CN116677592A - Piezoelectric micropump of high flow side direction air inlet - Google Patents
Piezoelectric micropump of high flow side direction air inlet Download PDFInfo
- Publication number
- CN116677592A CN116677592A CN202310782620.4A CN202310782620A CN116677592A CN 116677592 A CN116677592 A CN 116677592A CN 202310782620 A CN202310782620 A CN 202310782620A CN 116677592 A CN116677592 A CN 116677592A
- Authority
- CN
- China
- Prior art keywords
- layer
- inflow
- inlet
- vibrating
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007789 sealing Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 60
- 230000000903 blocking effect Effects 0.000 claims description 12
- 230000004888 barrier function Effects 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/047—Pumps having electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/12—Casings; Cylinders; Cylinder heads; Fluid connections
- F04B39/123—Fluid connections
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Abstract
本发明公开了一种高流量侧向进气的压电微泵;该压电微泵包括依次层叠的封闭层、进流层、振动基板层、壳体层,以及固定在振动基板层上的振动层。进流层朝向封闭层的侧面开设有合流腔,以及一条或多条长条状的进气流道;进气流道的一端连接至进流层的边缘处,形成进气口;各流道的另一端均连接至合流腔。合流腔中开设有通流孔。进流层背离封闭层的侧面与合流腔之间形成厚度为40μm~60μm的弹性缓冲区。进流层的材质为金属。本发明通过进流层上设置与泵体侧部直接连通的进气流道,使得压电微泵的进气口转移至泵体的侧表面,以便于简化泵体的底面与外部结构的固定方式,使得压电微泵能够适应更加丰富的使用场景。
The invention discloses a piezoelectric micropump with high-flow lateral air intake; vibrating layer. The side of the inlet layer facing the sealing layer is provided with a confluence chamber and one or more strip-shaped inlet channels; one end of the inlet channel is connected to the edge of the inlet layer to form an air inlet; the other side of each channel Both ends are connected to the confluence chamber. A flow hole is opened in the confluence cavity. An elastic buffer zone with a thickness of 40 μm to 60 μm is formed between the side of the inflow layer away from the sealing layer and the confluence chamber. The material of the inflow layer is metal. In the present invention, the air inlet of the piezoelectric micropump is transferred to the side surface of the pump body by setting the inlet flow channel directly connected with the side of the pump body on the inflow layer, so as to simplify the fixing method between the bottom surface of the pump body and the external structure , so that the piezoelectric micropump can adapt to more abundant usage scenarios.
Description
技术领域technical field
本发明属于气体微泵技术领域,具体涉及一种高流量侧向进气的压电微泵。The invention belongs to the technical field of gas micropumps, and in particular relates to a piezoelectric micropump with high-flow lateral air intake.
背景技术Background technique
随着微流体技术的发展,开始探索微型流体控制的新方法和器件。传统的气体传输方法受限于体积庞大、复杂性和可操作性等问题,而压电微泵以其微小尺寸、快速响应和精确控制等优势。例如微型气体传感器在环境监测、气体检测和生物传感等领域具有重要应用。然而,传统的气体传感器需要借助泵或压缩机等外部装置来实现气体的供给和排除,而压电微泵作为一种微小、高效、可集成的气体传输装置,能够满足微型气体传感器对气体供给的要求。在医疗领域,气体传输是许多治疗和诊断过程中的重要环节。例如,微小气体泵可以用于输送氧气、药物或气体混合物到患者的呼吸系统中。与传统的气体输送方法相比,压电微泵具有体积小、响应快、噪音低等特点,能够提供更精确和个性化的气体输送。With the development of microfluidic technology, new methods and devices for microfluidic control have begun to be explored. Traditional gas delivery methods are limited by bulky, complex, and maneuverable issues, while piezoelectric micropumps are known for their tiny size, fast response, and precise control. For example, micro gas sensors have important applications in the fields of environmental monitoring, gas detection and biosensing. However, traditional gas sensors need external devices such as pumps or compressors to realize gas supply and removal, and piezoelectric micropumps, as a tiny, efficient, and integrable gas transmission device, can meet the needs of micro gas sensors for gas supply. requirements. In the medical field, gas delivery is an important part of many therapeutic and diagnostic procedures. For example, tiny gas pumps can be used to deliver oxygen, drugs or gas mixtures into a patient's respiratory system. Compared with traditional gas delivery methods, piezoelectric micropumps have the characteristics of small size, fast response, and low noise, which can provide more precise and personalized gas delivery.
现有的压电微泵结构如图1所示,其进气口115设置在泵体的底面(即封闭层100远离进流层101的一侧);该进气结构虽然在进流层表面开设进气孔可以很好地实现气体的流通;但是,在多数使用场景中,压电微泵的底面需要用于固定安装,导致压电微泵的进气结构易被封闭。Existing piezoelectric micropump structure as shown in Figure 1, its air inlet 115 is arranged on the bottom surface of pump body (that is sealing layer 100 is away from the side of inflow layer 101); Opening air intake holes can achieve gas circulation well; however, in most usage scenarios, the bottom surface of the piezoelectric micropump needs to be used for fixed installation, resulting in the air intake structure of the piezoelectric micropump being easily closed.
此外,现有的压电微泵在进流层101与振动基板层107之间需设置有缓冲层104,用于避免振动基板层107的振动中直接撞击刚性较高的阻隔层101,导致损坏。而缓冲层104会增加压电微泵的整体层数,使得压电微泵上的接缝增加,增加了粘结工艺,使得泄漏风险增加,泵体集成度降低。In addition, existing piezoelectric micropumps need to be provided with a buffer layer 104 between the inflow layer 101 and the vibrating substrate layer 107 to prevent the vibration of the vibrating substrate layer 107 from directly hitting the rigid barrier layer 101, resulting in damage. . The buffer layer 104 will increase the overall number of layers of the piezoelectric micropump, increase the seams on the piezoelectric micropump, increase the bonding process, increase the risk of leakage, and reduce the integration of the pump body.
发明内容Contents of the invention
本发明的目的在于提出了一种高流量侧向进气的压电微泵,实现高流量且低矮化、集成度更高的气体传输。The purpose of the present invention is to propose a piezoelectric micropump with high flow rate and lateral air intake, so as to realize gas transmission with high flow rate, low profile and higher integration.
第一方面,本发明提供第一种高流量侧向进气的压电微泵,其包括依次层叠的封闭层、进流层、振动基板层、壳体层,以及固定在振动基板层上的振动层。封闭层与进流层之间形成输入腔;进流层与振动基板层之间形成变压腔室;振动基板层与壳体层之间形成输出腔。In the first aspect, the present invention provides the first piezoelectric micropump with high-flow lateral air intake, which includes a sealing layer, an inflow layer, a vibrating substrate layer, a shell layer, and a vibrating substrate layer fixed in sequence. vibrating layer. An input chamber is formed between the sealing layer and the inflow layer; a pressure changing chamber is formed between the inflow layer and the vibrating substrate layer; an output chamber is formed between the vibrating substrate layer and the shell layer.
所述的进流层朝向封闭层的侧面开设有合流腔,以及一条或多条长条状的进气流道;进气流道的一端连接至进流层的边缘处,形成进气口;各流道的另一端均连接至合流腔。合流腔中开设有通流孔。进流层背离封闭层的侧面与合流腔之间形成厚度为40μm~60μm的弹性缓冲区。进流层的材质为金属。The side of the inlet layer facing the sealing layer is provided with a confluence chamber and one or more strip-shaped air inlet channels; one end of the inlet air channel is connected to the edge of the inlet layer to form an air inlet; each flow The other end of the channel is connected to the confluence chamber. A flow hole is opened in the confluence cavity. An elastic buffer zone with a thickness of 40 μm to 60 μm is formed between the side of the inflow layer away from the sealing layer and the confluence chamber. The material of the inflow layer is metal.
作为优选,所述的进流层靠近振动基板层的侧面上开设有与进气流道错开的多个存储腔室。Preferably, a plurality of storage chambers staggered from the intake flow channel are provided on the side of the intake layer close to the vibrating substrate layer.
第二方面,本发明提供第二种高流量侧向进气的压电微泵,其包括依次层叠的进流层、缓冲层、振动基板层、上供电层、壳体层,以及固定在振动基板层上的振动层。进流层与缓冲层之间形成输入腔;进流层与振动基板层之间形成变压腔室;振动基板层与壳体层之间形成输出腔。In a second aspect, the present invention provides a second high-flow piezoelectric micropump with lateral air intake, which includes an inflow layer, a buffer layer, a vibrating substrate layer, an upper power supply layer, a casing layer, and a vibrating layer fixed in sequence. The vibration layer on the substrate layer. An input cavity is formed between the inflow layer and the buffer layer; a variable pressure chamber is formed between the inflow layer and the vibrating substrate layer; an output cavity is formed between the vibrating substrate layer and the shell layer.
所述的进流层靠近缓冲层的侧面开设有合流腔,以及一条或多条长条状的进气流道;进气流道的一端连接至进流层的边缘处,形成进气口;各流道的另一端均连接至合流腔。缓冲层上开设有通流孔。通流孔与合流腔的中心位置对齐并连通。所述的缓冲层的材质为金属,且厚度为40μm~60μm。The side of the inlet layer close to the buffer layer is provided with a confluence chamber and one or more strip-shaped inlet channels; one end of the inlet channel is connected to the edge of the inlet layer to form an air inlet; each flow The other end of the channel is connected to the confluence chamber. The buffer layer is provided with flow holes. The flow hole is aligned with and communicated with the center of the confluence cavity. The buffer layer is made of metal and has a thickness of 40 μm˜60 μm.
作为优选,所述的进流层靠近缓冲层的侧面上开设有与进气流道错开的多个存储腔室;缓冲层上与各存储腔室对齐的均开设有通槽,使得各存储腔室与变压腔室连通。As a preference, the side of the inflow layer close to the buffer layer is provided with a plurality of storage chambers that are staggered from the inlet flow channel; the buffer layer is provided with through grooves aligned with each storage chamber, so that each storage chamber communicated with the pressure chamber.
作为优选,所述的合流腔位于进流层的中心位置。Preferably, the confluence chamber is located at the center of the inflow layer.
作为优选,所述的振动基板层朝向进流层的侧面固定有堵塞层;堵塞层与进流层的合流腔对齐,且堵塞层的直径大于合流腔的直径。Preferably, a plugging layer is fixed on the side of the vibrating substrate layer facing the inlet layer; the plugging layer is aligned with the confluence cavity of the inflow layer, and the diameter of the plugging layer is larger than that of the confluence cavity.
作为优选,所述的堵塞层与振动基板层一体成型。Preferably, the plugging layer and the vibration substrate layer are integrally formed.
作为优选,所述的进气流道的长度为6mm~8mm,厚度小于300μm;所述的合流腔的直径为7mm~10mm、深度为300μm-400μm。Preferably, the length of the inlet channel is 6mm-8mm, and the thickness is less than 300μm; the diameter of the confluence cavity is 7mm-10mm, and the depth is 300μm-400μm.
作为优选,所述的振动基板层包括边缘固定部、弹性连接件和中心振动部;边缘固定部的中心孔边缘与中心振动部的外边缘之间通过弹性连接件连接;弹性连接件包括第一连接部、第二连接部和弹性段;第一连接部的一端与中心振动部连接,第一连接部的另一端与弹性段的一端连接;第二连接部的一端与弹性段的另一端连接;第二连接部的另一端与边缘固定部连接;第一连接部的一端与中心振动部连接,第一连接部的另一端与弹性段的一端连接;第二连接部的一端与弹性段的另一端连接;第二连接部的另一端与边缘固定部连接;弹性段呈弧形,且圆心位置与中心振动部的中心点重合。Preferably, the vibrating substrate layer includes an edge fixing part, an elastic connecting piece and a central vibrating part; the center hole edge of the edge fixing part is connected to the outer edge of the central vibrating part through an elastic connecting piece; the elastic connecting piece includes a first Connecting part, second connecting part and elastic segment; one end of the first connecting part is connected with the central vibration part, the other end of the first connecting part is connected with one end of the elastic segment; one end of the second connecting part is connected with the other end of the elastic segment ; The other end of the second connecting part is connected with the edge fixing part; one end of the first connecting part is connected with the central vibration part, and the other end of the first connecting part is connected with one end of the elastic section; one end of the second connecting part is connected with the elastic section The other end is connected; the other end of the second connecting part is connected to the edge fixing part; the elastic section is arc-shaped, and the position of the center of the circle coincides with the center point of the central vibrating part.
作为优选,振动基板层与壳体层之间设置有上供电层;所述的振动层采用压电陶瓷;振动层背离振动基板层的一侧通过上供电层引出至第一个供电端子;振动层朝向振动基板层的一侧通过阻隔层引出第二个供电端子。Preferably, an upper power supply layer is provided between the vibrating substrate layer and the shell layer; the vibrating layer is made of piezoelectric ceramics; the side of the vibrating layer away from the vibrating substrate layer is led to the first power supply terminal through the upper power supply layer; The side of the layer facing the vibrating substrate layer leads out the second power supply terminal through the barrier layer.
本发明具有的有益效果是:The beneficial effects that the present invention has are:
1、本发明通过进流层上设置与泵体侧部直接连通的进气流道,使得压电微泵的进气口转移至泵体的侧表面,以便于简化泵体的底面与外部结构的固定方式,使得压电微泵能够适应更加丰富的使用场景。1. In the present invention, the air inlet of the piezoelectric micropump is transferred to the side surface of the pump body by setting the inlet flow channel directly connected with the side of the pump body on the inflow layer, so as to simplify the connection between the bottom surface of the pump body and the external structure. The fixed method enables the piezoelectric micropump to adapt to more abundant usage scenarios.
2、本发明通过蚀刻的方式使得进流层的中部形成合流腔和通流孔;合流腔所在位置形成厚度仅40μm-60μm的弹性缓冲区;厚度较小的弹性缓冲区能够呈现良好的弹性,代替现有压电微泵中缓冲层的作用,使得压电微泵的结构进一步紧凑化,减小了装配的繁琐,且降低压电微泵的渗漏风险。2. The present invention makes the middle part of the inflow layer form a confluence cavity and a flow hole by means of etching; an elastic buffer zone with a thickness of only 40 μm-60 μm is formed at the position of the confluence cavity; the elastic buffer zone with a smaller thickness can present good elasticity, By replacing the function of the buffer layer in the existing piezoelectric micropump, the structure of the piezoelectric micropump is further compacted, the complexity of assembly is reduced, and the risk of leakage of the piezoelectric micropump is reduced.
3、本发明在进流层靠近振动基板层的侧面开设存储腔室,从而提高泵体的内部容积,在保持结构紧凑的同时,增大压电微泵的气体输出能力。3. In the present invention, a storage chamber is provided on the side of the inflow layer close to the vibrating substrate layer, thereby increasing the internal volume of the pump body and increasing the gas output capacity of the piezoelectric micropump while maintaining a compact structure.
附图说明Description of drawings
图1为现有的压电微泵内部结构示意图;FIG. 1 is a schematic diagram of the internal structure of an existing piezoelectric micropump;
图2为本发明实施例1的内部结构示意图;Figure 2 is a schematic diagram of the internal structure of Embodiment 1 of the present invention;
图3为本发明实施例1的第一张爆炸示意图;Fig. 3 is the first explosion schematic diagram of Embodiment 1 of the present invention;
图4为本发明实施例1的第二张爆炸示意图;Fig. 4 is the second explosion schematic diagram of Embodiment 1 of the present invention;
图5为本发明实施例1中封闭层的结构示意图;Fig. 5 is the structural representation of sealing layer in the embodiment 1 of the present invention;
图6为本发明实施例1中进流层的结构示意图;6 is a schematic structural view of the inflow layer in Embodiment 1 of the present invention;
图7为本发明实施例1中阻隔层朝向进流层的侧面结构示意图;7 is a schematic diagram of the side structure of the barrier layer facing the inflow layer in Example 1 of the present invention;
图8为本发明实施例1中阻隔层背离进流层的侧面结构示意图;Fig. 8 is a schematic diagram of the side structure of the barrier layer facing away from the inflow layer in Example 1 of the present invention;
图9为本发明实施例1中上供电层的结构示意图;9 is a schematic structural diagram of the upper power supply layer in Embodiment 1 of the present invention;
图10为本发明实施例2的内部结构示意图;Fig. 10 is a schematic diagram of the internal structure of Embodiment 2 of the present invention;
图11为本发明实施例2中进流层的结构示意图;Figure 11 is a schematic structural view of the inflow layer in Example 2 of the present invention;
图12为本发明实施例2中缓冲层的结构示意图;Figure 12 is a schematic structural view of the buffer layer in Example 2 of the present invention;
具体实施方式Detailed ways
以下结合附图对本发明第一实施方案作进一步说明。The first embodiment of the present invention will be further described below in conjunction with the accompanying drawings.
如图2、3和4所示,一种高流量侧向进气的压电微泵,包括依次层叠的封闭层100、进流层101、振动基板层106、上供电层111、壳体层113,以及固定在振动基板层106朝向进流层101的侧面的堵塞层108,固定在振动基板层106朝向壳体层的侧面的振动层109。封闭层100与进流层101之间形成输入腔;进流层101与振动基板层106之间形成变压腔室110;振动基板层106与壳体层113之间形成输出腔。As shown in Figures 2, 3 and 4, a piezoelectric micropump with high-flow lateral air intake includes a sealing layer 100, an inflow layer 101, a vibrating substrate layer 106, an upper power supply layer 111, and a shell layer stacked in sequence. 113, and the blocking layer 108 fixed on the side of the vibrating substrate layer 106 facing the inflow layer 101, and the vibrating layer 109 fixed on the side of the vibrating substrate layer 106 facing the housing layer. An input cavity is formed between the sealing layer 100 and the inflow layer 101 ; a variable pressure chamber 110 is formed between the inflow layer 101 and the vibrating substrate layer 106 ; an output cavity is formed between the vibrating substrate layer 106 and the casing layer 113 .
封闭层100固定在进流层101远离振动基板层的侧面,对整个泵体的一侧进行封闭。进流层101朝向封闭层100的侧面开设有合流腔103和多条长条状的进气流道102;合流腔103位于进流层101的中心位置。各流道102的一端直通进流层101的侧表面,形成压电微泵侧部的进气口115;各流道102的另一端均连接至进流层101中央的合流腔103。合流腔103的中心位置开设有连通至变压腔室110的通流孔105。合流腔103的深度小于进流层101的厚度,且差值为40μm-60μm;进流层101背离封闭层100的侧面与合流腔103之间形成厚度仅为40μm-60μm的弹性缓冲区(图中为凸显弹性缓冲区的存在,将其厚度绘制得较大,其实际厚度远远小于进流层101)。The sealing layer 100 is fixed on the side of the inflow layer 101 away from the vibrating substrate layer, and seals one side of the entire pump body. The side of the inlet layer 101 facing the sealing layer 100 is provided with a confluence chamber 103 and a plurality of strip-shaped inlet channels 102 ; the confluence chamber 103 is located at the center of the inlet layer 101 . One end of each channel 102 leads directly to the side surface of the inflow layer 101 to form an air inlet 115 on the side of the piezoelectric micropump; A through hole 105 communicating with the pressure changing chamber 110 is defined at the center of the confluence chamber 103 . The depth of the confluence cavity 103 is smaller than the thickness of the inflow layer 101, and the difference is 40 μm-60 μm; an elastic buffer zone with a thickness of only 40 μm-60 μm is formed between the side of the inflow layer 101 away from the sealing layer 100 and the confluence cavity 103 (Fig. In order to highlight the existence of the elastic buffer zone, its thickness is drawn larger, and its actual thickness is much smaller than that of the inflow layer 101).
进流层101的材料为铜、银、铝、铝合金中的一种或多种,其在厚度较大(例如300μm~400μm)时在压电微泵中呈现近似于刚体的结构特性;其在厚度较小(例如40μm-60μm)时在压电微泵中呈现大弹性的结构特性,由此使得一体成型在进流层101上的弹性缓冲区能够起到缓冲振动基板层106带来的冲击的作用,替代现有技术中独立存在的缓冲层,在简化压电微泵的同时,使得压电微泵结构更加紧密,提高压电微泵长期使用中的稳定性。The material of the inflow layer 101 is one or more of copper, silver, aluminum, and aluminum alloys, and when the thickness is relatively large (for example, 300 μm to 400 μm), it exhibits structural characteristics similar to rigid bodies in the piezoelectric micropump; its When the thickness is small (for example, 40 μm-60 μm), the piezoelectric micropump exhibits a large elastic structural characteristic, so that the elastic buffer zone integrally formed on the inflow layer 101 can play a role in buffering the vibration caused by the substrate layer 106. The effect of impact replaces the independent buffer layer in the prior art, while simplifying the piezoelectric micropump, it makes the structure of the piezoelectric micropump more compact, and improves the stability of the piezoelectric micropump in long-term use.
固定在振动基板层106上的堵塞层108与进流层101的合流腔103对齐,且堵塞层108的直径大于合流腔103的直径。The plugging layer 108 fixed on the vibrating substrate layer 106 is aligned with the confluence cavity 103 of the inlet layer 101 , and the diameter of the plugging layer 108 is larger than that of the confluence cavity 103 .
正、负电极的供电端子分别置于进流层101和供电层111上,并与振动层109的相反侧面分别形成电连接,实现对振动层109的供电。The power supply terminals of the positive and negative electrodes are respectively placed on the inflow layer 101 and the power supply layer 111 , and are respectively electrically connected to opposite sides of the vibration layer 109 to realize power supply to the vibration layer 109 .
进流层101上的进气流道102、合流腔103与通流孔105共同组成输入流道,外部气体可以通过进流层101侧表面的进气流道102进入泵体内部,该结构一方面能够使得外部气体可以从多方向输入;另一方面能够允许气体从压电微泵的侧部输入,使得压电微泵的端面能够用于固定微泵,从而简化了压电微泵的按照难度,拓宽了压电微泵的应用场景。The inlet flow channel 102 on the inlet layer 101, the confluence cavity 103 and the flow hole 105 together form the input flow channel, and external air can enter the pump body through the inlet flow channel 102 on the side surface of the inlet layer 101. On the one hand, this structure can It allows external gas to be input from multiple directions; on the other hand, it can allow gas to be input from the side of the piezoelectric micropump, so that the end face of the piezoelectric micropump can be used to fix the micropump, thereby simplifying the installation of the piezoelectric micropump. The application scenarios of piezoelectric micropumps are broadened.
如图5所示,封闭层100的边长为10mm~20mm,厚度为100μm-500μm,固定在进流层101远离振动基板层106的侧面,用于封闭泵体。所述进流层100的材料为铜、银、铝、铝合金等热传导系数较大、热膨胀系数较小中的一种或多种的组合。As shown in FIG. 5 , the sealing layer 100 has a side length of 10 mm to 20 mm and a thickness of 100 μm to 500 μm, and is fixed on the side of the inflow layer 101 away from the vibrating substrate layer 106 to seal the pump body. The material of the inlet layer 100 is one or a combination of copper, silver, aluminum, aluminum alloy, etc., which have relatively high thermal conductivity and low thermal expansion coefficient.
如图6所示,进流层101是通过蚀刻工艺制备而成的,刻蚀次数为3次,厚度小于400μm。进气流道102的长度为6mm-8mm,厚度小于300μm;合流腔103的直径为7mm~10mm、深度为300μm-400μm。通流孔105的直径范围为10μm-50μm。在进流层101的外侧是连接电源的下供电端子,由于金属的导电性,给振动层109靠近进流层101一侧表面供电。进流层101的材料可以是铜、银、铝、铝合金等材料之一或多种材料的组合。As shown in FIG. 6 , the inflow layer 101 is prepared by an etching process, the etching times are three times, and the thickness is less than 400 μm. The length of the inlet channel 102 is 6 mm-8 mm, and the thickness is less than 300 μm; the diameter of the confluence cavity 103 is 7 mm-10 mm, and the depth is 300 μm-400 μm. The diameter of the flow holes 105 ranges from 10 μm to 50 μm. On the outside of the inflow layer 101 is the lower power supply terminal connected to the power supply, which supplies power to the surface of the vibrating layer 109 near the inflow layer 101 due to the conductivity of the metal. The material of the inflow layer 101 may be one of copper, silver, aluminum, aluminum alloy, etc. or a combination of multiple materials.
如图7和8所示,振动基板层106的边长为10mm~20mm,厚度为50μm-500μm,材料为包括不锈钢304、430、429、Ni42、Ni36、铜、银、铝、铝合金在内的热膨胀系数为5-10um/(m*k),杨氏模量为190-220GP,维氏硬度为250-280HV的材料中的一种或多种。As shown in Figures 7 and 8, the side length of the vibration substrate layer 106 is 10 mm to 20 mm, the thickness is 50 μm to 500 μm, and the material is stainless steel 304, 430, 429, Ni42, Ni36, copper, silver, aluminum, and aluminum alloy. One or more of the materials whose thermal expansion coefficient is 5-10um/(m*k), Young's modulus is 190-220GP, and Vickers hardness is 250-280HV.
振动基板层106包括边缘固定部、弹性连接件107和中心振动部。边缘固定部的中心孔边缘与中心振动部的外边缘之间通过弹性连接件107连接。弹性连接件107包括第一连接部、第二连接部和弹性段。其中,弹性段呈圆弧形,长度为6mm-8mm,厚度为0.2mm-0.3mm,第一连接部的一端与中心振动部连接,第一连接部的另一端与弹性段的一端连接。第二连接部的一端与弹性段的另一端连接;第二连接部的另一端与边缘固定部连接。弹性连接件107为具有弹性且非直线的金属条,振动基板层106的中心振动部通过四个弹性连接件107(各弹性连接件间呈90度分布)被弹性支撑在边缘固定部的四个连接点;因此允许中心振动部相对于边缘固定部上下振动。The vibrating substrate layer 106 includes an edge fixing part, an elastic connecting piece 107 and a central vibrating part. The edge of the central hole of the edge fixing part is connected to the outer edge of the central vibrating part through an elastic connecting piece 107 . The elastic connecting member 107 includes a first connecting portion, a second connecting portion and an elastic section. Wherein, the elastic section is arc-shaped, with a length of 6mm-8mm and a thickness of 0.2mm-0.3mm. One end of the first connecting part is connected to the central vibrating part, and the other end of the first connecting part is connected to one end of the elastic section. One end of the second connecting part is connected with the other end of the elastic section; the other end of the second connecting part is connected with the edge fixing part. The elastic connectors 107 are elastic and non-linear metal strips. The central vibrating part of the vibrating substrate layer 106 is elastically supported on the four edges of the edge fixing parts through four elastic connectors 107 (distributed at 90 degrees between the elastic connectors). connection points; thus allowing the central vibrating part to vibrate up and down relative to the edge fixed parts.
堵塞层108与振动基板层106一体成型结构;堵塞层108通过对振动基板层106的中心振动部侧面的边缘处进行蚀刻形成;堵塞层108的直径为2mm-5mm、高度为10μm~50μm。The blocking layer 108 and the vibrating substrate layer 106 are integrally formed; the blocking layer 108 is formed by etching the edge of the side of the central vibrating part of the vibrating substrate layer 106; the blocking layer 108 has a diameter of 2mm-5mm and a height of 10μm-50μm.
振动层109是粘接在振动基板层106的中心振动部远离阻隔层102的侧面上的直径为3mm-6mm、厚度为50μm~300μm的高压电常数、低损耗的压电材料;振动层109的材料为氮化铝、掺钪氮化铝、氧化锌、镍酸锂或锆钛酸铅的一种或多种,特选为PZT4。振动层109与振动基板层106具体通过单组分或双组份环氧树脂胶水粘结。The vibrating layer 109 is a piezoelectric material with a diameter of 3mm-6mm and a thickness of 50μm-300μm, which is bonded to the side of the central vibrating part of the vibrating substrate layer 106 away from the barrier layer 102; The material is one or more of aluminum nitride, scandium-doped aluminum nitride, zinc oxide, lithium nickelate or lead zirconate titanate, especially PZT4. The vibrating layer 109 and the vibrating substrate layer 106 are specifically bonded by one-component or two-component epoxy resin glue.
如图9所示,上供电层111是在振动基板层上负责给振动层109远离振动基板层106一侧表面供电的上供电层,其内部端子112利用焊接连接于振动层109振动的波节处,此处振动幅度最小,其材料采用铜、银、金等导电性能优异的一种或多种,特选为紫铜T2。As shown in Figure 9, the upper power supply layer 111 is the upper power supply layer responsible for supplying power to the surface of the vibration layer 109 away from the vibration substrate layer 106 on the vibration substrate layer, and its internal terminal 112 is connected to the vibration node of the vibration layer 109 by welding The place where the vibration amplitude is the smallest, and its material is one or more of copper, silver, gold and other excellent conductive properties, especially red copper T2.
壳体层113的边长为10mm~20mm,选择硬度系数较高的材料,例如铜、银、铝、铝合金中的一种或多种,通过3D打印或者CNC机加工方式加工而成,并在其中心位置开设出与输出腔连通的出气孔114。壳体层113的内侧面边缘与振动基板层106的边缘固定,且与振动层109不接触,振动基板层106上的变压腔室110与开设壳体层113上的出气孔114通过输出腔连通,形成泵体的输出流道。The side length of the shell layer 113 is 10 mm to 20 mm, and a material with a high hardness coefficient is selected, such as one or more of copper, silver, aluminum, and aluminum alloy, and is processed by 3D printing or CNC machining, and An air outlet 114 communicating with the output chamber is opened at its central position. The inner side edge of the housing layer 113 is fixed to the edge of the vibrating substrate layer 106, and is not in contact with the vibrating layer 109. The variable pressure chamber 110 on the vibrating substrate layer 106 and the air outlet hole 114 on the housing layer 113 pass through the output cavity Connected to form the output channel of the pump body.
振动基板层106、堵塞层108和振动层109组成压电振子,向进流层101和供电层111的供电端子分别施加峰值为20Vpp、一阶谐振频率(23kHz左右)、相位差为180°的矩形波信号,当振动层109受到前半个激励信号时,由于逆压电效应,其带动振动基板层106的中心振动部朝向壳体层113运动,迫使堵塞层108与进流层101分离,此时振动基板层106的变形使得变压腔室110的容积增大,外界流体通过进气流道102、合流腔103、通流孔105被吸入输入流道和变压腔室110。输出流道中的流体受迫从喷射口喷出,形成推进力。The vibrating substrate layer 106, the blocking layer 108 and the vibrating layer 109 form a piezoelectric vibrator, and the power supply terminals of the inflow layer 101 and the power supply layer 111 are respectively applied with a peak value of 20Vpp, a first-order resonance frequency (about 23kHz), and a phase difference of 180°. Rectangular wave signal, when the vibrating layer 109 receives the first half of the excitation signal, due to the inverse piezoelectric effect, it drives the central vibrating part of the vibrating substrate layer 106 to move toward the shell layer 113, forcing the blocking layer 108 to separate from the inflow layer 101, thus During vibration, the deformation of the substrate layer 106 increases the volume of the variable pressure chamber 110 , and the external fluid is sucked into the input flow channel and the variable pressure chamber 110 through the inlet flow channel 102 , the confluence cavity 103 , and the flow hole 105 . The fluid in the output channel is forced to eject from the injection port to form propulsion.
当振动层109受到后半个激励信号时,同样因为逆压电效应,其带动振动基板层106的中心振动部朝向进流层101运动时,迫使堵塞层108抵住通流孔105,从而隔断进气孔,此时振动基板层106的变形使得变压腔室110的容积减小,变压腔室110内的流体输入到输出流道。因此,向振动层109施加周期性交变电压,即可使得流体在腔体内的单向传输,在出气孔114处可持续产生单向流通。When the vibrating layer 109 receives the second half of the excitation signal, also because of the inverse piezoelectric effect, it drives the central vibrating part of the vibrating substrate layer 106 to move toward the inflow layer 101, forcing the blocking layer 108 against the through hole 105, thereby blocking The air inlet hole, at this moment, the deformation of the vibrating substrate layer 106 reduces the volume of the pressure changing chamber 110, and the fluid in the pressure changing chamber 110 is input to the output channel. Therefore, applying a periodic alternating voltage to the vibrating layer 109 can enable the one-way transmission of the fluid in the cavity, and the one-way flow can be continuously generated at the air outlet 114 .
进流层101上开设的进气流道102,是为了在保证气体流通的情况下,让微泵的结构更加紧凑和低矮。进气流道102的数量和面积不局限于3条长条状,针对不同数量和尺寸的进气流道,可以让微泵的流量和质量达到理想的效果。The inlet flow channel 102 provided on the inlet layer 101 is to make the structure of the micropump more compact and low under the condition of ensuring gas circulation. The quantity and area of the intake air passages 102 are not limited to three long strips, and the flow and quality of the micropump can achieve ideal results for the intake air passages of different numbers and sizes.
实施例2Example 2
一种高流量侧向进气的压电微泵,本实施例与实施例1的区别在于:本实施例不设封闭层100,且增设有缓冲层104。A piezoelectric micropump with high-flow lateral air intake, the difference between this embodiment and Embodiment 1 is that this embodiment does not have a sealing layer 100, and a buffer layer 104 is added.
如图10所示,本实施例中,进流层101、缓冲层104、振动基板层106、上供电层111、壳体层113依次层叠设置。As shown in FIG. 10 , in this embodiment, the inlet layer 101 , the buffer layer 104 , the vibrating substrate layer 106 , the upper power supply layer 111 , and the housing layer 113 are stacked in sequence.
合流腔103和多条长条状的进气流道102均开设在进流层101靠近缓冲层104的一侧。通流孔105并非设置在进流层101上,而是设置在缓冲层上,并与合流腔103的中心位置对齐并连通。缓冲层104的材质为金属,且厚度为40μm-60μm,特选为316L或316等弹性材料。The confluence cavity 103 and a plurality of strip-shaped intake air passages 102 are set on the side of the intake layer 101 close to the buffer layer 104 . The flow holes 105 are not arranged on the inflow layer 101 , but are arranged on the buffer layer, and are aligned with and communicate with the center of the confluence chamber 103 . The buffer layer 104 is made of metal with a thickness of 40 μm-60 μm, and is preferably elastic material such as 316L or 316.
如图11和12所示,进流层101靠近缓冲层的侧面上开设有与各进气流道102错开的多个存储腔室;缓冲层上与各存储腔室对齐的均开设有通槽,使得各存储腔室与进流层101、振动基板层106之间形成的变压腔室110连通;从而增大变压腔室110的容积,增大压电微泵的输出能力。单个存储腔室呈圆弧形,且长度为3mm~5mm,深度小于300μm。As shown in Figures 11 and 12, the side of the inflow layer 101 close to the buffer layer is provided with a plurality of storage chambers that are staggered from the inlet flow channels 102; the buffer layer is provided with through grooves aligned with the storage chambers, The storage chambers are communicated with the variable pressure chamber 110 formed between the inflow layer 101 and the vibrating substrate layer 106; thereby increasing the volume of the variable pressure chamber 110 and increasing the output capacity of the piezoelectric micropump. A single storage chamber is arc-shaped, has a length of 3 mm to 5 mm, and a depth of less than 300 μm.
本实施例中,压电微泵从侧部进气。In this embodiment, the piezoelectric micropump takes in air from the side.
本实施例中,取消封闭层100使得泵体的结构更加紧凑。缓冲层104能够在泵体收缩时,确保堵塞层108能够更好地封闭住进气流道并减小冲击,让整个泵体的运作过程保持高密封性。In this embodiment, the omission of the sealing layer 100 makes the structure of the pump body more compact. The buffer layer 104 can ensure that the blocking layer 108 can better seal the intake air passage and reduce the impact when the pump body shrinks, so that the entire pump body can maintain high sealing performance during operation.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310782620.4A CN116677592A (en) | 2023-06-29 | 2023-06-29 | Piezoelectric micropump of high flow side direction air inlet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310782620.4A CN116677592A (en) | 2023-06-29 | 2023-06-29 | Piezoelectric micropump of high flow side direction air inlet |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116677592A true CN116677592A (en) | 2023-09-01 |
Family
ID=87790962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310782620.4A Pending CN116677592A (en) | 2023-06-29 | 2023-06-29 | Piezoelectric micropump of high flow side direction air inlet |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116677592A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118564433A (en) * | 2024-06-17 | 2024-08-30 | 杭州电子科技大学 | A piezoelectric micro pump using an integrally processed wheel valve and a working method thereof |
-
2023
- 2023-06-29 CN CN202310782620.4A patent/CN116677592A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118564433A (en) * | 2024-06-17 | 2024-08-30 | 杭州电子科技大学 | A piezoelectric micro pump using an integrally processed wheel valve and a working method thereof |
CN118564433B (en) * | 2024-06-17 | 2024-12-03 | 杭州电子科技大学 | A piezoelectric micro pump using an integrally processed wheel valve and a working method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10900480B2 (en) | Disc pump with advanced actuator | |
JP6222208B2 (en) | Fluid control device and pump | |
JP5012889B2 (en) | Piezoelectric micro blower | |
US10221951B2 (en) | Valve and fluid control apparatus | |
JP4873014B2 (en) | Piezoelectric micro blower | |
US20080038125A1 (en) | Piezoelectric pump and piezoelectric vibrator | |
US12331759B2 (en) | Method of making an actuator for a resonant acoustic pump | |
WO2004084274A2 (en) | Piezoelectric actuator and pump using same | |
JP5999200B2 (en) | Fluid control device and pump connection method | |
WO2007111049A1 (en) | Micropump | |
CN116677592A (en) | Piezoelectric micropump of high flow side direction air inlet | |
JP5668582B2 (en) | Fluid control device | |
US20070071615A1 (en) | Diaphragm pump | |
CN208252319U (en) | A kind of single valve piezoelectric pump with double chambers | |
CN115163463A (en) | Piezoelectric micropump optimization method aiming at different use scenes | |
CN116677591A (en) | A piezoelectric micropump that suppresses internal eddy currents | |
WO2012140932A1 (en) | Active valve and fluid control device | |
CN209892418U (en) | Axial-flow type miniature piezoelectric gas compressor | |
JP4718691B2 (en) | Diaphragm pump | |
CN103925187B (en) | A kind of many oscillator piezoelectric pumps | |
KR102731903B1 (en) | Piezoelectric blower and method of manufacturing the same | |
JP2009121454A (en) | Four valve diaphragm pump | |
CN118564433A (en) | A piezoelectric micro pump using an integrally processed wheel valve and a working method thereof | |
CN119532170A (en) | A fluid actuator, a piezoelectric pump and an axial superposition pump | |
CN110541807A (en) | A single-valve double-chamber piezoelectric pump and its working method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |