CN114962227A - Piezoelectric driving gas micropump with double vibration layers and preparation method thereof - Google Patents
Piezoelectric driving gas micropump with double vibration layers and preparation method thereof Download PDFInfo
- Publication number
- CN114962227A CN114962227A CN202210773597.8A CN202210773597A CN114962227A CN 114962227 A CN114962227 A CN 114962227A CN 202210773597 A CN202210773597 A CN 202210773597A CN 114962227 A CN114962227 A CN 114962227A
- Authority
- CN
- China
- Prior art keywords
- layer
- vibration
- cavity
- diameter
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000003292 glue Substances 0.000 claims abstract description 16
- 239000003822 epoxy resin Substances 0.000 claims abstract description 10
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 10
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 239000012530 fluid Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000007650 screen-printing Methods 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 238000005553 drilling Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000007731 hot pressing Methods 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 3
- 238000002955 isolation Methods 0.000 claims 1
- 238000007639 printing Methods 0.000 claims 1
- 238000004080 punching Methods 0.000 claims 1
- 238000009713 electroplating Methods 0.000 abstract 1
- 238000003698 laser cutting Methods 0.000 abstract 1
- 238000007514 turning Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 184
- 238000010586 diagram Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 229920006335 epoxy glue Polymers 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000009372 pisciculture Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
- F04B43/046—Micropumps with piezoelectric drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/001—Noise damping
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0005—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
- H02N2/005—Mechanical details, e.g. housings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/22—Methods relating to manufacturing, e.g. assembling, calibration
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Reciprocating Pumps (AREA)
Abstract
本发明公开了一种具有双振动层的压电驱动气体微泵及其制备方法。所述气体微泵包括依次层叠的进流层、振动基板层、和外壳体层,以及固定在振动基板层朝向进流层侧面的第一振动层、固定在振动基板层朝向外壳体层侧面的腔体层,和固定在腔体层朝向外壳体层侧面的第二振动层。制备方法通过对材料进行激光切割、研磨、车削、电镀等操作得到各层的结构后,再利用导电胶水、环氧树脂胶粘结的方式,组装得到所述的气体微泵。本申请通过第一振动层和振动基板层、腔体层和第二振动层分别组成两个压电振子,使腔体层的两侧均受到振动层的影响,最大程度得改变腔体层的容积,在保证气体微泵整体体积不明显变化的情况下,增大气体微泵流量。
The invention discloses a piezoelectric-driven gas micropump with double vibration layers and a preparation method thereof. The gas micropump includes an inflow layer, a vibrating substrate layer, and an outer shell layer that are stacked in sequence, and a first vibration layer fixed on the side of the vibration substrate layer facing the inflow layer, and a first vibration layer fixed on the side of the vibration substrate layer facing the outer shell layer. a cavity layer, and a second vibration layer fixed on the side of the cavity layer facing the outer shell layer. The preparation method obtains the structure of each layer by performing laser cutting, grinding, turning, electroplating and other operations on the material, and then uses conductive glue and epoxy resin to bond to assemble the gas micropump. In the present application, two piezoelectric vibrators are respectively composed of the first vibration layer, the vibration substrate layer, the cavity layer and the second vibration layer, so that both sides of the cavity layer are affected by the vibration layer, and the vibration of the cavity layer can be changed to the greatest extent. The volume of the gas micro-pump is increased under the condition that the overall volume of the gas micro-pump does not change significantly.
Description
技术领域technical field
本发明属于气体微泵技术领域,涉及具有双层压电材料的高流量气体微泵,具体涉及一种具有双振动层的压电驱动气体微泵及其制备方法。The invention belongs to the technical field of gas micro-pumps, relates to a high-flow gas micro-pump with double-layer piezoelectric materials, and in particular relates to a piezoelectric-driven gas micro-pump with double-vibration layers and a preparation method thereof.
背景技术Background technique
近年来,随着压电材料和计算机数字化控制精密机械加工(CNC)的不断发展,使微泵的结构和原理越来越多样化。使用压电材料作为驱动源的气体微泵因其体积小、响应快、流量大,已被广泛应用于药物传输、养鱼增氧、美容仪、CPU散热等多个领域,显示出广阔的发展前景。In recent years, with the continuous development of piezoelectric materials and computer numerical control precision machining (CNC), the structure and principle of micropumps have become more and more diverse. Gas micropumps using piezoelectric materials as driving sources have been widely used in many fields such as drug delivery, fish farming and oxygenation, beauty instruments, and CPU heat dissipation due to their small size, fast response, and large flow rate, showing broad development. prospect.
现阶段研究的压电泵主要分为有阀压电泵和无阀压电泵两大类。有阀压电泵因其带有阀结构无法工作于超过20KHz的超声波频段,带来噪音,而无阀压电泵依靠上下腔体高度差、或改变出入口管壁的流阻差来实现宏观出流,但也存在复杂的瞬时流量变化和不连续等问题,且流量较低。The piezoelectric pumps studied at this stage are mainly divided into two categories: valved piezoelectric pumps and valveless piezoelectric pumps. The valved piezoelectric pump cannot work in the ultrasonic frequency band exceeding 20KHz due to its valve structure, which brings noise, while the valveless piezoelectric pump relies on the height difference between the upper and lower chambers or changing the flow resistance difference of the inlet and outlet pipe walls to achieve macroscopic output. flow, but there are also complex transient flow changes and discontinuities, and the flow is low.
在对比文件1(CN105240252B)中,压电微泵装置采用呈九十度弯曲的弹性连接件,经过仿真和理论受力分析,虽相较于普通压电微泵有流量提升,但其弹性连接件与四周仍需通过硅胶相粘结,并未做到一体化结构,此外,进气孔直面压电材料的银电极层,面对长期高频高流量的流体冲击,亦加速了其老化程度和增加了其失效的风险性。In the reference document 1 (CN105240252B), the piezoelectric micro-pump device adopts a ninety-degree-bending elastic connector. After simulation and theoretical force analysis, although the flow rate is improved compared with ordinary piezoelectric micro-pumps, its elastic connection The parts and the surrounding still need to be bonded by silica gel, and the integrated structure is not achieved. In addition, the air inlet directly faces the silver electrode layer of the piezoelectric material, and the long-term high-frequency and high-flow fluid impact also accelerates its aging degree. and increase the risk of its failure.
在对比文件2(CN114151317A)中,压电微泵采用单振动层工作,其流量较低,且结构复杂,导致其制备工艺复杂和造价昂贵,极大的限制了其应用场景。In the reference document 2 (CN114151317A), the piezoelectric micropump works with a single vibration layer, and its flow rate is low and its structure is complex, which leads to its complicated preparation process and high cost, which greatly limits its application scenarios.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明提出了一种具有双振动层的压电驱动气体微泵及其制备方法,通过双振动层合作,使气体微泵体积不变的情况下,提高了内部腔体的容积,从而增大输出流量,通过设计振动弹性连接件,提升微泵的工作频率到20kHz以上,避免工作在人耳可以听到的频率范围,去除噪音。Aiming at the deficiencies of the prior art, the present invention proposes a piezoelectrically driven gas micropump with double vibration layers and a preparation method thereof. The volume of the body is increased, thereby increasing the output flow. By designing a vibration elastic connector, the working frequency of the micropump is increased to more than 20kHz, so as to avoid working in the frequency range that can be heard by the human ear and remove noise.
一种具有双振动层的压电驱动气体微泵,包括依次层叠的进流层、振动基板层、和外壳体层,以及固定在振动基板层朝向进流层侧面的第一振动层、固定在振动基板层朝向外壳体层侧面的腔体层,和固定在腔体层朝向外壳体层侧面的第二振动层。A piezoelectrically driven gas micropump with dual vibration layers, comprising an inflow layer, a vibration substrate layer, and an outer shell layer stacked in sequence, and a first vibration layer fixed on the side of the vibration substrate layer facing the inflow layer, fixed on the side of the inflow layer. The vibrating substrate layer faces the cavity layer on the side of the outer shell layer, and the second vibration layer is fixed on the side of the cavity layer facing the outer shell layer.
所述振动基板层包括边缘固定部、弹性连接件和中心振动部,振动基板层通过边缘固定部与进流层、外壳体层固定,通过中心振动部与第一振动层、腔体层固定。弹性连接件用于连接边缘固定部与中心振动部。边缘固定部与中心振动部之间的流通路与开设在进流层上的通孔连通,形成泵体的输入流道。The vibrating substrate layer includes an edge fixing part, an elastic connecting piece and a central vibrating part. The vibrating substrate layer is fixed to the inflow layer and the outer shell layer by the edge fixing part, and is fixed to the first vibration layer and the cavity layer by the central vibrating part. The elastic connecting piece is used to connect the edge fixing part and the central vibrating part. The flow passage between the edge fixing part and the central vibrating part is communicated with the through hole opened on the inflow layer to form the input flow passage of the pump body.
所述第一振动层与进流层之间设置有空腔,第二振动层与外壳体层之间设置有空腔。所述腔体层的边缘与中心振动部的边缘固定,内部与中心振动部之间形成空腔。开设在腔体层、第二振动层、外壳体层上并相互连通的流通路形成了泵体的输出流道。腔体层外接引线,使第一振动层和第二振动层实现异向振动。A cavity is provided between the first vibration layer and the inflow layer, and a cavity is provided between the second vibration layer and the outer shell layer. The edge of the cavity layer is fixed with the edge of the central vibrating part, and a cavity is formed between the interior and the central vibrating part. The flow passages opened on the cavity layer, the second vibration layer and the outer casing layer and communicated with each other form the output flow passage of the pump body. The cavity layer is connected to an external lead, so that the first vibration layer and the second vibration layer realize anisotropic vibration.
作为优选,在振动基板层朝向进流层的一侧,弹性连接件和中心振动部的厚度小于边缘固定部,使得第一振动层与进流层之间形成空腔。Preferably, on the side of the vibrating substrate layer facing the inflow layer, the thickness of the elastic connecting member and the central vibrating portion is smaller than that of the edge fixing portion, so that a cavity is formed between the first vibrating layer and the inflow layer.
作为优选,在进流层朝向振动基板层的一侧,边缘部分高于中心部分,使得第一振动层与进流层之间形成空腔。Preferably, on the side of the inflow layer facing the vibration substrate layer, the edge portion is higher than the central portion, so that a cavity is formed between the first vibration layer and the inflow layer.
作为优选,还包括固定在外壳体层朝向腔体层侧面的O型密封圈。Preferably, an O-ring fixed on the side of the outer shell layer facing the cavity layer is also included.
作为优选,所述O型密封圈的内径与第二振动层的外径相同。Preferably, the inner diameter of the O-ring is the same as the outer diameter of the second vibration layer.
作为优选,所述边缘固定部和中心振动部之间包括多个均匀排列且互不重叠的弹性连接件,所述弹性连接件不为直线形状。Preferably, a plurality of uniformly arranged and non-overlapping elastic connecting pieces are included between the edge fixing portion and the central vibrating portion, and the elastic connecting pieces are not in a linear shape.
作为优选,所述弹性连接件包括第一连接部、第二连接部和弹性段。其中,弹性段呈圆弧形。第一连接部的一端与中心振动部连接,另一端与弹性段的一端连接。第二连接部的一端与与弹性段的另一端连接边缘固定部连接,另一端与边缘固定部连接。Preferably, the elastic connecting member includes a first connecting portion, a second connecting portion and an elastic segment. Wherein, the elastic segment is in the shape of a circular arc. One end of the first connecting part is connected with the central vibrating part, and the other end is connected with one end of the elastic segment. One end of the second connecting portion is connected to the edge fixing portion connected to the other end of the elastic segment, and the other end is connected to the edge fixing portion.
作为优选,外壳体层的边缘与振动基板层的边缘固定部固定,中心部分厚度低于边缘部分,使得第二振动层与外壳体层之间形成空腔。Preferably, the edge of the outer shell layer is fixed to the edge fixing part of the vibration substrate layer, and the thickness of the central part is lower than that of the edge part, so that a cavity is formed between the second vibration layer and the outer shell layer.
一种具有双振动层的压电驱动气体微泵的制作方法,具体包括以下步骤:A method for manufacturing a piezoelectrically driven gas micropump with double vibration layers, specifically comprising the following steps:
(1)选择边长为10mm~20mm、厚度为0.5mm~2mm的金属板,在表面激光打出多个直径为0.5mm~2mm的通孔,得到进流层。(1) Select a metal plate with a side length of 10mm to 20mm and a thickness of 0.5mm to 2mm, and laser punch a plurality of through holes with a diameter of 0.5mm to 2mm on the surface to obtain an inflow layer.
(2)选择边长为10mm~20mm、厚度为0.2mm~1mm的金属板,在其表面中心研磨出一个直径为9mm~13mm、厚度为0.2mm的圆形,然后在圆形的边缘激光打出多个均匀排列的流通路,得到振动基板层。(2) Select a metal plate with a side length of 10mm to 20mm and a thickness of 0.2mm to 1mm, and grind a circle with a diameter of 9mm to 13mm and a thickness of 0.2mm in the center of the surface, and then laser punch the edge of the circle. A plurality of uniformly arranged flow channels are obtained to obtain a vibrating substrate layer.
(3)选择直径为8mm~12mm、厚度为0.1mm~0.3mm的压电材料作为第一振动层,其顶部利用单组分环氧树脂胶水通过丝网印刷工艺与粘结步骤(2)中研磨的同心圆内,胶层厚度小于20um。(3) Select a piezoelectric material with a diameter of 8mm to 12mm and a thickness of 0.1mm to 0.3mm as the first vibration layer, the top of which is made of a single-component epoxy resin glue through a screen printing process and bonding step (2) In the grinding concentric circles, the thickness of the adhesive layer is less than 20um.
(4)在振动基板层固定了第一振动层一面的边缘使用高目数的丝网印刷工艺印刷单组分高粘度的环氧树脂胶,与进流层边缘对齐后再通过高温热压技术粘结。(4) Use a high-mesh screen printing process to print a single-component high-viscosity epoxy resin glue on the edge of the vibrating substrate layer where the first vibrating layer is fixed, align with the edge of the inflow layer, and then pass high temperature hot pressing technology bond.
(5)选择直径为8mm~12mm、厚度为0.1mm~0.3mm的金属板,将其中心向下研磨后,然后在圆心位置激光钻孔出直径为0.1mm~0.5mm通孔,得到腔体层。在腔体层未被研磨的部分使用单组分导电胶水,通过精密点胶机与振动基板层的另一面粘结,并在腔体层上外接引线。(5) Select a metal plate with a diameter of 8mm to 12mm and a thickness of 0.1mm to 0.3mm, grind its center downward, and then laser drill a through hole with a diameter of 0.1mm to 0.5mm at the center of the circle to obtain a cavity Floor. Use single-component conductive glue on the unground part of the cavity layer, bond it to the other side of the vibration substrate layer through a precision glue dispenser, and connect external leads on the cavity layer.
(6)选择选择直径为8mm~12mm、厚度为0.1mm~0.3mm、中间带有小孔直径为0.2mm~1mm的压电材料作为第二振动层。将第二振动层与腔体层表面的通孔对准后,使用单组分环氧树脂胶水将第二振动层与腔体层粘结,并使用导线将第二振动层上部与第一振动层下部相连接。(6) Select a piezoelectric material with a diameter of 8 mm to 12 mm, a thickness of 0.1 mm to 0.3 mm, and a small hole in the middle with a diameter of 0.2 mm to 1 mm as the second vibration layer. After aligning the second vibration layer with the through holes on the surface of the cavity layer, use one-component epoxy glue to bond the second vibration layer to the cavity layer, and use wires to attach the upper part of the second vibration layer to the first vibration layer. connected to the bottom of the layer.
(7)选择选择边长为10mm~20mm的绝缘材料,在中心位置激光钻孔出直径为0.5mm~2mm的通孔后,得到外壳体层。将外壳体层的边缘与振动基板层的边缘对齐后粘结。(7) Select an insulating material with a side length of 10 mm to 20 mm, and after laser drilling a through hole with a diameter of 0.5 mm to 2 mm at the center position, the outer shell layer is obtained. Align the edge of the outer shell layer with the edge of the vibration substrate layer and bond.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、当气体微泵中的双振动层正位移时,腔体层容积变大,导致腔体层内压强变小,流体由第二振动层表面的通孔流入腔体层,由于第二振动层与O型密封圈相接触,将输出流道与输入流道之间阻断,使流体从外壳体层表面的通孔吸入且不会逸散到输入流道,避免了双振动层往复工作时流体对流,因此可以增大流体单向运动的稳定性。当双振动层负位移时,腔体层容积变小,导致腔体层内压强变大,流体由腔体层泵出。周而复始的高频振动,从而实现流体的脉冲喷射与单向高质量流量输送。1. When the double vibration layer in the gas micropump is displaced positively, the volume of the cavity layer becomes larger, resulting in a decrease in the pressure in the cavity layer, and the fluid flows into the cavity layer through the through holes on the surface of the second vibration layer. The layer is in contact with the O-ring, which blocks the output flow channel and the input flow channel, so that the fluid is sucked from the through hole on the surface of the outer shell layer without escaping to the input flow channel, avoiding the reciprocating operation of the double vibrating layer. When the fluid convection, it can increase the stability of the fluid unidirectional movement. When the double vibration layer is negatively displaced, the volume of the cavity layer becomes smaller, resulting in an increase in the pressure in the cavity layer, and the fluid is pumped out from the cavity layer. Repeated high-frequency vibration, so as to achieve the pulse jet of fluid and one-way high-quality flow delivery.
2、通过使用双层压电材料,使腔体层的两侧均受到振动层的影响,最大程度得改变腔体层的容积,在保证气体微泵整体体积不明显变化的情况下,相对于基于单层压电材料的微泵,增大流量。2. By using the double-layer piezoelectric material, both sides of the cavity layer are affected by the vibration layer, and the volume of the cavity layer must be changed to the greatest extent. Micropumps based on single-layer piezoelectric materials, increasing flow.
3、使用弹性连接件连接中心振动部和边缘固定部,不仅使流体实现了单向运动,也减小了振动基板层的应力,增大其位移输出能力,提升器件的工作频率到20kHz以上,超出人耳可以听到的噪音范围,去除噪音。此外,中心振动部和弹性连接件的减薄为下振动部的粘结提供了空间。3. The use of elastic connectors to connect the central vibrating part and the edge fixing part not only enables the fluid to move in one direction, but also reduces the stress of the vibrating substrate layer, increases its displacement output capability, and increases the operating frequency of the device to more than 20kHz. Removes noise beyond what the human ear can hear. In addition, the thinning of the central vibrating portion and the elastic connection provides space for the bonding of the lower vibrating portion.
附图说明Description of drawings
图1为实施例中具有双振动层的压电驱动气体微泵剖面示意图;1 is a schematic cross-sectional view of a piezoelectrically driven gas micropump with dual vibration layers in an embodiment;
图2为实施例中进流层示意图;Fig. 2 is the schematic diagram of the inlet layer in the embodiment;
图3为实施例中振动基板层示意图;3 is a schematic diagram of a vibrating substrate layer in an embodiment;
图4为实施例中第一振动层示意图;Fig. 4 is the schematic diagram of the first vibration layer in the embodiment;
图5为实施例中腔体层示意图;5 is a schematic diagram of a cavity layer in an embodiment;
图6为实施例中第二振动层示意图;Fig. 6 is the schematic diagram of the second vibration layer in the embodiment;
图7为实施例中外壳体层示意图;7 is a schematic diagram of an outer shell layer in an embodiment;
图8为实施例中单振动层与双振动层流量输出比较图;Fig. 8 is the flow output comparison diagram of single vibrating layer and double vibrating layer in the embodiment;
图9为实施例中本发明振动基板层与普通基板层性能比较图。FIG. 9 is a performance comparison diagram of the vibrating substrate layer of the present invention and the common substrate layer in the embodiment.
具体实施方式Detailed ways
以下结合附图对本发明作进一步的解释说明;The present invention will be further explained below in conjunction with the accompanying drawings;
如图1所示,一种具有双振动层的压电驱动气体微泵,包括依次层叠的进流层100、振动基板层103、和外壳体层112,以及固定在振动基板层103朝向进流层100侧面的第一振动层102、固定在振动基板层103朝向外壳体层112侧面的腔体层106,和固定在腔体层106朝向外壳体层112侧面的第二振动层108。As shown in FIG. 1 , a piezoelectrically driven gas micropump with dual vibration layers includes an
如图2所示,所述进流层100的长度为15mm、厚度为1mm,材料为不锈钢、铜、银、铝、铝合金等中的一种或多种的组合。进流层100的表面开设有多个均匀分布的进气孔101。所述进气孔101的孔径为1mm。As shown in FIG. 2 , the length of the
如图3所示,所述振动基板层103的长度为15mm、厚度为0.5mm,材料为不锈钢、铜、银、铝、铝合金等中的一种或多种的组合。振动基板层包括边缘固定部、中心振动部和多个均匀分布且互不重叠的弹性连接件104,其中弹性连接件104和中心振动部的厚度为0.3mm。所述弹性连接件104包括第一连接部、第二连接部和弹性段。其中,弹性段呈圆弧形。第一连接部的一端与中心振动部连接,另一端与弹性段的一端连接。第二连接部的一端与与弹性段的另一端连接边缘固定部连接,另一端与边缘固定部连接。非直线型的弹性连接件104具有弹性,允许振动基板层103的中心振动部相对于边缘固定部上下振动。此外,还可以在中心振动部与边缘固定部之间形成流通路105,在实现气体流通的同时,还产生了流体流速差,以缓解第一振动层102中央受到大压力作用从而明显减小振幅的情况。As shown in FIG. 3 , the vibrating
如图4所示,所示第一振动层102的直径为10mm、厚度为0.2mm,材料为氮化铝、掺杂氮化铝、氧化锌、镍酸锂或锆钛酸铅等常见的压电材料。第一振动层102的边缘通过丝网印刷工艺印刷单组分环氧树脂胶水后,与振动基板层103的中心振动部粘结。印刷的胶层厚度小于20um。振动基板层103的边缘固定部通过环氧树脂胶与进流层100的边缘粘结,流通路105与开设在进流层100上的进气孔101连通,形成泵体的输入流道。而第一振动层102与进流层100之间形成一个空腔,在减小压电材料的驱动负载的同时,进一步增强流量、压力和效率。As shown in FIG. 4 , the
如图5所示,所述腔体层106的直径为10mm,厚度为0.1mm,圆心位置开设有直径为0.2mm的第一出气孔107。腔体层的一面平整,另一面的边缘向上凸起。边缘凸起的部分与振动基板层103另一侧的中心振动部通过导电胶水粘结,胶水材料可以是导电凝胶或者双组份含铜环氧树脂胶,从而使腔体层106与振动基板层103之间形成空腔。As shown in FIG. 5 , the diameter of the
如图6所示,所述第二振动层108的直径为10mm、厚度为0.2mm的压电材料。第二振动层108的圆心位置开设有直径为0.5mm的第二出气孔。第二振动层108通过单组分环氧树脂胶水粘结在腔体层106的表面,且第二出气孔109与第一出气孔107相互连通。As shown in FIG. 6 , the
第一振动层102和第二振动层108分别位于腔体层106的两侧,腔体层106外接引线,使两者受到相同大小、相同频率的激励,实现异向振动,可以放大振动层振幅,增强驱动性能。The
如图7所示,所述外壳体层112的边长为15mm,中心位置开设有直径为1mm的第三出气孔111。外壳体层112的内侧面边缘与振动基板层的边缘固定部粘结。在外壳体层的内侧面还固定有一个内径为10mm、用于防止气体泄漏的O型密封圈110。O型密封圈110与第二振动层108存在空腔。所述外壳体层112选择硬度系数较高的材料,例如玻璃、硅、碳化硅、氮化硅或陶瓷中的一种或多种。As shown in FIG. 7 , the side length of the
如图8所示,当只采用第二振动层108时,微泵的输出流量只有130ml/min,当采用双层振动层即第一振动层102与第二振动层108时,微泵的流量输出性能大幅提升,可达到300ml/min。As shown in FIG. 8 , when only the
如图9所示,所述带有镂空式振动基板层103的微泵工作频率远高于普通基板层,主要表现在其利用弹簧振子的周期公式,通过减小振子的质量来提升其谐振频率,此外,该设计也最大程度的减小了其振动时的应力,使振子工作频率提升120%的情况下,振动幅度仅减小20%。As shown in FIG. 9 , the working frequency of the micropump with the hollow vibrating
其中T表示振子周期;m表示振子的质量;k表示振子的劲度系数。Where T represents the oscillator period; m represents the oscillator mass; k represents the oscillator stiffness coefficient.
第一振动层102和振动基板层103、腔体层106和第二振动层108分别组成两个压电振子,利用压电材料的逆压电效应,即当在电介质的极化方向施加电场,这些电介质就会在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失,可以使压电振子做周期性的往复运动,从而改变腔体层106腔内的压强,与输入流道、输出流道形成压力差推动流体的定向流动。The
通过腔体层106上外接的引线,在第一振动层102的下表面与第二振动层108的上表面施加相同的峰峰值20V、压电振子的一阶谐振频率下的矩形波信号。A rectangular wave signal with the same peak-to-peak value of 20V and the first-order resonance frequency of the piezoelectric vibrator is applied to the lower surface of the
当第一振动层102和第二振动层108受到前半个激励信号时,第二振动层108沿着径向拉伸,带动腔体层106上表面向上运动,于此同时第一振动层102也沿着径向拉伸,带动腔体层106下表面向下运动,两者共同运动使腔体层106内的容积变大,使得气体由进气孔101进入腔体层106,少量气体由第三出气孔111进入腔体层,由于外壳体层112的内侧面设置的O型密封圈110,使得从第三出气孔111流入的气体大部分流入了腔体层106,无法与进气孔101流入的气体形成对流。When the
当第一振动层102和第二振动层108受到后半个激励信号时,第二振动层108沿着径向收缩,带动腔体层106上表面向下运动,于此同时第一振动层102也沿着径向收缩,带动腔体层106下表面向上运动,两者共同运动使腔体层106内的容积变小,使得气体由腔体层106大量泵出。When the
在这样的吸气/放气的往复工作工过程中,第三出气孔111附近的气体会有更高强度的剪切动作,由于合成射流原理,在第三出气孔111的位置形成了大量的反向涡流对,在下一个周期吸气时,由于惯性,前一个周期产生的漩涡对已经远离第三出气孔111,因此不会再次被吸回。利用合成射流原理可实现无阀驱动器的连续流体驱动。In such a reciprocating process of inhalation/deflation, the gas near the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210773597.8A CN114962227A (en) | 2022-07-01 | 2022-07-01 | Piezoelectric driving gas micropump with double vibration layers and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210773597.8A CN114962227A (en) | 2022-07-01 | 2022-07-01 | Piezoelectric driving gas micropump with double vibration layers and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114962227A true CN114962227A (en) | 2022-08-30 |
Family
ID=82972402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210773597.8A Withdrawn CN114962227A (en) | 2022-07-01 | 2022-07-01 | Piezoelectric driving gas micropump with double vibration layers and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114962227A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116961467A (en) * | 2023-05-24 | 2023-10-27 | 江苏蚂蚁动力科技有限公司 | A piezoelectric vibrator and fluid pump |
-
2022
- 2022-07-01 CN CN202210773597.8A patent/CN114962227A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116961467A (en) * | 2023-05-24 | 2023-10-27 | 江苏蚂蚁动力科技有限公司 | A piezoelectric vibrator and fluid pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5012889B2 (en) | Piezoelectric micro blower | |
EP2090781B1 (en) | Piezoelectric micro-blower | |
JP5287854B2 (en) | Piezoelectric micro blower | |
EP2812573B1 (en) | Disc pump with advanced actuator | |
JP4957480B2 (en) | Piezoelectric micro pump | |
JP5429317B2 (en) | Piezoelectric micro pump | |
JP2019132278A (en) | Pump comprising polygon-shaped piezo diaphragm transducer | |
US12331759B2 (en) | Method of making an actuator for a resonant acoustic pump | |
CN208380823U (en) | A kind of fluid pump and exciting element | |
CN109695562A (en) | A kind of fluid pump and exciting element | |
CN114962227A (en) | Piezoelectric driving gas micropump with double vibration layers and preparation method thereof | |
CN107795465A (en) | Micro fluid control device | |
CN108167167A (en) | A kind of miniature viberation membrane compressor of Combined Electrostatic and Piezoelectric Driving | |
JP6574464B2 (en) | Small fluid control device | |
CN109854490B (en) | Axial-flow miniature piezoelectric gas compressor | |
CN115163463A (en) | Piezoelectric micropump optimization method aiming at different use scenes | |
CN116677592A (en) | Piezoelectric micropump of high flow side direction air inlet | |
CN116677591A (en) | A piezoelectric micropump that suppresses internal eddy currents | |
JP2011027057A (en) | Piezoelectric pump and method for driving the same | |
CN209892419U (en) | A hybrid cavity-driven miniature piezoelectric gas compressor | |
TWI706082B (en) | Actuator structure and micro-fluid control device using the same | |
CN114228966B (en) | Piezoelectric pulse impeller with high mass flow and underwater robot | |
CN103925187B (en) | A kind of many oscillator piezoelectric pumps | |
CN110762225A (en) | A rectangular piezoelectric vibrator-driven microfluidic valve | |
CN113187702B (en) | Valveless piezoelectric pump and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20220830 |