CN114944425A - Power device and manufacturing method thereof - Google Patents
Power device and manufacturing method thereof Download PDFInfo
- Publication number
- CN114944425A CN114944425A CN202210860239.0A CN202210860239A CN114944425A CN 114944425 A CN114944425 A CN 114944425A CN 202210860239 A CN202210860239 A CN 202210860239A CN 114944425 A CN114944425 A CN 114944425A
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor substrate
- power device
- insulating layer
- conductive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 239000004065 semiconductor Substances 0.000 claims abstract description 65
- 150000002736 metal compounds Chemical class 0.000 claims description 57
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 21
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 16
- 229920005591 polysilicon Polymers 0.000 claims description 16
- 239000003989 dielectric material Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 23
- 238000000034 method Methods 0.000 description 30
- 230000005684 electric field Effects 0.000 description 18
- 210000000746 body region Anatomy 0.000 description 11
- 238000002955 isolation Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000005234 chemical deposition Methods 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供了一种功率器件及其制作方法。该功率器件包括半导体衬底和场板结构,场板结构设置于半导体衬底的第一侧,半导体衬底的第一侧具有源/漏区和栅极,场板结构包括:绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;第一导电层,第一导电层覆盖于绝缘层远离半导体衬底的一侧。通过在半导体衬底的第一侧设置绝缘层,减少栅极边缘处集中的电位线,从而提高功率器件的击穿电压,继而在绝缘层远离半导体衬底的一侧设置第一导电层,以使该功率器件能够通过第一导电层单独接线,进而设计成独立的电压操作,从而降低该功率器件的导通电阻。
The invention provides a power device and a manufacturing method thereof. The power device includes a semiconductor substrate and a field plate structure, the field plate structure is arranged on a first side of the semiconductor substrate, the first side of the semiconductor substrate has source/drain regions and a gate, and the field plate structure includes: an insulating layer, an insulating layer The layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate electrode; the first conductive layer covers the side of the insulating layer away from the semiconductor substrate. By arranging an insulating layer on the first side of the semiconductor substrate, the potential lines concentrated at the edge of the gate are reduced, thereby improving the breakdown voltage of the power device. The power device can be individually wired through the first conductive layer, so as to be designed to operate independently of voltage, thereby reducing the on-resistance of the power device.
Description
技术领域technical field
本发明涉及半导体器件的制作方法,具体而言,涉及一种功率器件及其制作方法。The present invention relates to a manufacturing method of a semiconductor device, in particular, to a power device and a manufacturing method thereof.
背景技术Background technique
在高压集成器件中,LDMOS晶体管的击穿电压(例如,漏极结击穿电压和栅电介质击穿电压)是直接影响LDMOS晶体管的稳定操作的重要因素。另外,LDMOS晶体管的导通电阻(Ron)值也是影响LDMOS晶体管的电学特性(例如,LDMOS晶体管的电流驱动能力)的重要因素。In high-voltage integrated devices, the breakdown voltage (eg, drain junction breakdown voltage and gate dielectric breakdown voltage) of an LDMOS transistor is an important factor that directly affects the stable operation of the LDMOS transistor. In addition, the on-resistance (Ron) value of the LDMOS transistor is also an important factor affecting the electrical characteristics of the LDMOS transistor (eg, the current driving capability of the LDMOS transistor).
场板是高压LDMOS涉及中经常使用的一种终端技术,它可以优化电场分布,有效地抑制表面电场,防止器件表面击穿。然而,传统的SiO2基场板的BV改善效果有限,且场板技术往往需要单独的工艺,增加了其制造难度和成本。Field plate is a terminal technology often used in high-voltage LDMOS, which can optimize the electric field distribution, effectively suppress the surface electric field, and prevent the surface breakdown of the device. However, the BV improvement effect of the traditional SiO2 -based field plate is limited, and the field plate technology often requires a separate process, increasing its manufacturing difficulty and cost.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种功率器件及其制作方法,以解决现有技术中击穿电压低和导通电阻高的问题。The main purpose of the present invention is to provide a power device and a manufacturing method thereof to solve the problems of low breakdown voltage and high on-resistance in the prior art.
为了实现上述目的,根据本发明的一个方面,提供了一种功率器件,该功率器件包括半导体衬底和场板结构,场板结构设置于半导体衬底的第一侧,半导体衬底的第一侧具有源/漏区和栅极,场板结构包括:绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;第一导电层,第一导电层覆盖于绝缘层远离半导体衬底的一侧。In order to achieve the above object, according to an aspect of the present invention, a power device is provided, the power device includes a semiconductor substrate and a field plate structure, the field plate structure is disposed on a first side of the semiconductor substrate, and the first side of the semiconductor substrate The side has source/drain regions and a gate, and the field plate structure includes: an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate; a first conductive layer, the first conductive layer covers on the side of the insulating layer away from the semiconductor substrate.
进一步地,绝缘层包括高k栅介质层。Further, the insulating layer includes a high-k gate dielectric layer.
进一步地,第一导电层的材料包括金属和/或多晶硅。Further, the material of the first conductive layer includes metal and/or polysilicon.
进一步地,第一导电层的材料包括掺杂多晶硅。Further, the material of the first conductive layer includes doped polysilicon.
进一步地,功率器件包括:第一金属化合物层,金属化合物层覆盖于第一导电层远离半导体衬底的一侧。Further, the power device includes: a first metal compound layer covering a side of the first conductive layer away from the semiconductor substrate.
进一步地,功率器件还包括:第二金属化合物层,与源/漏区和栅极接触设置;多个导电连接部,每个导电连接部与第二金属化合物层接触设置,并沿远离半导体衬底的方向延伸。Further, the power device further includes: a second metal compound layer, arranged in contact with the source/drain regions and the gate electrode; a plurality of conductive connection parts, each of which is arranged in contact with the second metal compound layer, and is arranged along a distance away from the semiconductor substrate extending in the direction of the bottom.
进一步地,功率器件还包括:第二导电层,第二导电层设置于导电连接部远离第二金属化合物层的一侧,导电连接部连接第二金属化合物层和第二导电层。Further, the power device further includes: a second conductive layer, the second conductive layer is disposed on the side of the conductive connection portion away from the second metal compound layer, and the conductive connection portion connects the second metal compound layer and the second conductive layer.
根据本发明的另一方面,提供了一种功率器件的制作方法,该制作方法包括以下步骤:提供半导体衬底,半导体衬底具有第一侧,第一侧具有源/漏区和栅极;在第一侧沉积介电材料形成绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;在绝缘层远离半导体衬底的一侧形成第一导电层,第一导电层覆盖绝缘层。According to another aspect of the present invention, a method for fabricating a power device is provided, the fabrication method comprising the steps of: providing a semiconductor substrate, the semiconductor substrate having a first side, and the first side having source/drain regions and a gate; A dielectric material is deposited on the first side to form an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate electrode; a first conductive layer is formed on the side of the insulating layer away from the semiconductor substrate, The first conductive layer covers the insulating layer.
进一步地,形成第一导电层的步骤之后,制作方法还包括:在第一侧形成第一金属化合物层,金属化合物层覆盖于第一导电层远离半导体衬底的一侧。Further, after the step of forming the first conductive layer, the manufacturing method further includes: forming a first metal compound layer on the first side, the metal compound layer covering the side of the first conductive layer away from the semiconductor substrate.
进一步地,形成第一导电层的材料包括多晶硅,形成第一金属化合物层的步骤包括:在第一侧沉积金属层,以使金属层与源/漏区和第一导电层接触;使金属层与多晶硅反应,以形成第一金属化合物层。Further, the material for forming the first conductive layer includes polysilicon, and the step of forming the first metal compound layer includes: depositing a metal layer on the first side, so that the metal layer is in contact with the source/drain regions and the first conductive layer; making the metal layer Reacts with polysilicon to form a first metal compound layer.
应用本发明的技术方案,提供一种功率器件,包括半导体衬底和场板结构,场板结构设置于半导体衬底的第一侧,半导体衬底的第一侧具有源/漏区和栅极,场板结构包括:绝缘层,绝缘层设置于第一侧,且绝缘层与源/漏区和栅极接触设置;第一导电层,第一导电层覆盖于绝缘层远离半导体衬底的一侧。通过在半导体衬底的第一侧设置绝缘层,减少栅极边缘处集中的电位线,从而提高功率器件的击穿电压,通过在绝缘层远离半导体衬底的第一侧设置第一导电层,以使第一导电层可以单独接线,并设计成独立的电压操作,从而降低了功率器件的导通电阻。By applying the technical solutions of the present invention, a power device is provided, comprising a semiconductor substrate and a field plate structure, wherein the field plate structure is arranged on a first side of the semiconductor substrate, and the first side of the semiconductor substrate has source/drain regions and a gate , the field plate structure includes: an insulating layer, the insulating layer is arranged on the first side, and the insulating layer is arranged in contact with the source/drain regions and the gate; a first conductive layer, the first conductive layer covers the insulating layer away from the semiconductor substrate. side. By arranging an insulating layer on the first side of the semiconductor substrate, the potential lines concentrated at the gate edge are reduced, thereby increasing the breakdown voltage of the power device. By arranging the first conductive layer on the first side of the insulating layer away from the semiconductor substrate, So that the first conductive layer can be wired separately and designed to operate with independent voltage, thereby reducing the on-resistance of the power device.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached image:
图1示出了根据本发明实施例的功率器件的剖面结构示意图;FIG. 1 shows a schematic cross-sectional structure diagram of a power device according to an embodiment of the present invention;
图2示出了图1所示的功率器件的制作方法中,所提供的半导体衬底的剖面结构示意图;FIG. 2 shows a schematic cross-sectional structure diagram of the provided semiconductor substrate in the manufacturing method of the power device shown in FIG. 1;
图3示出了在图2所示的半导体衬底的第一侧形成绝缘层和第一导电层的剖面结构示意图;FIG. 3 shows a schematic cross-sectional structure diagram of forming an insulating layer and a first conductive layer on the first side of the semiconductor substrate shown in FIG. 2;
图4示出了在图3所示的第一侧形成第一金属化合物层和第二金属化合物层的剖面结构示意图;FIG. 4 shows a schematic cross-sectional structure diagram of forming a first metal compound layer and a second metal compound layer on the first side shown in FIG. 3;
图5示出了在图4所示的第一侧去除多余的金属化合物层、第一导电层以及绝缘层之后的剖面结构示意图。FIG. 5 shows a schematic cross-sectional structure diagram after removing the redundant metal compound layer, the first conductive layer and the insulating layer on the first side shown in FIG. 4 .
其中,上述附图包括以下附图标记:Wherein, the above-mentioned drawings include the following reference signs:
10、半导体衬底;20、绝缘层;30、第一导电层;40、第一金属化合物层;50、第二金属化合物层;60、导电连接部;70、第二导电层;80、源区;90、漏区;100、栅极;110、体区;120、体区接触区;130、漂移区;140、浅沟槽隔离区。10, semiconductor substrate; 20, insulating layer; 30, first conductive layer; 40, first metal compound layer; 50, second metal compound layer; 60, conductive connection part; 70, second conductive layer; 80,
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict. The present invention will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to make those skilled in the art better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only Embodiments are part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present invention and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances for the embodiments of the invention described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.
正如背景技术所提到的,击穿电压和导通电阻都是功率器件的重要性能指标,由于采用场板结构能大幅度提升器件的击穿电压,又能进一步抑制电流崩塌,从而提高器件的可靠性,因此,场板是涉及功率器件中经常使用的一种终端技术。然而,传统的SiO2基场板的击穿电压改善效果有限,亟需获得一种较佳的功率器件以达到有效提高器件击穿电压的目的。As mentioned in the background art, both breakdown voltage and on-resistance are important performance indicators of power devices. Because the use of the field plate structure can greatly improve the breakdown voltage of the device, it can further suppress the current collapse, thereby improving the device's performance. Reliability, and therefore, field plates are a termination technology that is often used in power devices. However, the improvement effect of the breakdown voltage of the traditional SiO 2 based field plate is limited, and it is urgent to obtain a better power device to achieve the purpose of effectively improving the breakdown voltage of the device.
本发明的申请人为了解决上述技术问题,提供了一种功率器件,如图1所示,包括半导体衬底10和场板结构,上述场板结构设置于上述半导体衬底10的第一侧,上述半导体衬底10的第一侧具有源/漏区的源区80和漏区90以及栅极100,上述场板结构包括:绝缘层20,上述绝缘层20设置于上述第一侧,且上述绝缘层20与上述源/漏区的源区80和漏区90以及上述栅极100接触设置;第一导电层30,上述第一导电层30覆盖于上述绝缘层20远离上述半导体衬底10的一侧。In order to solve the above-mentioned technical problem, the applicant of the present invention provides a power device, as shown in FIG. 1 , comprising a
上述的器件中,通过在第一侧设置与源/漏区的源区80和漏区90以及栅极100接触的绝缘层20,然后在绝缘层20远离半导体衬底10的一侧覆盖第一导电层30,上述绝缘层20和第一导电层30可直接作为阻挡层,进而对绝缘层20和第一导电层30进行选择性刻蚀以形成场板结构,而无需耗费光罩,从而简化制备工艺,降低了工艺难度,且节省了工艺成本。In the above device, the
在一些可选的实施方式中,如图1所示,上述半导体衬底10还包括体区110、漂移区130、体区接触区120以及浅沟槽隔离区140。制备上述结构所采用的技术方案均采用现有技术所惯用的工艺流程,因此相关结构在此不作赘述。In some optional embodiments, as shown in FIG. 1 , the above-mentioned
其中,上述半导体衬底10可以为单质半导体材料衬底(例如硅(Si)衬底、锗(Ge)衬底等)、复合半导体材料衬底(例如锗硅衬底等),或绝缘体上硅(SOI)衬底、绝缘体上锗(GeOI)衬底等。Wherein, the above-mentioned
在本申请的一些可选的实施方式中,关于上述功率器件中的场板结构,构成该场板结构的绝缘层20包括高k栅介质层。由于高k栅介质层的材料相对介电常数越高,此处的电位移矢量强度就越大,也就意味着耗尽层中空间电荷产生的电位线更多进入高k栅介质层,进而减少耗尽层中向栅极100边缘处集中的电位线,从而削弱了耗尽层中空间电荷产生的电场,减小了栅边缘的电场峰值,使得在相同的外加电压下,功率器件的栅边缘峰值电场减小,电场分布几乎不存在峰值,从而电场曲线的覆盖面积增大,相应耗尽层区域增大,而临界击穿电压为定值,击穿电压为临界击穿电场对耗尽层区域的积分,所以击穿电压相应地增大。In some optional embodiments of the present application, regarding the field plate structure in the above-mentioned power device, the
由于上述半导体衬底10上设置有绝缘层20,使得击穿电压相应增大,而击穿电压增大又会导致功率器件的导通电阻增大,因此在一些可选的实施方式中,关于上述功率器件中的场板结构,构成该场板结构的第一导电层30的材料包括金属和/或多晶硅,通过设置可导电的金属和/或多晶硅,满足可以单独接线设计成独立的电压操作的条件,并减小功率器件的层电阻,从而降低导通电阻。Since the above-mentioned
在一些可选的实施方式中,上述第一导电层30的材料包括掺杂多晶硅。通过对多晶硅进一步掺杂,可以防止形成场板结构的工艺过程中,清洗自然氧化层步骤中对形成场板结构的材料损耗。In some optional embodiments, the material of the first
在一些可选的实施方式中,由于上述第一导电层30采用的金属和/或多晶硅材料,从而满足形成电连接的导电条件,进而可以单独接线设计成独立的电压操作,能够进一步降低导通电阻。In some optional implementations, due to the metal and/or polysilicon material used in the first
在一些可选的实施方式中,上述功率器件还包括:第一金属化合物层40,其中,上述第一金属化合物层40覆盖于第一导电层30远离半导体衬底10的一侧。通过在上述第一导电层30远离半导体衬底10的一侧形成第一金属化合物层40,能够提供良好的欧姆接触,从而减小功率器件中各层结构的层电阻,并增加功率器件的运行速度。In some optional embodiments, the power device further includes: a first
在一些可选的实施方式中,上述第一导电层30的材料包括金属,进一步可选的,上述金属为金属钴,上述金属钴可以作为形成上述金属化合物层的前驱体,从而简化了工艺步骤,降低制作成本。In some optional embodiments, the material of the above-mentioned first
由于在一些可选的实施方式中,上述功率器件还包括:第二金属化合物层50,该金属化合物层与源/漏区的源区80和漏区90以及栅极100接触设置;多个导电连接部60,每个导电连接部60与第二金属化合物层50接触设置,且每个导电连接部60沿着远离半导体衬底10的方向延伸。上述第二金属化合物层50与源端和导电连接部60互连,更可有效的调节漏端的电场;上述多个导电连接部60起到导电连接的作用,以保证功率器件的电连接。Because in some optional embodiments, the above-mentioned power device further includes: a second
其中,上述第一金属化合物层40与上述第二金属化合物层50可以是同一种金属化合物层,也可以是不同种金属化合物层;上述第一金属化合物层40和第二金属化合物层50均可以是硅化钴、硅化钛或硅化镍中的一种或多种;上述导电连接部60可以是金属铜、金属钨、金属镍等。关于上述第一金属化合物层40、第二金属化合物以及导电连接部60的材料,本领域技术人员可以根据现有技术进行合理选取,本申请不做具体限定。The first
在一些可选的实施方式中,上述功率器件还包括:第二导电层70,上述第二导电层70设置与导电连接部60远离第二金属化合物层50的一侧,每个导电连接部60连接第二金属化合物层50和第二导电层70。上述导电连接部60作为导电部件,将第二金属化合物层50与第二导电层70进行互连。In some optional embodiments, the power device further includes: a second
根据本申请的另一方面,还提供一种功率器件的制作方法,该制作方法包括以下步骤:提供半导体衬底,上述半导体衬底具有第一侧,上述第一侧具有源/漏区的源区和漏区以及栅极;在上述第一侧沉积介电材料形成绝缘层,上述绝缘层设置于上述第一侧,且上述绝缘层与上述源/漏区的源区和漏区以及上述栅极接触设置;在上述绝缘层远离上述半导体衬底的一侧形成第一导电层,上述第一导电层覆盖上述绝缘层。According to another aspect of the present application, there is also provided a method for fabricating a power device, the fabrication method comprising the steps of: providing a semiconductor substrate, the semiconductor substrate having a first side, and the first side having a source of source/drain regions A dielectric material is deposited on the first side to form an insulating layer, the insulating layer is arranged on the first side, and the insulating layer and the source and drain regions of the source/drain regions and the gate Electrode contact arrangement; a first conductive layer is formed on the side of the insulating layer away from the semiconductor substrate, and the first conductive layer covers the insulating layer.
下面将更详细地描述根据本发明提供的功率器件的制作方法的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员。Exemplary embodiments of the method for fabricating a power device provided according to the present invention will be described in more detail below. These exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. It should be understood that these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of these exemplary embodiments to those skilled in the art.
如图2所示,首先提供一半导体衬底10,该半导体衬底10具有第一侧,上述第一侧具有源区80、漏区90以及栅极100,其中,源区80和漏区90分别位于上述第一侧的两侧,栅极100位于源区80与漏区90之间的半导体衬底10的第一侧表面,且栅极100靠近上述源区80。As shown in FIG. 2 , a
在一些可选的实施方式中,如图2所示,上述半导体衬底10还包括体区110、漂移区130、体区接触区120以及浅沟槽隔离区140。其中,上述体区110与漂移区130接触设置在上述半导体衬底10的第一侧,源区80设置与上述体区110中,漏区90设置于上述漂移区130中,栅极100的部分位于上述体区110上,栅极100的另一部分位于上述漂移区130上,体区110中还设置有体区接触区120,形成欧姆接触,漂移区130远离栅极100的一侧还设置有浅沟槽隔离区140。制备上述结构所采用的技术方案均采用现有技术所惯用的工艺流程,因此相关结构在此不作赘述。In some optional embodiments, as shown in FIG. 2 , the above-mentioned
如图3所示,在上述第一侧沉积介电材料形成绝缘层20,上述绝缘层20设置于上述第一侧,且上述绝缘层20与上述源/漏区的源区80和漏区90以及上述栅极100接触设置。通过加入上述绝缘层20,使得一部分电场线从势垒层指向场板,进而削弱耗尽层中空间电荷产生的电场,减小了栅边缘电场峰值,从而提高了个功率器件的击穿电压。As shown in FIG. 3, a dielectric material is deposited on the first side to form an insulating
在一些可选的实施方式中,上述介电材料包括高k材料,由于高k材料具有较高的相对介电常数,由上述高k材料形成的绝缘层20的电位移矢量强度相应较大,也就意味着耗尽层中空间电荷产生的电位线更多进入绝缘层20,进而减少耗尽层中向栅极100边缘处集中的电位线,从而削弱了耗尽层中空间电荷产生的电场,减小了栅边缘的电场峰值,使得在相同的外加电压下,功率器件的栅边缘峰值电场减小,电场分布几乎不存在峰值,从而电场曲线的覆盖面积增大,相应耗尽层区域增大,而临界击穿电压为定值,击穿电压为临界击穿电场对耗尽层区域的积分,所以击穿电压相应地增大。In some optional embodiments, the above-mentioned dielectric material includes a high-k material. Since the high-k material has a relatively high relative permittivity, the electric displacement vector strength of the insulating
在一些可选的实施方式中,形成上述绝缘层20之后,在上述绝缘层20远离半导体衬底10的一侧形成第一导电层30,且第一导电层30覆盖上述绝缘层20,如图3所示。In some optional embodiments, after the insulating
其中,上述绝缘层20和上述第一导电层30可以均采用化学沉积工艺、自对准工艺等形成。Wherein, the above-mentioned insulating
在一些可选的实施方式中,采用化学沉积工艺形成覆盖上述源/漏区的源区80和漏区90、栅极100、漂移区130以及浅沟槽隔离区140的绝缘层20,然后再采用化学沉积工艺形成覆盖上述绝缘层20的第一导电层30,然后在上述第一导电连接部60远离半导体衬底10的一侧设置掩模板,根据掩模板刻蚀上述绝缘层20和上述第一导电层30,以使上述绝缘层20和上述第一导电层30暴露出栅极100以及源/漏区中的源区80和漏区90。In some optional embodiments, a chemical deposition process is used to form the insulating
在一些可选的实施方式中,采用自对准工艺形成覆盖沉积一层SAB层将上述半导体衬底10的第一侧完全覆盖,其中,上述SAB层为氧化层,然后采用自对准工艺沉积第一导电层30覆盖上述SAB层,继而在SAB层的上表面涂覆一层光刻胶,然后借助一具有曝光图案的掩膜板进行曝光、显影工艺,进而在光刻胶中形成开口图案,然后以剩余的光刻胶为刻蚀掩膜向下进行干法蚀刻,将位于光刻胶开口下方的第一导电层30和SAB层进行去除,最后移除剩余光刻胶,形成如图2所示的结构。上述实施例中,采用自对准工艺,并借助SAB材料,完成了场板结构的制作,从而降低了工艺的复杂性,简化了工艺流程,并节省了制作成本。In some optional embodiments, a self-aligned process is used to form and deposit a layer of SAB layer to completely cover the first side of the above-mentioned
在一些可选的实施方式中,如图4所示,形成上述第一导电层30的步骤之后,上述制作方法还包括:在半导体衬底10的第一侧先形成第一金属化合物层40,上述第一金属化合物层40覆盖于第一导电层30远离半导体衬底10的一侧。通过形成上述第一金属化合物层40,能够提供良好的欧姆接触,从而减小功率器件中各层结构的层电阻,进而降低了器件的导通电阻,并增加功率器件的运行速度。In some optional embodiments, as shown in FIG. 4 , after the step of forming the above-mentioned first
在一些可选的实施方式中,形成上述第一导电层30的材料包括多晶硅,形成上述第一金属化合物层40的步骤包括:在上述半导体衬底10的第一侧沉积金属层,以使上述金属层与源/漏区的源区80和漏区90以及和第一导电层30接触;使金属层与多晶硅反应,以形成第一金属化合物层40,由于金属化合物具有比金属更低的电阻,进而进一步降低了器件的导通电阻。In some optional embodiments, the material for forming the above-mentioned first
在一些可选的实施方式中,首先沉积一层金属层覆盖上述第一导电层30和上述源/漏区中的源区80和漏区90,可以理解的是,上述金属层可以包括能够被硅化的任何适合的金属,包括但不限于Co、Ni、Ti等。In some optional embodiments, a metal layer is first deposited to cover the first
在一些可选的实施方式中,在沉积金属层之后,还可以在金属层上沉积一层氮化钛(TiN),进而形成金属层与氮化钛的聚合物,从而有效避免金属层由于暴露在空气中进而被氧化。In some optional embodiments, after the metal layer is deposited, a layer of titanium nitride (TiN) may also be deposited on the metal layer to form a polymer of the metal layer and titanium nitride, thereby effectively preventing the metal layer from being exposed due to oxidized in the air.
在一些可选的实施方式中,对上述金属层进行退火处理,使得沉积的金属层与接触的多晶硅产生反应,进而在体区接触区120、源/漏区中的源区80和漏区90、栅极100、第一导电层30表面形成第二金属化合物层50,以及浅沟槽隔离区140的上表面形成第一金属化合物层40和第二金属化合物层50,使得上述场板结构可以单独接线,并设计成独立的电压操作,从而降低器件的导通电阻最后再采用光刻和刻蚀工艺去除多余的第一金属化合物层40、第一导电层30以及绝缘层20,并移除剩余的光刻胶,形成如图5所示的结构。In some optional implementations, the above-mentioned metal layer is annealed, so that the deposited metal layer reacts with the polysilicon in contact, so that the
在一些可选的实施方式中,通过刻蚀去除上述多余的第一金属化合物层40、第一导电层30以及绝缘层20之后,在上述半导体衬底的第一侧沉积介质层(图中未予以标示),以使上述介质层覆盖上述半导体衬底的第一侧,继而刻蚀该介质层形成多个接触孔,以使上述接触孔暴露出源/漏区中的源区80和漏区90、栅极100表面的第二金属化合物层50,以及浅沟槽隔离层上的第一金属化合物层40和第二金属化合物层50,然后在每个接触孔内填充金属(例如铜)以形成导电连接部60,再制备第二导电层70,以使第二导电层70与导电连接部60互连,实现第一金属化合物层40与第二导电层70的电连接,形成如图1所示的结构。In some optional embodiments, after removing the redundant first
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments of the present invention achieve the following technical effects:
1、通过在半导体衬底的第一侧形成绝缘层,减少栅极边缘处集中的电位线,有效提高器件的击穿电压,通过在绝缘层远离半导体衬底的一侧形成第一导电层,以使第一导电层可以单独接线,并设计成独立的电压操作,进而降低导通电阻,有效提高功率器件的性能;1. By forming an insulating layer on the first side of the semiconductor substrate, the potential lines concentrated at the edge of the gate are reduced, and the breakdown voltage of the device is effectively improved. By forming a first conductive layer on the side of the insulating layer away from the semiconductor substrate, So that the first conductive layer can be wired separately and designed to operate independently of voltage, thereby reducing the on-resistance and effectively improving the performance of the power device;
2、通过本发明提供的功率器件的制作方法,降低了工艺的复杂性,节省了工艺的制作成本。2. The manufacturing method of the power device provided by the present invention reduces the complexity of the process and saves the manufacturing cost of the process.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210860239.0A CN114944425A (en) | 2022-07-22 | 2022-07-22 | Power device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210860239.0A CN114944425A (en) | 2022-07-22 | 2022-07-22 | Power device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114944425A true CN114944425A (en) | 2022-08-26 |
Family
ID=82910992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210860239.0A Pending CN114944425A (en) | 2022-07-22 | 2022-07-22 | Power device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114944425A (en) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006269964A (en) * | 2005-03-25 | 2006-10-05 | Toyota Motor Corp | Semiconductor device and manufacturing method thereof |
US20120228704A1 (en) * | 2011-03-07 | 2012-09-13 | Dong-Hyuk Ju | High-Voltage MOSFET with High Breakdown Voltage and Low On-Resistance and Method of Manufacturing the Same |
CN202772140U (en) * | 2012-07-20 | 2013-03-06 | 昆山华太电子技术有限公司 | LDMOS (Laterally Diffused Metal Oxide Semiconductor) element based on high-K material |
CN103137697A (en) * | 2011-11-30 | 2013-06-05 | 台湾积体电路制造股份有限公司 | Power MOSFET and methods for forming the same |
US20130341715A1 (en) * | 2012-06-22 | 2013-12-26 | Monolithic Power Systems, Inc. | Power transistor and associated method for manufacturing |
US20140197489A1 (en) * | 2013-01-11 | 2014-07-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Power MOSFETs and Methods for Forming the Same |
US20170062607A1 (en) * | 2015-08-31 | 2017-03-02 | Intersil Americas LLC | Method and Structure for Reducing Switching Power Losses |
US9741826B1 (en) * | 2016-10-20 | 2017-08-22 | United Microelectronics Corp. | Transistor structure |
CN107230637A (en) * | 2016-03-24 | 2017-10-03 | 台湾积体电路制造股份有限公司 | Method and apparatus for high voltage transistor |
CN109979821A (en) * | 2017-12-28 | 2019-07-05 | 无锡华润上华科技有限公司 | A kind of semiconductor devices and preparation method thereof |
US20190288112A1 (en) * | 2018-03-19 | 2019-09-19 | Macronix International Co., Ltd. | High-voltage transistor devices with two-step field plate structures |
CN110310892A (en) * | 2018-03-20 | 2019-10-08 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and its manufacturing method, electronic device |
CN111200006A (en) * | 2018-11-19 | 2020-05-26 | 无锡华润上华科技有限公司 | Lateral double-diffused metal oxide semiconductor field effect transistor and preparation method thereof |
US10692969B1 (en) * | 2019-03-20 | 2020-06-23 | Vanguard International Semiconductor Corporation | Semiconductor structures |
CN111524964A (en) * | 2020-04-29 | 2020-08-11 | 电子科技大学 | Lateral device with reduced impact of high voltage interconnect and method of making |
CN111987148A (en) * | 2019-05-21 | 2020-11-24 | 台湾积体电路制造股份有限公司 | Integrated chip, high-voltage device and method for forming high-voltage transistor device |
US20210036112A1 (en) * | 2019-07-29 | 2021-02-04 | Shanghai Huahong Grace Semiconductor Manufacturing Corporation | Ldmosfet device and method for making the same |
CN114267722A (en) * | 2021-12-20 | 2022-04-01 | 华虹半导体(无锡)有限公司 | Semiconductor device and method of forming the same |
CN114420749A (en) * | 2020-10-28 | 2022-04-29 | 联华电子股份有限公司 | Semiconductor device and method for manufacturing the same |
-
2022
- 2022-07-22 CN CN202210860239.0A patent/CN114944425A/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006269964A (en) * | 2005-03-25 | 2006-10-05 | Toyota Motor Corp | Semiconductor device and manufacturing method thereof |
US20120228704A1 (en) * | 2011-03-07 | 2012-09-13 | Dong-Hyuk Ju | High-Voltage MOSFET with High Breakdown Voltage and Low On-Resistance and Method of Manufacturing the Same |
CN103137697A (en) * | 2011-11-30 | 2013-06-05 | 台湾积体电路制造股份有限公司 | Power MOSFET and methods for forming the same |
US20130341715A1 (en) * | 2012-06-22 | 2013-12-26 | Monolithic Power Systems, Inc. | Power transistor and associated method for manufacturing |
CN202772140U (en) * | 2012-07-20 | 2013-03-06 | 昆山华太电子技术有限公司 | LDMOS (Laterally Diffused Metal Oxide Semiconductor) element based on high-K material |
US20140197489A1 (en) * | 2013-01-11 | 2014-07-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Power MOSFETs and Methods for Forming the Same |
US20170062607A1 (en) * | 2015-08-31 | 2017-03-02 | Intersil Americas LLC | Method and Structure for Reducing Switching Power Losses |
CN107230637A (en) * | 2016-03-24 | 2017-10-03 | 台湾积体电路制造股份有限公司 | Method and apparatus for high voltage transistor |
US9741826B1 (en) * | 2016-10-20 | 2017-08-22 | United Microelectronics Corp. | Transistor structure |
CN109979821A (en) * | 2017-12-28 | 2019-07-05 | 无锡华润上华科技有限公司 | A kind of semiconductor devices and preparation method thereof |
US20190288112A1 (en) * | 2018-03-19 | 2019-09-19 | Macronix International Co., Ltd. | High-voltage transistor devices with two-step field plate structures |
CN110310892A (en) * | 2018-03-20 | 2019-10-08 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and its manufacturing method, electronic device |
CN111200006A (en) * | 2018-11-19 | 2020-05-26 | 无锡华润上华科技有限公司 | Lateral double-diffused metal oxide semiconductor field effect transistor and preparation method thereof |
US10692969B1 (en) * | 2019-03-20 | 2020-06-23 | Vanguard International Semiconductor Corporation | Semiconductor structures |
CN111987148A (en) * | 2019-05-21 | 2020-11-24 | 台湾积体电路制造股份有限公司 | Integrated chip, high-voltage device and method for forming high-voltage transistor device |
US20210036112A1 (en) * | 2019-07-29 | 2021-02-04 | Shanghai Huahong Grace Semiconductor Manufacturing Corporation | Ldmosfet device and method for making the same |
CN111524964A (en) * | 2020-04-29 | 2020-08-11 | 电子科技大学 | Lateral device with reduced impact of high voltage interconnect and method of making |
CN114420749A (en) * | 2020-10-28 | 2022-04-29 | 联华电子股份有限公司 | Semiconductor device and method for manufacturing the same |
CN114267722A (en) * | 2021-12-20 | 2022-04-01 | 华虹半导体(无锡)有限公司 | Semiconductor device and method of forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4006267B2 (en) | Method for manufacturing double gate / double channel MOSFET | |
US12100741B2 (en) | Lateral double-diffused transistor and manufacturing method thereof | |
CN107180871B (en) | Semiconductor device | |
JP2006505950A (en) | Double-gate semiconductor device having multiple separated gates | |
CN113078154A (en) | Semiconductor device and method for manufacturing the same | |
CN111540785A (en) | LDMOS device and method of making the same | |
CN111755512B (en) | Semiconductor device and preparation method thereof | |
CN107180870A (en) | Semiconductor device with a plurality of transistors | |
US20090166731A1 (en) | Vertical-type field-effect transistor and manufacturing method thereof | |
TWI726692B (en) | Semiconductor device and method for fabricating the same | |
CN110718585A (en) | LDMOS device and method of making the same | |
CN111223932A (en) | A semiconductor device and method of forming the same | |
CN114944425A (en) | Power device and manufacturing method thereof | |
CN111613663B (en) | LDMOS device and manufacturing method thereof | |
CN114429985B (en) | Transverse power device with grid field plate structure and preparation method thereof | |
CN112951823A (en) | Semiconductor device with a plurality of transistors | |
CN114420749A (en) | Semiconductor device and method for manufacturing the same | |
CN116913782A (en) | LDMOS device manufacturing method of composite field plate structure | |
KR20020096654A (en) | Double-gate MOSFET and method for fabricating the same | |
JPH1012885A (en) | Semiconductor device and manufacturing method thereof | |
CN111883594B (en) | Laterally diffused high voltage device and method of making the same | |
US10181522B2 (en) | Simplified gate to source/drain region connections | |
CN110400841B (en) | Semiconductor device and method for manufacturing the same | |
CN114078947A (en) | Trench metal oxide semiconductor device and method of making the same | |
CN114496796B (en) | Trench transistor and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220826 |