CN114951946B - A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy - Google Patents
A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy Download PDFInfo
- Publication number
- CN114951946B CN114951946B CN202210479620.2A CN202210479620A CN114951946B CN 114951946 B CN114951946 B CN 114951946B CN 202210479620 A CN202210479620 A CN 202210479620A CN 114951946 B CN114951946 B CN 114951946B
- Authority
- CN
- China
- Prior art keywords
- cocrfeni
- entropy alloy
- transition layer
- layer material
- tungsten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
- B23K20/023—Thermo-compression bonding
- B23K20/026—Thermo-compression bonding with diffusion of soldering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/26—Auxiliary equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
本发明提供一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,其特征在于,以(CoCrFeNi)1‑xCux高熵合金作为过渡层材料,通过SPS技术对钨钴类硬质合金和42CrMo钢进行固相扩散焊接,完成钨钴类硬质合金与42CrMo钢的连接;其中x=0.1‑0.5。本发明提供的采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,以(CoCrFeNi)1‑xCux高熵合金作为过渡层材料,旨在抑制焊接处脆性相的生成,减小残余应力,使得焊接头的性能得到提高,进而使得硬质合金与钢焊接的整体可靠性提升。
The invention provides a method for connecting tungsten-cobalt-based hard alloys and 42CrMo steels using high-entropy alloys, which is characterized in that (CoCrFeNi) 1-x Cux high-entropy alloys are used as transition layer materials, and the tungsten-cobalt-based hard alloys are treated by SPS technology. Carbide and 42CrMo steel are solid-phase diffusion welded to complete the connection between tungsten-cobalt cemented carbide and 42CrMo steel; where x=0.1‑0.5. The method provided by the present invention to connect tungsten-cobalt hard alloys and 42CrMo steels using high-entropy alloys uses (CoCrFeNi) 1-x Cu x high-entropy alloys as transition layer materials, aiming at suppressing the generation of brittle phases at welds, reducing The residual stress improves the performance of the welding head, which in turn improves the overall reliability of cemented carbide and steel welding.
Description
技术领域technical field
本发明涉及焊接技术领域,具体涉及一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法。The invention relates to the field of welding technology, in particular to a method for connecting tungsten-cobalt hard alloy and 42CrMo steel by using a high-entropy alloy.
背景技术Background technique
硬质合金的用途非常广泛,可分为三大类:金属切削工具,凿岩工具和磨损部件,而金属切削是钨钴类硬质合金的最大市场,但是硬质合金的制造加工困难,生成成本高,韧性差脆性较大,这些因素极大的制约了硬质合金的应用场合。目前将硬质合金连接在容易加工制造、力学性能优异且价格较硬质合金便宜的高强度、高韧性钢进行有效的连接而形成具有优异综合性能的工器件。Cemented carbide has a wide range of uses and can be divided into three categories: metal cutting tools, rock drilling tools and wear parts, while metal cutting is the largest market for tungsten-cobalt cemented carbide, but the manufacturing and processing of cemented carbide is difficult, and the formation of High cost, poor toughness and high brittleness, these factors greatly restrict the application of cemented carbide. At present, cemented carbide is connected to high-strength and high-toughness steel that is easy to process and manufacture, has excellent mechanical properties, and is cheaper than cemented carbide to form a tool with excellent comprehensive performance.
扩散复合技术是硬质合金与钢的连接方法之一。扩散焊属于固相连接技术的一种,其具有诸多特点:焊接时因基体不过热、不熔化,可在不降低焊件性能的情况下焊接金属或非金属;接头质量好、精度高、变形小;可以焊接结构复杂、接头不易接近以及厚薄相差较大的工件;能对组装件中许多接头同时实施焊接。目前多采用铜作为“过渡层材料”对钨钴类硬质合金与42CrMo钢进行扩散焊,铜的价格较高。Diffusion composite technology is one of the connection methods between cemented carbide and steel. Diffusion welding is a kind of solid phase connection technology, which has many characteristics: because the substrate is not overheated and does not melt during welding, metal or non-metal can be welded without reducing the performance of the weldment; the joint quality is good, the precision is high, and the deformation Small; it can weld workpieces with complex structures, inaccessible joints and large differences in thickness; it can weld many joints in the assembly at the same time. At present, copper is mostly used as the "transition layer material" for diffusion welding of tungsten-cobalt cemented carbide and 42CrMo steel, and the price of copper is relatively high.
硬质合金与钢的线膨胀系数、熔点、比热容等物理性能都有较大的差异。其中硬质合金的线膨胀系数远小于钢,这会导致硬质合金和钢在焊接中处于不同的应力状态,进而使得焊接接头的有较高的残余应力,而从使得接头有开裂可能。当焊接的温度过高时,会导致母材性能发生变化,而焊接温度偏低则会出现气孔等缺陷。同时在焊接过程中容易出现脆性相,接头易产生脆化。因此如何低成本地、可靠地实现扩散连接钨钴类硬质合金和42CrMo钢,已成为钨钴类硬质合金应用领域的关键难题。The physical properties such as linear expansion coefficient, melting point and specific heat capacity of cemented carbide and steel are quite different. Among them, the linear expansion coefficient of cemented carbide is much smaller than that of steel, which will cause cemented carbide and steel to be in different stress states during welding, which will lead to higher residual stress in the welded joint, which may cause the joint to crack. When the welding temperature is too high, the properties of the base metal will change, and if the welding temperature is low, defects such as pores will appear. At the same time, brittle phases are prone to appear during the welding process, and the joints are prone to embrittlement. Therefore, how to achieve low-cost and reliable diffusion bonding of tungsten-cobalt cemented carbide and 42CrMo steel has become a key problem in the application field of tungsten-cobalt cemented carbide.
鉴于此,有必要提供一种新的工艺解决钨钴类硬质合金和42CrMo钢焊接的技术问题。In view of this, it is necessary to provide a new process to solve the technical problems of welding tungsten-cobalt cemented carbide and 42CrMo steel.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,以(CoCrFeNi)1-xCux高熵合金作为过渡层材料,旨在抑制焊接处脆性相的生成,减小残余应力,使得焊接头的性能得到提高,进而使得硬质合金与钢焊接的整体可靠性提升。The technical problem to be solved in the present invention is to provide a method for connecting tungsten-cobalt hard alloys and 42CrMo steels using high-entropy alloys, using (CoCrFeNi) 1-x Cu x high-entropy alloys as transition layer materials, aiming at suppressing the The generation of brittle phase reduces the residual stress, improves the performance of the welding joint, and improves the overall reliability of cemented carbide and steel welding.
为了解决上述问题,本发明的技术方案如下:In order to solve the above problems, the technical scheme of the present invention is as follows:
一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,以(CoCrFeNi)1-xCux高熵合金作为过渡层材料,通过SPS技术对钨钴类硬质合金和42CrMo钢进行固相扩散焊接,完成钨钴类硬质合金与42CrMo钢的连接;其中x=0.1-0.5。A method for connecting tungsten-cobalt hard alloys and 42CrMo steels using high-entropy alloys, using (CoCrFeNi) 1-x Cu x high-entropy alloys as transition layer materials, and tungsten-cobalt hard alloys and 42CrMo steels by SPS technology Solid phase diffusion welding to complete the connection between tungsten-cobalt cemented carbide and 42CrMo steel; where x=0.1-0.5.
进一步地,(CoCrFeNi)1-xCux高熵合金材料是将各合金元素按原子比配比后采用真空弧熔炼得到。Furthermore, the (CoCrFeNi) 1-x Cu x high-entropy alloy material is obtained by vacuum arc melting after the alloying elements are proportioned according to the atomic ratio.
进一步地,采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法具体包括如下步骤:Further, the method for connecting tungsten-cobalt cemented carbide and 42CrMo steel using high-entropy alloy specifically includes the following steps:
步骤S1,母材准备:将钨钴类硬质合金和42CrMo钢切割成待焊接的形状,并进行预处理;Step S1, base metal preparation: cutting tungsten-cobalt cemented carbide and 42CrMo steel into shapes to be welded, and performing pretreatment;
步骤S2,装配:将钨钴类硬质合金、42CrMo钢和(CoCrFeNi)1-xCux高熵合金材料装配至石墨模具中,且(CoCrFeNi)1-xCux高熵合金材料位于钨钴类硬质合金和42CrMo钢之间;Step S2, assembly: Assemble the tungsten-cobalt hard alloy, 42CrMo steel and (CoCrFeNi) 1-x Cu x high-entropy alloy material into the graphite mold, and the (CoCrFeNi) 1-x Cu x high-entropy alloy material is located in the tungsten-cobalt Between cemented carbide and 42CrMo steel;
步骤S3,放电等离子SPS扩散焊连接:将装有待焊件的石墨模具置入放电等离子烧结系统中,在真空条件下升温至扩散焊温度,随后保温,进行SPS扩散焊。Step S3, discharge plasma SPS diffusion welding connection: put the graphite mold with the parts to be welded into the discharge plasma sintering system, heat up to the diffusion welding temperature under vacuum conditions, and then keep it warm for SPS diffusion welding.
进一步地,步骤S2中,(CoCrFeNi)1-xCux高熵合金材料的厚度为100-2000μm。Further, in step S2, the thickness of the (CoCrFeNi) 1-x Cu x high-entropy alloy material is 100-2000 μm.
进一步地,步骤S3中,扩散温度为650-1000℃,升温速率为10-150℃/min,扩散焊温度下保温时间为5-30min,扩散压力为5-40Mpa,真空度≤1×10-3Mpa。Further, in step S3, the diffusion temperature is 650-1000°C, the heating rate is 10-150°C/min, the holding time at the diffusion welding temperature is 5-30min, the diffusion pressure is 5-40Mpa, and the vacuum degree is ≤1×10 − 3 MPa.
与现有技术相比,本发明提供的采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,有益效果在于:Compared with the prior art, the method provided by the present invention for connecting tungsten-cobalt hard alloy and 42CrMo steel with high-entropy alloy has beneficial effects as follows:
一、本发明提供的采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,将(CoCrFeNi)1-xCux高熵合金(其中x=0.1-0.5,Cu(at%)=10%-50%,Co、Cr、Fe和Ni四种元素具有等摩尔量)作为连接钨钴类硬质合金和42CrMo钢的“过渡层材料”,利用放电等离子烧结技术(SparkPlasma Sintering,SPS)连接钨钴类硬质合金和42CrMo钢,本发明所采用(CoCrFeNi)1-xCux高熵合金“过渡层材料”是一种双相高熵合金,一相为富铜相,一相为贫铜相,根据扩散定律,在钨钴类硬质合金与高熵合金“过渡层材料”形成的界面处,高熵合金“过渡层材料”的Co、Cr、Fe、Ni和Cu原子快速向钨钴类硬质合金扩散,同时钨钴类硬质合金中浓度高于“过渡层材料”的元素向“过渡层材料”侧扩散,高熵合金“过渡层材料”与42CrMo形成的界面处,也是元素浓度高的向低浓度方向扩散,但是由于高熵合金的存在使得金属间化合物脆性相得到抑制,最后高熵合金“过渡层材料”分别与钨钴类硬质合金母材和42CrMo钢母材形成具有较小原子浓度梯度的、一定厚度的焊接界面层,通过“过渡层材料”实现了母材之间热膨胀系数的平滑过渡,有利于解决热膨胀系数不匹配引起局部残余应力过大,导致焊接界面萌生裂纹并快速扩展的难题。通过本发明的方法,获得了较高强度的接头,扩散焊所获得的接头拉伸强度大于单质铜焊接后所获得接头的拉伸强度,为连接钨钴类硬质合金和钢提供了新的方法。One, the method provided by the present invention adopts high-entropy alloy to connect tungsten-cobalt cemented carbide and 42CrMo steel, with (CoCrFeNi) 1-x Cu x high-entropy alloy (wherein x=0.1-0.5, Cu(at%)=10 %-50%, the four elements of Co, Cr, Fe and Ni have equimolar amounts) as the "transition layer material" connecting tungsten-cobalt cemented carbide and 42CrMo steel, using spark plasma sintering technology (SparkPlasma Sintering, SPS) connection Tungsten-cobalt cemented carbide and 42CrMo steel, the (CoCrFeNi) 1-x Cu x high-entropy alloy "transition layer material" used in the present invention is a dual-phase high-entropy alloy, one phase is a copper-rich phase, and the other phase is a poor Copper phase, according to the law of diffusion, at the interface formed by the tungsten-cobalt cemented carbide and the high-entropy alloy "transition layer material", the Co, Cr, Fe, Ni and Cu atoms of the high-entropy alloy "transition layer material" rapidly move to the tungsten Cobalt-based cemented carbide diffuses, and at the same time, the elements in the tungsten-cobalt-based cemented carbide with a higher concentration than the "transition layer material" diffuse to the "transition layer material" side, and the interface formed by the high-entropy alloy "transition layer material" and 42CrMo is also The high element concentration diffuses to the low concentration direction, but the brittle phase of the intermetallic compound is suppressed due to the existence of the high-entropy alloy. Finally, the high-entropy alloy "transition layer material" is combined with the tungsten-cobalt cemented carbide base material and the 42CrMo steel base material respectively. Form a welding interface layer with a small atomic concentration gradient and a certain thickness, and realize a smooth transition of the thermal expansion coefficient between the base metals through the "transition layer material", which is beneficial to solve the problem of excessive local residual stress caused by the mismatch of thermal expansion coefficients, resulting in welding The problem of crack initiation and rapid expansion at the interface. Through the method of the present invention, a higher-strength joint is obtained, and the tensile strength of the joint obtained by diffusion welding is greater than that of the joint obtained after simple copper welding, which provides a new method for connecting tungsten-cobalt hard alloy and steel method.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 1 shows the YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy obtained by using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 1 and holding it at 900°C for 15 minutes Microstructure photo of "transition layer material"/42CrMo steel joint;
图2为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”接头的组织形貌照片;Figure 2 shows the YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy obtained by SPS diffusion welding in Example 1 using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" and holding it at 900°C for 15 minutes Microstructure photo of the joint of "transition layer material";
图3为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 3 shows the (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" obtained in Example 1 by using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of /42CrMo steel joint;
图4为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”接头的界面EDS线扫结果图;Figure 4 shows the YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy obtained by using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 1 and holding it at 900°C for 15 minutes Interface EDS line scan results of the "transition layer material"joint;
图5为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo钢接头的界面EDS线扫结果图;Figure 5 shows the (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" obtained in Example 1 by using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes /42CrMo steel joint interface EDS line scan results;
图6为实施例2中采用(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 6 shows the YG10X cemented carbide/(CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy obtained by using (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 2 and holding it at 900°C for 15 minutes Microstructure photo of "transition layer material"/42CrMo steel joint;
图7为实施例2中采用(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”接头的组织形貌照片;Figure 7 shows the YG10X cemented carbide/(CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy obtained in Example 2 by using (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of the joint of "transition layer material";
图8为实施例2中采用(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 8 shows the (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material" obtained in Example 2 by using (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of /42CrMo steel joint;
图9为实施例3中采用(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 9 shows the YG10X cemented carbide/(CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy obtained in Example 3 by using (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of "transition layer material"/42CrMo steel joint;
图10为实施例3中采用(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”接头的组织形貌照片;Figure 10 shows the YG10X cemented carbide/(CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy obtained by SPS diffusion welding in Example 3 using (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as the "transition layer material" and holding it at 900°C for 15 minutes Microstructure photo of the joint of "transition layer material";
图11为实施例3中采用(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 11 shows the (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy "transition layer material" obtained in Example 3 by using (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of /42CrMo steel joint;
图12为实施例4中采用(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 12 shows the YG10X cemented carbide/(CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy obtained by using (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 4 and holding it at 900°C for 15 minutes Microstructure photo of "transition layer material"/42CrMo steel joint;
图13为实施例4中采用(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”接头的组织形貌照片;Figure 13 shows the YG10X cemented carbide/(CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy obtained by SPS diffusion welding in Example 4 using (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as the "transition layer material" and holding it at 900°C for 15 minutes Microstructure photo of the joint of "transition layer material";
图14为实施例4中采用(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 14 shows the (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material" obtained in Example 4 by using (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of /42CrMo steel joint;
图15为实施例5中采用(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 15 shows the YG10X cemented carbide/(CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy obtained by SPS diffusion welding in Example 5 using (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy as the "transition layer material" and holding it at 900°C for 15 minutes Microstructure photo of "transition layer material"/42CrMo steel joint;
图16为实施例5中采用(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”接头的组织形貌照片;Figure 16 shows the YG10X cemented carbide/(CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy obtained by using (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 5 and holding it at 900°C for 15 minutes Microstructure photo of the joint of "transition layer material";
图17为实施例5中采用(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 17 shows the (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy "transition layer material" obtained in Example 5 by using (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes Microstructure photo of /42CrMo steel joint;
图18为对比例1中采用纯铜作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/纯铜“过渡层材料”/42CrMo钢接头的组织形貌照片;Figure 18 is a photo of the structure and morphology of the YG10X cemented carbide/pure copper "transition layer material"/42CrMo steel joint obtained by using pure copper as the "transition layer material" for SPS diffusion welding in Comparative Example 1 and holding it at 900°C for 15 minutes ;
图19为对比例1中采用纯铜作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/纯铜“过渡层材料”接头的组织形貌照片;Figure 19 is a photo of the microstructure of the YG10X cemented carbide/pure copper "transition layer material" joint obtained by using pure copper as the "transition layer material" for SPS diffusion welding in Comparative Example 1 and holding it at 900°C for 15 minutes;
图20为对比例1中采用纯铜作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的纯铜“过渡层材料”/42CrMo钢接头的组织形貌照片。Figure 20 is a photo of the microstructure of the pure copper "transition layer material"/42CrMo steel joint obtained in Comparative Example 1 by using pure copper as the "transition layer material" for SPS diffusion welding and holding at 900°C for 15 minutes.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式作进一步的说明。In order to enable those skilled in the art to better understand the technical solutions in the embodiments of the present invention, and to make the above-mentioned purpose, features and advantages of the present invention more obvious and understandable, the specific implementation manners of the present invention will be further described below.
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应该被视为在本文中具体公开。Neither the endpoints nor any values of the ranges disclosed herein are limited to such precise ranges or values, and these ranges or values are understood to include values approaching these ranges or values. For numerical ranges, between the endpoints of each range, between the endpoints of each range and individual point values, and between individual point values can be combined with each other to obtain one or more new numerical ranges, these values Ranges should be considered as specifically disclosed herein.
一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,以(CoCrFeNi)1-xCux高熵合金作为过渡层材料,通过SPS技术对钨钴类硬质合金和42CrMo钢进行固相扩散焊接,完成钨钴类硬质合金与42CrMo钢的连接;其中x=0.1-0.5。A method for connecting tungsten-cobalt hard alloys and 42CrMo steels using high-entropy alloys, using (CoCrFeNi) 1-x Cu x high-entropy alloys as transition layer materials, and tungsten-cobalt hard alloys and 42CrMo steels by SPS technology Solid phase diffusion welding to complete the connection between tungsten-cobalt cemented carbide and 42CrMo steel; where x=0.1-0.5.
具体的,包括如下步骤:Specifically, the following steps are included:
(1)制备高熵合金“过渡层材料”:(CoCrFeNi)1-xCux高熵合金按摩尔比称量Co、Cr、Fe、Ni和Cu原料,随后将其按熔点从低到高的顺序依次放入真空熔炼炉的坩埚中,在高纯氩气保护下,进行真空电弧熔炼,至少反复熔炼5次,得到铸锭;其中x可以为0.1、0.2、0.3、0.4或0.5,也可以为0.1-0.5中的其他数值;(1) Preparation of high-entropy alloy "transition layer material": (CoCrFeNi) 1-x Cu x high-entropy alloy Weigh Co, Cr, Fe, Ni and Cu raw materials by molar ratio, and then rank them according to melting point from low to high Sequentially put into the crucible of the vacuum melting furnace, under the protection of high-purity argon, conduct vacuum arc melting, and repeat the melting at least 5 times to obtain ingots; where x can be 0.1, 0.2, 0.3, 0.4 or 0.5, or Other values in 0.1-0.5;
将铸锭进行轧制,轧制到的厚度大于焊接时“过渡层材料”设定的厚度,得到轧制薄板;Roll the ingot to a thickness greater than the thickness set by the "transition layer material" during welding to obtain a rolled sheet;
利用线切割将轧制薄板切割出与母材直径一致的薄圆片;Use wire cutting to cut the rolled sheet into a thin disc with the same diameter as the base metal;
将薄片用SiC砂纸打磨、抛光、超声波作用下酒精清洗、干燥箱干燥处理,最终得到表面光滑的高熵合金“过渡层材料”,高熵合金“过渡层材料”的最终厚度为100-2000μm;Grinding and polishing the sheet with SiC sandpaper, cleaning with alcohol under the action of ultrasonic waves, and drying in a drying oven to finally obtain a high-entropy alloy "transition layer material" with a smooth surface. The final thickness of the high-entropy alloy "transition layer material" is 100-2000μm;
(2)母材准备:用线切割将直径一致的钨钴类硬质合金和42CrMo圆棒切割成需要的长度,得到待焊钨钴类硬质合金圆棒和待焊42CrMo钢圆棒,将待焊钨钴类硬质合金圆棒和待焊42CrMo钢圆棒各表面打磨光滑,去除氧化层等,对待焊钨钴类硬质合金圆棒和待焊42CrMo钢圆棒的待焊接面进行精细的打磨,随后进行抛光,再将待焊钨钴类硬质合金圆棒和待焊42CrMo钢圆棒进行超声波清洗、干燥处理;(2) Base material preparation: Cut the tungsten-cobalt hard alloy and 42CrMo round rods with the same diameter into the required length by wire cutting to obtain the tungsten-cobalt hard alloy round rods to be welded and the 42CrMo steel round rods to be welded. The surfaces of the tungsten-cobalt hard alloy round rods to be welded and the 42CrMo steel round rods to be welded are polished smooth to remove the oxide layer, etc., and the surfaces to be welded are finely polished Grinding, followed by polishing, and ultrasonic cleaning and drying of the tungsten-cobalt cemented carbide round rods to be welded and the 42CrMo steel round rods to be welded;
(3)装配:将钨钴类硬质合金、42CrMo钢和(CoCrFeNi)1-xCux高熵合金“过渡层材料”,自上而下按照石墨冲头-石墨垫片-待焊42CrMo钢圆棒-(CoCrFeNi)1-xCux高熵合金“过渡层材料”-待焊钨钴类硬质合金圆棒-石墨垫片-石墨冲头的顺序装配到石墨模具中,在将其装配完成的模具放入放电等离子烧结系统中;(3) Assembly: Tungsten-cobalt hard alloy, 42CrMo steel and (CoCrFeNi) 1-x Cu x high-entropy alloy "transition layer material", from top to bottom according to graphite punch - graphite gasket - 42CrMo steel to be welded Round rod-(CoCrFeNi) 1-x Cu x high-entropy alloy "transition layer material"-to-be-welded tungsten-cobalt hard alloy round rod-graphite gasket-graphite punch is assembled into the graphite mold in sequence, after assembling it The completed mold is put into the spark plasma sintering system;
(4)放电等离子SPS扩散连接:将装有待焊件的石墨模具置入放电等离子烧结系统中,调整红外测温仪镜头对准模具测温孔,调节扩散连接压力5-40Mpa,打开真空泵和充气泵使炉内真空度≤1×10-3Mpa,然后通电流升温(升温速率10-150℃/min)至扩散焊温度(650-1000℃),随后保温5-30min,进行SPS扩散焊,得到焊接接头。(4) Discharge plasma SPS diffusion connection: put the graphite mold with the parts to be welded into the discharge plasma sintering system, adjust the infrared thermometer lens to the temperature measurement hole of the mold, adjust the diffusion connection pressure to 5-40Mpa, turn on the vacuum pump and inflate Pump to make the vacuum in the furnace ≤1×10 -3 Mpa, then pass the current to raise the temperature (heating rate 10-150°C/min) to the diffusion welding temperature (650-1000°C), then keep it warm for 5-30min, and perform SPS diffusion welding. Get a welded joint.
具体的,扩散连接压力可以为5Mpa、8Mpa、10Mpa、15Mpa、20Mpa、25Mpa、30Mpa、35Mpa或40Mpa,也可以为该范围内的其他压力值;Specifically, the diffusion connection pressure can be 5Mpa, 8Mpa, 10Mpa, 15Mpa, 20Mpa, 25Mpa, 30Mpa, 35Mpa or 40Mpa, or other pressure values within this range;
升温速率可以为10℃/min、20℃/min、30℃/min、40℃/min、50℃/min、60℃/min、70℃/min、80℃/min、90℃/min、100℃/min、110℃/min、120℃/min、130℃/min、140℃/min或150℃/min,也可以为该范围内的其他值;The heating rate can be 10°C/min, 20°C/min, 30°C/min, 40°C/min, 50°C/min, 60°C/min, 70°C/min, 80°C/min, 90°C/min, 100°C °C/min, 110°C/min, 120°C/min, 130°C/min, 140°C/min or 150°C/min, or other values within this range;
扩散焊温度可以为650℃、700℃、750℃、800℃、850℃、900℃、950℃或1000℃,或该范围内的其他温度值;Diffusion welding temperature can be 650°C, 700°C, 750°C, 800°C, 850°C, 900°C, 950°C or 1000°C, or other temperature values within this range;
保温时间可以为5min、10min、15min、20min、25min或30min,也可以为该范围内的其他时间值。The holding time can be 5min, 10min, 15min, 20min, 25min or 30min, or other time values within this range.
需要说明的是,本发明中母材、高熵合金“过渡层材料”的形状除了为圆形外,还可以为方形或其他形状。It should be noted that in the present invention, the shape of the base material and the high-entropy alloy "transition layer material" can also be square or other shapes in addition to being circular.
以下通过具体的实施例对本发明提供的熵陶瓷和金属的连接方法进行详细阐述。The method for connecting entropic ceramics and metals provided by the present invention will be described in detail below through specific examples.
实施例1Example 1
一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,包括如下步骤:A method for connecting tungsten-cobalt hard alloys and 42CrMo steels using high-entropy alloys, comprising the steps of:
(1)、高熵合金“过渡层材料”的制备(1) Preparation of high-entropy alloy "transition layer material"
(CoCrFeNi)0.5Cu0.5高熵合金按摩尔比称量Co、Cr、Fe、Ni和Cu原料,随后将其按熔点从低到高的顺序依次放入真空熔炼炉的坩埚中,在高纯氩气保护下,进行真空电弧熔炼,至少反复熔炼5次,得到铸锭;(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy Weigh Co, Cr, Fe, Ni and Cu raw materials in molar ratio, and then put them into the crucible of the vacuum melting furnace in order of melting point from low to high, in high-purity argon Under gas protection, vacuum arc melting is carried out, and the melting is repeated at least 5 times to obtain ingots;
将铸锭进行轧制,轧制到1000μm的厚度,得到轧制薄板;Rolling the cast ingot to a thickness of 1000 μm to obtain a rolled sheet;
利用线切割将轧制薄板切割出的薄圆片;Cutting of rolled sheets by wire cutting of thin discs;
将薄圆片用SiC砂纸打磨、抛光、超声波作用下酒精清洗、干燥箱干燥处理,最终得到表面光滑的高熵合金“过渡层材料”,高熵合金“过渡层材料”的最终厚度为700-800μm;Grinding and polishing the thin wafer with SiC sandpaper, cleaning alcohol under the action of ultrasonic waves, and drying in a drying oven, and finally obtained a high-entropy alloy "transition layer material" with a smooth surface. The final thickness of the high-entropy alloy "transition layer material" is 700- 800μm;
(2)、母材准备(2), parent material preparation
用线切割将直径的YG10X硬质合金和42CrMo圆棒切割成14.5mm长度,得到待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒,将待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒各表面打磨光滑,去除氧化层等,对待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒的待焊接面进行精细的打磨,随后进行抛光,再将待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒进行超声波清洗、干燥处理;cut the diameter The YG10X hard alloy and 42CrMo round bars are cut into 14.5mm lengths to obtain the YG10X hard alloy round bars to be welded and the 42CrMo steel round bars to be welded. Grinding smooth, removing the oxide layer, etc., finely grinding the surface to be welded of the YG10X hard alloy round bar to be welded and the 42CrMo steel round bar to be welded, and then polishing, and then the YG10X hard alloy round bar to be welded and the 42CrMo steel round bar to be welded Steel round rods are ultrasonically cleaned and dried;
(3)、装配(3), assembly
将钨钴类硬质合金,42CrMo钢和(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”,自上而下按照石墨冲头-石墨垫片-待焊42CrMo钢圆棒-(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”-待焊YG10X硬质合金圆棒-石墨垫片-石墨冲头的顺序装配到石墨模具中,在将其装配完成的模具放入放电等离子烧结系统中;The tungsten-cobalt hard alloy, 42CrMo steel and (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material", from top to bottom in accordance with graphite punch - graphite gasket - 42CrMo steel round rod to be welded - (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" - YG10X hard alloy round rod to be welded - graphite gasket - graphite punch is assembled into the graphite mold in sequence, and the assembled mold is put into the spark plasma sintering system;
(4)、放电等离子扩散连接(4), discharge plasma diffusion connection
将装有待焊件的石墨模具置入放电等离子烧结系统中,调整红外测温仪镜头对准模具测温孔,调节扩散连接压力10Mpa,打开真空泵和充气泵使炉内真空度≤1×10-3Mpa,然后通电流以100℃/min的速度升温至900℃,随后保温15min,进行SPS扩散焊,随后随炉冷却得到焊接接头。Put the graphite mold with the parts to be welded into the discharge plasma sintering system, adjust the infrared thermometer lens to the temperature measurement hole of the mold, adjust the diffusion connection pressure to 10Mpa, turn on the vacuum pump and air pump to make the vacuum degree in the furnace ≤1×10 - 3 Mpa, then pass the current to raise the temperature to 900°C at a rate of 100°C/min, then keep it warm for 15min, perform SPS diffusion welding, and then cool down with the furnace to obtain a welded joint.
最终得到的焊接件,用线切割从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),在万能试验机上进行室温拉伸性能的测试。For the final welded piece, a dog-bone tensile sample (sampled perpendicular to the welded surface) was taken from the middle of the welded piece by wire cutting, and the room temperature tensile performance was tested on a universal testing machine.
请结合参阅图1至图5,其中图1为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;图2为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”接头的组织形貌照片;图3为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;图4为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”接头的界面EDS线扫结果图;图5为实施例1中采用(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo钢接头的界面EDS线扫结果图。从图中可以看出接头结合情况较好,无明显裂纹,从点分析中可以看出,在图3中的界面处的元素扩散较活跃,在“过渡层材料”一侧有富铜相、贫铜相、富铬相等。而在图2中的界面处,在“过渡层材料”一侧也有类似现象,虽然其结合也较好,但是在拉伸试验中该界面为最薄弱的地方,最终的断裂发生在该处。Please refer to Figure 1 to Figure 5 in combination, where Figure 1 is the YG10X cemented carbide obtained in Example 1 using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding it at 900°C for 15 minutes /(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" / 42CrMo steel joint structure morphology photo; Figure 2 is the use of (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" in Example 1 for SPS Diffusion welding, holding at 900°C for 15 minutes to obtain the microstructure photo of the YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material"joint; Figure 3 is the (CoCrFeNi) 0.5 Cu used in Example 1 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding, holding at 900 ° C for 15 minutes to obtain the (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material"/42CrMo steel joint structure morphology photos; Figure 4 is In Example 1, (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy was used as the "transition layer material" for SPS diffusion welding, and the YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer" obtained at 900 ° C for 15 minutes Material" interface EDS line scan results; Figure 5 is the (CoCrFeNi) obtained in Example 1 using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as the "transition layer material" for SPS diffusion welding and holding at 900 ° C for 15 minutes Interface EDS line scan results of 0.5 Cu 0.5 high-entropy alloy "transition layer material"/42CrMo steel joint. It can be seen from the figure that the joints are well bonded and there are no obvious cracks. From the point analysis, it can be seen that the element diffusion at the interface in Figure 3 is relatively active, and there are copper-rich phases on the "transition layer material" side, Copper-poor phase, chromium-rich phase. At the interface in Figure 2, there is a similar phenomenon on the "transition layer material" side. Although the combination is also good, the interface is the weakest place in the tensile test, and the final fracture occurs there.
实施例2Example 2
本实施例的一种采用采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处仅在于:将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is only that: (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer Material" was replaced with (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material", other conditions were the same as in Example 1, finally obtained with (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy as "transition layer material", using discharge plasma diffusion Welding realizes the connection of YG10X cemented carbide and 42CrMo steel.
最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。The weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
请结合参阅图6、图7和图8,其中图6为实施例2中采用(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;图7为实施例2中采用(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”接头的组织形貌照片;图8为实施例2中采用(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片。从图中同样可以看出接头结合情况整体较好,但是较实施例1来说,无论是YG10X硬质合金/(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”接头还是(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”/42CrMo接头,都存在更多的缺陷。Please refer to Figure 6, Figure 7 and Figure 8 in combination, where Figure 6 is the YG10X obtained by using (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 2 and holding it for 15 minutes at 900°C Microstructure photo of cemented carbide/(CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material"/42CrMo steel joint ; "Carry out SPS diffusion welding, and hold at 900 ° C for 15 minutes to obtain the microstructure and morphology of the YG10X cemented carbide/(CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material"joint; Figure 8 is the (CoCrFeNi) used in Example 2 ) 0.6 Cu 0.4 high-entropy alloy as the "transition layer material" for SPS diffusion welding, holding at 900 ° C for 15 minutes to obtain the microstructure and morphology of (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material"/42CrMo steel joint. It can also be seen from the figure that the overall joint bonding is better, but compared with Example 1, whether it is a YG10X cemented carbide/(CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material" joint or (CoCrFeNi) 0.6 Cu The 0.4 high-entropy alloy "transition layer material"/42CrMo joint has more defects.
实施例3Example 3
本实施例的一种采用采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处仅在于:将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is only that: (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer Material" was replaced with (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy "transition layer material", other conditions were the same as in Example 1, finally obtained with (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as "transition layer material", using discharge plasma diffusion Welding realizes the connection of YG10X cemented carbide and 42CrMo steel.
最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。The weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
请结合参阅图9至图11,其中图9为实施例3中采用(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;图10为实施例3中采用(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”接头的组织形貌照片;图11为实施例3中采用(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片。从图中可以看出其与实施例2的类似,虽然接头结合情况整体较好,但是存在的缺陷较实施例1来说较多。Please refer to Figure 9 to Figure 11 in combination, where Figure 9 is the YG10X cemented carbide obtained by using (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 3 and holding it at 900°C for 15 minutes /(CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy “transition layer material”/42CrMo steel joint microstructure and morphology photo; Figure 10 is the SPS using (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as the “transition layer material” in Example 3 Diffusion welding, holding at 900°C for 15 minutes to obtain the microstructure photo of the YG10X cemented carbide/(CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy "transition layer material"joint; Figure 11 is the (CoCrFeNi) 0.7 Cu used in Example 3 SPS diffusion welding of 0.3 high-entropy alloy as the "transition layer material", and holding at 900°C for 15 minutes to obtain the microstructure and morphology of (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy "transition layer material"/42CrMo steel joint. It can be seen from the figure that it is similar to that of Example 2, although the overall connection of the joint is better, but there are more defects than that of Example 1.
实施例4Example 4
本实施例的一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处仅在于:将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。A method of connecting tungsten-cobalt-based cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is only that: (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material "Switch to (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material", other conditions are the same as in Example 1, finally obtain (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as "transition layer material", adopt spark plasma diffusion welding Realize the connection between YG10X cemented carbide and 42CrMo steel.
最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。The weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
请结合参阅图12-图14,其中图12为实施例4中采用(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;图13为实施例4中采用(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”接头的组织形貌照片;图14为实施例4中采用(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片。从图中看出(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”/42CrMo接头的组织形貌与前几个实施例类似,但较实施例1来说存在更多的缺陷,在YG10X硬质合金/(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”接头的组织形貌中看出在接近YG10X附近的(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”中出现了在实施例2-3中没有观察到的富集相。Please refer to Figure 12-Figure 14 in combination, where Figure 12 is the YG10X cemented carbide obtained by using (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 4 and holding it at 900°C for 15 minutes /(CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material"/42CrMo steel joint microstructure and morphology photos; Figure 13 is the use of (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as the "transition layer material" in Example 4 for SPS Diffusion welding, holding at 900°C for 15 minutes to obtain the microstructure photo of the YG10X cemented carbide/(CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material"joint; Figure 14 is the (CoCrFeNi) 0.8 Cu used in Example 4 Microstructure photos of (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material"/42CrMo steel joint obtained by SPS diffusion welding as "transition layer material" at 900 ° C for 15 minutes. It can be seen from the figure that the structure and morphology of the (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material"/42CrMo joint is similar to the previous examples, but there are more defects than Example 1. In the YG10X hard It can be seen from the microstructure and morphology of the joint of high-entropy alloy/(CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material" that the (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material" near YG10X appears in the embodiment No enrichment phase observed in 2-3.
实施例5Example 5
本实施例的一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处仅在于:将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。A method of connecting tungsten-cobalt-based cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is only that: (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material "Switch to (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy "transition layer material", other conditions are the same as in Example 1, finally obtain (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy as "transition layer material", adopt spark plasma diffusion welding Realize the connection between YG10X cemented carbide and 42CrMo steel.
最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。The weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
请结合参阅图15-图17,其中图15为实施例5中采用(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片;图16为实施例5中采用(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”接头的组织形貌照片;图17为实施例5中采用(CoCrFeNi)0.9Cu0.1高熵合金作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的(CoCrFeNi)0.9Cu0.1高熵合金“过渡层材料”/42CrMo钢接头的组织形貌照片。从图中看出(CoCrFeNi)0.9Cu0.2高熵合金“过渡层材料”/42CrMo接头的组织形貌与前几个实施例类似,但较实施例1来说同样存在更多的缺陷,但是较实施例4来说,在YG10X硬质合金/(CoCrFeNi)0.9Cu0.2高熵合金“过渡层材料”接头的组织形貌中看出在接近YG10X附近的(CoCrFeNi)0.9Cu0.2高熵合金“过渡层材料”中出现了较实施例4更多的富集相。Please refer to Figure 15-Figure 17 in combination, where Figure 15 is the YG10X cemented carbide obtained by using (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy as the "transition layer material" for SPS diffusion welding in Example 5 and holding it at 900°C for 15 minutes /(CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy “transition layer material”/42CrMo steel joint microstructure and morphology photos; Figure 16 is the SPS using (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy as the “transition layer material” in Example 5 Diffusion welding, holding at 900°C for 15 minutes to obtain the microstructure photo of the YG10X cemented carbide/(CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy "transition layer material"joint; Figure 17 is the (CoCrFeNi) 0.9 Cu used in Example 5 Microstructure photos of (CoCrFeNi) 0.9 Cu 0.1 high-entropy alloy "transition layer material"/42CrMo steel joint obtained by SPS diffusion welding as "transition layer material" at 900 ° C for 15 minutes. It can be seen from the figure that the structure and morphology of the (CoCrFeNi) 0.9 Cu 0.2 high-entropy alloy "transition layer material"/42CrMo joint is similar to that of the previous examples, but it also has more defects than Example 1, but it is more In Example 4, in the microstructure of the joint of YG10X cemented carbide/(CoCrFeNi) 0.9 Cu 0.2 high-entropy alloy "transition layer material", it can be seen that the (CoCrFeNi) 0.9 Cu 0.2 high-entropy alloy "transition" near YG10X There were more enriched phases than in Example 4 in "Layer Material".
实施例6Example 6
本实施例的一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处仅在于将扩散焊接温度由900℃调整为950℃,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.5Cu0.5高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the only difference is that the diffusion welding temperature is adjusted from 900°C to 950°C, other conditions and The same as in Example 1, finally obtained (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy as "transition layer material", using spark plasma diffusion welding to realize the connection of YG10X hard alloy and 42CrMo steel. The weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
实施例7Example 7
本实施例的一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处在于将扩散焊接温度由900℃调整为950℃,并将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.6Cu0.4高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。并且最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is that the diffusion welding temperature is adjusted from 900°C to 950°C, and (CoCrFeNi ) 0.5 Cu 0.5 high-entropy alloy "transition layer material" is replaced by (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy "transition layer material", and other conditions are the same as in Example 1, finally obtained with (CoCrFeNi) 0.6 Cu 0.4 high-entropy alloy as "Transition layer material", using spark plasma diffusion welding to realize the connection of YG10X cemented carbide and 42CrMo steel. And the weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
实施例8Example 8
本实施例的一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处在于将扩散焊接温度由900℃调整为950℃,并将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.7Cu0.3高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.7Cu0.3高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。并且最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is that the diffusion welding temperature is adjusted from 900°C to 950°C, and (CoCrFeNi ) 0.5 Cu 0.5 high-entropy alloy "transition layer material" is replaced by (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy "transition layer material", and other conditions are the same as in Example 1, finally obtained with (CoCrFeNi) 0.7 Cu 0.3 high-entropy alloy as "Transition layer material", using spark plasma diffusion welding to realize the connection of YG10X cemented carbide and 42CrMo steel. And the weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
实施例9Example 9
本实施例的一种采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,实验步骤重复实施例1,不同之处在于将扩散焊接温度由900℃调整为950℃,并将(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”换成(CoCrFeNi)0.8Cu0.2高熵合金“过渡层材料”,其它条件和实施例1相同,最终获得以(CoCrFeNi)0.8Cu0.2高熵合金作为“过渡层材料”,采用放电等离子扩散焊接实现YG10X硬质合金和42CrMo钢的连接。并且最终得到的焊接件,用线切割也是从焊接件中间取狗骨状拉伸试样(垂直于焊接面取样),同实施例1一般在万能试验机上进行室温拉伸性能的测试。A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel using a high-entropy alloy in this embodiment, the experimental steps are repeated in Example 1, the difference is that the diffusion welding temperature is adjusted from 900°C to 950°C, and (CoCrFeNi ) 0.5 Cu 0.5 high-entropy alloy "transition layer material" is replaced by (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy "transition layer material", and other conditions are the same as in Example 1, finally obtained with (CoCrFeNi) 0.8 Cu 0.2 high-entropy alloy as "Transition layer material", using spark plasma diffusion welding to realize the connection of YG10X cemented carbide and 42CrMo steel. And the weldment that finally obtains, also is to get the dog-bone-shaped tensile sample (sampling perpendicular to the welding surface) from the middle of the weldment with wire cutting, and generally carry out the test of room temperature tensile performance on a universal testing machine with embodiment 1.
对比例1Comparative example 1
一种钨钴类硬质合金和42CrMo钢的连接方法,采用纯铜作为过渡层材料,其工艺包括如下步骤:A connection method between tungsten-cobalt hard alloy and 42CrMo steel adopts pure copper as the transition layer material, and the process comprises the following steps:
(1)纯铜“过渡层材料”的准备(1) Preparation of pure copper "transition layer material"
直径紫铜薄片,其厚度为900μm(纯度≥99.95%),随后将薄圆片用SiC砂纸打磨、抛光、超声波作用下酒精清洗、干燥箱干燥处理,最终得到表面光滑的纯铜“过渡层材料”,纯铜“过渡层材料”的最终厚度为700-800μm;diameter Copper flakes, the thickness of which is 900 μm (purity ≥ 99.95%), and then the thin discs are ground and polished with SiC sandpaper, cleaned with alcohol under the action of ultrasonic waves, and dried in a drying oven to finally obtain a pure copper "transition layer material" with a smooth surface. The final thickness of the pure copper "transition layer material" is 700-800 μm;
(2)母材准备(2) Base material preparation
用线切割将直径的YG10X硬质合金和42CrMo圆棒切割成14.5mm长度,得到待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒,将待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒各表面打磨光滑,去除氧化层等,对待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒的待焊接进行精细的打磨,随后进行抛光,再将待焊YG10X硬质合金圆棒和待焊42CrMo钢圆棒进行超声波清洗、干燥处理;cut the diameter The YG10X hard alloy and 42CrMo round bars are cut into 14.5mm lengths to obtain the YG10X hard alloy round bars to be welded and the 42CrMo steel round bars to be welded. Grinding smooth, removing the oxide layer, etc., finely grinding the YG10X hard alloy round bar to be welded and the 42CrMo steel round bar to be welded, and then polishing, and then the YG10X hard alloy round bar to be welded and the 42CrMo steel round bar to be welded The round bar is ultrasonically cleaned and dried;
(3)装配(3) Assembly
将钨钴类硬质合金,42CrMo钢和纯铜“过渡层材料”,自上而下按照石墨冲头-石墨垫片-待焊42CrMo钢圆棒-纯铜“过渡层材料”-待焊YG10X硬质合金圆棒-石墨垫片-石墨冲头的顺序装配到石墨模具中,在将其装配完成的模具放入放电等离子烧结系统中;Tungsten-cobalt hard alloy, 42CrMo steel and pure copper "transition layer material", from top to bottom according to graphite punch - graphite gasket - 42CrMo steel round rod to be welded - pure copper "transition layer material" - YG10X to be welded Carbide round rod-graphite gasket-graphite punch is assembled into the graphite mold in sequence, and the assembled mold is put into the spark plasma sintering system;
(4)放电等离子扩散连接(4) Discharge plasma diffusion connection
将装有待焊件的石墨模具置入放电等离子烧结系统中,调整红外测温仪镜头对准模具测温孔,调节扩散连接压力10Mpa,打开真空泵和充气泵使炉内真空度≤1×10-3Mpa,然后通电流以100℃/min的速度升温至900℃,随后保温15min,进行SPS扩散焊,随后随炉冷却得到焊接接头。Put the graphite mold with the parts to be welded into the discharge plasma sintering system, adjust the infrared thermometer lens to the temperature measurement hole of the mold, adjust the diffusion connection pressure to 10Mpa, turn on the vacuum pump and air pump to make the vacuum degree in the furnace ≤1×10 - 3 Mpa, then pass the current to raise the temperature to 900°C at a rate of 100°C/min, then keep it warm for 15min, perform SPS diffusion welding, and then cool down with the furnace to obtain a welded joint.
最终得到的焊接件,用线切割从焊接件中间取狗骨状拉伸试样,进行室温拉伸性能的测试,测试中的最终断裂位置为纯铜“过渡层材料”,而非纯铜“过渡层材料”与YG10X硬质合金和42CrMo钢交接处。For the final welded part, a dog-bone tensile sample was taken from the middle of the welded part by wire cutting, and the tensile properties at room temperature were tested. The final fracture position in the test was pure copper "transition layer material", not pure copper " Transition layer material" and the junction of YG10X cemented carbide and 42CrMo steel.
请结合参阅图18-图20,其中图18为对比例1中采用纯铜作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/纯铜“过渡层材料”/42CrMo钢接头的组织形貌照片;图19为对比例1中采用纯铜作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的YG10X硬质合金/纯铜“过渡层材料”接头的组织形貌照片;图20为对比例1中采用纯铜作为“过渡层材料”进行SPS扩散焊,在900℃时保温15min获得的纯铜“过渡层材料”/42CrMo钢接头的组织形貌照片。从图中可以看出接头结合情况较好。Please refer to Figure 18-Figure 20 in combination, where Figure 18 is the YG10X cemented carbide/pure copper "transition layer material" obtained by using pure copper as the "transition layer material" for SPS diffusion welding in Comparative Example 1 and holding it at 900°C for 15 minutes "/42CrMo steel joint structure morphology photo; Figure 19 is the YG10X cemented carbide/pure copper transition layer obtained by SPS diffusion welding using pure copper as the "transition layer material" in Comparative Example 1 and holding it at 900°C for 15 minutes Figure 20 is the pure copper "transition layer material"/42CrMo steel joint obtained by SPS diffusion welding at 900°C for 15 minutes in comparative example 1 Organizational photographs. It can be seen from the figure that the joints are in good condition.
将实施例1-9、对比例1中获得的扩散焊接接头,焊接样中间取狗骨状拉伸试样(垂直于焊接面取样),置于万能试验机上检测其的拉伸强度,其结果如表1所示。With the diffusion welded joint that obtains in embodiment 1-9, comparative example 1, get the dog bone shape tensile sample (perpendicular to welding surface sampling) in the middle of welding sample, place on the universal testing machine and detect its tensile strength, its result As shown in Table 1.
表1:各实施例和对对比例的拉伸试样的最大抗拉强度Table 1: The maximum tensile strength of the tensile samples of each embodiment and comparative examples
由表1的接头抗拉强度结果可以看出,在相同的焊接条件下,当采用纯铜作为“过渡层材料”时,接头的最薄弱地方为纯铜“过渡层材料”,最终接头的抗拉强度为纯铜“过渡层材料”的抗拉强度。采用(CoCrFeNi)1-xCux高熵合金作为“过渡层材料”,当x的值为0.3-0.5时,在实施例1-3中接头的抗拉强度超过采用纯铜作为“过渡层材料”的抗拉强度。实施例1-5中抗拉强度最高的实施例1阐述造成其强度提高可能的原因是,在采用(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”时,如图3所示,在(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”/42CrMo接头的组织形貌图中的E点,其主要元素的含量分别为:Fe(48.44%)、Co(19.60%)、Cr(7.69%)、Ni(15.35%)、Cu(8.92%),根据混合焓计算公式:From the tensile strength results of the joints in Table 1, it can be seen that under the same welding conditions, when pure copper is used as the "transition layer material", the weakest part of the joint is the pure copper "transition layer material", and the final resistance of the joint is Tensile strength is that of pure copper "transition material". Adopt (CoCrFeNi) 1-x Cu x high-entropy alloy as " transition layer material ", when the value of x is 0.3-0.5, the tensile strength of joint exceeds adopting pure copper as " transition layer material " in embodiment 1-3 "The tensile strength. Example 1, which has the highest tensile strength in Examples 1-5, explains that the possible reason for its strength increase is that when using (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material", as shown in Figure 3, in ( CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" / 42CrMo joint microstructure at point E, the content of the main elements are: Fe (48.44%), Co (19.60%), Cr (7.69%) ), Ni(15.35%), Cu(8.92%), according to the calculation formula of mixing enthalpy:
其中为二元合金体系中基于Medema模型计算得到的第i种和j种组元之间的理想混合焓。其中Fe-Co的混合焓为-1kJ/mol,Fe-Cr的混合焓为-1kJ/mol,Fe-Ni的混合焓为-2kJ/mol,Fe-Cu的混合焓为13kJ/mol,Co-Cr的混合焓为-4kJ/mol,Co-Ni的混合焓为0kJ/mol,Co-Cu的混合焓为6kJ/mol,Cr-Ni的混合焓为-7kJ/mol,Cr-Cu的混合焓为12kJ/mol,Ni-Cu的混合焓为4kJ/mol经过计算可以得到ΔHmix≈1.52kj/mol。in is the ideal mixing enthalpy between the i-th and j-th components calculated based on the Medema model in the binary alloy system. Among them, the mixing enthalpy of Fe-Co is -1kJ/mol, the mixing enthalpy of Fe-Cr is -1kJ/mol, the mixing enthalpy of Fe-Ni is -2kJ/mol, the mixing enthalpy of Fe-Cu is 13kJ/mol, Co- The mixing enthalpy of Cr is -4kJ/mol, the mixing enthalpy of Co-Ni is 0kJ/mol, the mixing enthalpy of Co-Cu is 6kJ/mol, the mixing enthalpy of Cr-Ni is -7kJ/mol, the mixing enthalpy of Cr-Cu is 12kJ/mol, and the mixing enthalpy of Ni-Cu is 4kJ/mol. After calculation, ΔH mix ≈1.52kj/mol.
再进行原子尺寸差异δ的计算,其可由下面公式进行计算得到:Then calculate the atomic size difference δ, which can be calculated by the following formula:
ri表示的是高熵合金中第i种组元的原子半径,表示平均原子半径,计算后可得 r i represents the atomic radius of the i-th component in the high-entropy alloy, Indicates the average atomic radius, which can be obtained after calculation
原子尺寸差异δ可由下面公式进行计算得到:The atomic size difference δ can be calculated by the following formula:
当-2.68δ-2.54<ΔHmix<-1.28δ+5.44并且δ<4.60,合金的微观结构由固溶体组成。以上的计算结果符合上述不等式,趋向于形成固溶体。同样的在F点处的Fe(70.22%)、Co(10.65%)、Cr(5.57%)、Ni(8.87%)、Cu(4.69%)计算后所得的ΔHmix、δ也符合上述不等式,固溶强化使得界面的强度提高。When -2.68δ-2.54<ΔH mix <-1.28δ+5.44 and δ<4.60, the microstructure of the alloy is composed of solid solution. The above calculation results conform to the above inequality and tend to form a solid solution. Similarly, the calculated ΔH mix and δ of Fe (70.22%), Co (10.65%), Cr (5.57%), Ni (8.87%), and Cu (4.69%) at point F also conform to the above inequality. Solution strengthening increases the strength of the interface.
同时从图5的接头界面EDS线扫结果图也可以看出扩散行为也较充分,缺陷的存在量较少,固其所得的界面强度高于YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”形成的界面,使得拉伸试验最终的断裂出现在YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”形成的界面附近。At the same time, from the EDS line scan results of the joint interface in Figure 5, it can also be seen that the diffusion behavior is relatively sufficient, and the number of defects is less, and the interface strength obtained by solidification is higher than that of YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high entropy The interface formed by the alloy "transition layer material" makes the final fracture of the tensile test appear near the interface formed by the YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material".
根据图4的接头界面EDS线扫结果图中可以发现W在“过渡层材料”中的扩散距离较低,这可能是由于采用了(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”,由于迟滞扩散效应使得W在“过渡层材料”中的扩散距离较低,而界面发现的主要扩散行为是(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”向YG10X硬质合金侧进行扩散,可以发现该扩散较显著,同时因为采用的是钴基硬质合金,而Co-Fe的混合焓为-1kJ/mol,Co-Cr的混合焓为-4kJ/mol,Co-Ni的混合焓为0kJ/mol,Co-Cu的混合焓为6kJ/mol,其中Co-Ni的混合焓为0kJ/mol,这意味着Co与Ni形成固溶体更容易,促进高熵合金“过渡层材料”的Ni向YG10X硬质合金侧扩散,使得扩散进一步充分,同时界面的结合情况也较好,使得YG10X硬质合金/(CoCrFeNi)0.5Cu0.5高熵合金“过渡层材料”形成的界面的最大抗拉强度达到508Mpa。According to the EDS line scan results of the joint interface in Figure 4, it can be found that the diffusion distance of W in the "transition layer material" is relatively low, which may be due to the use of (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material", due to The hysteretic diffusion effect makes the diffusion distance of W in the "transition layer material" relatively low, while the main diffusion behavior found at the interface is that the (CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" diffuses to the YG10X cemented carbide side, which can It is found that the diffusion is more significant, and because the cobalt-based cemented carbide is used, the mixing enthalpy of Co-Fe is -1kJ/mol, the mixing enthalpy of Co-Cr is -4kJ/mol, and the mixing enthalpy of Co-Ni is 0kJ /mol, the mixing enthalpy of Co-Cu is 6kJ/mol, and the mixing enthalpy of Co-Ni is 0kJ/mol, which means that it is easier for Co to form a solid solution with Ni, which promotes the transition of Ni to YG10X The side diffusion of cemented carbide makes the diffusion more sufficient, and the bonding of the interface is also better, so that the maximum tensile strength of the interface formed by YG10X cemented carbide/(CoCrFeNi) 0.5 Cu 0.5 high-entropy alloy "transition layer material" Reach 508Mpa.
而在实施例6-9中,提高温度使得最大抗拉强度出现变换,原因是:And in embodiment 6-9, raising temperature makes maximum tensile strength change, and reason is:
当x的值增加时,根据混合法则,五种“过渡层材料”的理论熔点的大小为(CoCrFeNi)0.9Cu0.1>(CoCrFeNi)0.8Cu0.2>(CoCrFeNi)0.7Cu0.3>(CoCrFeNi)0.6Cu0.4>(CoCrFeNi)0.5Cu0.5,900摄氏度对于采用低熔点的(CoCrFeNi)0.5Cu0.5“过渡层材料”来说该焊接条件下具有产生较多的界面相互扩散和反应所需的能量,而其它高熵合金“过渡层材料”则需要更高的焊接温度或焊接时间等,所以其界面较其它更高理论熔点的“过渡层材料”来说,接头的组织形貌中仅存在极小量的缺陷,同时采用(CoCrFeNi)0.5Cu0.5使得接头的整体抗拉强度提高,强于采用传统的纯铜“过渡层材料”得到的接头整体抗拉强度。其它高熵合金“过渡层材料”的接头界面情况和抗拉强度可能在提高焊接温度和扩散时间等参数下后将有所改善和提高。在实施例6-9中依次对应着实施例1-4,它们采用高熵合金“过渡层材料”相同,仅焊接温度提高到950℃,其它焊接条件相同,实施例7和实施例9相比较于实施例2和实施例4的抗拉强度有所提高。当焊接温度提高到950℃,使得抗拉强度最大值出现在采用(CoCrFeNi)0.6Cu0.4高熵合金“过渡层材料”的实施例7中。When the value of x increases, according to the mixing law, the theoretical melting points of the five "transition layer materials" are (CoCrFeNi) 0.9 Cu 0.1 >(CoCrFeNi) 0.8 Cu 0.2 >(CoCrFeNi) 0.7 Cu 0.3 >(CoCrFeNi) 0.6 Cu 0.4 >(CoCrFeNi) 0.5 Cu 0.5 , 900 degrees Celsius For the use of low melting point (CoCrFeNi) 0.5 Cu 0.5 "transition layer material", this welding condition has the energy required to produce more interfacial interdiffusion and reaction, while other The high-entropy alloy "transition layer material" requires a higher welding temperature or welding time, so compared with other "transition layer materials" with a higher theoretical melting point, there is only a very small amount of defects, while using (CoCrFeNi) 0.5 Cu 0.5 to improve the overall tensile strength of the joint, which is stronger than the overall tensile strength of the joint obtained by using the traditional pure copper "transition layer material". The joint interface and tensile strength of other high-entropy alloy "transition layer materials" may be improved and increased after increasing parameters such as welding temperature and diffusion time. Embodiments 6-9 correspond to Embodiments 1-4 in turn. They use the same high-entropy alloy "transition layer material", only the welding temperature is increased to 950 ° C, and other welding conditions are the same. Embodiment 7 and
本发明采用高熵合金连接钨钴类硬质合金和42CrMo钢的方法,有助于解决钨钴类硬质合金与42CrMo钢焊接润湿困难和线膨胀系数差异大引起较大残余应力的难题。通过引入(CoCrFeNi)1-xCux高熵合金作为“过渡层材料”,将钨钴类硬质合金和42CrMo钢在较高温度下(≥650℃)进行扩散连接,在此温度范围,两者润湿性良好,元素之间相互扩散,采用(CoCrFeNi)1-xCux高熵合金“过渡层材料”在界面较难形成金属间化合物。借助高熵效应形成组织均匀分布的界面层,实现了在线膨胀系数、熔点、比热容等物理性能都有较大差异的钨钴类硬质合金与42CrMo钢连接,实现了较平滑地过渡,减小了局部残余应力,抑制裂纹的形成、扩展,提高了接头强度。最后存在焊接件拉伸试样的拉伸强度大于采用纯铜“过渡层材料”的拉伸强度,因此,以(CoCrFeNi)1-xCux高熵合金为“过渡层材料”,采用放电等离子烧结(SPS)扩散焊接能够实现钨钴类硬质合金和42CrMo钢之间的高强度连接。The invention adopts the method of connecting the tungsten-cobalt hard alloy and the 42CrMo steel with the high-entropy alloy, which helps to solve the problems of difficult welding and wetting of the tungsten-cobalt hard alloy and the 42CrMo steel and large residual stress caused by large difference in linear expansion coefficient. By introducing (CoCrFeNi) 1-x Cu x high-entropy alloy as a "transition layer material", the tungsten-cobalt-based cemented carbide and 42CrMo steel were diffusion-bonded at a higher temperature (≥650°C). In this temperature range, the two Those with good wettability and interdiffusion between elements, using (CoCrFeNi) 1-x Cu x high-entropy alloy "transition layer material" is difficult to form intermetallic compounds at the interface. With the help of the high-entropy effect, a uniformly distributed interface layer is formed, and the connection between the tungsten-cobalt cemented carbide and the 42CrMo steel, which has large differences in physical properties such as online expansion coefficient, melting point, and specific heat capacity, is realized. Reduce the local residual stress, inhibit the formation and expansion of cracks, and improve the joint strength. Finally , the tensile strength of the tensile specimen of the weldment is greater than the tensile strength of the pure copper "transition layer material" . Sintering (SPS) diffusion welding enables high-strength connections between tungsten-cobalt cemented carbide and 42CrMo steel.
以上对本发明的实施方式作出详细说明,但本发明不局限于所描述的实施方式。对本领域的技术人员而言,在不脱离本发明的原理和精神的情况下对这些实施例进行的多种变化、修改、替换和变型均仍落入在本发明的保护范围之内。The embodiments of the present invention have been described in detail above, but the present invention is not limited to the described embodiments. For those skilled in the art, various changes, modifications, substitutions and modifications to these embodiments without departing from the principle and spirit of the present invention still fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210479620.2A CN114951946B (en) | 2022-05-05 | 2022-05-05 | A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210479620.2A CN114951946B (en) | 2022-05-05 | 2022-05-05 | A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114951946A CN114951946A (en) | 2022-08-30 |
CN114951946B true CN114951946B (en) | 2023-06-23 |
Family
ID=82979277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210479620.2A Active CN114951946B (en) | 2022-05-05 | 2022-05-05 | A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114951946B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115635154A (en) * | 2022-10-20 | 2023-01-24 | 西北工业大学 | Method for connecting carbon materials by adopting novel high-entropy alloy brazing filler metal |
CN116140624A (en) * | 2022-12-12 | 2023-05-23 | 中铁工程装备集团隧道设备制造有限公司 | Manufacturing process of composite alloy head, strong-connection high-wear-resistance cutting pick and manufacturing process |
CN116197503A (en) * | 2023-03-02 | 2023-06-02 | 合肥工业大学 | Welded part of hard alloy and steel and preparation method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102689109B (en) * | 2012-06-21 | 2014-12-10 | 哈尔滨工业大学 | Preparation method of high-entropy brazing filler metal for brazing non-oxide ceramics and non-oxide ceramic composite material |
CN105346161B (en) * | 2015-10-30 | 2017-07-25 | 中南大学 | A kind of tungsten/transition layer/steel composite material and its preparation method of low temperature and low pressure active diffusion connection |
US10640854B2 (en) * | 2016-08-04 | 2020-05-05 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
US11339817B2 (en) * | 2016-08-04 | 2022-05-24 | Honda Motor Co., Ltd. | Multi-material component and methods of making thereof |
CN107175398A (en) * | 2017-06-28 | 2017-09-19 | 合肥工业大学 | A kind of SPS diffusion welding methods of molybdenum alloy and tungsten alloy |
CN107486619A (en) * | 2017-08-30 | 2017-12-19 | 合肥工业大学 | TZM and WRe xenogenesis refractory alloys a kind of SPS diffusion welding methods |
CN108145302A (en) * | 2017-12-22 | 2018-06-12 | 合肥工业大学 | A kind of SPS diffusion welding methods of WC hard alloy of the same race |
CN111922468A (en) * | 2020-07-07 | 2020-11-13 | 安徽工程大学 | A kind of SiC ceramic brazing method and brazing material based on multi-element high-entropy alloy |
CN113182660B (en) * | 2021-05-08 | 2022-10-11 | 浙江工业大学 | SPS diffusion welding method of DD98 same-type nickel-based single crystal superalloy |
CN113878220B (en) * | 2021-08-27 | 2023-03-28 | 合肥工业大学 | Tungsten and steel layered metal composite material and diffusion bonding method thereof |
CN113732467B (en) * | 2021-08-27 | 2023-07-11 | 合肥工业大学 | A composite intermediate layer and diffusion welding method for tungsten/steel connectors |
CN114367731B (en) * | 2022-02-09 | 2023-05-09 | 中国工程物理研究院材料研究所 | Tungsten and steel connecting method |
-
2022
- 2022-05-05 CN CN202210479620.2A patent/CN114951946B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114951946A (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114951946B (en) | A method of connecting tungsten-cobalt cemented carbide and 42CrMo steel by using high-entropy alloy | |
CN105346161B (en) | A kind of tungsten/transition layer/steel composite material and its preparation method of low temperature and low pressure active diffusion connection | |
CN102357696B (en) | An intermediate layer assembly and connection method for connecting Si3N4 ceramics and stainless steel | |
CN102059449B (en) | Diffusion welding method of tungsten alloy and tantalum alloy at low temperature | |
CN106825885B (en) | A kind of connection method of TZM alloy and WRe alloy under electric field-assisted | |
CN113828906B (en) | A kind of diffusion welding method using high-entropy alloy intermediate layer to connect skutterudite and electrode | |
CN104308360B (en) | A kind of diffusion bonding method of graphite and low carbon steel, stainless steel | |
CN113878220B (en) | Tungsten and steel layered metal composite material and diffusion bonding method thereof | |
CN101182230A (en) | A method of vacuum diffusion bonding ceramics | |
CN113732467B (en) | A composite intermediate layer and diffusion welding method for tungsten/steel connectors | |
CN102886599A (en) | Method for manufacturing multi-layer amorphous alloy and crystal metal composite structure through diffusion welding | |
CN104014922A (en) | Fast-diffusion welding method of hard alloy and steel | |
CN106862693A (en) | A kind of tungsten/copper or tungsten/steel joint and preparation method thereof | |
CN103341675B (en) | A kind of method utilizing Ti-Co-Nb solder to braze Cf/SiC composite material and metal Nb | |
CN113968749A (en) | Method for connecting high-entropy ceramics and metal | |
CN116727925A (en) | Oriented structure graphene/copper composite solder and preparation method and application thereof | |
CN103341700B (en) | A kind of Co-Ti-Nb system high-temp solder | |
CN108947558A (en) | A kind of metal and Ti3SiC2The connection method of ceramics | |
CN105149769A (en) | Method for introducing design of laminated compound interlayers to enable magnesium alloy and aluminium alloy to be connected | |
CN109967850B (en) | Connection method for resistance spot welding of CoCrCuFeNi high-entropy alloy | |
CN102615442A (en) | Semi brazing and semi diffusion welding connecting method | |
CN110900037B (en) | Brazing filler metal and method for welding molybdenum-rhenium alloy and steel | |
CN108145302A (en) | A kind of SPS diffusion welding methods of WC hard alloy of the same race | |
CN108724894A (en) | A method of it doing middle layer using copper and prepares zirconium clad steel plate | |
CN107398630A (en) | The high intensity of tungsten and copper is directly connected to technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |