CN114927581A - Three-dimensional photosensitive pixel structure of silicon-based CMOS image sensor and preparation method thereof - Google Patents
Three-dimensional photosensitive pixel structure of silicon-based CMOS image sensor and preparation method thereof Download PDFInfo
- Publication number
- CN114927581A CN114927581A CN202210387755.6A CN202210387755A CN114927581A CN 114927581 A CN114927581 A CN 114927581A CN 202210387755 A CN202210387755 A CN 202210387755A CN 114927581 A CN114927581 A CN 114927581A
- Authority
- CN
- China
- Prior art keywords
- silicon
- substrate
- image sensor
- cmos image
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 120
- 239000010703 silicon Substances 0.000 title claims abstract description 120
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000002061 nanopillar Substances 0.000 claims abstract description 51
- 150000003376 silicon Chemical class 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 23
- 230000000873 masking effect Effects 0.000 claims description 20
- 238000005530 etching Methods 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 7
- 239000002210 silicon-based material Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 238000009713 electroplating Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000002161 passivation Methods 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 229920005591 polysilicon Polymers 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 9
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 230000031700 light absorption Effects 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 2
- 230000004298 light response Effects 0.000 abstract description 2
- 238000005036 potential barrier Methods 0.000 abstract description 2
- 235000012431 wafers Nutrition 0.000 description 13
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 6
- 229910018503 SF6 Inorganic materials 0.000 description 5
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 5
- 229960000909 sulfur hexafluoride Drugs 0.000 description 5
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/241—Electrodes for devices having potential barriers comprising ring electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/70—Surface textures, e.g. pyramid structures
- H10F77/703—Surface textures, e.g. pyramid structures of the semiconductor bodies, e.g. textured active layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
技术领域technical field
本发明属于图像传感器领域,具体来说,涉及一种硅基CMOS图像传感器三维感光像素结构及其制备方法。The invention belongs to the field of image sensors, and in particular, relates to a three-dimensional photosensitive pixel structure of a silicon-based CMOS image sensor and a preparation method thereof.
背景技术Background technique
图像传感器作为一种把光学图像信息转换成电信号的像素矩阵集成芯片,在摄影摄像设备中发挥了关键作用。随着硅基IC制造工艺的飞速发展以及移动终端的普及,CMOS工艺的图像传感器更是成为当前图像传感器的主流。As a pixel matrix integrated chip that converts optical image information into electrical signals, image sensor plays a key role in photographic camera equipment. With the rapid development of silicon-based IC manufacturing process and the popularization of mobile terminals, image sensors based on CMOS technology have become the mainstream of current image sensors.
CMOS图像传感器采用硅基光电二极管(Photo-Diode,PD)作为基本的光电转换单元,同时与相应的像素控制读出电路相连接,形成一个完整的像素结构。其中光电二极管模块作为光电转换部分,对光信息的采集质量起到决定作用。目前,商用CMOS中PD目前都采用平面的PN结构,通过在P硅的上层进行N型注入产生薄N+层,借助PN结界面形成的势垒区俘获入射光子并产生光致载流子;随后在PD周围构建层级连接的控制读出电路,最终将信号传导至外部电路。为了有效降低PD表面暗电流带来的暗噪声,部分公司提出将一层薄P+扩散层“埋入”PD的N型掺杂区上层,通过表面修饰以降低光电二极管的表面缺陷与暗电流(US5567632A)。该结构也被称为埋入型光电二极管,是目前高端CMOS图像传感器中PD的主要形式。The CMOS image sensor uses a silicon-based photodiode (Photo-Diode, PD) as the basic photoelectric conversion unit, and is connected with the corresponding pixel control readout circuit to form a complete pixel structure. Among them, the photodiode module, as the photoelectric conversion part, plays a decisive role in the collection quality of optical information. At present, PDs in commercial CMOS currently use a planar PN structure. A thin N+ layer is generated by N-type implantation on the upper layer of P-silicon, and incident photons are captured by the barrier region formed at the PN junction interface to generate photo-induced carriers; then Build hierarchically connected control readout circuits around the PDs that ultimately conduct signals to external circuits. In order to effectively reduce the dark noise caused by the dark current on the PD surface, some companies propose to "bury" a thin P+ diffusion layer in the upper layer of the N-type doped region of the PD, and reduce the surface defects and dark current of the photodiode through surface modification. (US5567632A). This structure, also known as a buried photodiode, is currently the main form of PD in high-end CMOS image sensors.
上述CMOS像素感光结构也被称为前照式结构。由于周围电路中多层导电总线形成几十纳米高的金属“墙”,使光电二极管深陷入“井”形结构,其接受光线空间角小,降低了光线入射效率,造成暗光响应弱、感光能力差,动态范围低等问题。为解决此问题,研究者提出一种背照式CMOS图像传感器结构(US8378440B2、US7425460B2、US7750280B2),将感光层与电路层调换并采用很薄的硅基底,使光线从背面入射,这样可以有效降低前照式CMOS像素的“井”效应影响。但该工艺为确保光线透过,衬底厚度必须极薄(仅为前照式的1/100),因此技术要求极高,且良品率低,仅有索尼等少数科技公司可以实现。The above-mentioned CMOS pixel photosensitive structure is also called a front-illuminated structure. Since the multi-layer conductive bus lines in the surrounding circuit form a metal "wall" with a height of tens of nanometers, the photodiode is deeply trapped in a "well"-shaped structure, and its light receiving space angle is small, which reduces the light incidence efficiency, resulting in weak response to dark light and sensitivity to light. Poor capability, low dynamic range, etc. In order to solve this problem, the researchers proposed a back-illuminated CMOS image sensor structure (US8378440B2, US7425460B2, US7750280B2), which replaces the photosensitive layer and the circuit layer and uses a thin silicon substrate to make the light incident from the back, which can effectively reduce the The "well" effect of front-illuminated CMOS pixels. However, in order to ensure that the light is transmitted through this process, the substrate thickness must be extremely thin (only 1/100 of the front-illuminated type), so the technical requirements are extremely high, and the yield rate is low, which can only be achieved by a few technology companies such as Sony.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明提出了一种硅基CMOS图像传感器三维感光像素结构及其制备方法,该像素结构在保持前照式中PD与金属电路同向的总体布局下,通过构建三维感光PD,从而提高光线入射效率,扩大光线空间角,同时增加光线吸收效率,在不显著增加工艺复杂度的基础上解决了基础前照式结构的典型局限问题。In view of the above problems, the present invention proposes a three-dimensional photosensitive pixel structure of a silicon-based CMOS image sensor and a preparation method thereof. The pixel structure maintains the overall layout of the PD and the metal circuit in the same direction in the front-illuminated type, and by constructing a three-dimensional photosensitive PD, Therefore, the light incident efficiency is improved, the light space angle is enlarged, and the light absorption efficiency is increased simultaneously, and the typical limitation problem of the basic front-illuminated structure is solved without significantly increasing the process complexity.
为实现上述目的,本发明的技术方案是:For achieving the above object, the technical scheme of the present invention is:
一种硅基CMOS图像传感器三维感光像素结构,其组成包括一块P硅衬底、衬底上方的硅纳米柱、衬底表面的掩蔽层、硅纳米柱底部侧壁的圆环状电极和联通衬底的电极。A three-dimensional photosensitive pixel structure of a silicon-based CMOS image sensor is composed of a P silicon substrate, a silicon nano-pillar above the substrate, a masking layer on the surface of the substrate, an annular electrode on the bottom sidewall of the silicon nano-pillar, and a connecting liner. bottom electrode.
所述衬底上方的硅纳米柱,其与硅衬底为一整片P硅制成,纳米柱的上表面及侧表面为N型掺杂层,内部为与衬底同参数的P硅材料。The silicon nano-pillars above the substrate are made of a whole piece of P-silicon with the silicon substrate. The upper and side surfaces of the nano-pillars are N-type doped layers, and the interior is a P-silicon material with the same parameters as the substrate. .
所述硅衬底表面的掩蔽层,为P硅衬底上表面的钝化层,以实现干扰隔绝的作用。其材质中常用为氧化生长的SiO2层,当为SiO2层时其厚度为20~50nm。The masking layer on the surface of the silicon substrate is a passivation layer on the upper surface of the P-silicon substrate, so as to achieve the effect of interference isolation. Its material is usually an oxidatively grown SiO 2 layer, and when it is a SiO 2 layer, its thickness is 20-50 nm.
所述硅纳米柱底部侧壁圆环状电极和联通衬底的电极位于P硅衬底上表面,且P硅衬底上对应位置没有掩蔽层,其材质包括铝、铝铜合金、多晶硅等通用IC电极材料。The annular electrode on the bottom sidewall of the silicon nanopillar and the electrode connecting the substrate are located on the upper surface of the P-silicon substrate, and there is no masking layer at the corresponding position on the P-silicon substrate, and its materials include aluminum, aluminum-copper alloy, polysilicon, etc. IC electrode material.
一种硅基CMOS图像传感器三维感光像素结构的制备方法,包括以下步骤:A preparation method of a three-dimensional photosensitive pixel structure of a silicon-based CMOS image sensor, comprising the following steps:
步骤一:将一块P硅片进行表面进行预处理,去掉表面杂质。Step 1: Preprocess the surface of a P silicon wafer to remove surface impurities.
步骤二:在步骤一已处理的P硅衬底表面,刻蚀硅纳米柱阵列。为获得一致性较高的纳米柱阵列,可以采用自上而下的光刻工艺方法,通过ICP-RIE工艺完成。Step 2: etching the silicon nano-pillar array on the surface of the P-silicon substrate processed in step 1. In order to obtain a nano-pillar array with high consistency, a top-down photolithography process can be used, and the ICP-RIE process can be used.
步骤三:在步骤二所得P硅衬底表面(包括硅纳米柱的表面)上制备一层掩蔽层,用于后续掺杂工艺和金属沉积中的图案化隔绝层;可以通过高温氧化生长一层致密的掩蔽层。Step 3: Prepare a masking layer on the surface of the P silicon substrate obtained in Step 2 (including the surface of the silicon nano-pillars), which is used for the subsequent doping process and the patterned isolation layer in the metal deposition; a layer can be grown by high-temperature oxidation dense masking layer.
步骤四:将P硅衬底上的硅纳米柱表面通过刻蚀工艺去掉附着的掩蔽层,使得硅纳米柱的硅层裸露;该步骤也可通过自上而下ICP-RIE刻蚀工艺完成。Step 4: remove the attached masking layer from the surface of the silicon nanopillars on the P silicon substrate through an etching process, so that the silicon layer of the silicon nanopillars is exposed; this step can also be completed by a top-down ICP-RIE etching process.
步骤五:对P硅衬底表面(包括硅纳米柱的表面)采用实施N型掺杂工艺,使得硅纳米柱外表面形成N型区;该步骤主要通过热扩散工艺完成。Step 5: The N-type doping process is performed on the surface of the P silicon substrate (including the surface of the silicon nano-pillars), so that an N-type region is formed on the outer surface of the silicon nano-pillars; this step is mainly completed by a thermal diffusion process.
步骤六:根据硅纳米柱底部侧壁圆环状电极和联通衬底的电极的位置,在硅纳米柱像素附近位置采用刻蚀工艺,去掉P硅衬底表面对应部分的掩蔽层,使得P硅衬底在该部分裸露出来,以备后续步骤中金属层沉积中联通金属层,构建电极。Step 6: According to the positions of the annular electrode on the bottom sidewall of the silicon nanopillar and the electrode connecting to the substrate, an etching process is used near the pixel of the silicon nanopillar to remove the masking layer corresponding to the surface of the P silicon substrate, so that the P silicon The substrate is exposed in this part, in preparation for connecting the metal layer in the subsequent step of metal layer deposition, and constructing the electrode.
步骤七:可以采用磁控溅射、电镀等沉积方式,在P硅衬底表面均匀沉积一层金属层。Step 7: A deposition method such as magnetron sputtering and electroplating can be used to uniformly deposit a metal layer on the surface of the P silicon substrate.
步骤八:根据硅纳米柱底部侧壁圆环状电极和联通衬底的电极的位置,将硅纳米柱上表面以及P硅衬底表面上多余的金属刻蚀去掉;在硅纳米柱底部侧壁形成圆环状电极,用于对纳米柱N型掺杂区的连接;联通衬底的电极直接连接P硅衬底。Step 8: According to the position of the annular electrode on the bottom sidewall of the silicon nanopillar and the electrode connecting the substrate, etch away the excess metal on the upper surface of the silicon nanopillar and the surface of the P silicon substrate; on the bottom sidewall of the silicon nanopillar A ring-shaped electrode is formed for connecting the N-type doping region of the nano-pillars; the electrode connecting the substrate is directly connected to the P-silicon substrate.
本发明的有益效果:Beneficial effects of the present invention:
(1)本发明相比典型前照式CMOS中的平面PN结感光像素,由于其感光像素的高度优势,可以有效提高光线入射效率,扩大光线空间角,从而有效提高前照式CMOS结构的综合感光性能。(1) Compared with the planar PN junction photosensitive pixel in the typical front-illuminated CMOS, the present invention can effectively improve the light incidence efficiency and expand the light space angle due to the height advantage of the photosensitive pixel, thereby effectively improving the comprehensive structure of the front-illuminated CMOS structure. Photosensitive properties.
(2)其纳米柱结构的感光像素结构,由于陷光效应和共振吸收增强效应,相比等横截面积的平面PN结感光像素,可以有效提高光吸收利用率。(2) The photosensitive pixel structure of the nano-column structure can effectively improve the light absorption utilization rate compared with the planar PN junction photosensitive pixel of the same cross-sectional area due to the light trapping effect and the resonance absorption enhancement effect.
(3)由于硅纳米柱为内外型体PN结结构,因此相比相同横截面积的平面PN结感光像素,其具有更大面积的势垒区,这可以提高其满阱容量;因此同时实际入射光存在垂直以外的其他入射角度,使得其侧壁势垒区也可以响应入射光线,从而有效提高综合弱光响应能力。(3) Since the silicon nanopillar is an inner and outer bulk PN junction structure, it has a larger area of the barrier region than a planar PN junction photosensitive pixel with the same cross-sectional area, which can improve its full well capacity; The incident light has other incident angles other than vertical, so that the sidewall barrier region can also respond to the incident light, thereby effectively improving the comprehensive weak light response capability.
(4)该结构制备方法难度较小,适合整合应用到成熟IC工业产线,从而有效提高硅基CMOS图像传感器的像素感光性能。(4) The preparation method of the structure is less difficult, and is suitable for integration and application to a mature IC industrial production line, thereby effectively improving the pixel photosensitive performance of the silicon-based CMOS image sensor.
附图说明Description of drawings
图1是本发明的结构示意图(主视图刨面),图中,1是P硅衬底,2是N型掺杂区,3是PN势垒区,4是衬底电极,5是N型掺杂层电极,6是掩蔽层。Figure 1 is a schematic structural diagram of the present invention (planed front view), in the figure, 1 is a P silicon substrate, 2 is an N-type doped region, 3 is a PN barrier region, 4 is a substrate electrode, and 5 is an N-type Doping layer electrode, 6 is a masking layer.
图2是本发明的结构示意图(俯视),图中,2是对应纳米柱的顶部N型掺杂区,4是衬底电极,5是N型掺杂层电极,6是掩蔽层。2 is a schematic structural diagram (top view) of the present invention. In the figure, 2 is the top N-type doped region corresponding to the nano-column, 4 is the substrate electrode, 5 is the N-type doped layer electrode, and 6 is the masking layer.
图3是像素的受光示意图。FIG. 3 is a schematic diagram of a pixel receiving light.
图4是本发明的制备流程示意图(以两个像素为例)。FIG. 4 is a schematic diagram of the preparation process of the present invention (taking two pixels as an example).
具体实施方式Detailed ways
以下结合附图和技术方案,进一步说明本发明的具体实施方式。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings and technical solutions.
如附图1所示,一种硅基CMOS图像传感器三维感光像素结构,包括P硅衬底1,硅纳米柱(外部为N型掺杂区2,内部为P型掺杂区)结构,N型区和P型区之间形成环绕状的势垒区3,衬底上沉积掩蔽层6,N型掺杂层电极5包围N型掺杂区底部,衬底电极4连接硅衬底。可以发现由于掩蔽层的作用,N型掺杂层电极5仅连接N型掺杂区,同时衬底电极4仅连接P硅衬底1,衬底电极4和N型掺杂层电极5分别作为连接IC化电路的电极接口。同时可以看到N型掺杂区与P型掺杂区交界的势垒区的分布。As shown in FIG. 1, a three-dimensional photosensitive pixel structure of a silicon-based CMOS image sensor includes a P silicon substrate 1, a silicon nanopillar (an N-type doped
图2为单个感光像素结构的俯视示意图,可以发现围绕纳米柱2的N型掺杂层电极5为圆环状,该结构有助于确保N型掺杂区与电极的紧密连接,抑制接触不良造成坏点的情况。FIG. 2 is a schematic top view of a single photosensitive pixel structure. It can be found that the N-type doped
本发明的硅基CMOS图像传感器三维感光像素结构的工作原理:该像素结构通过两个金属电极与像素级CMOS控制读出电路连接。因该硅基像素为三维柱状结构,当未受到光照时,由于内外层之间的包覆型PN结势垒,使得大量的内部载流子被耗尽,从而呈现为超低载流子浓度状态,因此其阻抗高,暗电流小,从而具有低的暗噪声水平。The working principle of the three-dimensional photosensitive pixel structure of the silicon-based CMOS image sensor of the present invention: the pixel structure is connected with the pixel-level CMOS control readout circuit through two metal electrodes. Because the silicon-based pixel has a three-dimensional columnar structure, when it is not illuminated, a large number of internal carriers are depleted due to the clad PN junction barrier between the inner and outer layers, resulting in an ultra-low carrier concentration. state, so its impedance is high and dark current is low, resulting in low dark noise level.
当入射光线由上而下照射时,该纳米柱将吸收光线,并通过光电效应产生更多载流子。由于该像素结构为纳米柱状:1)根据陷光效应,半导体材料被刻蚀为纳米结构之后,其对入射光线的反射率下降;2)根据共振吸收增强效应,半导体三维纳米柱与光场之间相互作用会产生漏模共振现象,这会增加其对光线的吸收水平;3)由于实际入射光线存在斜向入射等角度,如附图3,因此其侧壁也可以吸收一定量的入射光线。因此,相比相同横截面积的平面PN结型光电二极管,该结构对光线具有更高的光线吸收水平,从而进一步提高光线利用率,对微弱光线的响应能力有效增强。此外,相比平面PN结势垒,由于其为PN结势垒,因此在想通过横截面积下,其势垒面积大于平面结构,这也使得其满阱容量有所增加,从而在强光拍摄中饱和极限有所上升。When incident light shines from top to bottom, the nanopillars absorb the light and generate more carriers through the photoelectric effect. Because the pixel structure is nano-column: 1) according to the light trapping effect, after the semiconductor material is etched into a nano-structure, its reflectivity to incident light decreases; 2) according to the resonance absorption enhancement effect, the relationship between the three-dimensional semiconductor nano-column and the optical field The interaction between the two will produce leakage mode resonance phenomenon, which will increase its absorption level of light; 3) Since the actual incident light has an oblique incident angle, as shown in Figure 3, its sidewall can also absorb a certain amount of incident light . Therefore, compared with the planar PN junction photodiode with the same cross-sectional area, the structure has a higher light absorption level for light, thereby further improving the light utilization rate and effectively enhancing the responsiveness to weak light. In addition, compared with the planar PN junction barrier, because it is a PN junction barrier, the area of the potential barrier is larger than that of the planar structure when the cross-sectional area is to pass, which also increases its full well capacity, so that in strong light The saturation limit has risen in shooting.
此外,其高度特性使得周围金属电路对其光线阻挡作用显著下降,提高了提高光线入射效率,扩大光线空间角。In addition, its height characteristic makes the surrounding metal circuit significantly reduce the light blocking effect on it, which improves the light incident efficiency and expands the light space angle.
实施例:Example:
本发明的一种硅基CMOS图像传感器三维感光像素结构的制备方法,如图4,具体如下,:A preparation method of a three-dimensional photosensitive pixel structure of a silicon-based CMOS image sensor according to the present invention is shown in FIG. 4, and the details are as follows:
步骤a,将一块标准P硅片(底面直径可以为4、6、8、12寸等,厚度一般为200μm及以上)进行有机清洗并超声,以去除硅片表面黏附的有机杂质等:具体操作为依次以丙酮、乙醇、去离子水为清洁剂,对所述硅片分别超声5-10分钟。In step a, a standard P silicon wafer (the diameter of the bottom surface can be 4, 6, 8, 12 inches, etc., and the thickness is generally 200 μm and above) is organically cleaned and ultrasonicated to remove the organic impurities adhered to the surface of the silicon wafer. Specific operations In order to sequentially use acetone, ethanol, and deionized water as cleaning agents, the silicon wafers were sonicated for 5-10 minutes respectively.
步骤b,在P硅片的表面,刻蚀固定尺寸的硅纳米柱阵列。为获得一致性较高的纳米柱阵列,先通过标准光刻工艺,在硅片表面光刻出一定尺度的圆柱形孔洞(直径根据纳米柱的直径需要进行设定),后利用热蒸镀设备,在其表面形成Al圆形掩膜,后通过ICP-RIE工艺完成纳米柱刻蚀。刻蚀中采用混合气体(六氟化硫+高纯氧+三氟甲烷)对硅材料进行刻蚀,刻蚀反应的过程如下:添加的六氟化硫和三氟甲烷气体将产生CFX和SFX,在表面电场的作用下轰击硅材料表面,对硅材料进行物理刻蚀,与此同时,游离的氟原子与硅原子结合形成挥发性的SiF4,实现对硅材料的化学刻蚀,利用物理刻蚀与化学刻蚀结合的方法提升刻蚀速率;而在硅的侧壁形成钝化层SiOxFy以起到对侧壁的保护作用。In step b, on the surface of the P silicon wafer, a silicon nano-pillar array of a fixed size is etched. In order to obtain a nanopillar array with high consistency, a standard photolithography process is used to lithography cylindrical holes of a certain size on the surface of the silicon wafer (the diameter is set according to the diameter of the nanopillars), and then thermal evaporation equipment is used. , an Al circular mask is formed on its surface, and the nano-pillar etching is completed by ICP-RIE process. In the etching, mixed gas (sulfur hexafluoride + high-purity oxygen + trifluoromethane) is used to etch the silicon material. The process of the etching reaction is as follows: the added sulfur hexafluoride and trifluoromethane gas will generate CFX and SFX , under the action of the surface electric field, the surface of the silicon material is bombarded, and the silicon material is physically etched. At the same time, the free fluorine atoms combine with the silicon atoms to form volatile SiF4, which realizes the chemical etching of the silicon material. The combination of etching and chemical etching improves the etching rate; and a passivation layer SiOxFy is formed on the sidewall of the silicon to protect the sidewall.
步骤b,在硅片表面通过高温热氧化(温度900~1200℃)生长一层致密的SiO2氧化层,生长厚度约为20~50nm,用于后续掺杂工艺和金属沉积中的图案化隔绝层。In step b, a dense SiO 2 oxide layer is grown on the surface of the silicon wafer by high temperature thermal oxidation (temperature 900-1200° C.), with a growth thickness of about 20-50 nm, which is used for patterning isolation in the subsequent doping process and metal deposition Floor.
步骤d,该步骤中,通过ICP-RIE刻蚀工艺,将硅纳米柱上表面以及侧面沉积的上一步骤中的SiO2掩蔽层刻蚀以露出其内部的P硅材料。该步骤中交替采用六氟化硫和二氟甲烷进行刻蚀以提高刻蚀效率,同时通入高纯氧,刻蚀过程中调节气体配比、流量、刻蚀功率等,确保硅纳米柱形貌保持为圆柱形。Step d, in this step, through the ICP-RIE etching process, the SiO 2 masking layer deposited in the previous step on the upper surface and the side surfaces of the silicon nanopillars is etched to expose the P-silicon material inside. In this step, sulfur hexafluoride and difluoromethane are alternately used for etching to improve the etching efficiency, and high-purity oxygen is introduced at the same time. The shape remains cylindrical.
步骤e,对硅片上表面采用实施N型掺杂工艺,使得硅纳米柱外表面形成N型区。该步骤主要通过热扩散工艺完成,扩散源为磷源,扩散温度约为1000℃,首先通过淀积工艺将掺杂剂引入晶圆表面,随后通过推进工艺将掺杂剂推进到期望的表面深度,pn结深度100nm左右。In step e, an N-type doping process is performed on the upper surface of the silicon wafer, so that an N-type region is formed on the outer surface of the silicon nanopillar. This step is mainly completed by a thermal diffusion process, the diffusion source is a phosphorus source, and the diffusion temperature is about 1000 ° C. First, the dopant is introduced into the wafer surface through a deposition process, and then the dopant is advanced to the desired surface depth through a push process. , the pn junction depth is about 100nm.
步骤f,对硅片中纳米柱像素附近衬底表面的部分进行刻蚀,去掉对应部分的氧化层以暴露出P硅,以备后续金属电极的连接。该部分工艺中暴露的部分的规格由IC制程所需接触孔的尺径而定,刻蚀中采用混合气体(六氟化硫、二氟甲烷、纯氧)进行ICP-RIE刻蚀。In step f, the part of the substrate surface near the nano-pillar pixel in the silicon wafer is etched, and the corresponding part of the oxide layer is removed to expose the P-silicon for subsequent connection of metal electrodes. The specification of the exposed part in this part of the process is determined by the size of the contact hole required in the IC process. Mixed gas (sulfur hexafluoride, difluoromethane, pure oxygen) is used for ICP-RIE etching in the etching.
步骤g,硅的上层金属层沉积,该步骤可以采用磁控溅射、蒸发镀膜等沉积方式,对硅片表面均匀沉积一层金属层,以备后续步骤中电极的构建。本实例中采用磁控溅射的方式对硅片的表面沉积一层金属,溅射靶材为铜源,溅射厚度为100nm。溅射过程中采用准直溅射,同时在硅片表面施加偏压,吸引金属离子直接进入纳米柱周围的平面,提供更均匀的覆盖。In step g, the upper metal layer of silicon is deposited. In this step, a deposition method such as magnetron sputtering and evaporation coating can be used to uniformly deposit a metal layer on the surface of the silicon wafer to prepare for the construction of electrodes in subsequent steps. In this example, a layer of metal is deposited on the surface of the silicon wafer by means of magnetron sputtering, the sputtering target is a copper source, and the sputtering thickness is 100 nm. Collimated sputtering is used in the sputtering process, and a bias voltage is applied to the surface of the silicon wafer to attract metal ions directly into the plane around the nanopillars, providing more uniform coverage.
步骤h,通过ICP-RIE图案化刻蚀,采用混合气体(六氟化硫、二氟甲烷、纯氧),将上一步骤中硅纳米柱的上表面的金属层去掉,留下环状的铜电极以连接纳米柱侧壁,并留下经氧化层接触P硅衬底的电极以有效连接P硅衬底。Step h, through ICP-RIE patterned etching, using mixed gas (sulfur hexafluoride, difluoromethane, pure oxygen), remove the metal layer on the upper surface of the silicon nanopillar in the previous step, leaving a ring-shaped The copper electrodes are used to connect the nanopillar sidewalls and leave the electrodes contacting the P-silicon substrate through the oxide layer to effectively connect the P-silicon substrate.
该结构应用到图像传感器领域,将有效增强光电转换结构的光线感知能力,提高弱光探测水平,同时其满阱容量大,因而具有较大的动态范围,在强光比拍摄中具有一定优势。当该结构应用在前照式CMOS图像传感器中,该结构可使得前照式结构在技术工艺难度增加有限的基础上,有效提高光线传感性能,扩大光线空间角,提升产品竞争优势。The application of this structure to the field of image sensors will effectively enhance the light perception capability of the photoelectric conversion structure and improve the detection level of weak light. When the structure is applied in a front-illuminated CMOS image sensor, the structure can effectively improve the light sensing performance, expand the light space angle, and enhance the product competitive advantage on the basis of the limited increase in technical difficulty of the front-illuminated structure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210387755.6A CN114927581B (en) | 2022-04-14 | 2022-04-14 | Three-dimensional photosensitive pixel structure of silicon-based CMOS image sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210387755.6A CN114927581B (en) | 2022-04-14 | 2022-04-14 | Three-dimensional photosensitive pixel structure of silicon-based CMOS image sensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114927581A true CN114927581A (en) | 2022-08-19 |
CN114927581B CN114927581B (en) | 2024-02-23 |
Family
ID=82806716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210387755.6A Active CN114927581B (en) | 2022-04-14 | 2022-04-14 | Three-dimensional photosensitive pixel structure of silicon-based CMOS image sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114927581B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012840A1 (en) * | 2002-08-27 | 2005-01-20 | Tzu-Chiang Hsieh | Camera with MOS or CMOS sensor array |
US20060068586A1 (en) * | 2004-09-17 | 2006-03-30 | Bedabrata Pain | Method for implementation of back-illuminated CMOS or CCD imagers |
US20080131588A1 (en) * | 2006-12-04 | 2008-06-05 | Samsung Electronics Co., Ltd. | Back-illuminated image sensor and method of fabricating the same |
CN101714591A (en) * | 2009-11-10 | 2010-05-26 | 大连理工大学 | Method for manufacturing silicon photoelectric diode |
US20100176474A1 (en) * | 2009-01-14 | 2010-07-15 | Samsung Electronics Co., Ltd. | Back-lit image sensor and method of manufacture |
CN112397532A (en) * | 2019-08-15 | 2021-02-23 | 天津大学青岛海洋技术研究院 | High quantum efficiency image sensor pixel structure and manufacturing method thereof |
-
2022
- 2022-04-14 CN CN202210387755.6A patent/CN114927581B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012840A1 (en) * | 2002-08-27 | 2005-01-20 | Tzu-Chiang Hsieh | Camera with MOS or CMOS sensor array |
US20060068586A1 (en) * | 2004-09-17 | 2006-03-30 | Bedabrata Pain | Method for implementation of back-illuminated CMOS or CCD imagers |
US20080131588A1 (en) * | 2006-12-04 | 2008-06-05 | Samsung Electronics Co., Ltd. | Back-illuminated image sensor and method of fabricating the same |
US20100176474A1 (en) * | 2009-01-14 | 2010-07-15 | Samsung Electronics Co., Ltd. | Back-lit image sensor and method of manufacture |
CN101714591A (en) * | 2009-11-10 | 2010-05-26 | 大连理工大学 | Method for manufacturing silicon photoelectric diode |
CN112397532A (en) * | 2019-08-15 | 2021-02-23 | 天津大学青岛海洋技术研究院 | High quantum efficiency image sensor pixel structure and manufacturing method thereof |
Non-Patent Citations (2)
Title |
---|
DEVICERONALDO MARTINS DA PONTE等: "Monolithic integration of a smart temperature sensor on a modularsilicon-based organ-on-a-chip device", SENSORS AND ACTUATORS A, vol. 317, pages 1 - 7 * |
周胜利: "CCD 与COMS 传感器对比研究及发展趋势", 大众科技, no. 5, pages 92 - 93 * |
Also Published As
Publication number | Publication date |
---|---|
CN114927581B (en) | 2024-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI683430B (en) | Image sensor with an absorption enhancement semiconductor layer | |
JP4384416B2 (en) | Image sensor with performance enhancement structure | |
CN113053929B (en) | Semiconductor structure, image sensor, and method for forming semiconductor structure | |
US11810994B2 (en) | Infrared-transmitting high-sensitivity visible light detector and preparation method thereof | |
CN109192742A (en) | Back side illumination image sensor and forming method thereof | |
CN108417590A (en) | NMOS gate body interconnection photodetector and preparation method thereof | |
CN106129074B (en) | Backside illuminated CMOS image sensor | |
CN112992946A (en) | Image sensing element, optical structure and forming method thereof | |
CN110085609A (en) | Image sensor pixel structure and preparation method thereof with low-light mode | |
CN113270435B (en) | Silicon-based graphene photodetector array and CMOS three-dimensional integration method | |
CN112397532A (en) | High quantum efficiency image sensor pixel structure and manufacturing method thereof | |
CN109037256A (en) | Back side illumination image sensor and forming method thereof | |
CN108054180A (en) | A kind of charge coupling device based on graphene/insulating layer/semiconductor structure | |
GB2261323A (en) | Infrared imaging device | |
CN106298817A (en) | Based on standard CMOS process variable-gain photo-detector and preparation method | |
CN114927581B (en) | Three-dimensional photosensitive pixel structure of silicon-based CMOS image sensor and preparation method thereof | |
CN110137198B (en) | Color polarization CMOS image sensor and manufacturing method thereof | |
CN110098203B (en) | Back-illuminated image sensor and its preparation | |
CN110491891A (en) | Dot structure of cmos image sensor and forming method thereof | |
CN115084304B (en) | Semiconductor structure and method for forming the same | |
CN111129054B (en) | A kind of CMOS image sensor structure and manufacturing method | |
CN108281453A (en) | A kind of flexibility charge coupling device and preparation method thereof | |
CN104576660A (en) | Backside illuminated CMOS sensor and preparation method thereof | |
CN116137273A (en) | Wafer structure and process method for forming back-illuminated image sensor | |
TW202201711A (en) | Semiconductor structure and image sensor and methods of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |