入阻抗大于50MΩ,输出阻抗为50Ω。The preamplifier adopts PAI type broadband amplifier, the working bandwidth is 10kHz-2MHz, the amplifier gain is 40dB, the input impedance is greater than 50MΩ, and the output impedance is 50Ω.
前置放大器内置有磁性夹具。The preamp has a built-in magnetic clamp.
一种GIS自由金属微粒反弹恢复系数的快速测试装置的测试方法,包括以下步骤:A test method for a rapid test device for the rebound recovery coefficient of GIS free metal particles, comprising the following steps:
将升降平台置于GIS外壳的底部中间区域;Place the lifting platform in the bottom middle area of the GIS enclosure;
将GIS自由金属微粒从升降平台中部的通孔处自由下落;Free fall of GIS free metal particles from the through hole in the middle of the lifting platform;
通过数显游标卡尺测量微粒自由下落高度;Measure the free fall height of particles by digital vernier caliper;
通过声发射信号传感器测量GIS自由金属微粒与GIS外壳碰撞时产生的声信号;Measure the acoustic signal generated when the GIS free metal particles collide with the GIS shell through the acoustic emission signal sensor;
通过采集卡对GIS自由金属微粒下落时与GIS外壳连续多次碰撞的声信号进行采集并传输到声发射信号传感器,声发射信号传感器将碰撞声信号发送到前置放大器中;Through the acquisition card, the acoustic signals of the GIS free metal particles that collide with the GIS shell for many times are collected and transmitted to the acoustic emission signal sensor, and the acoustic emission signal sensor sends the collision acoustic signal to the preamplifier;
前置放大器接收声发射信号传感器的电压信号,并输出放大后的模拟信号至采集卡;The preamplifier receives the voltage signal of the acoustic emission signal sensor, and outputs the amplified analog signal to the acquisition card;
采集卡采集前置放大器的输出信号,并转发至上位机中;The acquisition card collects the output signal of the preamplifier and forwards it to the host computer;
上位机根据接收到的信号进行数据处理。The upper computer performs data processing according to the received signal.
采集卡能够对GIS自由金属微粒碰撞GIS外壳产生的声信号幅值以及碰撞时间间隔进行测量,通过多次测量GIS自由金属微粒从不同高度自由下落时碰撞的声信号以及时间间隔,得到微粒碰撞恢复系数。The acquisition card can measure the acoustic signal amplitude and collision time interval generated by GIS free metal particles colliding with the GIS shell, and obtain the particle collision recovery by measuring the acoustic signals and time intervals of the collision when the GIS free metal particles fall freely from different heights. coefficient.
上位机对实验实时采集数据提供画面显示以及总表显示,批量处理实时数据并做统计分析处理。The host computer provides screen display and summary table display for the real-time collected data of the experiment, and batch processes the real-time data and performs statistical analysis and processing.
与现有技术相比,本发明通过采用升降平台调节GIS自由金属微粒的自由下落高度,测量平台可置于GIS外壳放入底部中间区域,开有通孔的升降平台可使金属微粒从升降平台中央的通孔处自由下落,固定于平台边缘的数显游标卡尺用于测量微粒自由下落高度,利用声发射信号传感器测量GIS自由金属微粒与GIS外壳碰撞时产生的声信号,通过采集卡对GIS自由金属微粒自由下落时与GIS外壳连续多次碰撞的声信号进行采集并传输到声信号处理单元。通过多次测量GIS自由金属微粒从不同高度自由下落时碰撞声信号以及时间间隔,通过上位机得到微粒碰撞恢复系数。本发明的装置具有结构简单,使用方便,同时鲁棒性较好等优点,能够对不同材质以及几何形状的金属微粒恢复系数进行快速测量。Compared with the prior art, the present invention adjusts the free fall height of GIS free metal particles by using a lifting platform, the measuring platform can be placed in the GIS shell and placed in the middle area of the bottom, and the lifting platform with through holes can make the metal particles escape from the lifting platform. The central through hole is free-falling, and the digital vernier caliper fixed on the edge of the platform is used to measure the free-falling height of the particles. The acoustic emission signal sensor is used to measure the acoustic signal generated when the GIS free metal particles collide with the GIS shell. When the metal particles fall freely, the acoustic signals that collide with the GIS shell for many times are collected and transmitted to the acoustic signal processing unit. By measuring the collision sound signal and time interval of GIS free metal particles falling freely from different heights many times, the particle collision recovery coefficient is obtained through the host computer. The device of the invention has the advantages of simple structure, convenient use, good robustness and the like, and can quickly measure the restitution coefficient of metal particles of different materials and geometric shapes.
进一步的,本发明的采集卡能够对微粒碰撞产生的声信号幅值以及碰撞时间间隔进行测量。Further, the acquisition card of the present invention can measure the acoustic signal amplitude and the collision time interval generated by particle collision.
附图说明Description of drawings
图1为本发明的系统图;1 is a system diagram of the present invention;
其中,1、升降平台,2、数显游标卡尺,3、声发射信号传感器,4、前置放大器,5、采集卡,6、上位机,7、GIS外壳,8、GIS自由金属微粒。Among them, 1. Lifting platform, 2. Digital vernier caliper, 3. Acoustic emission signal sensor, 4. Preamplifier, 5. Acquisition card, 6. Host computer, 7. GIS shell, 8. GIS free metal particles.
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings.
参见图1,一种GIS自由金属微粒反弹恢复系数的快速测试装置,包括GIS外壳7,GIS外壳7上设置有升降平台1,升降平台1中部开设有通孔,升降平台1上设置有数显游标卡尺2,升降平台1与GIS外壳7间用于放置GIS自由金属微粒8,GIS外壳7上设置有声发射信号传感器3,声发射信号传感器3连接前置放大器4,前置放大器4连接采集卡5,采集卡5连接上位机6。GIS外壳7的内壁为圆弧形,GIS自由金属微粒8采用球形金属微粒。Referring to FIG. 1, a rapid test device for the rebound recovery coefficient of GIS free metal particles includes a
声发射信号传感器3用于采集GIS自由金属微粒8与GIS外壳7的碰撞声信号,并发送到前置放大器4中;前置放大器4用于接收声发射信号传感器3的电压信号,输出放大后的模拟信号至采集卡5;采集卡5用于采集前置放大器4的输出信号,并转发至上位机6中;上位机6用于根据接收到的信号进行数据处理。The acoustic
优选的,GIS自由金属微粒8优选采用实际运行工况下常见的球形金属铝、不锈钢以及铜微粒,微粒几何尺寸优选亚毫米至毫米量级,与实际运行工况下微粒几何尺寸基本一致。Preferably, the GIS
优选的,数显游标卡尺2设置在升降平台上下移动时测量微粒自由下落高度,数显游标卡尺在测量时会自动采集数据,显示读数,不需要人工记录数据,同时数显游标卡尺2内置储存卡,测量时相关数据会保存在存储卡中,可利用USB将数据导出进行分析。数显游标卡尺2优选分辨率为0.01mm,允许误差为±0.03mm/200mm,具有外径、内径、台阶以及深度测量四种测量方式,具有直接测量和比较测量功能。Preferably, the
优选的,声发射信号传感器3采用声华科技公司的SR40M声发射传感器,频率响应为15kHz~70kHz,谐振频率为40kHz,灵敏度峰值大于-75dB。由于自由金属微粒碰撞腔体底部得到的超声信号在传递中衰减很大,同时易受外界声音、局部放电的干扰,因此需对采集到超声信号经前置放大器放大再传递给采集卡读取。Preferably, the acoustic
优选的,前置放大器4采用PAI型宽带放大器,工作带宽为10kHz-2MHz,放大器增益40dB,输入阻抗大于50MΩ,输出阻抗为50Ω。前置放大器4内置有磁性夹具,能够吸附在铁磁性材料上。前置放大器输入端接收声发射传感器输出的电压信号,输出放大后的模拟信号。Preferably, the
优选的,采集卡优选模拟量输入通道为8通道,12位精度,8K字FIFO存储器,采样频率为500KS/s,通道切换方式为连续扫描和分组扫描,CTR计数器通道数优选1路加法计数器,位数为32位,输入频率高达5MHz。采集卡通过对前置放大器输出的声信号自动采集并送到上位机中进行分析、处理。采集卡将输入的模拟声信号经由多路开关、放大器、采样保持电路以及A/D转换为数字信号。Preferably, the analog input channel of the acquisition card is preferably 8 channels, 12-bit precision, 8K word FIFO memory, the sampling frequency is 500KS/s, the channel switching mode is continuous scanning and group scanning, and the number of CTR counter channels is preferably 1 adding counter. The number of bits is 32 and the input frequency is up to 5MHz. The acquisition card automatically collects the sound signal output by the preamplifier and sends it to the host computer for analysis and processing. The acquisition card converts the input analog sound signal into digital signal through multiplexer, amplifier, sample and hold circuit and A/D.
优选的,上位机6采用LabVIEW软件开发,与PLC实现通讯和控制,通过SQL、Mysql、ACCESS等常用数据库存储数据,实现数据追溯查询,也可将数据传输到MES系统,实现综合管理。Preferably, the
一种GIS自由金属微粒反弹恢复系数的快速测试装置的测试方法,包括以下步骤:A test method for a rapid test device for the rebound recovery coefficient of GIS free metal particles, comprising the following steps:
将升降平台1置于GIS外壳7的底部中间区域;Place the
将GIS自由金属微粒8从升降平台1中部的通孔处自由下落;Freely fall the GIS
通过数显游标卡尺2测量微粒自由下落高度;Measure the free fall height of particles by
通过声发射信号传感器3测量GIS自由金属微粒8与GIS外壳7碰撞时产生的声信号;The acoustic signal generated when the GIS
通过采集卡5对GIS自由金属微粒8下落时与GIS外壳7连续多次碰撞的声信号进行采集并传输到声发射信号传感器3,声发射信号传感器3将碰撞声信号发送到前置放大器4中;The acoustic signals of the GIS
前置放大器4接收声发射信号传感器3的电压信号,并输出放大后的模拟信号至采集卡5;The
采集卡5采集前置放大器4的输出信号,并转发至上位机6中;采集卡5能够对GIS自由金属微粒8碰撞GIS外壳7产生的声信号幅值以及碰撞时间间隔进行测量,通过多次测量GIS自由金属微粒8从不同高度自由下落时碰撞的声信号以及时间间隔,得到微粒碰撞恢复系数。The
上位机6根据接收到的信号进行数据处理。上位机对实验实时采集数据提供画面显示以及总表显示,批量处理实时数据并做统计分析处理。The
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210620522.6A CN114965106A (en) | 2022-06-02 | 2022-06-02 | Rapid testing device and method for GIS free metal particle rebound recovery coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210620522.6A CN114965106A (en) | 2022-06-02 | 2022-06-02 | Rapid testing device and method for GIS free metal particle rebound recovery coefficient |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114965106A true CN114965106A (en) | 2022-08-30 |
Family
ID=82960504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210620522.6A Pending CN114965106A (en) | 2022-06-02 | 2022-06-02 | Rapid testing device and method for GIS free metal particle rebound recovery coefficient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114965106A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040045378A1 (en) * | 2000-06-28 | 2004-03-11 | Coghill Peter John | Measurements of particle size in pneumatic flows |
CN106324097A (en) * | 2016-10-12 | 2017-01-11 | 华侨大学 | Method for determining material collision restitution coefficient based on sound wave sensing |
CN109556818A (en) * | 2018-12-03 | 2019-04-02 | 济南大学 | A kind of method and system of the measurement material collisional damping coefficient based on sound calibration |
CN112129649A (en) * | 2020-10-20 | 2020-12-25 | 江苏海洋大学 | Measuring device and method for rapidly determining collision recovery coefficient of object |
-
2022
- 2022-06-02 CN CN202210620522.6A patent/CN114965106A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040045378A1 (en) * | 2000-06-28 | 2004-03-11 | Coghill Peter John | Measurements of particle size in pneumatic flows |
CN106324097A (en) * | 2016-10-12 | 2017-01-11 | 华侨大学 | Method for determining material collision restitution coefficient based on sound wave sensing |
CN109556818A (en) * | 2018-12-03 | 2019-04-02 | 济南大学 | A kind of method and system of the measurement material collisional damping coefficient based on sound calibration |
CN112129649A (en) * | 2020-10-20 | 2020-12-25 | 江苏海洋大学 | Measuring device and method for rapidly determining collision recovery coefficient of object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11892490B2 (en) | System for measuring a microwave dielectric property of a solid material under force | |
CN108333484B (en) | A method for detecting partial discharge of electrical equipment | |
CN105717425A (en) | Supersonic online detection system of 1000kV GIS | |
CN114965106A (en) | Rapid testing device and method for GIS free metal particle rebound recovery coefficient | |
CN219161805U (en) | Dynamic compression-shear composite loading device for separated Hopkinson bar | |
CN109458961B (en) | Portable wave-absorbing coating thickness measuring device and method | |
CN210090381U (en) | A portable device for the measurement of material surface acoustic impedance | |
US8051715B2 (en) | Resonant inspection using reconfigurable nest | |
CN217741911U (en) | High sound pressure testing device and system for microphone monomer | |
Gupta et al. | Estimation of partial discharge parameters in GIS using acoustic emission techniques | |
CN217520698U (en) | Abnormal sound measuring device | |
KR100445371B1 (en) | Seismic wave velocity measurment system for unconsolidated sediment cores | |
CN209878890U (en) | Electromagnetic Interference Detection System | |
US6732545B2 (en) | Silica structure crack monitoring | |
CN115243310A (en) | Wireless transmission signal anti-interference test method and system based on change curve characteristics | |
US3499318A (en) | Apparatus for determining the toughness of abrasive articles | |
CN1666315A (en) | Method and apparatus for non-invasive measurement and analysis of semiconductor process parameters | |
CN114442012A (en) | Device and method for screening magnetic permeability of soft magnetic material at high flux | |
CN218121811U (en) | A basic characteristic detection device for granular food | |
CN206847774U (en) | Sound pressure level test device | |
CN206235700U (en) | A kind of sucked type shelf depreciation ultrasonic sensor | |
CN220137075U (en) | Calibration device for airborne ultrasonic imager based on ultrasonic approximate point sound source | |
CN115128362B (en) | In-situ test device and test method for electromagnetic shielding effectiveness of optical window | |
Gaete-Garretón et al. | Ultrasonic detectors for high-intensity acoustic fields | |
Macfadyen et al. | An improved technique for the measurement of contact potential differences |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |