[go: up one dir, main page]

CN101182230A - A method of vacuum diffusion bonding ceramics - Google Patents

A method of vacuum diffusion bonding ceramics Download PDF

Info

Publication number
CN101182230A
CN101182230A CNA2007101446876A CN200710144687A CN101182230A CN 101182230 A CN101182230 A CN 101182230A CN A2007101446876 A CNA2007101446876 A CN A2007101446876A CN 200710144687 A CN200710144687 A CN 200710144687A CN 101182230 A CN101182230 A CN 101182230A
Authority
CN
China
Prior art keywords
diffusion
diffusion bonding
ceramics
vacuum
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007101446876A
Other languages
Chinese (zh)
Inventor
何鹏
冯吉才
刘多
王明
黄麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CNA2007101446876A priority Critical patent/CN101182230A/en
Publication of CN101182230A publication Critical patent/CN101182230A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

一种真空扩散连接陶瓷的方法,它涉及一种焊接陶瓷的方法,特别是适用于陶瓷与金属、陶瓷与陶瓷的连接。本发明解决了现有扩散连接陶瓷的方法存在连接温度高、在接头局部处金属变形大以及接头性能差的问题。本发明的真空扩散连接陶瓷的方法是按如下步骤进行的:1.对母材表面进行清理;2.把扩散中间层均匀的置于待焊母材的连接面上;3.将夹装好的焊件进行扩散连接;4.降温;即得到连接好的陶瓷焊件。本发明的连接温度降低了60℃~150℃,本发明连接的陶瓷与陶瓷和陶瓷与金属的剪切强度提高了20%~80%,接头处金属无明显形变。The invention relates to a method for joining ceramics by vacuum diffusion, which relates to a method for welding ceramics, and is especially suitable for the connection of ceramics and metals, and ceramics and ceramics. The invention solves the problems of high connection temperature, large metal deformation at the local part of the joint and poor performance of the joint existing in the existing method of diffusing and joining ceramics. The method for vacuum diffusion connecting ceramics of the present invention is carried out according to the following steps: 1. The surface of the base metal is cleaned; 2. The diffusion intermediate layer is evenly placed on the connecting surface of the base material to be welded; 3. The clip is installed Diffusion connection of the weldment; 4. Cool down; that is, the connected ceramic weldment is obtained. The connection temperature of the invention is reduced by 60°C to 150°C, the shear strength of ceramics and ceramics and ceramics and metals connected by the invention is increased by 20% to 80%, and the metal at the joint has no obvious deformation.

Description

一种真空扩散连接陶瓷的方法 A method of vacuum diffusion bonding ceramics

技术领域technical field

本发明涉及一种焊接陶瓷的方法,特别是适用于陶瓷与金属、陶瓷与陶瓷的连接。The invention relates to a method for welding ceramics, especially suitable for the connection of ceramics and metals, and ceramics and ceramics.

背景技术Background technique

陶瓷具有优越的高硬度、低比重、高强度、耐高温、耐腐蚀等特性,是公认的在航天飞行器、武器装备、原子能及汽车等工业领域最有发展前途的高温结构材料。但由于陶瓷的塑性差,不易制成大型或形状复杂的构件。为了解决这一问题,需要发展陶瓷与金属等其它异种材料的连接技术,以期获得兼具陶瓷和金属各自优异性能的陶瓷-金属复合构件。目前研究比较多的是活性钎焊法和扩散连接法。活性钎焊连接是一种利用陶瓷与金属母材之间的钎料在高温下熔化,其中的活性组元与陶瓷发生化学反应,形成稳定的反应梯度层,将两种不同材料结合在一起的方法。活性金属钎焊用钎料是在Cu、Ag、Au等贵金属基料中添加活性金属Ti,In等而成。但陶瓷-金属钎焊连接目前存在的主要问题是:(1)结合强度较低;(2)接头性能评定的可比性较差;(3)钎料价格较高。扩散连接一般在真空条件下,使经过精细加工的被连接表面紧密的靠在一起,在一定的温度及压力下,接触界面原子间相互扩散,形成金属键接合,是一种精密的连接方法,连接质量可靠。扩散连接适用于各种陶瓷与金属的连接。扩散连接克服了活性钎焊法的缺点,扩散连接的主要优点是连接强度高、接头质量稳定和耐腐蚀性能好,特别适用于高温和耐蚀条件下陶瓷与金属的连接。但是在进行陶瓷与金属的连接时,一般扩散连接所用温度较高,在接头局部处金属变形大,又由于连接时作用温度较高,常常超过材料的相变点或强化相析出温度,使接头性能变差。特别是对陶瓷与金属这样的异种材料的连接,由于连接温度较高,造成接头界面处有金属间化合物析出,在陶瓷和金属界面生成各种脆性化合物,这些反应生成相的种类、成长状况和形态分布对接头性能有很大影响,直接影响了陶瓷-金属结构的实际应用,同时冷却时接头处会形成较大的内应力,使接头性能变差。Ceramics have excellent properties such as high hardness, low specific gravity, high strength, high temperature resistance, and corrosion resistance. They are recognized as the most promising high-temperature structural materials in the industrial fields of aerospace vehicles, weaponry, atomic energy, and automobiles. However, due to the poor plasticity of ceramics, it is not easy to make large or complex-shaped components. In order to solve this problem, it is necessary to develop the connection technology of other dissimilar materials such as ceramics and metals, in order to obtain ceramic-metal composite components with both excellent properties of ceramics and metals. At present, more researches are active brazing method and diffusion bonding method. Active brazing connection is a kind of brazing filler metal between ceramic and metal base material is melted at high temperature, and the active components in it chemically react with ceramic to form a stable reaction gradient layer and combine two different materials together. method. Brazing material for active metal brazing is made by adding active metal Ti, In, etc. to precious metal base materials such as Cu, Ag, and Au. However, the main problems of ceramic-metal brazing connection are: (1) low bonding strength; (2) poor comparability of joint performance evaluation; (3) high price of solder. Diffusion connection is generally under vacuum conditions, so that the finely processed surfaces to be connected are close together. Under a certain temperature and pressure, the atoms at the contact interface diffuse with each other to form a metal bond. It is a precise connection method. Connection quality is solid. Diffusion connection is suitable for the connection of various ceramics and metals. Diffusion connection overcomes the shortcomings of active brazing method. The main advantages of diffusion connection are high connection strength, stable joint quality and good corrosion resistance. It is especially suitable for the connection of ceramics and metals under high temperature and corrosion resistance conditions. However, when connecting ceramics and metals, the temperature used for diffusion bonding is generally high, and the metal deformation at the joint is large, and because of the high temperature during the connection, it often exceeds the phase transition point of the material or the precipitation temperature of the strengthening phase, making the joint Performance deteriorates. Especially for the connection of dissimilar materials such as ceramics and metals, due to the high connection temperature, intermetallic compounds are precipitated at the joint interface, and various brittle compounds are formed at the interface between ceramics and metals. The morphological distribution has a great influence on the performance of the joint, which directly affects the practical application of the ceramic-metal structure. At the same time, a large internal stress will be formed at the joint during cooling, which will deteriorate the performance of the joint.

发明内容Contents of the invention

本发明为了解决现有扩散连接陶瓷的方法存在连接温度高、在接头局部处金属变形大以及接头性能差的问题,而提供一种真空扩散连接陶瓷的方法。The present invention provides a method for vacuum diffusion bonding ceramics in order to solve the problems of high connection temperature, large metal deformation at local joints and poor joint performance existing in the existing diffusion bonding ceramics method.

本发明的真空扩散连接陶瓷的方法是按如下步骤进行的:一、扩散连接前对母材表面进行清理;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛或钛合金箔片,扩散连接中间层的厚度30~100μm;三、将夹装好的焊件置于真空扩散焊机内进行加热,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的陶瓷焊件。The method for vacuum diffusion bonding ceramics of the present invention is carried out according to the following steps: 1. Clean up the surface of the base material before the diffusion connection; The layer is hydrogenated titanium or titanium alloy foil, and the thickness of the middle layer of diffusion connection is 30-100 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine for heating, and the vacuum degree is 1.33×10 -3 ~ 4. Diffusion connection is carried out under the condition of 0×10 -3 Pa; 4. After welding, the weldment is depressurized when the original vacuum condition is lowered to 100°C, and when the temperature is lowered to room temperature, the weldment is taken out; the connected ceramic weldment is obtained.

本发明中步骤二所述的置氢钛的含氢量为0.1~0.6wt.%。The hydrogen content of the hydrogenated titanium described in step 2 of the present invention is 0.1-0.6 wt.%.

本发明的方法原理如下:采用氢含量0.1%~0.6%(重量百分比)的钛或钛合金箔片作为扩散连接中间层,利用钛在扩散连接温度下对陶瓷中的氧、氮、碳、硅等元素具有较高的化学亲和力,能与陶瓷相互作用,发生置换反应或化合反应,形成反应产物,并通过生成的反应产物使陶瓷牢固地连接在一起。同时由于氢导致钛或钛合金热变形流动应力的下降,热塑性的增加,从而使置氢钛或钛合金在高温下易于变形;而且氢在钛或钛合金中的自扩散和溶质扩散能力较高,特别是在β相内的扩散能力更高,因而氢可以加速合金元素的扩散,降低原子结合能,减小扩散激活能,提高扩散协调变形能力,可以在相对较低的温度下实现陶瓷接头可靠的扩散连接。另外,置氢钛或钛合金在真空扩散连接加热过程中发生脱氢,当温度达到600℃时,氢开始逸出,当温度迅速升高达到连接温度时,氢急剧向外逸出。逸出的氢与材料表面氧化膜发生反应,这种还原反应十分有利于氧化膜的去除,有助于缩短扩散连接时间,促进扩散连接进程。针对于陶瓷的真空扩散连接,与常规的直接扩散连接或采用普通Ti箔作为中间层的扩散连接方法相比,本发明提出的以置氢钛合金作为中间层的真空扩散连接方法及工艺,扩散连接温度可降低60℃~150℃,接头抗剪切强度可提高20%~80%,接头处金属无明显形变。The principle of the method of the present invention is as follows: use titanium or titanium alloy foil with a hydrogen content of 0.1% to 0.6% (percentage by weight) as the diffusion connection intermediate layer, and use titanium to absorb oxygen, nitrogen, carbon, and silicon in the ceramics at the diffusion connection temperature. Such elements have high chemical affinity, can interact with ceramics, undergo substitution reactions or compound reactions, form reaction products, and connect ceramics firmly together through the generated reaction products. At the same time, due to the decrease of the thermal deformation flow stress of titanium or titanium alloy caused by hydrogen, the thermoplasticity increases, so that the hydrogenated titanium or titanium alloy is easy to deform at high temperature; and the self-diffusion and solute diffusion capabilities of hydrogen in titanium or titanium alloy are relatively high , especially in the β phase, the diffusion ability is higher, so hydrogen can accelerate the diffusion of alloy elements, reduce the atomic binding energy, reduce the activation energy of diffusion, improve the ability of diffusion coordination and deformation, and can realize ceramic joints at relatively low temperatures Reliable diffusion connection. In addition, the hydrogenated titanium or titanium alloy undergoes dehydrogenation during the heating process of the vacuum diffusion connection. When the temperature reaches 600 ° C, the hydrogen begins to escape. When the temperature rises rapidly to reach the connection temperature, the hydrogen escapes sharply. The escaped hydrogen reacts with the oxide film on the surface of the material. This reduction reaction is very conducive to the removal of the oxide film, which helps to shorten the diffusion connection time and promote the diffusion connection process. For the vacuum diffusion connection of ceramics, compared with the conventional direct diffusion connection or the diffusion connection method using ordinary Ti foil as the intermediate layer, the vacuum diffusion connection method and process of the hydrogen-absorbing titanium alloy as the intermediate layer proposed by the present invention, the diffusion The connection temperature can be reduced by 60°C to 150°C, the shear strength of the joint can be increased by 20% to 80%, and the metal at the joint has no obvious deformation.

附图说明Description of drawings

图1为SiC/TC4(置氢钛)/SiC扩散连接工艺曲线示意图;图2为Si3N4/TC4(置氢钛)/Si3N4扩散连接工艺曲线示意图;图3为Al2O3/TC4(置氢钛)/AISI304不锈钢扩散连接工艺曲线示意图;图4为Al2O3/TC4(置氢钛)/Kovar合金扩散连接工艺曲线示意图;图5为SiC/TC4(置氢钛)/TC4钛合金扩散连接工艺曲线示意图;图6为SiC/Ti600(置氢钛合金箔片)/GH128镍基高温合金扩散连接工艺曲线示意图;图1至图6中的T代表扩散连接温度,P代表扩散连接压力,t代表扩散连接时间。Figure 1 is a schematic diagram of SiC/TC4 (hydrogen-containing titanium)/SiC diffusion bonding process curve; Figure 2 is a schematic diagram of Si 3 N 4 /TC4 (hydrogen-containing titanium)/Si 3 N 4 diffusion bonding process curve; Figure 3 is Al 2 O 3 /TC4 (hydrogenated titanium)/AISI304 stainless steel diffusion bonding process curve diagram; Figure 4 is a schematic diagram of Al 2 O3/TC 4 (hydrogenated titanium)/Kovar alloy diffusion bonding process curve; Figure 5 is SiC/TC4 (hydrogenated titanium )/TC4 titanium alloy diffusion bonding process curve; Figure 6 is a schematic diagram of SiC/Ti600 (hydrogen-containing titanium alloy foil)/GH128 nickel-based superalloy diffusion bonding process curve; T in Figure 1 to Figure 6 represents the diffusion bonding temperature, P represents the diffusion connection pressure, and t represents the diffusion connection time.

具体实施方式Detailed ways

具体实施方式一:本实施方式的真空扩散连接陶瓷的方法是按如下步骤进行的:一、扩散连接前对母材表面进行清理;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛或钛合金箔片,扩散连接中间层的厚度30~100μm;三、将夹装好的焊件置于真空扩散焊机内进行加热,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的陶瓷焊件。Specific Embodiment 1: The method for vacuum diffusion bonding ceramics in this embodiment is carried out as follows: 1. Clean the surface of the base material before diffusion connection; 2. Place the diffusion intermediate layer evenly on the connection of the base material to be welded. On the surface, the middle layer of the diffusion connection is hydrogenated titanium or titanium alloy foil, and the thickness of the middle layer of the diffusion connection is 30-100 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine for heating. Diffusion connection is carried out under the condition of 1.33×10 -3 ~ 4.0×10 -3 Pa; 4. After welding, the weldment is decompressed when the original vacuum condition drops to 100°C, and when the temperature is lowered to room temperature, the weldment is taken out; the connection is obtained Good ceramic weldments.

本实施方法中扩散连接工艺参数应按照母材的不同采用相应的扩散连接温度、扩散连接压力和扩散连接时间。In this implementation method, the diffusion bonding process parameters should adopt the corresponding diffusion bonding temperature, diffusion bonding pressure and diffusion bonding time according to the difference of the base metal.

本实施方式适用于陶瓷与陶瓷,陶瓷与金属的连接。This embodiment is applicable to the connection of ceramics and ceramics, and ceramics and metals.

具体实施方式二:本实施方式与具体实施方式一不同的是:步骤二中扩散连接中间层的厚度40~80μm。其它步骤及参数与具体实施方式一相同。Embodiment 2: This embodiment differs from Embodiment 1 in that: in Step 2, the thickness of the diffusion-bonded intermediate layer is 40-80 μm. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式三:本实施方式与具体实施方式一不同的是:步骤二中扩散连接中间层的厚度50μm。其它步骤及参数与具体实施方式一相同。Embodiment 3: The difference between this embodiment and Embodiment 1 is that in step 2, the thickness of the diffusion-bonded intermediate layer is 50 μm. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式四:本实施方式与具体实施方式一不同的是:步骤二中扩散连接中间层的厚度60μm。其它步骤及参数与具体实施方式一相同。Embodiment 4: This embodiment is different from Embodiment 1 in that the thickness of the diffusion-bonded intermediate layer in step 2 is 60 μm. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式五:本实施方式与具体实施方式一不同的是:步骤二中置氢钛的含氢量为0.1~0.6wt.%。其它步骤及参数与具体实施方式一相同。Embodiment 5: This embodiment is different from Embodiment 1 in that: the hydrogen content of the hydrogenated titanium in step 2 is 0.1-0.6 wt.%. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式六:本实施方式与具体实施方式一不同的是:步骤二中置氢钛的含氢量为0.2~0.5wt.%。其它步骤及参数与具体实施方式一相同。Embodiment 6: This embodiment is different from Embodiment 1 in that: the hydrogen content of the hydrogenated titanium in step 2 is 0.2-0.5 wt.%. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式七:本实施方式与具体实施方式一不同的是:步骤二中置氢钛的含氢量为0.3~0.4wt.%。其它步骤及参数与具体实施方式一相同。Embodiment 7: This embodiment is different from Embodiment 1 in that: the hydrogen content of the hydrogenated titanium in step 2 is 0.3-0.4 wt.%. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式八:本实施方式与具体实施方式一不同的是:步骤二中置氢钛的含氢量为0.35wt.%。其它步骤及参数与具体实施方式一相同。Embodiment 8: This embodiment is different from Embodiment 1 in that: the hydrogen content of the hydrogenated titanium in step 2 is 0.35wt.%. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式九:本实施方式与具体实施方式一不同的是:步骤一中对母材表面进行清理采用物理清理、化学清理或者先物理清理后化学清理;所述物理清理是依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光;所述化学清理是根据母材的不同而配制相应的腐蚀液以去除母材表面的吸附层、杂质和/或氧化膜,然后用丙酮擦拭待焊母材表面或把母材放在丙酮溶液中用超声波清洗。其它步骤及参数与具体实施方式一相同。Specific embodiment nine: the difference between this embodiment and specific embodiment one is: in step 1, the surface of the parent material is cleaned by physical cleaning, chemical cleaning or first physical cleaning followed by chemical cleaning; the physical cleaning is followed by 400 # , 500 # , 600 # , 800 # and 1000 # metallographic sandpaper are polished step by step; the chemical cleaning is to prepare the corresponding corrosion solution according to the difference of the base material to remove the adsorption layer, impurities and/or oxide film on the surface of the base material , and then wipe the surface of the base metal to be welded with acetone or put the base metal in an acetone solution and use ultrasonic cleaning. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式十:本实施方式与具体实施方式一不同的是:步骤三中加热方式采用感应加热或电阻加热。其它步骤及参数与具体实施方式一相同。Embodiment 10: This embodiment is different from Embodiment 1 in that: in step 3, the heating method adopts induction heating or resistance heating. Other steps and parameters are the same as those in Embodiment 1.

具体实施方式十一:本实施方式扩散连接SiC陶瓷与SiC陶瓷的方法按如下步骤进行:一、扩散连接前对SiC母材被焊接表面依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光,然后放在丙酮溶液中用超声波清洗;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛(氢含量为0.3wt.%),扩散连接中间层的厚度30~50μm;三、将夹装好的焊件置于真空扩散焊机内进行加热至1350℃,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接,焊接工艺规范参数曲线如图1所示;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的SiC陶瓷与SiC陶瓷的焊件。Embodiment 11: In this embodiment, the method of diffusion bonding SiC ceramics and SiC ceramics is carried out as follows: 1. Before diffusion bonding, use 400 # , 500 # , 600 # , 800 # and 1000 # on the welded surface of the SiC base material in sequence #Metallographic sandpaper is polished step by step, and then placed in acetone solution and cleaned by ultrasonic waves; 2. Place the diffusion intermediate layer evenly on the connecting surface of the base material to be welded, and the diffusion connection intermediate layer is hydrogenated titanium (the hydrogen content is 0.3wt.%), the thickness of the diffusion-bonded intermediate layer is 30-50 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine and heat it to 1350°C, at a vacuum degree of 1.33×10 -3 ~4.0× Diffusion connection is carried out under the condition of 10 -3 Pa, and the welding process specification parameter curve is shown in Figure 1; 4. After the welding is completed, the weldment is depressurized when the original vacuum condition drops to 100 ° C, and the weldment is taken out when the temperature is lowered to room temperature; That is, the weldment of connected SiC ceramics and SiC ceramics is obtained.

本实施方式的SiC/TC4(置氢钛)/SiC的扩散连接表明:SiC/TC4(置氢钛)/SiC扩散连接接头室温剪切强度可达240~250MPa,比在相同扩散连接温度(1350℃)、扩散连接时间(60min)、扩散连接压力(10MPa)下的SiC/Ti箔/SiC扩散连接接头强度(室温剪切强度为170~180MPa)高近40%;与高扩散连接温度条件下(扩散连接温度为1500℃、扩散连接时间60min、扩散连接压力10MPa)连接的SiC/Ti箔/SiC扩散连接接头强度(室温剪切强度为240~250MPa)相当,扩散连接温度降低了150℃。SiC/TiH2/SiC扩散连接接头断裂发生在接头附近的SiC母材上;接头的界面微观结构为SiC/Ti3SiC2/Ti3SiC2+TiC/Ti3SiC2/SiC。SiC/TC4(置氢)/SiC扩散连接接头800℃高温剪切强度可达220~230MPa。The diffusion connection of SiC/TC4 (titanium with hydrogen)/SiC in this embodiment shows that: the shear strength of the SiC/TC4 (titanium with hydrogen)/SiC diffusion connection at room temperature can reach 240-250 MPa, which is higher than that at the same diffusion connection temperature (1350 °C), diffusion bonding time (60min), and diffusion bonding pressure (10MPa), the SiC/Ti foil/SiC diffusion bonding joint strength (room temperature shear strength is 170-180MPa) is nearly 40% higher; (The diffusion bonding temperature is 1500°C, the diffusion bonding time is 60min, and the diffusion bonding pressure is 10MPa). The SiC/Ti foil/SiC diffusion bonding joint strength (room temperature shear strength is 240-250MPa) is equivalent, and the diffusion bonding temperature is reduced by 150°C. The fracture of the SiC/TiH 2 /SiC diffusion bonded joint occurred on the SiC base metal near the joint; the interface microstructure of the joint was SiC/Ti 3 SiC 2 /Ti 3 SiC 2 +TiC/Ti 3 SiC 2 /SiC. The high temperature shear strength of SiC/TC4 (hydrogen)/SiC diffusion bonded joint can reach 220-230MPa at 800°C.

具体实施方式十二:本实施方式扩散连接Si3N4陶瓷与Si3N4陶瓷的方法按如下步骤进行:一、扩散连接前对Si3N4母材被焊接表面依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光,然后放在丙酮溶液中用超声波清洗;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛(氢含量为0.25wt.%),扩散连接中间层的厚度50μm;三、将夹装好的焊件置于真空扩散焊机内进行加热至1400℃,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接,焊接工艺规范参数曲线如图2所示;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的Si3N4陶瓷与Si3N4陶瓷的焊件。Embodiment 12: In this embodiment, the method for diffusion bonding Si 3 N 4 ceramics and Si 3 N 4 ceramics is carried out as follows: 1. Before diffusion bonding, use 400 # , 500 # on the welded surface of the Si 3 N 4 base material # , 600 # , 800 # and 1000 # metallographic sandpaper are polished step by step, and then placed in acetone solution and cleaned by ultrasonic waves; 2. Place the diffusion middle layer evenly on the connecting surface of the base metal to be welded, and the middle of the diffusion connection The layer is hydrogenated titanium (hydrogen content is 0.25wt.%), and the thickness of the diffusion connection intermediate layer is 50 μm; 3. Place the sandwiched weldment in a vacuum diffusion welding machine and heat it to 1400 ° C. At a vacuum degree of 1.33 ×10 -3 ~ 4.0×10 -3 Pa, the diffusion connection is carried out, and the welding process specification parameter curve is shown in Figure 2; 4. After welding, the weldment is decompressed when the temperature is lowered to 100°C under the original vacuum condition, and the temperature is lowered to At room temperature, the weldment is taken out; that is, the weldment of connected Si 3 N 4 ceramics and Si 3 N 4 ceramics is obtained.

本实施方式的Si3N4/TC4(置氢钛)/Si3N4的扩散连接表明:Si3N4/TC4(置氢钛)/Si3N4扩散连接接头室温剪切强度可达180~210MPa,比在相同扩散连接温度(1400℃)、扩散连接时间(60min)、扩散连接压力(10MPa)下的Si3N4/Ti箔/Si3N4扩散连接接头强度(室温剪切强度为140~150MPa)高出30~50%;与在高温条件下(扩散连接温度为1500℃、扩散连接时间60min、扩散连接压力10MPa)连接的Si3N4/Ti箔/Si3N4扩散连接接头强度(室温剪切强度为180~200MPa)相近,扩散连接温度降低了100℃;接头的界面微观结构为Si3N4/Ti5Si3+TiN+TiSi/Si3N4。Si3N4/TiH2/Si3N4扩散连接接头800℃高温剪切强度可达180~200MPa。The diffusion bonding of Si 3 N 4 /TC4 (titanium with hydrogen)/Si 3 N 4 in this embodiment shows that: the shear strength of Si 3 N 4 /TC4 (titanium with hydrogen)/Si 3 N 4 diffusion bonding at room temperature can reach 180~210MPa, compared with Si 3 N 4 /Ti foil/Si 3 N 4 diffusion bonding joint strength (room temperature shear The strength is 140-150MPa) is 30-50% higher; and Si 3 N 4 /Ti foil/Si 3 N 4 connected under high temperature conditions (diffusion connection temperature is 1500°C, diffusion connection time is 60min, diffusion connection pressure is 10MPa) The strength of diffusion bonding joints (shear strength at room temperature is 180-200MPa) is similar, and the diffusion bonding temperature is lowered by 100℃; the interface microstructure of the joints is Si 3 N 4 /Ti 5 Si 3 +TiN+TiSi/Si 3 N 4 . The high temperature shear strength of Si 3 N 4 /TiH 2 /Si 3 N 4 diffusion bonded joints can reach 180-200 MPa at 800 °C.

具体实施方式十三:本实施方式扩散连接Al2O3陶瓷与AISI304不锈钢的方法按如下步骤进行:一、扩散连接前对Al2O3陶瓷被焊接表面依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光,然后放在丙酮溶液中用超声波清洗,对不锈钢待焊表面采用酸清洗;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛(氢含量为0.4wt.%),扩散连接中间层的厚度50μm;三、将夹装好的焊件置于真空扩散焊机内进行加热至900℃,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接,焊接工艺规范参数曲线如图3所示;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的Al2O3陶瓷与AISI304不锈钢的焊件。Specific embodiment thirteen: In this embodiment, the method of diffusion bonding Al2O3 ceramics and AISI304 stainless steel is carried out as follows: 1. Before diffusion bonding , use 400 # , 500 # , and 600 # on the welded surface of Al2O3 ceramics in sequence , 800 # and 1000 # metallographic sandpapers are polished step by step, then placed in acetone solution and cleaned with ultrasonic waves, and the surface of the stainless steel to be welded is cleaned with acid; 2. Place the diffusion intermediate layer evenly on the connecting surface of the base metal to be welded Above, the diffusion bonding intermediate layer is hydrogenated titanium (hydrogen content is 0.4wt.%), and the thickness of the diffusion bonding intermediate layer is 50 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine and heat it to 900 ° C. Diffusion connection is carried out under the condition of vacuum degree of 1.33×10 -3 ~ 4.0×10 -3 Pa, and the welding process specification parameter curve is shown in Figure 3; 4. After welding, when the weldment is cooled to 100°C under the original vacuum condition When the pressure is removed and the temperature is lowered to room temperature, the weldment is taken out; that is, the weldment of connected Al 2 O 3 ceramics and AISI304 stainless steel is obtained.

本实施方式的Al2O3/TC4(置氢钛)/AISI304不锈钢的扩散连接表明:Al2O3/TC4(置氢钛)/AISI304不锈钢扩散连接接头室温剪切强度可达60~75MPa,比采用相同厚度的Ti箔(最佳焊接规范即扩散连接温度900℃、扩散连接时间60min、扩散连接压力15MPa)作为中间层扩散连接的Al2O3/Ti箔/AISI304不锈钢接头强度(室温剪切强度为40~50MPa)高50%~80%,扩散连接温度降低了60℃。The diffusion connection of Al 2 O 3 /TC4 (hydrogen-containing titanium)/AISI304 stainless steel in this embodiment shows that the room temperature shear strength of the Al 2 O 3 /TC4 (hydrogen-containing titanium)/AISI304 stainless steel diffusion connection joint can reach 60-75 MPa, Compared with the joint strength of Al 2 O 3 /Ti foil/AISI304 stainless steel joint that uses the same thickness of Ti foil (the best welding specification is the diffusion bonding temperature of 900°C, the diffusion bonding time of 60min, and the diffusion bonding pressure of 15MPa) as the intermediate layer (room temperature shear The shear strength is 40-50MPa) which is 50%-80% higher, and the diffusion connection temperature is reduced by 60°C.

本实施方式的Al2O3陶瓷的成分如表1所示。The composition of the Al 2 O 3 ceramics of this embodiment is shown in Table 1.

表1 Al2O3母材的成分(wt.%)Table 1 Composition of Al 2 O 3 base material (wt.%)

Al2O3 Al 2 O 3  SiO2 SiO 2  CaOCaO  MgOMgO  K2OK 2 O  Na2ONa 2 O 杂质Impurities 94.5894.58  3.553.55  0.120.12  0.920.92  0.050.05  0.530.53 余量margin

具体实施方式十四:本实施方式扩散连接Al2O3陶瓷与Kovar合金的方法按如下步骤进行:一、扩散连接前对Al2O3陶瓷被焊接表面依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光,然后放在丙酮溶液中用超声波清洗,对Kovar合金待焊表面采用酸清洗;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛(氢含量为0.35wt.%),扩散连接中间层的厚度50μm;三、将夹装好的焊件置于真空扩散焊机内进行加热至1100℃,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接,焊接工艺规范参数曲线如图4所示;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的Al2O3陶瓷与Kovar合金的焊件。Specific Embodiment Fourteen: In this embodiment, the method for diffusion bonding Al2O3 ceramics and Kovar alloy is carried out as follows: 1. Before diffusion bonding , use 400 # , 500 # , and 600 # on the welded surface of Al2O3 ceramics in sequence , 800 # and 1000 # metallographic sandpapers are polished step by step, then placed in acetone solution and cleaned with ultrasonic waves, and the surface of the Kovar alloy to be welded is cleaned with acid; 2. The diffusion intermediate layer is evenly placed on the connection of the base metal to be welded On the surface, the diffusion bonding intermediate layer is hydrogenated titanium (hydrogen content is 0.35wt.%), and the thickness of the diffusion bonding intermediate layer is 50 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine and heat it to 1100 °C , the diffusion connection is carried out under the condition of a vacuum degree of 1.33×10 -3 ~ 4.0×10 -3 Pa, and the welding process specification parameter curve is shown in Figure 4; 4. After welding, the weldment is cooled to 100°C under the original vacuum condition When the pressure is removed and the temperature is lowered to room temperature, the weldment is taken out; that is, the weldment of the connected Al 2 O 3 ceramic and Kovar alloy is obtained.

本实施方式的Al2O3/TC4(置氢钛)/Kovar合金的扩散连接表明:Al2O3/TC4(置氢钛)/Kovar合金扩散连接接头室温剪切强度可达160~180MPa,比采用相同厚度的Ti箔(最佳焊接规范即扩散连接温度1100℃、扩散连接时间60min、扩散连接压力10MPa)作为中间层扩散连接的Al2O3/Ti箔/Kovar合金接头强度(室温剪切强度为120~150MPa)高10%~50%,扩散连接温度降低了100℃。The diffusion bonding of Al 2 O 3 /TC4 (hydrogen-containing titanium)/Kovar alloy in this embodiment shows that: the room temperature shear strength of the Al 2 O 3 /TC4 (hydrogen-containing titanium)/Kovar alloy diffusion bonding joint can reach 160-180 MPa, Compared with the Al 2 O 3 /Ti foil/Kovar alloy joint strength (room temperature shear) of the same thickness of Ti foil (best welding specification is diffusion bonding temperature 1100 ℃, diffusion bonding time 60min, diffusion bonding pressure 10MPa) as the middle layer diffusion bonding Al 2 O 3 /Ti foil/Kovar alloy joint strength The shear strength is 120-150MPa) which is 10%-50% higher, and the diffusion connection temperature is reduced by 100°C.

本实施方式的Kovar合金的成分如表2所示。The composition of the Kovar alloy of this embodiment is shown in Table 2.

表2  Kovar合金母材的成分(wt.%重量百分比)Table 2 Composition of Kovar alloy base metal (wt.% weight percentage)

  CC   PP   SS  MgMg   MnMn     SiSi     NiNi     CoCo.   FeFe ≤0.05≤0.05 ≤0.02≤0.02 ≤0.02≤0.02  -- ≤0.40≤0.40 ≤0.30≤0.30   32.5-3432.5-34   13.6-14.813.6-14.8 余量margin

具体实施方式十五:本实施方式扩散连接SiC陶瓷与TC4钛合金的方法按如下步骤进行:一、扩散连接前对SiC陶瓷被焊接表面依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光,然后放在丙酮溶液中用超声波清洗,对TC4钛合金待焊表面采用酸清洗;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛(氢含量为0.2wt.%),扩散连接中间层的厚度50μm;三、将夹装好的焊件置于真空扩散焊机内进行加热至850℃,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接,焊接工艺规范参数曲线如图5所示;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的SiC陶瓷与TC4钛合金的焊件。Embodiment 15: In this embodiment, the method of diffusion bonding SiC ceramics and TC4 titanium alloy is carried out according to the following steps: 1. Before diffusion bonding, use 400 # , 500 # , 600 # , 800 # and 1000 # on the welded surface of SiC ceramics in sequence #Metallographic sandpaper is polished step by step, then placed in acetone solution and cleaned with ultrasonic waves, and the surface of TC4 titanium alloy to be welded is cleaned with acid; 2. Place the diffusion intermediate layer evenly on the connecting surface of the base metal to be welded, and diffuse The connecting intermediate layer is hydrogenated titanium (hydrogen content is 0.2wt.%), and the thickness of the diffusion connecting intermediate layer is 50 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine and heat it to 850°C. Diffusion connection is carried out under the condition of 1.33×10 -3 ~ 4.0×10 -3 Pa, and the welding process specification parameter curve is shown in Figure 5; 4. After welding, the weldment is decompressed when the temperature drops to 100°C under the original vacuum condition. When the temperature is lowered to room temperature, the weldment is taken out; that is, the weldment of the connected SiC ceramic and TC4 titanium alloy is obtained.

本实施方式的SiC/TC4(置氢钛)/TC4钛合金扩散连接接头室温剪切强度可达280~320MPa。The room temperature shear strength of the SiC/TC4 (hydrogen-containing titanium)/TC4 titanium alloy diffusion connection joint in this embodiment can reach 280-320 MPa.

具体实施方式十五:本实施方式扩散连接SiC陶瓷与镍基高温合金(GH128)的方法按如下步骤进行:一、扩散连接前对SiC陶瓷被焊接表面依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光,然后放在丙酮溶液中用超声波清洗,对镍基高温合金待焊表面采用酸清洗;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛合金箔片(氢含量为0.45wt.%),扩散连接中间层的厚度50μm;三、将夹装好的焊件置于真空扩散焊机内进行加热至1050℃,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接,焊接工艺规范参数曲线如图6所示;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的SiC陶瓷与镍基高温合金的焊件。Specific Embodiment 15: In this embodiment, the method of diffusion bonding SiC ceramics and nickel-based superalloy (GH128) is carried out as follows: 1. Before diffusion bonding, use 400 # , 500 # , 600 # , 800 # and 1000 # metallographic sandpaper are polished step by step, then placed in acetone solution and cleaned with ultrasonic waves, and the surface of the nickel-based superalloy to be welded is cleaned with acid; On the connection surface, the intermediate layer of diffusion bonding is a hydrogen-containing titanium alloy foil (hydrogen content is 0.45wt.%), and the thickness of the intermediate layer of diffusion bonding is 50 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine Heat to 1050°C, and carry out diffusion connection under the condition of vacuum degree of 1.33×10 -3 ~ 4.0×10 -3 Pa. The welding process specification parameter curve is shown in Figure 6; 4. After welding, the weldment is under the original vacuum condition When the temperature is lowered to 100°C, the pressure is removed, and when the temperature is lowered to room temperature, the weldment is taken out; that is, the weldment of the connected SiC ceramic and nickel-based superalloy is obtained.

本实施方式的SiC/Ti600(置氢钛合金箔片)/GH128镍基高温合金扩散连接接头室温剪切强度可达210~260MPa。The room temperature shear strength of the SiC/Ti600 (hydrogen-containing titanium alloy foil)/GH128 nickel-based superalloy diffusion bonding joint in this embodiment can reach 210-260 MPa.

Claims (10)

1.一种真空扩散连接陶瓷的方法,其特征在于真空扩散连接陶瓷的方法是按如下步骤进行的:一、扩散连接前对母材表面进行清理;二、把扩散中间层均匀的置于待焊母材的连接面上,扩散连接中间层为置氢钛或钛合金箔片,扩散连接中间层的厚度30~100μm;三、将夹装好的焊件置于真空扩散焊机内进行加热,在真空度为1.33×10-3~4.0×10-3Pa的条件下进行扩散连接;四、焊接结束后焊件在原真空条件下降温至100℃时撤压,降温到室温时,取出焊件;即得到连接好的陶瓷焊件。1. A method for vacuum diffusion connecting ceramics is characterized in that the method for vacuum diffusion connecting ceramics is carried out as follows: one, before the diffusion connection, the base material surface is cleaned; two, the diffusion intermediate layer is evenly placed On the connecting surface of the welding base material, the intermediate layer of diffusion bonding is titanium or titanium alloy foil with hydrogen, and the thickness of the intermediate layer of diffusion bonding is 30-100 μm; 3. Place the clamped weldment in a vacuum diffusion welding machine for heating , Diffusion connection is carried out under the condition of vacuum degree of 1.33×10 -3 ~ 4.0×10 -3 Pa; 4. After welding, the weldment is depressurized when the original vacuum condition drops to 100°C, and when the temperature is lowered to room temperature, take out the weldment pieces; that is, the connected ceramic weldments are obtained. 2.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中扩散连接中间层的厚度40~80μm。2. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the thickness of the diffusion bonding intermediate layer in step 2 is 40-80 μm. 3.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中扩散连接中间层的厚度50μm。3. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the thickness of the diffusion bonding intermediate layer in step 2 is 50 μm. 4.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中扩散连接中间层的厚度60μm。4. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the thickness of the diffusion bonding intermediate layer in step 2 is 60 μm. 5.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中置氢钛的含氢量为0.1~0.6wt.%。5. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the hydrogen content of the hydrogenated titanium in step 2 is 0.1-0.6 wt.%. 6.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中置氢钛的含氢量为0.2~0.5wt.%。6. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the hydrogen content of the hydrogenated titanium in step 2 is 0.2-0.5 wt.%. 7.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中置氢钛的含氢量为0.3~0.4wt.%。7. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the hydrogen content of the hydrogenated titanium in step 2 is 0.3-0.4 wt.%. 8.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤二中置氢钛的含氢量为0.35wt.%。8. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the hydrogen content of the hydrogenated titanium in step 2 is 0.35wt.%. 9.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤一中对母材表面进行清理采用物理清理、化学清理或者先物理清理后化学清理;所述物理清理是依次用400#、500#、600#、800#和1000#金相砂纸逐级磨光;所述化学清理是根据母材的不同而配制相应的腐蚀液以去除母材表面的吸附层、杂质和/或氧化膜,然后用丙酮擦拭待焊母材表面或把母材放在丙酮溶液中用超声波清洗。9. A method of vacuum diffusion bonding ceramics according to claim 1, characterized in that in step 1, the surface of the parent material is cleaned by physical cleaning, chemical cleaning or chemical cleaning after physical cleaning; the physical cleaning is sequentially Use 400 # , 500 # , 600 # , 800 # and 1000 # metallographic sandpaper to polish step by step; the chemical cleaning is to prepare the corresponding corrosion solution according to the difference of the base material to remove the adsorption layer, impurities and / or oxide film, and then wipe the surface of the base metal to be welded with acetone or put the base metal in an acetone solution and use ultrasonic cleaning. 10.根据权利要求1所述的一种真空扩散连接陶瓷的方法,其特征在于步骤三中加热方式采用感应加热或电阻加热。10. A method for vacuum diffusion bonding ceramics according to claim 1, characterized in that the heating method in step 3 is induction heating or resistance heating.
CNA2007101446876A 2007-11-28 2007-11-28 A method of vacuum diffusion bonding ceramics Pending CN101182230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2007101446876A CN101182230A (en) 2007-11-28 2007-11-28 A method of vacuum diffusion bonding ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2007101446876A CN101182230A (en) 2007-11-28 2007-11-28 A method of vacuum diffusion bonding ceramics

Publications (1)

Publication Number Publication Date
CN101182230A true CN101182230A (en) 2008-05-21

Family

ID=39447672

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007101446876A Pending CN101182230A (en) 2007-11-28 2007-11-28 A method of vacuum diffusion bonding ceramics

Country Status (1)

Country Link
CN (1) CN101182230A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710728A (en) * 2013-12-11 2014-04-09 中国铝业股份有限公司 Method for connecting ceramic alloy outer shell and metal inner core for metal molten salt electrolysis
CN104047030A (en) * 2014-06-27 2014-09-17 中国铝业股份有限公司 Preparation method for aluminum electrolysis inert anode of ceramic housing and alloy inner core
CN104711457A (en) * 2013-12-11 2015-06-17 中国科学院上海硅酸盐研究所 High temperature solder and application thereof
CN107096994A (en) * 2017-04-25 2017-08-29 南京云启金锐新材料有限公司 The diffusion welding (DW) fitting and its production method of a kind of high-purity zirconia composite ceramics and red copper
CN108672965A (en) * 2018-05-07 2018-10-19 中国工程物理研究院电子工程研究所 A method of alleviating ceramics and solder bonding metal connector residual stress
CN108716693A (en) * 2018-05-29 2018-10-30 中国航发湖南动力机械研究所 Composite construction fuel nozzle and its preparation method and application
CN109317810A (en) * 2018-09-11 2019-02-12 南京航空航天大学 A surface treatment method for improving the welding performance of Si3N4 ceramics and titanium alloys
CN109437958A (en) * 2018-12-18 2019-03-08 中核北方核燃料元件有限公司 A method for connecting silicon carbide composite material tube and silicon carbide ceramic end plug
CN110776330A (en) * 2018-12-31 2020-02-11 深圳硅基仿生科技有限公司 Brazing method of ceramic and metal
CN111039692A (en) * 2019-12-11 2020-04-21 宁波奇亿金属有限公司 Diffusion fiber welding method for stainless steel and ceramic sheets
CN113402289A (en) * 2021-05-08 2021-09-17 中广核研究院有限公司 Silicon carbide cladding induction heating connection method and silicon carbide cladding
CN114029601A (en) * 2021-12-09 2022-02-11 哈尔滨工业大学 A method for connecting Ti3SiC2 ceramics by low temperature diffusion of gold foil intermediate layer
CN114180982A (en) * 2020-09-15 2022-03-15 青岛大学 A kind of ternary layered ceramic titanium silicon carbon based on Al foil intermediate layer and the diffusion connection method of its solid solution and ferritic stainless steel
CN115353408A (en) * 2022-08-31 2022-11-18 歌尔股份有限公司 Metal and ceramic composite part, preparation method thereof, shell and electronic equipment
CN116396094A (en) * 2023-03-24 2023-07-07 中铝郑州有色金属研究院有限公司 Connection method of nickel ferrite-based ceramic inert anode and metal conductive block

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710728A (en) * 2013-12-11 2014-04-09 中国铝业股份有限公司 Method for connecting ceramic alloy outer shell and metal inner core for metal molten salt electrolysis
CN104711457A (en) * 2013-12-11 2015-06-17 中国科学院上海硅酸盐研究所 High temperature solder and application thereof
CN104711457B (en) * 2013-12-11 2017-01-25 中国科学院上海硅酸盐研究所 A kind of high temperature solder and its application
CN104047030A (en) * 2014-06-27 2014-09-17 中国铝业股份有限公司 Preparation method for aluminum electrolysis inert anode of ceramic housing and alloy inner core
CN104047030B (en) * 2014-06-27 2016-05-18 中国铝业股份有限公司 The preparation method of the aluminum electrolysis inertia anode of a kind of ceramic package and alloy inner core
CN107096994A (en) * 2017-04-25 2017-08-29 南京云启金锐新材料有限公司 The diffusion welding (DW) fitting and its production method of a kind of high-purity zirconia composite ceramics and red copper
CN108672965A (en) * 2018-05-07 2018-10-19 中国工程物理研究院电子工程研究所 A method of alleviating ceramics and solder bonding metal connector residual stress
CN108672965B (en) * 2018-05-07 2020-08-28 中国工程物理研究院电子工程研究所 Method for relieving residual stress of ceramic and metal soldered joint
CN108716693A (en) * 2018-05-29 2018-10-30 中国航发湖南动力机械研究所 Composite construction fuel nozzle and its preparation method and application
CN109317810A (en) * 2018-09-11 2019-02-12 南京航空航天大学 A surface treatment method for improving the welding performance of Si3N4 ceramics and titanium alloys
CN109317810B (en) * 2018-09-11 2019-11-12 南京航空航天大学 A Surface Treatment Method for Improving the Welding Performance of Si3N4 Ceramics and Titanium Alloy
CN109437958A (en) * 2018-12-18 2019-03-08 中核北方核燃料元件有限公司 A method for connecting silicon carbide composite material tube and silicon carbide ceramic end plug
CN109437958B (en) * 2018-12-18 2021-07-20 中核北方核燃料元件有限公司 Method for connecting silicon carbide composite material pipe and silicon carbide ceramic end plug
CN110776330A (en) * 2018-12-31 2020-02-11 深圳硅基仿生科技有限公司 Brazing method of ceramic and metal
CN111039692A (en) * 2019-12-11 2020-04-21 宁波奇亿金属有限公司 Diffusion fiber welding method for stainless steel and ceramic sheets
CN114180982A (en) * 2020-09-15 2022-03-15 青岛大学 A kind of ternary layered ceramic titanium silicon carbon based on Al foil intermediate layer and the diffusion connection method of its solid solution and ferritic stainless steel
CN114180982B (en) * 2020-09-15 2022-12-20 青岛大学 Diffusion bonding method of ternary layered ceramic titanium silicon carbon and its solid solution with ferritic stainless steel based on Al foil interlayer
CN113402289A (en) * 2021-05-08 2021-09-17 中广核研究院有限公司 Silicon carbide cladding induction heating connection method and silicon carbide cladding
CN114029601A (en) * 2021-12-09 2022-02-11 哈尔滨工业大学 A method for connecting Ti3SiC2 ceramics by low temperature diffusion of gold foil intermediate layer
CN114029601B (en) * 2021-12-09 2023-02-28 哈尔滨工业大学 Method for low-temperature diffusion connection of Ti3SiC2 ceramic by adopting gold foil intermediate layer
CN115353408A (en) * 2022-08-31 2022-11-18 歌尔股份有限公司 Metal and ceramic composite part, preparation method thereof, shell and electronic equipment
CN115353408B (en) * 2022-08-31 2023-09-01 歌尔股份有限公司 Metal and ceramic composite part, preparation method thereof, shell and electronic equipment
CN116396094A (en) * 2023-03-24 2023-07-07 中铝郑州有色金属研究院有限公司 Connection method of nickel ferrite-based ceramic inert anode and metal conductive block
CN116396094B (en) * 2023-03-24 2024-03-01 中铝郑州有色金属研究院有限公司 Connection method of nickel ferrite-based ceramic inert anode and metal conductive block

Similar Documents

Publication Publication Date Title
CN101182230A (en) A method of vacuum diffusion bonding ceramics
CN105346161B (en) A kind of tungsten/transition layer/steel composite material and its preparation method of low temperature and low pressure active diffusion connection
CN101254572B (en) Method for diffusion welding titanium alloy and copper alloy using niobium central layer
CN102658443B (en) A kind of tungsten-copper alloy and stainless steel brazing filler metal and brazing process
CN101176946A (en) A method of vacuum diffusion bonding TiAl intermetallic compounds
CN103252572B (en) Transient liquid phase diffusion bonding process of molybdenum copper alloy and stainless steel
CN107363359A (en) A kind of method of compound high-entropy alloy solder ceramic soldering and metal
CN102357696B (en) An intermediate layer assembly and connection method for connecting Si3N4 ceramics and stainless steel
CN101954551B (en) Brazing filler metal for welding molybdenum-copper alloy and austenitic stainless steel and process
CN100532330C (en) A method of low-temperature active vacuum diffusion bonding ceramics
CN105254321B (en) Ceramic/metal connection method based on Ni B/Ti Transient liquid phase reaction in-situs
CN105216394A (en) A kind of High Performance W/steel composite material based on high temperature application and preparation method thereof
CN102554509A (en) Vacuum brazing solder and process of Mo-Cu alloy and stainless steel
CN105537712A (en) Ceramic and metal brazing composite component and preparing method thereof
CN110394522A (en) A Brazing Process of Deformed Nickel-based Alloy and Cast Ni3Al-based Alloy
CN110524082B (en) A method for rapid wetting of carbon fibers in ceramic matrix composites with Fe as active element
CN106862693A (en) A kind of tungsten/copper or tungsten/steel joint and preparation method thereof
CN113878220A (en) A tungsten and steel layered metal composite material and its diffusion bonding method
CN108947558A (en) A kind of metal and Ti3SiC2The connection method of ceramics
CN112296472B (en) Brazing method of graphite material
CN105965176B (en) For soldering tungsten-copper alloy and the Ni base chilling solders and soldering processes of stainless steel
CN105382406A (en) Connecting method for TiAl-Ni dissimilar metal
CN107160059A (en) A kind of preparation of Ni base solders for soldering Nb Ti high temperature alloys and method for welding
CN110480112A (en) Cf/ SiC ceramic matrix composite material reacts composite diffusion soldering connecting method with Ni based high-temperature alloy
CN103193499B (en) A kind of method of attachment of carbon-carbon composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080521