[go: up one dir, main page]

CN114944425A - Power device and manufacturing method thereof - Google Patents

Power device and manufacturing method thereof Download PDF

Info

Publication number
CN114944425A
CN114944425A CN202210860239.0A CN202210860239A CN114944425A CN 114944425 A CN114944425 A CN 114944425A CN 202210860239 A CN202210860239 A CN 202210860239A CN 114944425 A CN114944425 A CN 114944425A
Authority
CN
China
Prior art keywords
layer
semiconductor substrate
power device
insulating layer
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210860239.0A
Other languages
Chinese (zh)
Inventor
黄锟
陈筱菲
陈立业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Xinjing Integrated Circuit Co Ltd
Original Assignee
Hefei Xinjing Integrated Circuit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Xinjing Integrated Circuit Co Ltd filed Critical Hefei Xinjing Integrated Circuit Co Ltd
Priority to CN202210860239.0A priority Critical patent/CN114944425A/en
Publication of CN114944425A publication Critical patent/CN114944425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/111Field plates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0281Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/65Lateral DMOS [LDMOS] FETs

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种功率器件及其制作方法。该功率器件包括半导体衬底和场板结构,场板结构设置于半导体衬底的第一侧,半导体衬底的第一侧具有源/漏区和栅极,场板结构包括:绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;第一导电层,第一导电层覆盖于绝缘层远离半导体衬底的一侧。通过在半导体衬底的第一侧设置绝缘层,减少栅极边缘处集中的电位线,从而提高功率器件的击穿电压,继而在绝缘层远离半导体衬底的一侧设置第一导电层,以使该功率器件能够通过第一导电层单独接线,进而设计成独立的电压操作,从而降低该功率器件的导通电阻。

Figure 202210860239

The invention provides a power device and a manufacturing method thereof. The power device includes a semiconductor substrate and a field plate structure, the field plate structure is arranged on a first side of the semiconductor substrate, the first side of the semiconductor substrate has source/drain regions and a gate, and the field plate structure includes: an insulating layer, an insulating layer The layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate electrode; the first conductive layer covers the side of the insulating layer away from the semiconductor substrate. By arranging an insulating layer on the first side of the semiconductor substrate, the potential lines concentrated at the edge of the gate are reduced, thereby improving the breakdown voltage of the power device. The power device can be individually wired through the first conductive layer, so as to be designed to operate independently of voltage, thereby reducing the on-resistance of the power device.

Figure 202210860239

Description

功率器件及其制作方法Power device and method of making the same

技术领域technical field

本发明涉及半导体器件的制作方法,具体而言,涉及一种功率器件及其制作方法。The present invention relates to a manufacturing method of a semiconductor device, in particular, to a power device and a manufacturing method thereof.

背景技术Background technique

在高压集成器件中,LDMOS晶体管的击穿电压(例如,漏极结击穿电压和栅电介质击穿电压)是直接影响LDMOS晶体管的稳定操作的重要因素。另外,LDMOS晶体管的导通电阻(Ron)值也是影响LDMOS晶体管的电学特性(例如,LDMOS晶体管的电流驱动能力)的重要因素。In high-voltage integrated devices, the breakdown voltage (eg, drain junction breakdown voltage and gate dielectric breakdown voltage) of an LDMOS transistor is an important factor that directly affects the stable operation of the LDMOS transistor. In addition, the on-resistance (Ron) value of the LDMOS transistor is also an important factor affecting the electrical characteristics of the LDMOS transistor (eg, the current driving capability of the LDMOS transistor).

场板是高压LDMOS涉及中经常使用的一种终端技术,它可以优化电场分布,有效地抑制表面电场,防止器件表面击穿。然而,传统的SiO2基场板的BV改善效果有限,且场板技术往往需要单独的工艺,增加了其制造难度和成本。Field plate is a terminal technology often used in high-voltage LDMOS, which can optimize the electric field distribution, effectively suppress the surface electric field, and prevent the surface breakdown of the device. However, the BV improvement effect of the traditional SiO2 -based field plate is limited, and the field plate technology often requires a separate process, increasing its manufacturing difficulty and cost.

发明内容SUMMARY OF THE INVENTION

本发明的主要目的在于提供一种功率器件及其制作方法,以解决现有技术中击穿电压低和导通电阻高的问题。The main purpose of the present invention is to provide a power device and a manufacturing method thereof to solve the problems of low breakdown voltage and high on-resistance in the prior art.

为了实现上述目的,根据本发明的一个方面,提供了一种功率器件,该功率器件包括半导体衬底和场板结构,场板结构设置于半导体衬底的第一侧,半导体衬底的第一侧具有源/漏区和栅极,场板结构包括:绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;第一导电层,第一导电层覆盖于绝缘层远离半导体衬底的一侧。In order to achieve the above object, according to an aspect of the present invention, a power device is provided, the power device includes a semiconductor substrate and a field plate structure, the field plate structure is disposed on a first side of the semiconductor substrate, and the first side of the semiconductor substrate The side has source/drain regions and a gate, and the field plate structure includes: an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate; a first conductive layer, the first conductive layer covers on the side of the insulating layer away from the semiconductor substrate.

进一步地,绝缘层包括高k栅介质层。Further, the insulating layer includes a high-k gate dielectric layer.

进一步地,第一导电层的材料包括金属和/或多晶硅。Further, the material of the first conductive layer includes metal and/or polysilicon.

进一步地,第一导电层的材料包括掺杂多晶硅。Further, the material of the first conductive layer includes doped polysilicon.

进一步地,功率器件包括:第一金属化合物层,金属化合物层覆盖于第一导电层远离半导体衬底的一侧。Further, the power device includes: a first metal compound layer covering a side of the first conductive layer away from the semiconductor substrate.

进一步地,功率器件还包括:第二金属化合物层,与源/漏区和栅极接触设置;多个导电连接部,每个导电连接部与第二金属化合物层接触设置,并沿远离半导体衬底的方向延伸。Further, the power device further includes: a second metal compound layer, arranged in contact with the source/drain regions and the gate electrode; a plurality of conductive connection parts, each of which is arranged in contact with the second metal compound layer, and is arranged along a distance away from the semiconductor substrate extending in the direction of the bottom.

进一步地,功率器件还包括:第二导电层,第二导电层设置于导电连接部远离第二金属化合物层的一侧,导电连接部连接第二金属化合物层和第二导电层。Further, the power device further includes: a second conductive layer, the second conductive layer is disposed on the side of the conductive connection portion away from the second metal compound layer, and the conductive connection portion connects the second metal compound layer and the second conductive layer.

根据本发明的另一方面,提供了一种功率器件的制作方法,该制作方法包括以下步骤:提供半导体衬底,半导体衬底具有第一侧,第一侧具有源/漏区和栅极;在第一侧沉积介电材料形成绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;在绝缘层远离半导体衬底的一侧形成第一导电层,第一导电层覆盖绝缘层。According to another aspect of the present invention, a method for fabricating a power device is provided, the fabrication method comprising the steps of: providing a semiconductor substrate, the semiconductor substrate having a first side, and the first side having source/drain regions and a gate; A dielectric material is deposited on the first side to form an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate electrode; a first conductive layer is formed on the side of the insulating layer away from the semiconductor substrate, The first conductive layer covers the insulating layer.

进一步地,形成第一导电层的步骤之后,制作方法还包括:在第一侧形成第一金属化合物层,金属化合物层覆盖于第一导电层远离半导体衬底的一侧。Further, after the step of forming the first conductive layer, the manufacturing method further includes: forming a first metal compound layer on the first side, the metal compound layer covering the side of the first conductive layer away from the semiconductor substrate.

进一步地,形成第一导电层的材料包括多晶硅,形成第一金属化合物层的步骤包括:在第一侧沉积金属层,以使金属层与源/漏区和第一导电层接触;使金属层与多晶硅反应,以形成第一金属化合物层。Further, the material for forming the first conductive layer includes polysilicon, and the step of forming the first metal compound layer includes: depositing a metal layer on the first side, so that the metal layer is in contact with the source/drain regions and the first conductive layer; making the metal layer Reacts with polysilicon to form a first metal compound layer.

应用本发明的技术方案,提供一种功率器件,包括半导体衬底和场板结构,场板结构设置于半导体衬底的第一侧,半导体衬底的第一侧具有源/漏区和栅极,场板结构包括:绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;第一导电层,第一导电层覆盖于绝缘层远离半导体衬底的一侧。通过在半导体衬底的第一侧设置绝缘层,减少栅极边缘处集中的电位线,从而提高功率器件的击穿电压,通过在绝缘层远离半导体衬底的第一侧设置第一导电层,以使第一导电层可以单独接线,并设计成独立的电压操作,从而降低了功率器件的导通电阻。By applying the technical solutions of the present invention, a power device is provided, comprising a semiconductor substrate and a field plate structure, wherein the field plate structure is arranged on a first side of the semiconductor substrate, and the first side of the semiconductor substrate has source/drain regions and a gate , the field plate structure includes: an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate; a first conductive layer, the first conductive layer covers the insulating layer away from the semiconductor substrate. side. By arranging an insulating layer on the first side of the semiconductor substrate, the potential lines concentrated at the gate edge are reduced, thereby increasing the breakdown voltage of the power device. By arranging the first conductive layer on the first side of the insulating layer away from the semiconductor substrate, So that the first conductive layer can be wired separately and designed to operate with independent voltage, thereby reducing the on-resistance of the power device.

附图说明Description of drawings

构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached image:

图1示出了根据本发明实施例的功率器件的剖面结构示意图;FIG. 1 shows a schematic cross-sectional structure diagram of a power device according to an embodiment of the present invention;

图2示出了图1所示的功率器件的制作方法中,所提供的半导体衬底的剖面结构示意图;FIG. 2 shows a schematic cross-sectional structure diagram of the provided semiconductor substrate in the manufacturing method of the power device shown in FIG. 1;

图3示出了在图2所示的半导体衬底的第一侧形成绝缘层和第一导电层的剖面结构示意图;FIG. 3 shows a schematic cross-sectional structure diagram of forming an insulating layer and a first conductive layer on the first side of the semiconductor substrate shown in FIG. 2;

图4示出了在图3所示的第一侧形成第一金属化合物层和第二金属化合物层的剖面结构示意图;FIG. 4 shows a schematic cross-sectional structure diagram of forming a first metal compound layer and a second metal compound layer on the first side shown in FIG. 3;

图5示出了在图4所示的第一侧去除多余的金属化合物层、第一导电层以及绝缘层之后的剖面结构示意图。FIG. 5 shows a schematic cross-sectional structure diagram after removing the redundant metal compound layer, the first conductive layer and the insulating layer on the first side shown in FIG. 4 .

其中,上述附图包括以下附图标记:Wherein, the above-mentioned drawings include the following reference signs:

10、半导体衬底;20、绝缘层;30、第一导电层;40、第一金属化合物层;50、第二金属化合物层;60、导电连接部;70、第二导电层;80、源区;90、漏区;100、栅极;110、体区;120、体区接触区;130、漂移区;140、浅沟槽隔离区。10, semiconductor substrate; 20, insulating layer; 30, first conductive layer; 40, first metal compound layer; 50, second metal compound layer; 60, conductive connection part; 70, second conductive layer; 80, source 90, drain region; 100, gate; 110, body region; 120, body contact region; 130, drift region; 140, shallow trench isolation region.

具体实施方式Detailed ways

需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict. The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances for the embodiments of the invention described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.

正如背景技术所提到的,击穿电压和导通电阻都是功率器件的重要性能指标,由于采用场板结构能大幅度提升器件的击穿电压,又能进一步抑制电流崩塌,从而提高器件的可靠性,因此,场板是涉及功率器件中经常使用的一种终端技术。然而,传统的SiO2基场板的击穿电压改善效果有限,亟需获得一种较佳的功率器件以达到有效提高器件击穿电压的目的。As mentioned in the background art, both breakdown voltage and on-resistance are important performance indicators of power devices. Because the use of the field plate structure can greatly improve the breakdown voltage of the device, it can further suppress the current collapse, thereby improving the device's performance. Reliability, and therefore, field plates are a termination technology that is often used in power devices. However, the improvement effect of the breakdown voltage of the traditional SiO 2 based field plate is limited, and it is urgent to obtain a better power device to achieve the purpose of effectively improving the breakdown voltage of the device.

本发明的申请人为了解决上述技术问题,提供了一种功率器件,如图1所示,包括半导体衬底10和场板结构,上述场板结构设置于上述半导体衬底10的第一侧,上述半导体衬底10的第一侧具有源/漏区的源区80和漏区90以及栅极100,上述场板结构包括:绝缘层20,上述绝缘层20设置于上述第一侧,且上述绝缘层20与上述源/漏区的源区80和漏区90以及上述栅极100接触设置;第一导电层30,上述第一导电层30覆盖于上述绝缘层20远离上述半导体衬底10的一侧。In order to solve the above-mentioned technical problem, the applicant of the present invention provides a power device, as shown in FIG. 1 , comprising a semiconductor substrate 10 and a field plate structure, and the above-mentioned field plate structure is arranged on the first side of the above-mentioned semiconductor substrate 10, The first side of the semiconductor substrate 10 has a source region 80 and a drain region 90 of source/drain regions and a gate electrode 100, and the field plate structure includes: an insulating layer 20, the insulating layer 20 is disposed on the first side, and the above The insulating layer 20 is arranged in contact with the source region 80 and the drain region 90 of the source/drain region and the gate electrode 100; the first conductive layer 30, the first conductive layer 30 covers the insulating layer 20 away from the semiconductor substrate 10. side.

上述的器件中,通过在第一侧设置与源/漏区的源区80和漏区90以及栅极100接触的绝缘层20,然后在绝缘层20远离半导体衬底10的一侧覆盖第一导电层30,上述绝缘层20和第一导电层30可直接作为阻挡层,进而对绝缘层20和第一导电层30进行选择性刻蚀以形成场板结构,而无需耗费光罩,从而简化制备工艺,降低了工艺难度,且节省了工艺成本。In the above device, the insulating layer 20 in contact with the source region 80 and the drain region 90 of the source/drain region and the gate electrode 100 is provided on the first side, and then the insulating layer 20 is covered on the side away from the semiconductor substrate 10. The conductive layer 30, the above-mentioned insulating layer 20 and the first conductive layer 30 can be directly used as a barrier layer, and then the insulating layer 20 and the first conductive layer 30 can be selectively etched to form a field plate structure without consuming a photomask, thereby simplifying The preparation process reduces the difficulty of the process and saves the cost of the process.

在一些可选的实施方式中,如图1所示,上述半导体衬底10还包括体区110、漂移区130、体区接触区120以及浅沟槽隔离区140。制备上述结构所采用的技术方案均采用现有技术所惯用的工艺流程,因此相关结构在此不作赘述。In some optional embodiments, as shown in FIG. 1 , the above-mentioned semiconductor substrate 10 further includes a body region 110 , a drift region 130 , a body region contact region 120 and a shallow trench isolation region 140 . The technical solutions adopted for preparing the above structures all adopt the conventional process flow in the prior art, so the related structures are not described in detail here.

其中,上述半导体衬底10可以为单质半导体材料衬底(例如硅(Si)衬底、锗(Ge)衬底等)、复合半导体材料衬底(例如锗硅衬底等),或绝缘体上硅(SOI)衬底、绝缘体上锗(GeOI)衬底等。Wherein, the above-mentioned semiconductor substrate 10 may be an elemental semiconductor material substrate (eg, a silicon (Si) substrate, a germanium (Ge) substrate, etc.), a compound semiconductor material substrate (eg, a germanium-silicon substrate, etc.), or a silicon-on-insulator substrate (SOI) substrate, germanium-on-insulator (GeOI) substrate, etc.

在本申请的一些可选的实施方式中,关于上述功率器件中的场板结构,构成该场板结构的绝缘层20包括高k栅介质层。由于高k栅介质层的材料相对介电常数越高,此处的电位移矢量强度就越大,也就意味着耗尽层中空间电荷产生的电位线更多进入高k栅介质层,进而减少耗尽层中向栅极100边缘处集中的电位线,从而削弱了耗尽层中空间电荷产生的电场,减小了栅边缘的电场峰值,使得在相同的外加电压下,功率器件的栅边缘峰值电场减小,电场分布几乎不存在峰值,从而电场曲线的覆盖面积增大,相应耗尽层区域增大,而临界击穿电压为定值,击穿电压为临界击穿电场对耗尽层区域的积分,所以击穿电压相应地增大。In some optional embodiments of the present application, regarding the field plate structure in the above-mentioned power device, the insulating layer 20 constituting the field plate structure includes a high-k gate dielectric layer. Since the higher the relative permittivity of the material of the high-k gate dielectric layer, the greater the strength of the electric displacement vector here, which means that more potential lines generated by space charges in the depletion layer enter the high-k gate dielectric layer, and then Reduce the potential line concentrated at the edge of the gate 100 in the depletion layer, thereby weakening the electric field generated by the space charge in the depletion layer, reducing the electric field peak value at the gate edge, so that under the same applied voltage, the gate of the power device can The fringe peak electric field decreases, and the electric field distribution has almost no peak value, so the coverage area of the electric field curve increases, and the corresponding depletion layer area increases, while the critical breakdown voltage is a fixed value, and the breakdown voltage is the critical breakdown electric field versus depletion. The integral of the layer area, so the breakdown voltage increases accordingly.

由于上述半导体衬底10上设置有绝缘层20,使得击穿电压相应增大,而击穿电压增大又会导致功率器件的导通电阻增大,因此在一些可选的实施方式中,关于上述功率器件中的场板结构,构成该场板结构的第一导电层30的材料包括金属和/或多晶硅,通过设置可导电的金属和/或多晶硅,满足可以单独接线设计成独立的电压操作的条件,并减小功率器件的层电阻,从而降低导通电阻。Since the above-mentioned semiconductor substrate 10 is provided with the insulating layer 20, the breakdown voltage increases accordingly, and the increase in the breakdown voltage will in turn lead to an increase in the on-resistance of the power device. Therefore, in some optional embodiments, about For the field plate structure in the above power device, the material constituting the first conductive layer 30 of the field plate structure includes metal and/or polysilicon. By setting the conductive metal and/or polysilicon, it satisfies that it can be individually wired and designed to operate at an independent voltage. conditions, and reduce the layer resistance of the power device, thereby reducing the on-resistance.

在一些可选的实施方式中,上述第一导电层30的材料包括掺杂多晶硅。通过对多晶硅进一步掺杂,可以防止形成场板结构的工艺过程中,清洗自然氧化层步骤中对形成场板结构的材料损耗。In some optional embodiments, the material of the first conductive layer 30 includes doped polysilicon. By further doping the polysilicon, in the process of forming the field plate structure, the material loss for forming the field plate structure in the step of cleaning the natural oxide layer can be prevented.

在一些可选的实施方式中,由于上述第一导电层30采用的金属和/或多晶硅材料,从而满足形成电连接的导电条件,进而可以单独接线设计成独立的电压操作,能够进一步降低导通电阻。In some optional implementations, due to the metal and/or polysilicon material used in the first conductive layer 30, the conductive conditions for forming an electrical connection are satisfied, so that separate wiring can be designed to operate at an independent voltage, which can further reduce conduction. resistance.

在一些可选的实施方式中,上述功率器件还包括:第一金属化合物层40,其中,上述第一金属化合物层40覆盖于第一导电层30远离半导体衬底10的一侧。通过在上述第一导电层30远离半导体衬底10的一侧形成第一金属化合物层40,能够提供良好的欧姆接触,从而减小功率器件中各层结构的层电阻,并增加功率器件的运行速度。In some optional embodiments, the power device further includes: a first metal compound layer 40 , wherein the first metal compound layer 40 covers a side of the first conductive layer 30 away from the semiconductor substrate 10 . By forming the first metal compound layer 40 on the side of the first conductive layer 30 away from the semiconductor substrate 10, good ohmic contact can be provided, thereby reducing the layer resistance of each layer structure in the power device and increasing the operation of the power device speed.

在一些可选的实施方式中,上述第一导电层30的材料包括金属,进一步可选的,上述金属为金属钴,上述金属钴可以作为形成上述金属化合物层的前驱体,从而简化了工艺步骤,降低制作成本。In some optional embodiments, the material of the above-mentioned first conductive layer 30 includes metal, and further optionally, the above-mentioned metal is metal cobalt, and the above-mentioned metal cobalt can be used as a precursor for forming the above-mentioned metal compound layer, thereby simplifying the process steps , reduce production costs.

由于在一些可选的实施方式中,上述功率器件还包括:第二金属化合物层50,该金属化合物层与源/漏区的源区80和漏区90以及栅极100接触设置;多个导电连接部60,每个导电连接部60与第二金属化合物层50接触设置,且每个导电连接部60沿着远离半导体衬底10的方向延伸。上述第二金属化合物层50与源端和导电连接部60互连,更可有效的调节漏端的电场;上述多个导电连接部60起到导电连接的作用,以保证功率器件的电连接。Because in some optional embodiments, the above-mentioned power device further includes: a second metal compound layer 50, the metal compound layer is arranged in contact with the source region 80 and the drain region 90 of the source/drain region and the gate electrode 100; a plurality of conductive The connection parts 60 , each conductive connection part 60 is disposed in contact with the second metal compound layer 50 , and each conductive connection part 60 extends in a direction away from the semiconductor substrate 10 . The second metal compound layer 50 is interconnected with the source terminal and the conductive connection part 60, which can more effectively adjust the electric field of the drain terminal; the above-mentioned plurality of conductive connection parts 60 play the role of conductive connection to ensure the electrical connection of the power device.

其中,上述第一金属化合物层40与上述第二金属化合物层50可以是同一种金属化合物层,也可以是不同种金属化合物层;上述第一金属化合物层40和第二金属化合物层50均可以是硅化钴、硅化钛或硅化镍中的一种或多种;上述导电连接部60可以是金属铜、金属钨、金属镍等。关于上述第一金属化合物层40、第二金属化合物以及导电连接部60的材料,本领域技术人员可以根据现有技术进行合理选取,本申请不做具体限定。The first metal compound layer 40 and the second metal compound layer 50 may be the same metal compound layer or different metal compound layers; both the first metal compound layer 40 and the second metal compound layer 50 may be It is one or more of cobalt silicide, titanium silicide or nickel silicide; the above-mentioned conductive connection part 60 can be metal copper, metal tungsten, metal nickel and so on. Regarding the above-mentioned materials of the first metal compound layer 40 , the second metal compound and the conductive connection portion 60 , those skilled in the art can reasonably select materials according to the prior art, which are not specifically limited in this application.

在一些可选的实施方式中,上述功率器件还包括:第二导电层70,上述第二导电层70设置与导电连接部60远离第二金属化合物层50的一侧,每个导电连接部60连接第二金属化合物层50和第二导电层70。上述导电连接部60作为导电部件,将第二金属化合物层50与第二导电层70进行互连。In some optional embodiments, the power device further includes: a second conductive layer 70, the second conductive layer 70 is disposed on the side of the conductive connection portion 60 away from the second metal compound layer 50, and each conductive connection portion 60 The second metal compound layer 50 and the second conductive layer 70 are connected. The above-mentioned conductive connection portion 60 serves as a conductive member, and interconnects the second metal compound layer 50 and the second conductive layer 70 .

根据本申请的另一方面,还提供一种功率器件的制作方法,该制作方法包括以下步骤:提供半导体衬底,上述半导体衬底具有第一侧,上述第一侧具有源/漏区的源区和漏区以及栅极;在上述第一侧沉积介电材料形成绝缘层,上述绝缘层设置于上述第一侧,且上述绝缘层与上述源/漏区的源区和漏区以及上述栅极接触设置;在上述绝缘层远离上述半导体衬底的一侧形成第一导电层,上述第一导电层覆盖上述绝缘层。According to another aspect of the present application, there is also provided a method for fabricating a power device, the fabrication method comprising the steps of: providing a semiconductor substrate, the semiconductor substrate having a first side, and the first side having a source of source/drain regions A dielectric material is deposited on the first side to form an insulating layer, the insulating layer is arranged on the first side, and the insulating layer and the source and drain regions of the source/drain regions and the gate Electrode contact arrangement; a first conductive layer is formed on the side of the insulating layer away from the semiconductor substrate, and the first conductive layer covers the insulating layer.

下面将更详细地描述根据本发明提供的功率器件的制作方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。Exemplary embodiments of the method for fabricating a power device provided according to the present invention will be described in more detail below. These exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It should be understood that these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of these exemplary embodiments to those skilled in the art.

如图2所示,首先提供一半导体衬底10,该半导体衬底10具有第一侧,上述第一侧具有源区80、漏区90以及栅极100,其中,源区80和漏区90分别位于上述第一侧的两侧,栅极100位于源区80与漏区90之间的半导体衬底10的第一侧表面,且栅极100靠近上述源区80。As shown in FIG. 2 , a semiconductor substrate 10 is first provided, the semiconductor substrate 10 has a first side, and the first side has a source region 80 , a drain region 90 and a gate 100 , wherein the source region 80 and the drain region 90 are On both sides of the first side, the gate 100 is located on the first side surface of the semiconductor substrate 10 between the source region 80 and the drain region 90 , and the gate 100 is close to the source region 80 .

在一些可选的实施方式中,如图2所示,上述半导体衬底10还包括体区110、漂移区130、体区接触区120以及浅沟槽隔离区140。其中,上述体区110与漂移区130接触设置在上述半导体衬底10的第一侧,源区80设置与上述体区110中,漏区90设置于上述漂移区130中,栅极100的部分位于上述体区110上,栅极100的另一部分位于上述漂移区130上,体区110中还设置有体区接触区120,形成欧姆接触,漂移区130远离栅极100的一侧还设置有浅沟槽隔离区140。制备上述结构所采用的技术方案均采用现有技术所惯用的工艺流程,因此相关结构在此不作赘述。In some optional embodiments, as shown in FIG. 2 , the above-mentioned semiconductor substrate 10 further includes a body region 110 , a drift region 130 , a body region contact region 120 and a shallow trench isolation region 140 . The body region 110 is disposed on the first side of the semiconductor substrate 10 in contact with the drift region 130 , the source region 80 is disposed in the body region 110 , the drain region 90 is disposed in the drift region 130 , and a portion of the gate 100 Located on the body region 110, another part of the gate 100 is located on the drift region 130, the body region 110 is also provided with a body region contact region 120 to form an ohmic contact, and a side of the drift region 130 away from the gate 100 is also provided with Shallow trench isolation region 140 . The technical solutions adopted for preparing the above structures all adopt the conventional process flow in the prior art, so the related structures are not described in detail here.

如图3所示,在上述第一侧沉积介电材料形成绝缘层20,上述绝缘层20设置于上述第一侧,且上述绝缘层20与上述源/漏区的源区80和漏区90以及上述栅极100接触设置。通过加入上述绝缘层20,使得一部分电场线从势垒层指向场板,进而削弱耗尽层中空间电荷产生的电场,减小了栅边缘电场峰值,从而提高了个功率器件的击穿电压。As shown in FIG. 3, a dielectric material is deposited on the first side to form an insulating layer 20, the insulating layer 20 is disposed on the first side, and the insulating layer 20 and the source region 80 and the drain region 90 of the source/drain regions And the above-mentioned gate 100 is arranged in contact with each other. By adding the above-mentioned insulating layer 20, part of the electric field lines are directed from the barrier layer to the field plate, thereby weakening the electric field generated by the space charge in the depletion layer, reducing the peak value of the electric field at the gate edge, thereby increasing the breakdown voltage of a power device.

在一些可选的实施方式中,上述介电材料包括高k材料,由于高k材料具有较高的相对介电常数,由上述高k材料形成的绝缘层20的电位移矢量强度相应较大,也就意味着耗尽层中空间电荷产生的电位线更多进入绝缘层20,进而减少耗尽层中向栅极100边缘处集中的电位线,从而削弱了耗尽层中空间电荷产生的电场,减小了栅边缘的电场峰值,使得在相同的外加电压下,功率器件的栅边缘峰值电场减小,电场分布几乎不存在峰值,从而电场曲线的覆盖面积增大,相应耗尽层区域增大,而临界击穿电压为定值,击穿电压为临界击穿电场对耗尽层区域的积分,所以击穿电压相应地增大。In some optional embodiments, the above-mentioned dielectric material includes a high-k material. Since the high-k material has a relatively high relative permittivity, the electric displacement vector strength of the insulating layer 20 formed of the above-mentioned high-k material is correspondingly large, This means that more potential lines generated by space charges in the depletion layer enter the insulating layer 20, thereby reducing the potential lines concentrated in the depletion layer toward the edge of the gate 100, thereby weakening the electric field generated by the space charges in the depletion layer. , which reduces the peak electric field at the gate edge, so that under the same applied voltage, the peak electric field at the gate edge of the power device decreases, and there is almost no peak in the electric field distribution, so the coverage area of the electric field curve increases, and the corresponding depletion layer area increases. The critical breakdown voltage is a constant value, and the breakdown voltage is the integral of the critical breakdown electric field to the depletion layer region, so the breakdown voltage increases accordingly.

在一些可选的实施方式中,形成上述绝缘层20之后,在上述绝缘层20远离半导体衬底10的一侧形成第一导电层30,且第一导电层30覆盖上述绝缘层20,如图3所示。In some optional embodiments, after the insulating layer 20 is formed, a first conductive layer 30 is formed on the side of the insulating layer 20 away from the semiconductor substrate 10, and the first conductive layer 30 covers the insulating layer 20, as shown in FIG. 3 shown.

其中,上述绝缘层20和上述第一导电层30可以均采用化学沉积工艺、自对准工艺等形成。Wherein, the above-mentioned insulating layer 20 and the above-mentioned first conductive layer 30 may both be formed by chemical deposition process, self-alignment process, or the like.

在一些可选的实施方式中,采用化学沉积工艺形成覆盖上述源/漏区的源区80和漏区90、栅极100、漂移区130以及浅沟槽隔离区140的绝缘层20,然后再采用化学沉积工艺形成覆盖上述绝缘层20的第一导电层30,然后在上述第一导电连接部60远离半导体衬底10的一侧设置掩模板,根据掩模板刻蚀上述绝缘层20和上述第一导电层30,以使上述绝缘层20和上述第一导电层30暴露出栅极100以及源/漏区中的源区80和漏区90。In some optional embodiments, a chemical deposition process is used to form the insulating layer 20 covering the source region 80 and the drain region 90 of the source/drain region, the gate electrode 100, the drift region 130 and the shallow trench isolation region 140, and then the insulating layer 20 is formed. A first conductive layer 30 covering the above-mentioned insulating layer 20 is formed by a chemical deposition process, and then a mask plate is set on the side of the above-mentioned first conductive connection portion 60 away from the semiconductor substrate 10, and the above-mentioned insulating layer 20 and the above-mentioned first conductive layer are etched according to the mask plate. A conductive layer 30 such that the insulating layer 20 and the first conductive layer 30 expose the gate electrode 100 and the source and drain regions 80 and 90 in the source/drain regions.

在一些可选的实施方式中,采用自对准工艺形成覆盖沉积一层SAB层将上述半导体衬底10的第一侧完全覆盖,其中,上述SAB层为氧化层,然后采用自对准工艺沉积第一导电层30覆盖上述SAB层,继而在SAB层的上表面涂覆一层光刻胶,然后借助一具有曝光图案的掩膜板进行曝光、显影工艺,进而在光刻胶中形成开口图案,然后以剩余的光刻胶为刻蚀掩膜向下进行干法蚀刻,将位于光刻胶开口下方的第一导电层30和SAB层进行去除,最后移除剩余光刻胶,形成如图2所示的结构。上述实施例中,采用自对准工艺,并借助SAB材料,完成了场板结构的制作,从而降低了工艺的复杂性,简化了工艺流程,并节省了制作成本。In some optional embodiments, a self-aligned process is used to form and deposit a layer of SAB layer to completely cover the first side of the above-mentioned semiconductor substrate 10, wherein the above-mentioned SAB layer is an oxide layer, and then a self-aligned process is used to deposit The first conductive layer 30 covers the above-mentioned SAB layer, and then coats a layer of photoresist on the upper surface of the SAB layer, and then performs exposure and development processes by means of a mask plate with an exposure pattern, and then forms an opening pattern in the photoresist , and then use the remaining photoresist as an etching mask to perform dry etching downward, remove the first conductive layer 30 and the SAB layer located under the photoresist opening, and finally remove the remaining photoresist, forming as shown in the figure 2 shows the structure. In the above embodiment, the field plate structure is fabricated by using the self-alignment process and the SAB material, thereby reducing the complexity of the process, simplifying the process flow, and saving the fabrication cost.

在一些可选的实施方式中,如图4所示,形成上述第一导电层30的步骤之后,上述制作方法还包括:在半导体衬底10的第一侧先形成第一金属化合物层40,上述第一金属化合物层40覆盖于第一导电层30远离半导体衬底10的一侧。通过形成上述第一金属化合物层40,能够提供良好的欧姆接触,从而减小功率器件中各层结构的层电阻,进而降低了器件的导通电阻,并增加功率器件的运行速度。In some optional embodiments, as shown in FIG. 4 , after the step of forming the above-mentioned first conductive layer 30 , the above-mentioned manufacturing method further includes: firstly forming a first metal compound layer 40 on the first side of the semiconductor substrate 10 , The first metal compound layer 40 covers the side of the first conductive layer 30 away from the semiconductor substrate 10 . By forming the above-mentioned first metal compound layer 40, good ohmic contact can be provided, thereby reducing the layer resistance of each layer structure in the power device, thereby reducing the on-resistance of the device, and increasing the operating speed of the power device.

在一些可选的实施方式中,形成上述第一导电层30的材料包括多晶硅,形成上述第一金属化合物层40的步骤包括:在上述半导体衬底10的第一侧沉积金属层,以使上述金属层与源/漏区的源区80和漏区90以及和第一导电层30接触;使金属层与多晶硅反应,以形成第一金属化合物层40,由于金属化合物具有比金属更低的电阻,进而进一步降低了器件的导通电阻。In some optional embodiments, the material for forming the above-mentioned first conductive layer 30 includes polysilicon, and the step of forming the above-mentioned first metal compound layer 40 includes: depositing a metal layer on the first side of the above-mentioned semiconductor substrate 10, so that the above-mentioned The metal layer is in contact with the source and drain regions 80 and 90 of the source/drain regions and with the first conductive layer 30; the metal layer is reacted with polysilicon to form the first metal compound layer 40, since the metal compound has a lower resistance than the metal , which further reduces the on-resistance of the device.

在一些可选的实施方式中,首先沉积一层金属层覆盖上述第一导电层30和上述源/漏区中的源区80和漏区90,可以理解的是,上述金属层可以包括能够被硅化的任何适合的金属,包括但不限于Co、Ni、Ti等。In some optional embodiments, a metal layer is first deposited to cover the first conductive layer 30 and the source regions 80 and 90 in the source/drain regions. Any suitable metal for silicidation, including but not limited to Co, Ni, Ti, and the like.

在一些可选的实施方式中,在沉积金属层之后,还可以在金属层上沉积一层氮化钛(TiN),进而形成金属层与氮化钛的聚合物,从而有效避免金属层由于暴露在空气中进而被氧化。In some optional embodiments, after the metal layer is deposited, a layer of titanium nitride (TiN) may also be deposited on the metal layer to form a polymer of the metal layer and titanium nitride, thereby effectively preventing the metal layer from being exposed due to oxidized in the air.

在一些可选的实施方式中,对上述金属层进行退火处理,使得沉积的金属层与接触的多晶硅产生反应,进而在体区接触区120、源/漏区中的源区80和漏区90、栅极100、第一导电层30表面形成第二金属化合物层50,以及浅沟槽隔离区140的上表面形成第一金属化合物层40和第二金属化合物层50,使得上述场板结构可以单独接线,并设计成独立的电压操作,从而降低器件的导通电阻最后再采用光刻和刻蚀工艺去除多余的第一金属化合物层40、第一导电层30以及绝缘层20,并移除剩余的光刻胶,形成如图5所示的结构。In some optional implementations, the above-mentioned metal layer is annealed, so that the deposited metal layer reacts with the polysilicon in contact, so that the contact region 120 in the body region, the source region 80 and the drain region 90 in the source/drain region The second metal compound layer 50 is formed on the surface of the gate 100 and the first conductive layer 30, and the first metal compound layer 40 and the second metal compound layer 50 are formed on the upper surface of the shallow trench isolation region 140, so that the above field plate structure can be Separate wiring and design for independent voltage operation, thereby reducing the on-resistance of the device. Finally, photolithography and etching processes are used to remove the redundant first metal compound layer 40, the first conductive layer 30 and the insulating layer 20, and remove The remaining photoresist forms the structure shown in FIG. 5 .

在一些可选的实施方式中,通过刻蚀去除上述多余的第一金属化合物层40、第一导电层30以及绝缘层20之后,在上述半导体衬底的第一侧沉积介质层(图中未予以标示),以使上述介质层覆盖上述半导体衬底的第一侧,继而刻蚀该介质层形成多个接触孔,以使上述接触孔暴露出源/漏区中的源区80和漏区90、栅极100表面的第二金属化合物层50,以及浅沟槽隔离层上的第一金属化合物层40和第二金属化合物层50,然后在每个接触孔内填充金属(例如铜)以形成导电连接部60,再制备第二导电层70,以使第二导电层70与导电连接部60互连,实现第一金属化合物层40与第二导电层70的电连接,形成如图1所示的结构。In some optional embodiments, after removing the redundant first metal compound layer 40, the first conductive layer 30 and the insulating layer 20 by etching, a dielectric layer (not shown in the figure) is deposited on the first side of the semiconductor substrate. marked), so that the dielectric layer covers the first side of the semiconductor substrate, and then the dielectric layer is etched to form a plurality of contact holes, so that the contact holes expose the source region 80 and the drain region in the source/drain regions 90, the second metal compound layer 50 on the surface of the gate 100, and the first metal compound layer 40 and the second metal compound layer 50 on the shallow trench isolation layer, and then filling each contact hole with metal (eg, copper) to The conductive connection part 60 is formed, and then the second conductive layer 70 is prepared, so that the second conductive layer 70 and the conductive connection part 60 are interconnected, and the electrical connection between the first metal compound layer 40 and the second conductive layer 70 is realized, as shown in FIG. 1 . shown structure.

从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present invention achieve the following technical effects:

1、通过在半导体衬底的第一侧形成绝缘层,减少栅极边缘处集中的电位线,有效提高器件的击穿电压,通过在绝缘层远离半导体衬底的一侧形成第一导电层,以使第一导电层可以单独接线,并设计成独立的电压操作,进而降低导通电阻,有效提高功率器件的性能;1. By forming an insulating layer on the first side of the semiconductor substrate, the potential lines concentrated at the edge of the gate are reduced, and the breakdown voltage of the device is effectively improved. By forming a first conductive layer on the side of the insulating layer away from the semiconductor substrate, So that the first conductive layer can be wired separately and designed to operate independently of voltage, thereby reducing the on-resistance and effectively improving the performance of the power device;

2、通过本发明提供的功率器件的制作方法,降低了工艺的复杂性,节省了工艺的制作成本。2. The manufacturing method of the power device provided by the present invention reduces the complexity of the process and saves the manufacturing cost of the process.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1.一种功率器件,其特征在于,包括半导体衬底和场板结构,所述场板结构设置于所述半导体衬底的第一侧,所述半导体衬底的第一侧具有源/漏区和栅极,所述场板结构包括:1. A power device, comprising a semiconductor substrate and a field plate structure, wherein the field plate structure is disposed on a first side of the semiconductor substrate, and the first side of the semiconductor substrate has source/drain region and gate, the field plate structure includes: 绝缘层,所述绝缘层设置于所述第一侧,且所述绝缘层与所述源/漏区和所述栅极接触设置;an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate; 第一导电层,所述第一导电层覆盖于所述绝缘层远离所述半导体衬底的一侧。a first conductive layer, the first conductive layer covers the side of the insulating layer away from the semiconductor substrate. 2.根据权利要求1所述的功率器件,其特征在于,所述绝缘层包括高k栅介质层。2 . The power device according to claim 1 , wherein the insulating layer comprises a high-k gate dielectric layer. 3 . 3.根据权利要求1所述的功率器件,其特征在于,所述第一导电层的材料包括金属和/或多晶硅。3. The power device according to claim 1, wherein the material of the first conductive layer comprises metal and/or polysilicon. 4.根据权利要求3所述的功率器件,其特征在于,所述第一导电层的材料包括掺杂多晶硅。4. The power device according to claim 3, wherein the material of the first conductive layer comprises doped polysilicon. 5.根据权利要求1至4中任一项所述的功率器件,其特征在于,所述功率器件包括:5. The power device according to any one of claims 1 to 4, wherein the power device comprises: 第一金属化合物层,所述金属化合物层覆盖于所述第一导电层远离所述半导体衬底的一侧。a first metal compound layer covering the side of the first conductive layer away from the semiconductor substrate. 6.根据权利要求1至4中任一项所述的功率器件,其特征在于,所述功率器件还包括:6. The power device according to any one of claims 1 to 4, wherein the power device further comprises: 第二金属化合物层,与所述源/漏区和所述栅极接触设置;a second metal compound layer disposed in contact with the source/drain regions and the gate electrode; 多个导电连接部,每个所述导电连接部与所述第二金属化合物层接触设置,并沿远离所述半导体衬底的方向延伸。A plurality of conductive connection parts, each of which is arranged in contact with the second metal compound layer, and extends in a direction away from the semiconductor substrate. 7.根据权利要求6所述的功率器件,其特征在于,所述功率器件还包括:7. The power device according to claim 6, wherein the power device further comprises: 第二导电层,所述第二导电层设置于所述导电连接部远离所述第二金属化合物层的一侧,所述导电连接部连接所述第二金属化合物层和所述第二导电层。A second conductive layer, the second conductive layer is disposed on the side of the conductive connection portion away from the second metal compound layer, and the conductive connection portion connects the second metal compound layer and the second conductive layer . 8.一种功率器件的制作方法,其特征在于,包括以下步骤:8. A method of making a power device, comprising the following steps: 提供半导体衬底,所述半导体衬底具有第一侧,所述第一侧具有源/漏区和栅极;providing a semiconductor substrate having a first side having source/drain regions and a gate; 在所述第一侧沉积介电材料形成绝缘层,所述绝缘层设置于所述第一侧,且所述绝缘层与所述源/漏区和所述栅极接触设置;A dielectric material is deposited on the first side to form an insulating layer, the insulating layer is disposed on the first side, and the insulating layer is disposed in contact with the source/drain regions and the gate electrode; 在所述绝缘层远离所述半导体衬底的一侧形成第一导电层,所述第一导电层覆盖所述绝缘层。A first conductive layer is formed on a side of the insulating layer away from the semiconductor substrate, and the first conductive layer covers the insulating layer. 9.根据权利要求8所述的制作方法,其特征在于,形成所述第一导电层的步骤之后,所述制作方法还包括:9. The manufacturing method according to claim 8, wherein after the step of forming the first conductive layer, the manufacturing method further comprises: 在所述第一侧形成第一金属化合物层,所述金属化合物层覆盖于所述第一导电层远离所述半导体衬底的一侧。A first metal compound layer is formed on the first side, and the metal compound layer covers the side of the first conductive layer away from the semiconductor substrate. 10.根据权利要求9所述的制作方法,其特征在于,形成所述第一导电层的材料包括多晶硅,形成所述第一金属化合物层的步骤包括:10 . The manufacturing method according to claim 9 , wherein the material for forming the first conductive layer comprises polysilicon, and the step of forming the first metal compound layer comprises: 10 . 在所述第一侧沉积金属层,以使所述金属层与所述源/漏区和所述第一导电层接触;depositing a metal layer on the first side so that the metal layer is in contact with the source/drain regions and the first conductive layer; 使所述金属层与所述多晶硅反应,以形成所述第一金属化合物层。The metal layer is reacted with the polysilicon to form the first metal compound layer.
CN202210860239.0A 2022-07-22 2022-07-22 Power device and manufacturing method thereof Pending CN114944425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210860239.0A CN114944425A (en) 2022-07-22 2022-07-22 Power device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210860239.0A CN114944425A (en) 2022-07-22 2022-07-22 Power device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN114944425A true CN114944425A (en) 2022-08-26

Family

ID=82910992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210860239.0A Pending CN114944425A (en) 2022-07-22 2022-07-22 Power device and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN114944425A (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269964A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Semiconductor device and manufacturing method thereof
US20120228704A1 (en) * 2011-03-07 2012-09-13 Dong-Hyuk Ju High-Voltage MOSFET with High Breakdown Voltage and Low On-Resistance and Method of Manufacturing the Same
CN202772140U (en) * 2012-07-20 2013-03-06 昆山华太电子技术有限公司 LDMOS (Laterally Diffused Metal Oxide Semiconductor) element based on high-K material
CN103137697A (en) * 2011-11-30 2013-06-05 台湾积体电路制造股份有限公司 Power MOSFET and methods for forming the same
US20130341715A1 (en) * 2012-06-22 2013-12-26 Monolithic Power Systems, Inc. Power transistor and associated method for manufacturing
US20140197489A1 (en) * 2013-01-11 2014-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Power MOSFETs and Methods for Forming the Same
US20170062607A1 (en) * 2015-08-31 2017-03-02 Intersil Americas LLC Method and Structure for Reducing Switching Power Losses
US9741826B1 (en) * 2016-10-20 2017-08-22 United Microelectronics Corp. Transistor structure
CN107230637A (en) * 2016-03-24 2017-10-03 台湾积体电路制造股份有限公司 Method and apparatus for high voltage transistor
CN109979821A (en) * 2017-12-28 2019-07-05 无锡华润上华科技有限公司 A kind of semiconductor devices and preparation method thereof
US20190288112A1 (en) * 2018-03-19 2019-09-19 Macronix International Co., Ltd. High-voltage transistor devices with two-step field plate structures
CN110310892A (en) * 2018-03-20 2019-10-08 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor device and its manufacturing method, electronic device
CN111200006A (en) * 2018-11-19 2020-05-26 无锡华润上华科技有限公司 Lateral double-diffused metal oxide semiconductor field effect transistor and preparation method thereof
US10692969B1 (en) * 2019-03-20 2020-06-23 Vanguard International Semiconductor Corporation Semiconductor structures
CN111524964A (en) * 2020-04-29 2020-08-11 电子科技大学 Lateral device with reduced impact of high voltage interconnect and method of making
CN111987148A (en) * 2019-05-21 2020-11-24 台湾积体电路制造股份有限公司 Integrated chip, high-voltage device and method for forming high-voltage transistor device
US20210036112A1 (en) * 2019-07-29 2021-02-04 Shanghai Huahong Grace Semiconductor Manufacturing Corporation Ldmosfet device and method for making the same
CN114267722A (en) * 2021-12-20 2022-04-01 华虹半导体(无锡)有限公司 Semiconductor device and method of forming the same
CN114420749A (en) * 2020-10-28 2022-04-29 联华电子股份有限公司 Semiconductor device and method for manufacturing the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269964A (en) * 2005-03-25 2006-10-05 Toyota Motor Corp Semiconductor device and manufacturing method thereof
US20120228704A1 (en) * 2011-03-07 2012-09-13 Dong-Hyuk Ju High-Voltage MOSFET with High Breakdown Voltage and Low On-Resistance and Method of Manufacturing the Same
CN103137697A (en) * 2011-11-30 2013-06-05 台湾积体电路制造股份有限公司 Power MOSFET and methods for forming the same
US20130341715A1 (en) * 2012-06-22 2013-12-26 Monolithic Power Systems, Inc. Power transistor and associated method for manufacturing
CN202772140U (en) * 2012-07-20 2013-03-06 昆山华太电子技术有限公司 LDMOS (Laterally Diffused Metal Oxide Semiconductor) element based on high-K material
US20140197489A1 (en) * 2013-01-11 2014-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Power MOSFETs and Methods for Forming the Same
US20170062607A1 (en) * 2015-08-31 2017-03-02 Intersil Americas LLC Method and Structure for Reducing Switching Power Losses
CN107230637A (en) * 2016-03-24 2017-10-03 台湾积体电路制造股份有限公司 Method and apparatus for high voltage transistor
US9741826B1 (en) * 2016-10-20 2017-08-22 United Microelectronics Corp. Transistor structure
CN109979821A (en) * 2017-12-28 2019-07-05 无锡华润上华科技有限公司 A kind of semiconductor devices and preparation method thereof
US20190288112A1 (en) * 2018-03-19 2019-09-19 Macronix International Co., Ltd. High-voltage transistor devices with two-step field plate structures
CN110310892A (en) * 2018-03-20 2019-10-08 中芯国际集成电路制造(上海)有限公司 A kind of semiconductor device and its manufacturing method, electronic device
CN111200006A (en) * 2018-11-19 2020-05-26 无锡华润上华科技有限公司 Lateral double-diffused metal oxide semiconductor field effect transistor and preparation method thereof
US10692969B1 (en) * 2019-03-20 2020-06-23 Vanguard International Semiconductor Corporation Semiconductor structures
CN111987148A (en) * 2019-05-21 2020-11-24 台湾积体电路制造股份有限公司 Integrated chip, high-voltage device and method for forming high-voltage transistor device
US20210036112A1 (en) * 2019-07-29 2021-02-04 Shanghai Huahong Grace Semiconductor Manufacturing Corporation Ldmosfet device and method for making the same
CN111524964A (en) * 2020-04-29 2020-08-11 电子科技大学 Lateral device with reduced impact of high voltage interconnect and method of making
CN114420749A (en) * 2020-10-28 2022-04-29 联华电子股份有限公司 Semiconductor device and method for manufacturing the same
CN114267722A (en) * 2021-12-20 2022-04-01 华虹半导体(无锡)有限公司 Semiconductor device and method of forming the same

Similar Documents

Publication Publication Date Title
JP4006267B2 (en) Method for manufacturing double gate / double channel MOSFET
US12100741B2 (en) Lateral double-diffused transistor and manufacturing method thereof
CN107180871B (en) Semiconductor device
JP2006505950A (en) Double-gate semiconductor device having multiple separated gates
CN113078154A (en) Semiconductor device and method for manufacturing the same
CN111540785A (en) LDMOS device and method of making the same
CN111755512B (en) Semiconductor device and preparation method thereof
CN107180870A (en) Semiconductor device with a plurality of transistors
US20090166731A1 (en) Vertical-type field-effect transistor and manufacturing method thereof
TWI726692B (en) Semiconductor device and method for fabricating the same
CN110718585A (en) LDMOS device and method of making the same
CN111223932A (en) A semiconductor device and method of forming the same
CN114944425A (en) Power device and manufacturing method thereof
CN111613663B (en) LDMOS device and manufacturing method thereof
CN114429985B (en) Transverse power device with grid field plate structure and preparation method thereof
CN112951823A (en) Semiconductor device with a plurality of transistors
CN114420749A (en) Semiconductor device and method for manufacturing the same
CN116913782A (en) LDMOS device manufacturing method of composite field plate structure
KR20020096654A (en) Double-gate MOSFET and method for fabricating the same
JPH1012885A (en) Semiconductor device and manufacturing method thereof
CN111883594B (en) Laterally diffused high voltage device and method of making the same
US10181522B2 (en) Simplified gate to source/drain region connections
CN110400841B (en) Semiconductor device and method for manufacturing the same
CN114078947A (en) Trench metal oxide semiconductor device and method of making the same
CN114496796B (en) Trench transistor and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220826