[go: up one dir, main page]

CN114920810A - Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn - Google Patents

Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn Download PDF

Info

Publication number
CN114920810A
CN114920810A CN202110136217.5A CN202110136217A CN114920810A CN 114920810 A CN114920810 A CN 114920810A CN 202110136217 A CN202110136217 A CN 202110136217A CN 114920810 A CN114920810 A CN 114920810A
Authority
CN
China
Prior art keywords
plant
nitrate
sequence
absorption
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110136217.5A
Other languages
Chinese (zh)
Other versions
CN114920810B (en
Inventor
袁力行
刘智
曹怀荣
王章奎
陈范骏
刘相国
郝东云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202110136217.5A priority Critical patent/CN114920810B/en
Publication of CN114920810A publication Critical patent/CN114920810A/en
Application granted granted Critical
Publication of CN114920810B publication Critical patent/CN114920810B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses application of nitrate absorption related protein or substances for regulating the content or activity of the nitrate absorption related protein in regulating and controlling nitrate absorption of plants or in preparing products for regulating and controlling nitrate absorption of plants. Transgenic experiments for introducing genes for coding nitrate absorption related proteins into corn prove that the overexpression related genes remarkably promote the absorption and utilization of the nitrogen in the corn under the low-nitrogen environment, show that the overexpression related genes are related to the absorption and utilization of the nitrogen, can be used for promoting plants to absorb and utilize the nitrogen, and improve the yield of the plants.

Description

硝酸盐吸收相关蛋白在调控玉米对硝酸盐吸收中的应用Application of nitrate uptake-related proteins in the regulation of nitrate uptake in maize

技术领域technical field

本发明涉及生物技术领域中硝酸盐吸收相关蛋白在调控玉米对硝酸盐吸收中的应用。The invention relates to the application of a nitrate absorption-related protein in the field of biotechnology in regulating the nitrate absorption of corn.

背景技术Background technique

氮素是植物生长发育过程中必不可少且需求量最大的矿质元素之一,约占植物干重的1%-5%(Li et al.,2009)。在所有必需的营养元素中,氮是限制植物生长和产量形成的首要因素。氮在植物细胞、组织、器官及产量建成过程中起着中心作用,因此被称为生命元素。植物吸收的氮素在体内通过同化代谢,产生多种形态的含氮化合物,如氨基酸、蛋白质、核酸、激素等,参与到光合作用、呼吸作用等重要生理过程中(Williams et al.,2001)。Nitrogen is one of the essential and most demanded mineral elements in plant growth and development, accounting for about 1%-5% of plant dry weight (Li et al., 2009). Of all the essential nutrients, nitrogen is the primary factor limiting plant growth and yield formation. Nitrogen plays a central role in the building up of plant cells, tissues, organs and yields, so it is called the element of life. Nitrogen absorbed by plants is metabolized by assimilation in the body to produce various forms of nitrogen-containing compounds, such as amino acids, proteins, nucleic acids, hormones, etc., which are involved in important physiological processes such as photosynthesis and respiration (Williams et al., 2001) .

玉米是世界主要农作物之一,在很多国家被广泛种植。作为关键农作物之一,玉米长期以来都是人类生存的基本食物来源和主要的动物饲料原料;此外众多生活用品的加工也少不了玉米做原料;近年来,利用玉米制取乙醇燃料,更是成为新能源开发的一大趋势。这些迫切需要提高玉米种植面积和单位产量;而玉米产量的提高需要氮肥的大量投入,因此提高玉米的氮效率十分必要。玉米是旱地作物,以吸收利用土壤硝态氮为主。植物从土壤中吸收硝酸盐是其同化利用硝态氮的第一步,对该过程的研究是提高作物氮素吸收利用能力的关键,这将有助于找到氮肥高效利用的限制因子(Garnett et al.,2013;Plett etal.,2010)。研究玉米吸收利用硝酸盐的过程和规律可以为通过分子手段培育氮高效的玉米新品种提供理论依据和基因资源。Corn is one of the major crops in the world and is widely grown in many countries. As one of the key crops, corn has long been the basic food source for human survival and the main raw material for animal feed; in addition, corn is indispensable for the processing of many daily necessities; in recent years, the use of corn to produce ethanol fuel has become a new trend. A major trend in energy development. These urgently need to increase corn planting area and unit yield; and the increase of corn yield requires a large amount of nitrogen fertilizer input, so it is necessary to improve the nitrogen efficiency of corn. Maize is a dryland crop that mainly absorbs and utilizes soil nitrate nitrogen. The absorption of nitrate from the soil by plants is the first step in their assimilation and utilization of nitrate nitrogen, and the research on this process is the key to improving the nitrogen absorption and utilization capacity of crops, which will help to find the limiting factor of efficient nitrogen utilization (Garnett et al. al., 2013; Plett et al., 2010). Studying the process and law of nitrate absorption and utilization in maize can provide theoretical basis and genetic resources for cultivating new maize varieties with high nitrogen efficiency by molecular means.

硝态氮既作为营养元素,又作为信号对植物的代谢和生长有重要的影响。土壤中NO3 -浓度水平变化大,差异程度可达100倍(Lark et al.,2004)。植物根系需要不同的硝酸盐吸收系统来应对土壤NO3 -浓度水平的变化来高效吸收氮素。在模式植物拟南芥中,AtNRT1.1基因编码了一个双亲和性的硝酸盐转运蛋白,它能通过感知环境中硝酸盐的浓度水平而进行高亲和性和低亲和硝转运活性的转换。蛋白硝亲和性的改变是通过氨基酸序列上的第101位苏氨酸(thereonine,Thr)的磷酸化进行调控的(Martin et al.,2008)。当外界硝酸盐浓度低时,Thr101磷酸化,促使AtNRT1.1具有高亲和硝酸盐转运的活性;当外界硝酸盐浓度高时,Thr101去磷酸化,使AtNRT1.1具有低亲和硝酸盐转运的活性。Nitrate has important effects on plant metabolism and growth as both a nutrient element and a signal. The NO 3 -concentration levels in soil varied greatly, and the difference was up to 100-fold (Lark et al., 2004). Plant roots require different nitrate uptake systems for efficient nitrogen uptake in response to changes in soil NO 3 -concentration levels. In the model plant Arabidopsis thaliana, the AtNRT1.1 gene encodes a dual-affinity nitrate transporter, which can switch between high-affinity and low-affinity nitrate transport activities by sensing the concentration level of nitrate in the environment . Changes in protein nitroaffinity are regulated by phosphorylation of the 101st threonine (Thr) in the amino acid sequence (Martin et al., 2008). When the external nitrate concentration is low, Thr101 is phosphorylated, which promotes AtNRT1.1 to have high-affinity nitrate transport activity; when the external nitrate concentration is high, Thr101 is dephosphorylated, enabling AtNRT1.1 to have low-affinity nitrate transport. activity.

中科院遗传所储成才课题组发现OsNRT1.1B能改良粳稻氮肥利用效率(Hu etal.,2015)。通过图位克隆策略从籼稻中克隆到高氮利用效率基因OsNRT1.1B,OsNRT1.1B在籼粳稻间只存在一个氨基酸的差别(T327M),导致籼稻比粳稻具有更高的硝酸盐吸收及转运活性。将籼稻型OsNRT1.1B导入粳稻品种中,田间试验的结果表明,含有籼稻型OsNRT1.1B的粳稻品种在一半施肥条件下,与对照相比增产30-33%,氮肥利用效率提高30%;在正常施氮条件下,增产7-13%,氮肥利用效率提高约10%。The research group of Chu Chengcai, Institute of Genetics, Chinese Academy of Sciences found that OsNRT1.1B can improve the nitrogen use efficiency of japonica rice (Hu et al., 2015). The high nitrogen use efficiency gene OsNRT1.1B was cloned from indica rice by map-based cloning strategy. OsNRT1.1B has only one amino acid difference (T327M) between indica and japonica rice, resulting in higher nitrate uptake and transport activity in indica rice than in japonica. . The indica rice type OsNRT1.1B was introduced into the japonica rice varieties. The results of the field test showed that the japonica rice varieties containing the indica rice type OsNRT1.1B increased the yield by 30-33% and the nitrogen use efficiency by 30% compared with the control under half fertilization conditions; Under normal nitrogen application conditions, the yield is increased by 7-13%, and the nitrogen utilization efficiency is increased by about 10%.

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是如何提高植物在低氮环境下氮的吸收利用。The technical problem to be solved by the present invention is how to improve the absorption and utilization of nitrogen by plants in a low nitrogen environment.

为了解决以上技术问题,本发明提供了硝酸盐吸收相关蛋白或调控所述硝酸盐吸收相关蛋白含量或活性的物质在调控植物对硝酸盐吸收或在制备调控植物对硝酸盐吸收产品中的应用,所述基因编码硝酸盐吸收相关蛋白,所述硝酸盐吸收相关蛋白是如下A1、A2或A3的蛋白质:In order to solve the above technical problems, the present invention provides an application of a nitrate absorption-related protein or a substance that regulates the content or activity of the nitrate absorption-related protein in regulating the absorption of nitrate by a plant or in the preparation of a product for regulating the absorption of nitrate by a plant, The gene encodes a nitrate uptake-related protein, and the nitrate uptake-related protein is a protein of the following A1, A2 or A3:

A1、氨基酸序列是序列表中序列3或序列4中任一种所示的氨基酸序列的蛋白质;A1. The amino acid sequence is a protein of the amino acid sequence shown in either Sequence 3 or Sequence 4 in the sequence listing;

A2、将序列表中序列3或序列4中任一种所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有80%以上的同一性且与植物白粉病抗性和/或纹枯病抗性相关的蛋白质;A2. The amino acid sequence shown in either Sequence 3 or Sequence 4 in the Sequence Listing is 80% identical to the protein shown in A1) obtained by substitution and/or deletion and/or addition of one or more amino acid residues A protein that is identical to the above and is associated with plant powdery mildew resistance and/or sheath blight resistance;

A3、在A1)或A2)的N末端或/和C末端连接蛋白标签得到的融合蛋白质。A3. A fusion protein obtained by linking a protein tag to the N-terminus or/and C-terminus of A1) or A2).

上述应用中,序列表中的序列3由608个氨基酸残基组成,序列表中的序列4由595个氨基酸残基组成。In the above application, Sequence 3 in the Sequence Listing consists of 608 amino acid residues, and Sequence 4 in the Sequence Listing consists of 595 amino acid residues.

上述应用中,同一性是指氨基酸序列的同一性。可使用国际互联网上的同源性检索站点测定氨基酸序列的同一性,如NCBI主页网站的BLAST网页。例如,可在高级BLAST2.1中,通过使用blastp作为程序,将Expect值设置为10,将所有Filter设置为OFF,使用BLOSUM62作为Matrix,将Gap existence cost,Per residue gap cost和Lambda ratio分别设置为11,1和0.85(缺省值)并进行检索一对氨基酸序列的同一性进行计算,然后即可获得同一性的值(%)。In the above applications, identity refers to the identity of amino acid sequences. Amino acid sequence identity can be determined using homology search sites on the Internet, such as the BLAST page of the NCBI homepage website. For example, in advanced BLAST2.1, by using blastp as the program, set the Expect value to 10, set all Filters to OFF, use BLOSUM62 as the Matrix, and set the Gap existence cost, Per residue gap cost and Lambda ratio to be respectively 11, 1 and 0.85 (default value) and search for the identity of a pair of amino acid sequences to calculate the identity value (%).

上述应用中,所述80%以上的同一性可为至少81%、85%、90%、91%、92%、95%、96%、98%、99%或100%的同一性。In the above applications, the identity of more than 80% may be at least 81%, 85%, 90%, 91%, 92%, 95%, 96%, 98%, 99% or 100% identical.

上述应用中,所述硝酸盐吸收相关蛋白可来源于玉米。In the above application, the nitrate absorption-related protein can be derived from corn.

上述应用中,所述植物为单子叶植物或双子叶植物;进一步的,所述单子叶植物为禾本科植物,所述双子叶植物为十字花科植物;更进一步,所述禾本科植物为玉米,所述十字花科植物为拟南芥。In the above application, the plant is a monocotyledonous plant or a dicotyledonous plant; further, the monocotyledonous plant is a gramineous plant, and the dicotyledonous plant is a cruciferous plant; further, the gramineous plant is corn , the cruciferous plant is Arabidopsis thaliana.

本发明的第二个目的是调控基因表达的物质在调控植物对硝酸盐吸收中的应用或在制备调控植物对硝酸盐吸收产品中的应用,所述基因编码所述硝酸盐吸收相关蛋白。The second object of the present invention is the application of a substance for regulating gene expression in regulating the absorption of nitrate by a plant or in the preparation of a product for regulating the absorption of nitrate by a plant, the gene encoding the nitrate absorption-related protein.

上述应用中,所述调控基因表达的物质可为进行如下6种调控中至少一种调控的物质:B1)在所述基因转录水平上进行的调控;B2)在所述基因转录后进行的调控(也就是对所述基因的初级转录物的剪接或加工进行的调控);B3)对所述基因的RNA转运进行的调控(也就是对所述基因的mRNA由细胞核向细胞质转运进行的调控);B4)对所述基因的翻译进行的调控;B5)对所述基因的mRNA降解进行的调控;B6)对所述基因的翻译后的调控(也就是对所述基因翻译的蛋白质的活性进行调控)。In the above application, the material for regulating gene expression may be a material for at least one of the following 6 kinds of regulation: B1) regulation at the level of gene transcription; B2) regulation after the gene is transcribed (ie regulation of splicing or processing of the primary transcript of the gene); B3) regulation of RNA transport of the gene (ie regulation of the mRNA transport of the gene from the nucleus to the cytoplasm) B4) regulation of the translation of the gene; B5) regulation of the mRNA degradation of the gene; B6) post-translation regulation of the gene (that is, the activity of the protein translated by the gene is carried out control).

上述应用中,所述调控基因表达的物质为与所述的硝酸盐吸收相关蛋白相关的生物材料;所述生物材料为下述C1-C3中的任一种:In the above application, the material for regulating gene expression is a biological material related to the nitrate absorption-related protein; the biological material is any one of the following C1-C3:

C1、编码所述硝酸盐吸收相关蛋白的核酸分子;C1, a nucleic acid molecule encoding the nitrate absorption-related protein;

C2、提高所述硝酸盐吸收相关蛋白表达的核酸分子;C2. Nucleic acid molecules that improve the expression of the nitrate absorption-related protein;

C3、含有C1或C2所述的核酸分子的表达盒、重组载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。C3. An expression cassette, recombinant vector, recombinant microorganism, transgenic plant cell line, transgenic plant tissue or transgenic plant organ comprising the nucleic acid molecule described in C1 or C2.

上述应用中,C1或C2所述的核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。In the above application, the nucleic acid molecule described in C1 or C2 can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA.

上述应用中,C1所述核酸分子具体可为如下D1或D2所示的基因:In the above application, the nucleic acid molecule described in C1 may specifically be the gene shown in D1 or D2 as follows:

D1、编码链的编码序列(ORF)是序列表序列1或序列表序列2所示的DNA分子;D1. The coding sequence (ORF) of the coding strand is the DNA molecule shown in Sequence Listing Sequence 1 or Sequence Listing Sequence 2;

D2、核苷酸序列是序列表序列1或序列表序列2所示的DNA分子。D2. The nucleotide sequence is the DNA molecule shown in Sequence Listing Sequence 1 or Sequence Listing Sequence 2.

上述应用中,所述调控基因表达可为提高所述基因表达。In the above application, the regulation of gene expression may be to increase the gene expression.

为了解决上述技术问题,本发明提供了促进植物对硝酸盐吸收的植物试剂,含有上述硝酸盐吸收相关蛋白、或上述调控基因表达的物质,所述植物试剂是促进植物对氮的吸收利用的植物试剂。In order to solve the above-mentioned technical problems, the present invention provides a plant reagent for promoting the absorption of nitrate by plants, containing the above-mentioned nitrate absorption-related protein or the above-mentioned substance for regulating gene expression, and the plant reagent is a plant that promotes the absorption and utilization of nitrogen by plants. reagents.

上述试剂的活性成分还可含有其他生物成分或/和非生物成分,上述药剂的其他活性成分本领域技术人员可根据植物的硝酸盐吸收效果确定。The active components of the above reagents may also contain other biological components or/and non-biological components, which can be determined by those skilled in the art according to the nitrate absorption effect of plants.

为了解决上述技术问题,本发明还提供一种促进植物对硝酸盐吸收的方法,包括如下步骤:提高受体植物中所述硝酸盐吸收相关蛋白的表达、提高所述硝酸盐吸收相关蛋白的丰度,得到在低氮环境下硝酸盐吸收率高于所述受体植物的目的植物。In order to solve the above-mentioned technical problems, the present invention also provides a method for promoting the absorption of nitrate by plants, comprising the steps of: increasing the expression of the nitrate absorption-related protein in the recipient plant, and increasing the abundance of the nitrate absorption-related protein in the recipient plant. degree to obtain a target plant with a higher nitrate absorption rate than the recipient plant in a low nitrogen environment.

上述方法中,具体包括将编码上述蛋白质的核酸导入受体植物中,得到硝酸盐吸收率高于所述受体植物的目的植物。In the above-mentioned method, the nucleic acid encoding the above-mentioned protein is introduced into the recipient plant to obtain the target plant whose nitrate absorption rate is higher than that of the recipient plant.

上述方法中,硝酸盐吸收可为低氮环境下的硝酸盐吸收。所述低氮环境中的硝酸盐浓度为0-0.2mM/L。In the above method, the nitrate absorption may be nitrate absorption in a low nitrogen environment. The nitrate concentration in the low nitrogen environment is 0-0.2 mM/L.

上述方法中,所述植物为单子叶植物或双子叶植物;进一步的,所述单子叶植物为禾本科植物,所述双子叶植物为十字花科植物;更进一步,所述禾本科植物为玉米,所述十字花科植物为拟南芥。In the above method, the plant is a monocotyledonous plant or a dicotyledonous plant; further, the monocotyledonous plant is a gramineous plant, and the dicotyledonous plant is a cruciferous plant; further, the gramineous plant is corn , the cruciferous plant is Arabidopsis thaliana.

本发明提供调控基因表达的物质在提升植物对硝酸盐吸收中的应用或在制备提升玉米对硝酸盐吸收产品中的应用,所述基因编码硝酸盐吸收相关蛋白,为ZmNRT1.1A基因和ZmNRT1.1B基因。将ZmNRT1.1A基因和ZmNRT1.1B基因分别导入拟南芥及玉米的转基因实验均证明,过表达ZmNRT1.1A基因或ZmNRT1.1B基因的转基因植物与受体植物相比,显著促进了低氮环境下玉米对硝态氮的吸收利用,说明ZmNRT1.1A基因和ZmNRT1.1B基因是与氮的吸收利用相关的基因,ZmNRT1.1A基因和ZmNRT1.1B基因可用于促进植物对氮的吸收利用,提高植物产量。The present invention provides the application of a substance regulating gene expression in improving the absorption of nitrate by plants or in the preparation of a product for improving the absorption of nitrate by maize. 1B gene. Transgenic experiments in which ZmNRT1.1A and ZmNRT1.1B genes were introduced into Arabidopsis thaliana and maize, respectively, showed that transgenic plants overexpressing ZmNRT1.1A or ZmNRT1.1B genes significantly promoted the low nitrogen environment compared with recipient plants. The absorption and utilization of nitrate nitrogen by maize indicates that ZmNRT1.1A gene and ZmNRT1.1B gene are genes related to nitrogen absorption and utilization. ZmNRT1.1A gene and ZmNRT1.1B gene can be used to promote the absorption and utilization of nitrogen by plants and improve Plant yield.

附图说明Description of drawings

图1为实施例1中ZmNRT1.1A/B与其它禾本科来源的同源基因的共线性图谱分析及进化树分析图。其中,图1的A为共线性图谱分析,图1的B为进化树分析图。FIG. 1 is the colinear map analysis and phylogenetic tree analysis diagram of ZmNRT1.1A/B and other homologous genes of Gramineae origin in Example 1. FIG. Among them, A in FIG. 1 is a collinear map analysis, and B in FIG. 1 is an analysis diagram of a phylogenetic tree.

图2为实施例1中ZmNRT1.1A/B基因在玉米B73缺氮后恢复供硝酸盐不同时长的表达特性以及在不同硝酸盐浓度下长期培养的表达水平分析。其中,图2的A为ZmNRT1.1A/B基因在玉米B73缺氮后恢复供硝酸盐不同时长的表达特性;图2的B为在不同硝酸盐浓度下长期培养的玉米B73中ZmNRT1.1A/B基因的表达水平分析图;利用荧光实时定量PCR(qPCR)分析ZmNRT1.1A/B基因在玉米B73中的转录水平表达情况。Figure 2 shows the expression characteristics of ZmNRT1.1A/B gene in Example 1 after nitrogen deficiency in maize B73 was restored to nitrate for different periods of time and the expression level analysis of long-term culture under different nitrate concentrations. Among them, A in Figure 2 is the expression characteristics of ZmNRT1.1A/B gene after nitrogen deficiency in maize B73 to restore nitrate supply for different periods of time; B in Figure 2 is ZmNRT1.1A/B in maize B73 cultured for a long time under different nitrate concentrations Analysis of the expression level of B gene; using real-time quantitative PCR (qPCR) to analyze the transcriptional level expression of ZmNRT1.1A/B gene in maize B73.

图3为实施例2中扩增获得完整的玉米ZmNRT1.1A/B的开放阅读框的扩增结果。图中,右侧泳道M是DNA分子量标准,左侧泳道依次为是ZmNRT1.1A、ZmNRT1.1B开放阅读框序列的扩增结果。Figure 3 is the amplification result of the open reading frame of the complete maize ZmNRT1.1A/B obtained by amplification in Example 2. In the figure, the right lane M is the DNA molecular weight standard, and the left lane is the amplification results of ZmNRT1.1A and ZmNRT1.1B open reading frame sequences.

图4为实施例3中过表达ZmNRT1.1A基因或过表达ZmNRT1.1B基因的转基因系拟南芥植株的RT-PCR分子验证结果及高低氮下15NO3 -瞬时吸收结果。图4的A图为转基因株系的基因表达量;图4的B图为转基因株系在不同氮浓度下(0.2mM KNO3、5mM KNO3)的硝酸盐吸收速率。其中,chl1-5-p35S::ZmNRT1.1A#4、chl1-5-p35S::ZmNRT1.1A#11、chl1-5-p35S::ZmNRT1.1A#13属于chl1-5背景下转ZmNRT1.1A基因的拟南芥株系chl1-5-p35S::ZmNRT1.1A;chl1-5-p35S::ZmNRT1.1B#5、chl1-5-p35S::ZmNRT1.1B#13、chl1-5-p35S::ZmNRT1.1B#14属于chl1-5背景下转ZmNRT1.1B基因的拟南芥株系chl1-5-p35S::ZmNRT1.1B。数据表示为平均值±标准差,重复数为4,不同小写字母表示存在显著性差异。4 is the RT-PCR molecular verification results of the transgenic Arabidopsis plants overexpressing the ZmNRT1.1A gene or the ZmNRT1.1B gene in Example 3 and the results of 15 NO 3 -transient absorption under high and low nitrogen. Panel A of Figure 4 shows the gene expression levels of the transgenic lines; Panel B of Figure 4 shows the nitrate uptake rates of the transgenic lines under different nitrogen concentrations (0.2 mM KNO 3 , 5 mM KNO 3 ). Among them, chl1-5-p35S::ZmNRT1.1A#4, chl1-5-p35S::ZmNRT1.1A#11, chl1-5-p35S::ZmNRT1.1A#13 belong to the chl1-5 background to ZmNRT1.1A Genes of Arabidopsis lines chl1-5-p35S::ZmNRT1.1A; chl1-5-p35S::ZmNRT1.1B#5, chl1-5-p35S::ZmNRT1.1B#13, chl1-5-p35S: :ZmNRT1.1B#14 belongs to the Arabidopsis thaliana line chl1-5-p35S::ZmNRT1.1B with the ZmNRT1.1B gene in the chl1-5 background. Data are presented as mean ± standard deviation, the number of replicates is 4, and different lowercase letters indicate significant differences.

图5为过表达ZmNRT1.1A基因或过表达ZmNRT1.1B基因玉米植株的基因表达量及生理表型。图A为转ZmNRT1.1A玉米植株的基因表达量;图B为转ZmNRT1.1B玉米植株的基因表达量;图C为转ZmNRT1.1A玉米株系地上部生物量(g/株)统计结果;图D为转ZmNRT1.1B玉米株系地上部生物量(g/株)统计结果;图E为转ZmNRT1.1A玉米株系地上部吸氮量(mg/株)统计结果;图F为转ZmNRT1.1B玉米株系地上部吸氮量(mg/株)统计结果。其中,A1-OE、A2-OE、A3-OE均为转ZmNRT1.1A玉米株系,B1-OE、B2-OE、B3-OE均为转ZmNRT1.1B玉米株系。WT为野生型株系;数据表示为平均值±标准差,重复数为12,*表示显著性分析结果为P<0.05。Figure 5 shows the gene expression levels and physiological phenotypes of maize plants overexpressing ZmNRT1.1A gene or overexpressing ZmNRT1.1B gene. Figure A is the gene expression level of the transgenic ZmNRT1.1A maize plant; Figure B is the gene expression level of the transgenic ZmNRT1.1B maize plant; Figure C is the statistical result of the aboveground biomass (g/plant) of the transgenic ZmNRT1.1A maize line; Figure D is the statistical result of the above-ground biomass (g/plant) of the transformed ZmNRT1.1B maize line; Figure E is the statistical result of the aerial nitrogen uptake (mg/plant) of the transformed ZmNRT1.1A maize line; Figure F is the transformed ZmNRT1 .1B Statistical results of nitrogen uptake in the shoots of maize lines (mg/plant). Among them, A1-OE, A2-OE and A3-OE are all transformed ZmNRT1.1A maize lines, and B1-OE, B2-OE and B3-OE are all transformed ZmNRT1.1B maize lines. WT is a wild-type line; data are expressed as mean ± standard deviation, the number of replicates is 12, and * indicates that the result of significance analysis is P<0.05.

具体实施方式Detailed ways

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be further described in detail below with reference to the specific embodiments, and the given examples are only for illustrating the present invention, rather than for limiting the scope of the present invention. The examples provided below can serve as a guide for those of ordinary skill in the art to make further improvements, and are not intended to limit the present invention in any way.

下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均为常规生化试剂,可从商业途径得到。The experimental methods in the following examples are conventional methods unless otherwise specified. The materials, reagents, etc. used in the following examples, unless otherwise specified, are conventional biochemical reagents, which can be obtained from commercial sources.

下述实施例中,如无特殊说明,序列表中各核苷酸序列的第1位均为相应DNA/RNA的5′末端核苷酸,末位均为相应DNA/RNA的3′末端核苷酸。In the following examples, unless otherwise specified, the first position of each nucleotide sequence in the sequence listing is the 5'-terminal nucleotide of the corresponding DNA/RNA, and the last position is the 3'-terminal nucleus of the corresponding DNA/RNA. Glycosides.

1、载体1. Carrier

下述实施例中克隆载体pGEM T-Easy为Promega公司产品。In the following examples, the cloning vector pGEM T-Easy is a product of Promega Corporation.

下述实施例中植物表达载体pPTKan和pCAMBIA1301记载于非专利文献“Sutter etal.,Selective Mobility and Sensitivity to SNAREs Is Exhibited by theArabidopsis KAT1K1 Channel at the Plasma Membrane,2006,Plant Cell 18:935-954”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The plant expression vectors pPTKan and pCAMBIA1301 in the following examples are described in the non-patent document "Sutter et al., Selective Mobility and Sensitivity to SNAREs Is Exhibited by the Arabidopsis KAT1K1 Channel at the Plasma Membrane, 2006, Plant Cell 18: 935-954". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

下述实施例中载体pPT-Hyg记载于非专利文献“Gu et al.,Characterization ofAMT-mediated High-affinity Ammonium Uptake in Roots of Maize,2013,Plant CellPhysiology:1515-1524”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The vector pPT-Hyg in the following examples is described in the non-patent document "Gu et al., Characterization of AMT-mediated High-affinity Ammonium Uptake in Roots of Maize, 2013, Plant CellPhysiology: 1515-1524". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

下述实施例中载体p1301-UBI-PPT记载于非专利文献“Zhao et al.,OverExpression ofthe Maize ZmAMT1;1a Gene Enhances Root Ammonium UptakeEfficiency Under Low AmmoniumNutrition,2018,PlantBiotechnology Reports 12:47-56”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The vector p1301-UBI-PPT in the following examples is described in the non-patent document "Zhao et al., OverExpression of the Maize ZmAMT1; 1a Gene Enhances Root Ammonium UptakeEfficiency Under Low Ammonium Nutrition, 2018, PlantBiotechnology Reports 12:47-56". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

2、菌株2. Strain

下述实施例中的大肠杆菌DH5α属于大肠杆菌(Escherichia coli),购自天根生化科技有限公司。Escherichia coli DH5α in the following examples belongs to Escherichia coli and was purchased from Tiangen Biochemical Technology Co., Ltd.

下述实施例中的根癌农杆菌菌株GV3101与EHA105均属于根癌农杆菌(Agrobacterium tumefaciens),均购自天根生化科技有限公司。The Agrobacterium tumefaciens strains GV3101 and EHA105 in the following examples both belong to Agrobacterium tumefaciens and were purchased from Tiangen Biochemical Technology Co., Ltd.

3、植物品系3. Plant strains

下述实施例中的拟南芥chl1-5突变体记载于非专利文献“Ho et al.,CHL1Function as a Nitrate Sensor in Plants,2009,Cell:1184-1194”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The Arabidopsis chl1-5 mutant in the following examples is described in the non-patent document "Ho et al., CHL1 Function as a Nitrate Sensor in Plants, 2009, Cell: 1184-1194". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

下述实施例中的拟南芥Col-0野生型记载于非专利文献“Ho et al.,CHL1Function as a Nitrate Sensor in Plants,2009,Cell:1184-1194”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The Arabidopsis Col-0 wild type in the following examples is described in the non-patent document "Ho et al., CHL1 Function as a Nitrate Sensor in Plants, 2009, Cell: 1184-1194". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

下述实施例中的玉米自交系B73记载于非专利文献“Schnable et al.,The B73Maize Genome:Complexity,Diversity,and Dynamics,2009,Science:1112-1114.”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The maize inbred line B73 in the following examples is described in the non-patent document "Schnable et al., The B73 Maize Genome: Complexity, Diversity, and Dynamics, 2009, Science: 1112-1114.". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

下述实施例中的玉米杂交种HiII记载于非专利文献“An et al.,Transcriptional Regulation of Expression ofthe Maize Aldehyde Dehydrogenase7gene(ZmALDH7B6)in Response to Abiotic Stresses,2014,Journal ofIntergrativeAgriculture:1900-1908.”。公众可从中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The corn hybrid HiII in the following examples is described in the non-patent document "An et al., Transcriptional Regulation of Expression of the Maize Aldehyde Dehydrogenase 7gene (ZmALDH7B6) in Response to Abiotic Stresses, 2014, Journal of Intergrative Agriculture: 1900-1908.". The public can obtain it from China Agricultural University to replicate the experiments in this application and cannot be used for other purposes.

下述实施例中的玉米品种PH6WC为杜邦先锋公司自交系,记载于非专利文献“刘继国等,先玉335母本系PH6WC,2010,新农业:30”。公众可从种质库或中国农业大学获得,以重复本申请实验,不可作为其它用途使用。The corn variety PH6WC in the following examples is an inbred line of DuPont Pioneer Company, which is recorded in the non-patent document "Liu Jiguo et al., Xianyu 335 female parent line PH6WC, 2010, New Agriculture: 30". The public can obtain it from the gene bank or China Agricultural University to repeat the experiments of this application and cannot be used for other purposes.

4、试剂4. Reagents

下述实施例中,各种限制性内切酶均为Promega公司产品;cDNA文库构建试剂盒为invitrogen公司产品;各种Taq酶和Trizol RNA小量提取试剂盒为Takara公司产品;dNTP混合物为上海生工产品;T4 DNA连接酶为Promega公司产品;氨苄青霉素(Amp)、卡那霉素(Kan)、壮观霉素(Spe)、利福平(Rif)均为欣经科公司产品。In the following examples, various restriction endonucleases are products of Promega company; cDNA library construction kits are products of Invitrogen company; various Taq enzymes and Trizol RNA mini-extraction kits are products of Takara company; dNTP mixture is Shanghai Raw products; T4 DNA ligase is the product of Promega Company; Ampicillin (Amp), Kanamycin (Kan), Spectinomycin (Spe), Rifampicin (Rif) are all products of Xinjingke Company.

下述实施案例中,拟南芥水培用Hoagland营养液为将K2SO4、MgSO4.7H2O、KH2PO4、H3BO3、MnSO4.H2O、ZnSO4.7H2O、CuSO4.5H2O、Na2MoO4.2H2O、NaFe-EDTA、NH4NO3(氮源)、CaCl2.2H2O溶于无菌水获得的pH为5.8-6.0的溶液。拟南芥水培用Hoagland营养液中,K2SO4的浓度为0.25mM、MgSO4.7H2O的浓度为1mM、KH2PO4的浓度为1mM、H3BO3的浓度为30μM、MnSO4.H2O的浓度为5μM、ZnSO4.7H2O的浓度为1μM、CuSO4.5H2O的浓度为1μM、Na2MoO4.2H2O的浓度为1μM、NaFe-EDTA的浓度为0.1mM、NH4NO3的浓度为2mM、CaCl2.2H2O的浓度为0.25mM。In the following example, the Hoagland nutrient solution for Arabidopsis hydroponics is K 2 SO 4 , MgSO 4 .7H 2 O, KH 2 PO 4 , H 3 BO 3 , MnSO 4 .H 2 O, ZnSO 4 .7H 2 O, CuSO 4 .5H 2 O, Na 2 MoO 4 .2H 2 O, NaFe-EDTA, NH 4 NO 3 (nitrogen source), CaCl 2 .2H 2 O were dissolved in sterile water to obtain a pH of 5.8-6.0 The solution. In the Hoagland nutrient solution for Arabidopsis hydroponics, the concentration of K 2 SO 4 is 0.25 mM, the concentration of MgSO 4 .7H 2 O is 1 mM, the concentration of KH 2 PO 4 is 1 mM, the concentration of H 3 BO 3 is 30 μM, The concentration of MnSO 4 .H 2 O was 5 μM, the concentration of ZnSO 4 .7H 2 O was 1 μM, the concentration of CuSO 4 .5H 2 O was 1 μM, the concentration of Na 2 MoO 4 .2H 2 O was 1 μM, and the concentration of NaFe-EDTA was 1 μM. The concentration was 0.1 mM, the concentration of NH4NO3 was 2 mM, and the concentration of CaCl2.2H2O was 0.25 mM.

下述实施案例中,玉米水培用Hoagland营养液为将K2SO4、MgSO4.7H2O、KH2PO4、H3BO3、MnSO4.H2O、ZnSO4.7H2O、CuSO4.5H2O、Na2MoO4.2H2O、NaFe-EDTA、Ca(NO3)2(氮源)、CaCl2.2H2O(用来配平钙离子)溶于无菌水获得的pH为5.8-6.0的溶液。玉米水培用Hoagland营养液中,K2SO4的浓度为1mM,MgSO4.7H2O的浓度为0.6mM,KH2PO4的浓度为0.1mM,H3BO3的浓度为30μM,MnSO4.H2O的浓度为0.5μM,ZnSO4.7H2O的浓度为0.5μM,CuSO4.5H2O的浓度为0.2μM,Na2MoO4.2H2O的浓度为0.07μM,NaFe-EDTA的浓度为0.1mM,Ca(NO3)2的浓度按照NO3 -的终浓度为0.04mmol/L、0.4mmol/L、4mmol/L设置,CaCl2.2H2O用来配平钙离子。In the following example, the Hoagland nutrient solution for corn hydroponics is K 2 SO 4 , MgSO 4 .7H 2 O, KH 2 PO 4 , H 3 BO 3 , MnSO 4 .H 2 O, ZnSO 4 .7H 2 O , CuSO 4 .5H 2 O, Na 2 MoO 4 .2H 2 O, NaFe-EDTA, Ca(NO 3 ) 2 (nitrogen source), CaCl 2 .2H 2 O (used to balance calcium ions) dissolved in sterile water The obtained solution was pH 5.8-6.0. In the Hoagland nutrient solution for corn hydroponics, the concentration of K 2 SO 4 is 1 mM, the concentration of MgSO 4 .7H 2 O is 0.6 mM, the concentration of KH 2 PO 4 is 0.1 mM, the concentration of H 3 BO 3 is 30 μM, and the concentration of MnSO 4. The concentration of H 2 O is 0.5 μM, the concentration of ZnSO 4 .7H 2 O is 0.5 μM, the concentration of CuSO 4 .5H 2 O is 0.2 μM, the concentration of Na 2 MoO 4 .2H 2 O is 0.07 μM, and the concentration of NaFe The concentration of -EDTA is 0.1mM, the concentration of Ca(NO 3 ) 2 is set according to the final concentration of NO 3 - is 0.04mmol/L, 0.4mmol/L, 4mmol/L, CaCl 2 .2H 2 O is used to balance calcium ions .

5、PCR扩增引物5. PCR amplification primers

P-A-1-F:5'-ATGGTCGGACTCCTCCCC-3';P-A-1-F: 5'-ATGGTCGGACTCCTCCCC-3';

P-A-1-R:5'-TCAGTGGAGCGTGGGC-3';P-A-1-R: 5'-TCAGTGGAGCGTGGGC-3';

P-B-1-F:5'-ATGGCCTCCGTCCTGCC-3';P-B-1-F: 5'-ATGGCCTCCGTCCTGCC-3';

P-B-1-R:5'-TCAGTGGCCGACGGC-3';P-B-1-R: 5'-TCAGTGGCCGACGGC-3';

P-A-2-F:5'-CTCTAGAATGGTCGGACTCCTCCCC-3'(下划线指示的序列为Xba I酶识别位点序列);PA-2-F: 5'-C TCTAGA ATGGTCGGACTCCTCCCC-3' (the sequence indicated by the underline is the Xba I enzyme recognition site sequence);

P-A-2-R:5'-CCGCTCGAGTCAGTGGAGCGTGGGCT-3'(下划线指示的序列为Xho I酶识别位点序列);PA-2-R: 5'-CCG CTCGAG TCAGTGGACGCGTGGGCT-3' (the sequence indicated by the underline is the Xho I enzyme recognition site sequence);

P-B-2-F:5'-CTCTAGAATGGCCTCCGTCCTGCCG-3'(下划线指示的序列为Xba I酶识别位点序列);PB-2-F: 5'-C TCTAGA ATGGCCTCCGTCCTGCCG-3' (the underlined sequence is the Xba I enzyme recognition site sequence);

P-B-2-R:5'-CCGCTCGAGTCAGTGGCCGACGGCAATAG-3'(下划线指示的序列为Xho I酶识别位点序列);PB-2-R: 5'-CCG CTCGAG TCAGTGGCCGACGGCAATAG-3' (the underlined sequence is the Xho I enzyme recognition site sequence);

P-A-3-F:5'-TCGAGCTCATGGTCGGACTCCTCCCC-3'(下划线指示的序列为Sac I酶识别位点序列);PA-3-F: 5'-TC GAGCTC ATGGTCGGACTCCTCCCC-3' (the underlined sequence is the Sac I enzyme recognition site sequence);

P-A-3-R:5'-TCGAGCTCTCAGTGGAGCGTGGGCT-3'(下划线指示的序列为Sac I酶识别位点序列);PA-3-R: 5'-TC GAGCTC TCAGTGGACGTGGGCT-3' (the sequence indicated by the underline is the Sac I enzyme recognition site sequence);

P-B-3-F:5'-CGGGATCCATGGCCTCCGTCCTGCCG-3'(下划线指示的序列为BamH I酶识别位点序列);PB-3-F: 5'-CG GGATCC ATGGCCTCCGTCCTGCCG-3' (the sequence indicated by the underline is the BamH I enzyme recognition site sequence);

P-B-3-R:5'-CGGGATCCTCAGTGGCCGACGGCAATAG-3'(下划线指示的序列为BamH I酶识别位点序列);PB-3-R: 5'-CG GGATCC TCAGTGGCCGACGGCAATAG-3' (the underlined sequence is the BamH I enzyme recognition site sequence);

P-A-4-F:5'-TCCTCCAGCAAGAAGAGCAAGC-3';P-A-4-F: 5'-TCCTCCAGCAAGAAGAGCAAGC-3';

P-A-4-R:5'-TTCACCTCCTCCACGTCCGT-3';P-A-4-R: 5'-TTCACCTCCTCCACGTCCGT-3';

P-B-4-F:5'-TGCTGCTGCCAGTGCCACAA-3';P-B-4-F: 5'-TGCTGCTGCCAGTGCCACAA-3';

P-B-4-R:5'-ACACGTTAATTAGCTCGACCTGCG-3';P-B-4-R: 5'-ACACGTTAATTAGCTCGACCTGCG-3';

PT-F:5'-GCTATCCTGTGATCTGCCCTGA-3';PT-F: 5'-GCTATCCTGTGATCTGCCCTGA-3';

PT-R:5'-CGCCAAACTTAATAACCCAGTA-3'。PT-R: 5'-CGCCAAACTTAATAACCCAGTA-3'.

以上引物均由北京擎科公司合成合成。The above primers were synthesized by Beijing Qingke Company.

下述实施例中,如无特殊说明,序列表中各核苷酸序列的第1位均为相应DNA的5′末端核苷酸,末位均为相应DNA的3′末端核苷酸。In the following examples, unless otherwise specified, the first position of each nucleotide sequence in the sequence listing is the 5'-terminal nucleotide of the corresponding DNA, and the last position is the 3'-terminal nucleotide of the corresponding DNA.

下述实施例中的定量试验,如无特殊说明,均设置三次重复实验,结果取平均值,*表示显著性分析结果为P<0.05。Quantitative tests in the following examples, unless otherwise specified, were set up to repeat the experiment three times, and the results were averaged, and * indicates that the significance analysis result is P<0.05.

实施例1、玉米硝酸盐转运蛋白ZmNRT1.1A/ZmNRT1.1B表达分析Example 1. Expression analysis of maize nitrate transporter ZmNRT1.1A/ZmNRT1.1B

一、ZmNRT1;1s基因进化分析1. Evolutionary analysis of ZmNRT1;1s gene

目前已报道的,与模式植物AtNRT1.1基因同源的NRT1.1s基因在玉米中有4个(ZmNRT1.1A/B/C/D),水稻中有3个(OsNRT1.1A/B/C),高粱有3个(SbNRT1.1A/B/C),二穗短柄草有4个(BdNRT1.1A/B/C/D)(Plett et al.,2010,The PLoS One)。在Phytozome/MaizeGDB数据库中进行基因信息查找,得到ZmNRT1.1A/B/C/D的核苷酸序列、氨基酸序列及相应的基因表达数据。转录组数据显示基因ZmNRT1.1A/B主要在根系中表达,基因ZmNRT1.1C/D表达量极少,可能是冗余基因。So far, there are 4 NRT1.1s genes homologous to the model plant AtNRT1.1 gene in maize (ZmNRT1.1A/B/C/D) and 3 in rice (OsNRT1.1A/B/C) ), three in sorghum (SbNRT1.1A/B/C), and four in Brachypodium (BdNRT1.1A/B/C/D) (Plett et al., 2010, The PLoS One). Gene information search was performed in Phytozome/MaizeGDB database, and the nucleotide sequence, amino acid sequence and corresponding gene expression data of ZmNRT1.1A/B/C/D were obtained. Transcriptome data showed that the gene ZmNRT1.1A/B was mainly expressed in the root system, and the gene ZmNRT1.1C/D was rarely expressed, which may be redundant genes.

图1为ZmNRT1.1s的共线性图谱分析(图1的A)及进化树分析(图1的B)。由共线性图谱可知,ZmNRT1.1B与ZmNRT1.1D是在进化过程中由于全基因组加倍产生的,而ZmNRT1.1B与ZmNRT1.1C是由于基因组串联重组产生的。由进化树分析图可知,ZmNRT1.1B与OsNRT1.1B同源性较高;ZmNRT1.1A则与OsNRT1.1A同源性较高。Figure 1 shows the collinear map analysis (A in Figure 1) and phylogenetic tree analysis (B in Figure 1) of ZmNRT1.1s. According to the collinear map, ZmNRT1.1B and ZmNRT1.1D were produced due to the doubling of the whole genome during the evolution, while ZmNRT1.1B and ZmNRT1.1C were produced by the tandem recombination of the genome. From the phylogenetic tree analysis, it can be seen that ZmNRT1.1B and OsNRT1.1B have higher homology; ZmNRT1.1A has higher homology with OsNRT1.1A.

二、荧光实时定量PCR(Real-Time PCR)分析玉米根系ZmNRT1.1s基因的表达模式2. Real-time quantitative PCR (Real-Time PCR) analysis of the expression pattern of ZmNRT1.1s gene in maize roots

进行如下两组实验处理:The following two sets of experimental treatments were carried out:

(1)将玉米自交系B73植株先在2mM NH4NO3水溶液中培养8天,后缺氮4天,然后分别恢复供4mM KNO31小时/3小时/6小时/18小时/72小时,用液氮收取玉米根系。(1) The maize inbred line B73 plants were first cultured in 2mM NH 4 NO 3 aqueous solution for 8 days, followed by nitrogen deficiency for 4 days, and then restored to 4 mM KNO 3 for 1 hour/3 hours/6 hours/18 hours/72 hours respectively , harvesting corn roots with liquid nitrogen.

(2)将玉米自交系B73植株分别种在0mM/0.04mM/4mM/10mM KNO3水溶液中培养12天,用液氮收取玉米根系。(2) The corn inbred B73 plants were planted in 0 mM/0.04 mM/4 mM/10 mM KNO 3 aqueous solution for 12 days, and the corn roots were harvested with liquid nitrogen.

用Trizol法提取各个处理玉米根部总RNA。所得总RNA用反转录试剂盒经过去除总RNA中的DNA后,再反转录成cDNA。利用Real-time PCR的方法,以引物P-A-4-F和P-A-4-R扩增玉米ZmNRT1;1A基因,以引物P-B-4-F和P-B-4-R扩增玉米ZmNRT1;1B基因,以PT-F和PT-R扩增玉米ZmTUB1基因作为内参对照,用同一样品中的ZmNRT1.1A/ZmNRT1.1B基因的表达量除以ZmTUB1基因的表达量作为ZmNRT1.1A/ZmNRT1.1B基因的相对表达量,研究ZmNRT1.1A/ZmNRT1.1B基因在玉米不同组织部位中表达特性。Total RNA of each treated maize root was extracted by Trizol method. The obtained total RNA was reverse transcribed into cDNA after the DNA in the total RNA was removed by a reverse transcription kit. Real-time PCR was used to amplify maize ZmNRT1 with primers P-A-4-F and P-A-4-R; 1A gene was used to amplify maize ZmNRT1 with primers P-B-4-F and P-B-4-R; 1B gene, Using PT-F and PT-R amplified maize ZmTUB1 gene as internal reference control, the expression of ZmNRT1.1A/ZmNRT1.1B gene in the same sample was divided by the expression of ZmTUB1 gene as ZmNRT1.1A/ZmNRT1.1B gene expression. The relative expression levels were used to study the expression characteristics of ZmNRT1.1A/ZmNRT1.1B genes in different tissue parts of maize.

上述的Real-Time PCR操作步骤如下:The above-mentioned Real-Time PCR operation steps are as follows:

1、用Trizol试剂盒(TaKaRa公司,目录号:9109)提取不同样品中的总RNA。1. Extract total RNA from different samples with Trizol kit (TaKaRa company, catalog number: 9109).

2、取1.5μg总RNA,用反转录试剂盒(TaKaRa公司,目录号:RR047A)去除基因组DNA,方法如下:2. Take 1.5 μg of total RNA and remove genomic DNA with reverse transcription kit (TaKaRa company, catalog number: RR047A). The method is as follows:

反应体系1(10μl):Reaction system 1 (10 μl):

5x gDNA Eraser Buffer 2μl5x gDNA Eraser Buffer 2μl

gDNA Eraser 1μlgDNA Eraser 1μl

RNase Free dH2O 至终体积10μl;RNase Free dH 2 O to a final volume of 10 μl;

42℃反应5分钟。The reaction was carried out at 42°C for 5 minutes.

3、常规方法反转录合成cDNA第一链,方法如下:3. Reverse transcription to synthesize the first strand of cDNA by conventional methods, the method is as follows:

反应体系2(20μl):Reaction system 2 (20 μl):

Figure BDA0002927039760000091
Figure BDA0002927039760000091

42℃反应60分钟;95℃反应5分钟。42°C for 60 minutes; 95°C for 5 minutes.

4、Real-time PCR检测基因丰度,试剂选用TAKARA公司的SYBR Green RealtimePCR Master Mix(目录号:RR820A),定量PCR仪器型号IQ5,反转产物稀释10倍作为Real-time PCR模板4. Real-time PCR was used to detect gene abundance. The reagents were SYBR Green RealtimePCR Master Mix (catalog number: RR820A) from TAKARA, and the quantitative PCR instrument model was IQ5. The inversion product was diluted 10 times as the Real-time PCR template.

反应体系:reaction system:

Figure BDA0002927039760000092
Figure BDA0002927039760000092

PCR反应程序:50℃2分钟,95℃2分钟,40个循环(95℃15秒,61℃15秒,72℃30秒);PCR reaction program: 50°C for 2 minutes, 95°C for 2 minutes, 40 cycles (95°C for 15 seconds, 61°C for 15 seconds, 72°C for 30 seconds);

融解曲线步骤:95℃15秒,以10秒钟一个循环,每个循环增加0.5℃的速度从60℃升温到95℃,进行70个循环;Melting curve steps: 95°C for 15 seconds, a cycle of 10 seconds, each cycle increases the rate of 0.5°C from 60°C to 95°C for 70 cycles;

以ZmTUB1为内参,采用相对定量算法计算ZmNRT1.1s基因在玉米不同组织部位中的相对表达量。结果如图2所示,玉米ZmNRT1;1B基因受到硝酸盐的诱导,ZmNRT1;1A基因不受硝酸盐的诱导。玉米ZmNRT1;1A基因和ZmNRT1;1B基因的表达量均随着氮浓度的增加而增加。Using ZmTUB1 as an internal reference, the relative expression of ZmNRT1.1s gene in different tissue parts of maize was calculated by relative quantitative algorithm. The results are shown in Figure 2, the maize ZmNRT1;1B gene was induced by nitrate, and the ZmNRT1;1A gene was not induced by nitrate. The expression levels of ZmNRT1;1A gene and ZmNRT1;1B gene in maize both increased with the increase of nitrogen concentration.

实施例2、ZmNRT1;1s基因的克隆及其拟南芥表达载体的构建Example 2. Cloning of ZmNRT1;1s gene and construction of Arabidopsis expression vector

一、ZmNRT1.1A基因和ZmNRT1.1B基因的CDS的扩增1. Amplification of CDS of ZmNRT1.1A gene and ZmNRT1.1B gene

根据生物信息学得到的ZmNRT1.1A/ZmNRT1.1B的序列,设计引物:扩增ZmNRT1.1A的引物对由上游引物P-A-1-F和下游引物P-A-1-R组成。扩增ZmNRT1.1B的引物对由上游引物P-B-1-F和下游引物P-B-1-R组成。其中P-A-1-F和P-B-1-F均恰好包含翻译起始密码子ATG,P-A-1-R和P-B-1-R均包含与翻译终止密码子TGA反向互补的序列。According to the sequence of ZmNRT1.1A/ZmNRT1.1B obtained by bioinformatics, primers were designed: the primer pair for amplifying ZmNRT1.1A consisted of upstream primer P-A-1-F and downstream primer P-A-1-R. The primer pair for amplifying ZmNRT1.1B consisted of the upstream primer P-B-1-F and the downstream primer P-B-1-R. Both P-A-1-F and P-B-1-F contain exactly the translation initiation codon ATG, and both P-A-1-R and P-B-1-R contain sequences that are reverse complementary to the translation termination codon TGA.

以玉米根总RNA反转录的cDNA(参见实施例1的步骤(2))为模板,使用高保真酶Primer STAR(TaKaRa公司,目录号:R010Q)扩增,分别获得包含完整开放阅读框架的ZmNRT1;1A基因片段和ZmNRT1;1B基因片段。Using the reverse transcribed cDNA of corn root total RNA (see step (2) of Example 1) as a template, use the high-fidelity enzyme Primer STAR (TaKaRa company, catalog number: R010Q) to amplify, respectively obtain the complete open reading frame containing the cDNA. ZmNRT1; 1A gene fragment and ZmNRT1; 1B gene fragment.

扩增体系如下:The amplification system is as follows:

Figure BDA0002927039760000101
Figure BDA0002927039760000101

补H2O至50μl。Make up to 50 μl with H 2 O.

PCR反应条件:98℃预变性2分钟;然后98℃10秒,65℃10秒,72℃3分钟30秒,30个循环;之后加入1μl Taq酶,72℃延伸和加尾20分钟。PCR reaction conditions: pre-denaturation at 98°C for 2 minutes; then 30 cycles of 98°C for 10 seconds, 65°C for 10 seconds, and 72°C for 3 minutes and 30 seconds; then add 1 μl of Taq enzyme, and extend and tail at 72°C for 20 minutes.

各取8μl PCR产物,于1.0%琼脂糖凝胶上电泳检测,检测结果如图2所示,ZmNRT1.1A的mRNA序列由2492个碱基组成,其开放阅读框(ORF)为自5′末端第326-2153位碱基,片段大小为1827bp;ZmNRT1.1A的mRNA序列由2286个碱基组成,其开放阅读框(ORF)为自5′末端第187-1975位碱基,片段大小为1788bp。电泳结果见图3,右侧泳道M是DNA分子量标准,左侧泳道依次为是ZmNRT1.1A开放阅读框(ORF)序列、ZmNRT1.1B开放阅读框(ORF)序列的扩增结果。8 μl PCR products were taken and detected by electrophoresis on a 1.0% agarose gel. The detection results are shown in Figure 2. The mRNA sequence of ZmNRT1.1A consists of 2492 bases, and its open reading frame (ORF) is from the 5' end. Bases 326-2153, the fragment size is 1827bp; the mRNA sequence of ZmNRT1.1A consists of 2286 bases, and its open reading frame (ORF) is the bases 187-1975 from the 5' end, and the fragment size is 1788bp . The electrophoresis results are shown in Figure 3. The right lane M is the DNA molecular weight standard, and the left lane is the amplification results of the ZmNRT1.1A open reading frame (ORF) sequence and the ZmNRT1.1B open reading frame (ORF) sequence.

回收目的条带,连接回收产物于pGEM T-Easy载体上,转化大肠杆菌DH5α感受态细胞,提取质粒并测序验证。测序结果表明,分别获得了1827bp(ZmNRT1.1A)和1788bp(ZmNRT1.1B)的开放读码框,比对发现这一序列与网上数据库得到的序列可以完全匹配。ZmNRT1;1A的核苷酸序列如序列表中序列1所示;其编码的氨基酸序列如序列表中序列3所示。ZmNRT1;1B的核苷酸序列如序列表中序列2所示;其编码的氨基酸序列如序列表中序列4所示。The target band was recovered, and the recovered product was ligated into the pGEM T-Easy vector, transformed into E. coli DH5α competent cells, and the plasmid was extracted and verified by sequencing. The sequencing results showed that the open reading frames of 1827bp (ZmNRT1.1A) and 1788bp (ZmNRT1.1B) were obtained respectively, and the comparison found that this sequence could completely match the sequence obtained from the online database. The nucleotide sequence of ZmNRT1;1A is shown in sequence 1 in the sequence listing; the amino acid sequence encoded by it is shown in sequence 3 in the sequence listing. The nucleotide sequence of ZmNRT1; 1B is shown in Sequence 2 in the sequence listing; the amino acid sequence encoded by it is shown in Sequence 4 in the sequence listing.

二、植物表达载体的构建2. Construction of plant expression vector

1、转拟南芥ZmNRT1;1A基因过表达载体(pPT-ZmNRT1;1A)和转拟南芥ZmNRT1;1B基因过表达载体(pPT-ZmNRT1;1B)的构建1. Construction of Arabidopsis ZmNRT1; 1A gene overexpression vector (pPT-ZmNRT1; 1A) and Arabidopsis ZmNRT1; 1B gene overexpression vector (pPT-ZmNRT1; 1B)

选取步骤一中测序正确的目的基因,用含有Xba I酶识别位点序列的上游引物以及含有Xho I酶识别位点序列的下游引物重扩目的基因,具体为:以P-A-2-F(含有Xba I酶识别位点序列)和P-A-2-R(含有Xho I酶识别位点序列)扩增目的基因ZmNRT1;1A;以P-B-2-F(含有Xba I酶识别位点序列)和P-B-2-R(含有Xho I酶识别位点序列)扩增目的基因ZmNRT1;1B。扩增产物分别浓缩至10μl,并用Xba I酶酶切,跑电泳回收,并浓缩为10μl,分别得到ZmNRT1;1A基因目的片段和ZmNRT1;1B基因目的片段。Select the correct target gene of sequencing in step 1, re-amplify the target gene with the upstream primer containing the Xba I enzyme recognition site sequence and the downstream primer containing the Xho I enzyme recognition site sequence, specifically: with P-A-2-F (containing P-A-2-F). Xba I enzyme recognition site sequence) and P-A-2-R (containing Xho I enzyme recognition site sequence) to amplify the target gene ZmNRT1; 1A; P-B-2-F (containing Xba I enzyme recognition site sequence) and P-B -2-R (containing the Xho I enzyme recognition site sequence) amplifies the target gene ZmNRT1; 1B. The amplified products were concentrated to 10 μl, digested with Xba I enzyme, recovered by electrophoresis, and concentrated to 10 μl to obtain ZmNRT1; 1A gene target fragment and ZmNRT1; 1B gene target fragment respectively.

同时进行载体pPT-Hyg的Xba I酶切,并且回收得到线性pPT-Hyg质粒DNA,然后进行载体的去磷酸化。去磷酸化的具体操作为在一新离心管中加入如下试剂:At the same time, Xba I digestion of the vector pPT-Hyg was carried out, and the linear pPT-Hyg plasmid DNA was recovered, and then the vector was dephosphorylated. The specific operation of dephosphorylation is to add the following reagents to a new centrifuge tube:

线性pPT-Hyg质粒DNA 5μgLinear pPT-Hyg plasmid DNA 5μg

10x CIPA Reaction Buffer 10μl10x CIPA Reaction Buffer 10μl

Diluted CIAP(0.01U/μl) 5μlDiluted CIAP (0.01U/μl) 5μl

加水补足到100μl。Add water to make up to 100 μl.

PCR仪中进行以下程序:The following procedures are performed in the PCR machine:

Figure BDA0002927039760000111
Figure BDA0002927039760000111

取上步得到的去磷酸化产物,加入100μl的Tris饱和酚和100μl三氯甲烷,混合摇匀;12000转离心10min。吸取上清到另一管中,加同体积的三氯甲烷,混合摇匀;12000转离心10min;吸取上清到另一管中,加1/10体积的3M醋酸铵,3倍体积的无水冷乙醇,混匀,-80℃沉淀1小时,4℃,12000转,离心10min,弃去上清,加700μl的70%乙醇洗一次,10μl水溶解,即得到去磷酸化后的载体片段。Take the dephosphorylated product obtained in the previous step, add 100 μl of Tris saturated phenol and 100 μl of chloroform, mix and shake well; centrifuge at 12,000 rpm for 10 min. Transfer the supernatant to another tube, add the same volume of chloroform, mix and shake well; centrifuge at 12,000 rpm for 10 min; transfer the supernatant to another tube, add 1/10 volume of 3M ammonium acetate, 3 times the volume of no Water-cooled ethanol, mixed well, precipitated at -80°C for 1 hour, 4°C, 12,000 rpm, centrifuged for 10 minutes, discarded the supernatant, added 700 μl of 70% ethanol to wash once, and dissolved in 10 μl of water to obtain the dephosphorylated vector fragment.

取酶切后的目的片段和去磷酸化后的载体片段进行连接反应,反应体系(10μl)如下:Take the target fragment after enzyme digestion and the dephosphorylated vector fragment for ligation reaction. The reaction system (10 μl) is as follows:

Figure BDA0002927039760000112
Figure BDA0002927039760000112

16℃连接16-20小时后,转入50μl DH5α感受态细胞中,涂布在含卡那霉素的LB平板上,37℃培养12小时,收集所有菌体,提取质粒DNA经酶切验证后,并为测序公司测序确认序列正确的载体,其携带有潮霉素抗性的筛选标记基因。After ligation at 16°C for 16-20 hours, transfer into 50 μl DH5α competent cells, spread on LB plates containing kanamycin, cultivate at 37°C for 12 hours, collect all cells, extract plasmid DNA and verify by enzyme digestion , and sequenced for the sequencing company to confirm the correct sequence of the vector, which carries the selection marker gene for hygromycin resistance.

其中,以ZmNRT1;1A基因目的片段和载体片段连接后转染得到的序列正确的载体为pPT-ZmNRT1;1A,以ZmNRT1;1B基因目的片段和载体片段连接后转染得到的序列正确的载体为pPT-ZmNRT1;1B。Among them, the vector with the correct sequence obtained by ligating the ZmNRT1; 1A gene target fragment and the vector fragment after transfection is pPT-ZmNRT1; 1A, and the ZmNRT1; 1B gene target fragment and the vector fragment after ligation. pPT-ZmNRT1; 1B.

2、转玉米ZmNRT1;1A基因的过表达载体(p1301-Bar-ZmNRT1.1A)和转玉米ZmNRT1;1B基因的过表达载体(p1301-Bar-ZmNRT1.1B)的构建2. Construction of the overexpression vector (p1301-Bar-ZmNRT1.1A) of transgenic maize ZmNRT1; 1A gene and the overexpression vector (p1301-Bar-ZmNRT1.1B) of transgenic maize ZmNRT1; 1B gene

选取测序正确的质粒pPT-ZmNRT1;1A,用含有Sac I酶识别位点序列的引物P-A-3-F和P-A-3-R重扩目的基因ZmNRT1;1A,回收目的片段ZmNRT1;1A。用SacI酶酶切目的片段ZmNRT1;1A,跑电泳回收。用SacI酶酶切载体p1301-UBI-PPT,并且进行回收,然后进行载体的去磷酸化。Select the correctly sequenced plasmid pPT-ZmNRT1; 1A, re-amplify the target gene ZmNRT1 with primers P-A-3-F and P-A-3-R containing the Sac I enzyme recognition site sequence; 1A, recover the target fragment ZmNRT1; 1A. The target fragment ZmNRT1; 1A was digested with SacI enzyme and recovered by electrophoresis. The vector p1301-UBI-PPT was digested with SacI enzyme and recovered, followed by dephosphorylation of the vector.

选取测序正确的质粒pPT-ZmNRT1;1B,用含有BamH I酶识别位点序列的引物P-B-3-F和P-B-3-R重扩目的基因ZmNRT1;1B;回收目的片段ZmNRT1;1B。用BamH I酶酶切目的片段ZmNRT1;1B,跑电泳回收。用BamH I酶切载体p1301-UBI-PPT,并且进行回收,然后进行载体的去磷酸化。Select the correctly sequenced plasmid pPT-ZmNRT1; 1B, re-amplify the target gene ZmNRT1; 1B with primers P-B-3-F and P-B-3-R containing the BamH I enzyme recognition site sequence; recover the target fragment ZmNRT1; 1B. The target fragment ZmNRT1; 1B was digested with BamH I enzyme and recovered by electrophoresis. The vector p1301-UBI-PPT was digested with BamHI and recovered, followed by dephosphorylation of the vector.

载体的去磷酸化,具体操作为在一新离心管中加入如下试剂:The dephosphorylation of the carrier is performed by adding the following reagents to a new centrifuge tube:

线性p1301-UBI-PPT质粒DNA 5μgLinear p1301-UBI-PPT plasmid DNA 5μg

10x CIPA Reaction Buffer 10μl10x CIPA Reaction Buffer 10μl

Diluted CIAP(0.01U/μl) 5μlDiluted CIAP (0.01U/μl) 5μl

加水补足到100μl。Add water to make up to 100 μl.

PCR仪中进行以下程序:The following procedures are performed in the PCR machine:

Figure BDA0002927039760000121
Figure BDA0002927039760000121

取上步得到的去磷酸化产物,加入100μl的Tris饱和酚和100μl三氯甲烷,混合摇匀;12000转离心10min。吸取上清到另一管中,加同体积的三氯甲烷,混合摇匀;12000转离心10min;吸取上清到另一管中,加1/10体积的3M醋酸铵,3倍体积的无水冷乙醇,混匀,-80℃沉淀1小时,4℃,12000转,离心10min,弃去上清,加700μl的70%乙醇洗一次,10μl水溶解,即得到去磷酸化后的载体片段。Take the dephosphorylated product obtained in the previous step, add 100 μl of Tris saturated phenol and 100 μl of chloroform, mix and shake well; centrifuge at 12,000 rpm for 10 min. Transfer the supernatant to another tube, add the same volume of chloroform, mix and shake well; centrifuge at 12,000 rpm for 10 min; transfer the supernatant to another tube, add 1/10 volume of 3M ammonium acetate, 3 times the volume of no Water-cooled ethanol, mixed well, precipitated at -80°C for 1 hour, 4°C, 12,000 rpm, centrifuged for 10 min, discarded the supernatant, added 700 μl of 70% ethanol to wash once, and dissolved in 10 μl of water to obtain the dephosphorylated vector fragment.

取酶切后的目的片段和去磷酸化后的载体片段进行连接反应,反应体系(10μl)如下:Take the target fragment after enzyme digestion and the dephosphorylated vector fragment for ligation reaction. The reaction system (10 μl) is as follows:

Figure BDA0002927039760000131
Figure BDA0002927039760000131

16℃连接16-20小时后,转入50μl DH5α感受态细胞中,涂布在含卡那霉素的LB平板上,37℃培养12小时,收集所有菌体,提取质粒DNA经酶切验证后,并为测序公司测序确认序列正确的载体,其携带有潮霉素抗性的筛选标记基因。After ligation at 16°C for 16-20 hours, transfer into 50 μl DH5α competent cells, spread on LB plates containing kanamycin, cultivate at 37°C for 12 hours, collect all cells, extract plasmid DNA and verify by enzyme digestion , and sequenced for the sequencing company to confirm the correct sequence of the vector, which carries the selection marker gene for hygromycin resistance.

其中,以目的片段ZmNRT1;1A和载体片段连接后转染得到的序列正确的载体,是将ZmNRT1;1A基因(如序列表中序列1所示)插入p1301-UBI-PPT载体的限制性核酸内切酶SacI酶切位点的片段,保持p1301-UBI-PPT载体的其它序列不变,得到转玉米ZmNRT1;1A基因的过表达载体,命名为p1301-Bar-ZmNRT1.1A。Among them, the correct sequence of the vector obtained by transfection after connecting the target fragment ZmNRT1;1A and the vector fragment is to insert the ZmNRT1;1A gene (as shown in sequence 1 in the sequence table) into the restriction nucleic acid of the p1301-UBI-PPT vector The fragment of the cleavage site of Dicer SacI, keeping the other sequences of the p1301-UBI-PPT vector unchanged, obtained the overexpression vector of the transgenic maize ZmNRT1; 1A gene, named p1301-Bar-ZmNRT1.1A.

以目的片段ZmNRT1;1B和载体片段连接后转染得到的序列正确的载体,是将ZmNRT1;1B基因(如序列表中序列2所示)插入p1301-UBI-PPT载体的限制性核酸内切酶BamHI酶切位点的片段,保持p1301-UBI-PPT载体的其它序列不变,得到转玉米ZmNRT1;1B基因的过表达载体,命名为p1301-Bar-ZmNRT1.1B。The correct sequence of the vector obtained by transfection after the target fragment ZmNRT1; 1B is connected with the vector fragment is the restriction endonuclease for inserting the ZmNRT1; 1B gene (as shown in sequence 2 in the sequence table) into the p1301-UBI-PPT vector The fragment of the BamHI restriction site, keeping other sequences of the p1301-UBI-PPT vector unchanged, obtained the overexpression vector of the transgenic maize ZmNRT1;1B gene, named p1301-Bar-ZmNRT1.1B.

实施例3、过表达ZmNRT1.1A和ZmNRT1.1B的转基因植物的表型鉴定Example 3. Phenotypic identification of transgenic plants overexpressing ZmNRT1.1A and ZmNRT1.1B

一、过表达ZmNRT1;1A转基因系拟南芥材料和过表达ZmNRT1;1B转基因系拟南芥材料15N瞬时吸收的表型实验1. Overexpression ZmNRT1; 1A transgenic line Arabidopsis thaliana material and overexpressing ZmNRT1; 1B transgenic line Arabidopsis material 15 N transient uptake phenotype experiments

为了研究过表达ZmNRT1.1A基因或过表达ZmNRT1.1B基因后是否能提高植株氮吸收效率,以实施例2中的过表达载体构建转基因拟南芥,具体如下:In order to study whether overexpression of ZmNRT1.1A gene or overexpression of ZmNRT1.1B gene can improve plant nitrogen uptake efficiency, transgenic Arabidopsis was constructed with the overexpression vector in Example 2, as follows:

以拟南芥缺失AtNRT1.1基因的chl1-5突变体为转化受体,采用农杆菌介导的遗传转化方法利用p1301-Bar-ZmNRT1.1A转化chl1-5突变体,潮霉素抗性筛选得到T0代转基因植株。对获得的T0代转基因植株进行PCR鉴定,扩增得到1827bp条带的为阳性转ZmNRT1.1A植株。将所得阳性转ZmNRT1.1A植株经过自交加代、筛选和鉴定,获得3个T3代转ZmNRT1.1A株系(chl1-5-p35S::ZmNRT1.1A):chl1-5-p35S::ZmNRT1.1A#4、chl1-5-p35S::ZmNRT1.1A#11、chl1-5-p35S::ZmNRT1.1A#13。以RT-PCR验证ZmNRT1.1A的基因表达量(对照为chl1-5),引物为P-A-4-F与P-A-4-R,结果见图4的A图左侧,表明3个株系中ZmNRT1.1A基因的相对表达量均显著高于对照chl1-5。Using the Arabidopsis chl1-5 mutant lacking the AtNRT1.1 gene as the transformation receptor, the chl1-5 mutant was transformed with p1301-Bar-ZmNRT1.1A by Agrobacterium-mediated genetic transformation, and the hygromycin resistance was screened The T 0 generation transgenic plants were obtained. The obtained T 0 generation transgenic plants were identified by PCR, and the positive ZmNRT1.1A plants were amplified to obtain a 1827bp band. The obtained positive transgenic ZmNRT1.1A plants were selfed, screened and identified to obtain 3 T 3 generation transgenic ZmNRT1.1A lines (chl1-5-p35S::ZmNRT1.1A): chl1-5-p35S::ZmNRT1 .1A#4, chl1-5-p35S::ZmNRT1.1A#11, chl1-5-p35S::ZmNRT1.1A#13. The gene expression level of ZmNRT1.1A was verified by RT-PCR (the control was chl1-5), and the primers were PA-4-F and PA-4-R. The relative expression of ZmNRT1.1A gene was significantly higher than the control chl1-5.

以拟南芥chl1-5突变体为转化受体,采用农杆菌介导的遗传转化方法利用利用p1301-Bar-ZmNRT1.1B转化chl1-5突变体,潮霉素抗性筛选得到T0代转基因植株。对获得的T0代转基因植株进行PCR鉴定,扩增得到1788bp条带的为阳性转ZmNRT1.1B植株。将阳性转ZmNRT1.1B植株经过自交加代、筛选和鉴定,获得3个T3代转ZmNRT1.1B株系(chl1-5-p35S::ZmNRT1.1B):chl1-5-p35S::ZmNRT1.1B#5、chl1-5-p35S::ZmNRT1.1B#13、chl1-5-p35S::ZmNRT1.1B#14。以RT-PCR验证ZmNRT1.1B的基因表达量(对照为chl1-5),引物为P-B-4-F与P-B-4-R,结果见图4的A图右侧,表明3个株系中ZmNRT1.1B基因的相对表达量均显著高于对照chl1-5。Using the Arabidopsis chl1-5 mutant as the transformation receptor, the chl1-5 mutant was transformed with p1301-Bar-ZmNRT1.1B by Agrobacterium-mediated genetic transformation, and the T 0 generation transgene was obtained by screening for hygromycin resistance. plant. The obtained T 0 generation transgenic plants were identified by PCR, and the positive ZmNRT1.1B plants were amplified to obtain a 1788bp band. The positive transgenic ZmNRT1.1B plants were selfed, screened and identified to obtain 3 T 3 generation transgenic ZmNRT1.1B lines (chl1-5-p35S::ZmNRT1.1B): chl1-5-p35S::ZmNRT1. 1B#5, chl1-5-p35S::ZmNRT1.1B#13, chl1-5-p35S::ZmNRT1.1B#14. The gene expression level of ZmNRT1.1B was verified by RT-PCR (the control was chl1-5), and the primers were PB-4-F and PB-4-R. The relative expression of ZmNRT1.1B gene was significantly higher than the control chl1-5.

水培转入ZmNRT1.1A转基因的拟南芥T3代纯合体(chl1-5-p35S::ZmNRT1.1A#4、chl1-5-p35S::ZmNRT1.1A#11、chl1-5-p35S::ZmNRT1.1A#13),在15NO3 -浓度0.2mmol/L及5mmol/L NO3 -条件下测定根系硝酸盐吸收速率。以chl1-5突变体以及Col-0野生型作为对照。Arabidopsis thaliana T 3 homozygotes (chl1-5-p35S::ZmNRT1.1A#4, chl1-5-p35S::ZmNRT1.1A#11, chl1-5-p35S: : ZmNRT1.1A#13), under the condition of 15 NO 3 -concentration of 0.2mmol/L and 5mmol/L NO 3 -to measure the nitrate absorption rate of root system. The chl1-5 mutant and the Col-0 wild type were used as controls.

水培转入ZmNRT1.1B转基因的拟南芥T3代纯合体(chl1-5-p35S::ZmNRT1.1B#5、chl1-5-p35S::ZmNRT1.1B#13、chl1-5-p35S::ZmNRT1.1B#14),在15NO3 -浓度0.2mmol/L及5mmol/L NO3 -条件下测定根系硝酸盐吸收速率。以chl1-5突变体以及Col-0野生型作为对照。Arabidopsis thaliana T 3 homozygotes (chl1-5-p35S::ZmNRT1.1B#5, chl1-5-p35S::ZmNRT1.1B#13, chl1-5-p35S: : ZmNRT1.1B#14), under the condition of 15 NO 3 -concentration of 0.2mmol/L and 5mmol/L NO 3 -to measure the nitrate absorption rate of root system. The chl1-5 mutant and the Col-0 wild type were used as controls.

拟南芥水培方式:先用拟南芥水培用Hoagland营养液培养6周,每3天换一次营养液。后在含0.2mmol/L及5mmol/L KNO3Hoagland营养液(除N源变化外,其他成分不变)中培养1周。再在含0.2mmol/L及5mmol/L K15NO3Hoagland营养液(除N源变化外,其他成分不变)中培养10分钟,用饱和CaSO4浸泡1min后收取拟南芥根部样品,通过质谱分析测定15N丰度,计算在不同处理条件下拟南芥根系的瞬时硝酸盐吸收速率。Arabidopsis hydroponics method: firstly, Arabidopsis thaliana was cultured with Hoagland nutrient solution for 6 weeks, and the nutrient solution was changed every 3 days. Afterwards, the cells were cultured in Hoagland nutrient solution containing 0.2mmol/L and 5mmol/L KNO 3 (except for the change of N source, other components remained unchanged) for 1 week. Incubate for 10 minutes in Hoagland nutrient solution containing 0.2mmol/L and 5mmol/L K 15 NO 3 (except for the change of N source, other components remain unchanged), soak in saturated CaSO 4 for 1 minute, collect Arabidopsis root samples, and analyze them by mass spectrometry. The 15 N abundance was analyzed and the instantaneous nitrate uptake rate of Arabidopsis roots under different treatment conditions was calculated.

结果如图4的B图所示,在5mM K15NO3为氮源条件下,转基因系chl1-5-p35S::ZmNRT1.1A(图4的B图左侧)和转基因系chl1-5-p35S::ZmNRT1.1A(图4的B图右侧)的15N瞬时吸收速率均明显高于chl1-5;在0.2mM K15NO3为氮源条件下,转基因系chl1-5-p35S::ZmNRT1.1A(图4的B图左侧)和转基因系chl1-5-p35S::ZmNRT1.1A(图4的B图右侧)的15N瞬时吸收速率均明显高于chl1-5。这些结果说明了ZmNRT1;1A基因或ZmNRT1;1B基因转入拟南芥chl1-5突变体可以提高拟南芥的硝酸盐吸收能力。The results are shown in Panel B of Figure 4. Under the condition that 5 mM K 15 NO 3 was the nitrogen source, the transgenic line chl1-5-p35S::ZmNRT1.1A (the left side of the B panel in Figure 4) and the transgenic line chl1-5- The instantaneous 15 N uptake rates of p35S::ZmNRT1.1A (the right side of panel B in Figure 4) were significantly higher than those of chl1-5; under the condition that 0.2 mM K 15 NO 3 was the nitrogen source, the transgenic line chl1-5-p35S: :ZmNRT1.1A (the left side of panel B in Figure 4) and the transgenic line chl1-5-p35S::ZmNRT1.1A (the right side of panel B in Figure 4) were significantly higher than those of chl1-5 . These results indicate that ZmNRT1; 1A gene or ZmNRT1; 1B gene transfer into Arabidopsis chl1-5 mutant can improve the nitrate uptake capacity of Arabidopsis thaliana.

证明在拟南芥中表达外源玉米基因ZmNRT1;1A与ZmNRT1;1B可以增强拟南芥对硝酸盐的吸收。因此具有潜在地提高作物硝态氮吸收利用效率的应用价值。It was proved that expressing the exogenous maize genes ZmNRT1; 1A and ZmNRT1; 1B in Arabidopsis can enhance the absorption of nitrate in Arabidopsis. Therefore, it has the potential application value of improving the nitrate nitrogen absorption and utilization efficiency of crops.

二、过表达ZmNRT1;1A转基因系玉米材料和过表达ZmNRT1;1B转基因系玉米材料不同氮浓度的表型实验2. Phenotypic experiments of different nitrogen concentrations in maize materials overexpressing ZmNRT1; 1A transgenic lines and maize materials overexpressing ZmNRT1; 1B transgenic lines

为了研究过表达ZmNRT1.1A基因或过表达ZmNRT1.1B基因后是否能提高玉米植株氮吸收效率,以实施例2中的过表达载体构建转基因拟南芥,具体如下:In order to study whether overexpression of ZmNRT1.1A gene or overexpression of ZmNRT1.1B gene can improve the nitrogen absorption efficiency of maize plants, the overexpression vector in Example 2 was used to construct transgenic Arabidopsis, as follows:

以玉米杂交种HiII(自交系A188×B73)为转化受体,采用农杆菌介导的遗传转化方法利用p1301-Bar-ZmNRT1.1A转化玉米杂交种HiII,草甘膦抗性筛选得到T0代转基因植株。对获得的T0代转基因植株进行PCR鉴定,扩增得到1827bp条带的为阳性转ZmNRT1.1A植株。经过回交(回交亲本为PH6WC)、自交、筛选和鉴定,获得3个BC3F3代转ZmNRT1.1A株系:A1-OE、A2-OE、A3-OE。以RT-PCR验证ZmNRT1.1A的相对表达量(对照为BC3F3自交分离后代中未含有p1301-Bar-ZmNRT1.1A片段的玉米,即野生型对照BC3F3的亲本HiII未经转基因处理),引物为P-A-4-F与P-A-4-R,结果见图5的A图,表明3个株系中ZmNRT1.1A基因的相对表达量均显著高于对照。The maize hybrid HiII (inbred line A188×B73) was used as the transformation receptor, and p1301-Bar-ZmNRT1.1A was used to transform the maize hybrid HiII by Agrobacterium-mediated genetic transformation. Generation of transgenic plants. The obtained T 0 generation transgenic plants were identified by PCR, and the positive ZmNRT1.1A plants were amplified to obtain a 1827bp band. After backcrossing (the backcross parent is PH6WC), selfing, screening and identification, three BC 3 F 3 -generation transgenic ZmNRT1.1A lines were obtained: A1-OE, A2-OE, A3-OE. The relative expression level of ZmNRT1.1A was verified by RT-PCR (the control was maize that did not contain the p1301-Bar-ZmNRT1.1A fragment in the progeny of BC 3 F 3 self-segregation, that is, the wild-type control BC 3 F 3 , the parent of HiII without Transgenic treatment), the primers were PA-4-F and PA-4-R, the results are shown in Figure A of Figure 5, indicating that the relative expression of ZmNRT1.1A gene in the three lines was significantly higher than that of the control.

以玉米杂交种HiII(自交系A188×B73)为转化受体,采用农杆菌介导的遗传转化方法利用p1301-Bar-ZmNRT1.1B转化玉米杂交种HiII,草甘膦抗性筛选得到T0代转基因植株。对获得的T0代转基因植株进行PCR鉴定,扩增得到1788bp条带的为阳性转ZmNRT1.1B植株。经过回交(回交亲本为PH6WC)、自交、筛选和鉴定,获得3个BC3F3代转ZmNRT1.1B株系:B1-OE、B2-OE、B3-OE。以RT-PCR验证ZmNRT1.1B的相对表达量(对照为BC3F3自交分离后代中未含有p1301-Bar-ZmNRT1.1B片段的玉米,即野生型对照BC3F3的亲本HiII未经转基因处理),引物为P-B-4-F与P-B-4-R,结果见图5的B图,表明3个株系中ZmNRT1.1B基因的相对表达量均显著高于对照。The maize hybrid HiII (inbred line A188×B73) was used as the transformation receptor, and p1301-Bar-ZmNRT1.1B was used to transform the maize hybrid HiII by Agrobacterium-mediated genetic transformation. Generation of transgenic plants. The obtained T 0 generation transgenic plants were identified by PCR, and the positive ZmNRT1.1B plants were amplified to obtain a 1788bp band. After backcrossing (the backcross parent is PH6WC), selfing, screening and identification, three BC 3 F 3 -generation ZmNRT1.1B lines were obtained: B1-OE, B2-OE, B3-OE. The relative expression of ZmNRT1.1B was verified by RT-PCR (the control was maize without the p1301-Bar-ZmNRT1.1B fragment in the progeny of BC 3 F 3 self-segregation, that is, the wild-type control BC 3 F 3 , the parent of HiII without Transgenic treatment), the primers were PB-4-F and PB-4-R, the results are shown in Figure B of Figure 5, indicating that the relative expression of ZmNRT1.1B gene in the three lines was significantly higher than that of the control.

水培转ZmNRT1.1A基因的玉米BC3F3代纯合体(A1-OE、A2-OE、A3-OE),在0.04mmol/L、0.4mmol/L、4mmol/L NO3 -条件下培养14天,测定植株的生物量及氮浓度。以自交分离后代中未含有p1301-Bar-ZmNRT1.1A片段的玉米为对照。Maize BC 3 F 3 generation homozygotes (A1-OE, A2-OE, A3-OE) transfected with ZmNRT1.1A gene in hydroponics were cultured under 0.04mmol/L, 0.4mmol / L, 4mmol/L NO 3 -conditions After 14 days, the biomass and nitrogen concentration of the plants were measured. The maize that did not contain the p1301-Bar-ZmNRT1.1A fragment in the self-segregated progeny was used as a control.

水培转入ZmNRT1.1B基因的玉米BC3F3代纯合体(B1-OE、B2-OE、B3-OE),在0.04mmol/L、0.4mmol/L、4mmol/L NO3 -条件下培养14天,测定植株的生物量及氮浓度。以自交分离后代中未含有p1301-Bar-ZmNRT1.1B片段的玉米为对照。Maize BC 3 F 3 generation homozygotes (B1-OE, B2-OE, B3-OE) transformed into ZmNRT1.1B gene by hydroponics, under the conditions of 0.04mmol/L, 0.4mmol/L, 4mmol/L NO 3 - After culturing for 14 days, the biomass and nitrogen concentration of the plants were measured. The maize that did not contain the p1301-Bar-ZmNRT1.1B fragment in the progeny of self-segregation was used as a control.

玉米水培方式:用不同NO3 -浓度(0.04mmol/L、0.4mmol/L、4mmol/L)的Hoagland营养液培养14天,每2天换一次营养液。Maize hydroponics method: cultured with Hoagland nutrient solution with different NO 3 -concentrations (0.04mmol/L, 0.4mmol/L, 4mmol/L) for 14 days, and the nutrient solution was changed every 2 days.

地上部生物量及吸氮量统计结果如图5所示,在0.2mM或2mM Ca(NO3)2为唯一氮源条件下,转基因系地上部生物量和氮含量与野生型对照无明显差异;而在0.02mM Ca(NO3)2条件下,转基因系地上部生物量和氮含量明显高于与野生型对照。The statistical results of above-ground biomass and nitrogen uptake are shown in Figure 5. Under the condition that 0.2mM or 2mM Ca(NO 3 ) 2 was the only nitrogen source, the above-ground biomass and nitrogen content of transgenic lines were not significantly different from wild-type controls. Under the condition of 0.02mM Ca(NO 3 ) 2 , the aboveground biomass and nitrogen content of transgenic lines were significantly higher than those of wild-type controls.

这些结果说明了提高ZmNRT1;1A基因或ZmNRT1;1B基因的表达可以提高转基因玉米在低氮环境下对硝酸盐的吸收和利用能力,从而提高植株在低氮环境下的氮效率,而对转基因玉米在正常氮环境下对硝酸盐的吸收和利用能力则无影响。These results indicate that increasing the expression of ZmNRT1; 1A gene or ZmNRT1; 1B gene can improve the ability of transgenic maize to absorb and utilize nitrate under low nitrogen environment, thereby improving the nitrogen efficiency of plants in low nitrogen environment. Under normal nitrogen environment, it has no effect on the absorption and utilization of nitrate.

在水稻中的研究发现,OsNRT1.1A在高氮及低氮条件下均能显著提高水稻的氮效率,同时在高氮下还能促进早熟;而OsNRT1.1B存在着优良的等位变异,该等位变异在不同氮环境下也均能提高水稻的氮效率。从进化关系中发现,ZmNRT1.1A/ZmNRT1.1B基因是OsNRT1.1A/OsNRT1.1B基因在玉米中的同源基因。但与水稻不同的是,OsNRT1.1a/OsNRT1.1b在不同氮环境下均能提高水稻的氮效率,而ZmNRT1.1A/ZmNRT1.1B只在低氮环境下提高玉米的氮效率。这体现出了同源基因的相似性及物种间的特异性。本发明证明在玉米中过表达ZmNRT1.1A或ZmNRT1.1B基因均可以提高玉米在低氮条件下的生物量及氮含量。因此具有低氮下提高氮肥利用效率的应用价值,具有潜在的育种价值。Studies in rice have found that OsNRT1.1A can significantly improve the nitrogen efficiency of rice under both high nitrogen and low nitrogen conditions, and can also promote early maturity under high nitrogen; while OsNRT1.1B has excellent allelic variation, this Allelic variation can also improve nitrogen efficiency in rice under different nitrogen environments. From the evolutionary relationship, ZmNRT1.1A/ZmNRT1.1B gene was found to be the homologous gene of OsNRT1.1A/OsNRT1.1B gene in maize. However, unlike rice, OsNRT1.1a/OsNRT1.1b could improve nitrogen efficiency of rice under different nitrogen environments, while ZmNRT1.1A/ZmNRT1.1B only improved nitrogen efficiency of maize under low nitrogen environment. This reflects the similarity of homologous genes and the specificity between species. The present invention proves that overexpression of ZmNRT1.1A or ZmNRT1.1B gene in maize can increase the biomass and nitrogen content of maize under low nitrogen conditions. Therefore, it has the application value of improving nitrogen utilization efficiency under low nitrogen, and has potential breeding value.

以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. For those skilled in the art, without departing from the spirit and scope of the present invention, and without unnecessary experimentation, the present invention can be implemented in a wide range under equivalent parameters, concentrations and conditions. While the invention has been given particular embodiments, it should be understood that the invention can be further modified. In conclusion, in accordance with the principles of the present invention, this application is intended to cover any alterations, uses or improvements of the invention, including changes made using conventional techniques known in the art, departing from the scope disclosed in this application. The application of some of the essential features can be made within the scope of the following appended claims.

序列表 sequence listing

<110> 中国农业大学<110> China Agricultural University

<120> 硝酸盐吸收相关蛋白在调控玉米对硝酸盐吸收中的应用<120> Application of nitrate uptake-related proteins in the regulation of nitrate uptake in maize

<130> GNCSY210027<130> GNCSY210027

<160> 4<160> 4

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1827<211> 1827

<212> DNA<212> DNA

<213> 玉米(Zea mays)<213> Corn (Zea mays)

<400> 1<400> 1

atggtcggac tcctccccga gaccaatgcc gcggcggaga cggacgtcct cctcgacgcc 60atggtcggac tcctccccga gaccaatgcc gcggcggaga cggacgtcct cctcgacgcc 60

tgggacttca agggccggcc ggccccgcgc gccaccaccg gccgctgggg cgccgccgcc 120tgggacttca agggccggcc ggccccgcgc gccaccaccg gccgctgggg cgccgccgcc 120

atgatcctag tggcggagct gaacgagcgg ctgacgacgc tgggcatcgc cgtgaacctg 180atgatcctag tggcggagct gaacgagcgg ctgacgacgc tgggcatcgc cgtgaacctg 180

gtgacgtacc tgacgggcac catgcacctg ggcaacgccg agtccgccaa cgtcgtcacc 240gtgacgtacc tgacgggcac catgcacctg ggcaacgccg agtccgccaa cgtcgtcacc 240

aacttcatgg gcacctcctt catgctctgc ctcctcggcg gcttcgtcgc cgactccttc 300aacttcatgg gcacctcctt catgctctgc ctcctcggcg gcttcgtcgc cgactccttc 300

ctcggccgct acctcaccat cgccatcttc accgccgtcc aggcctcggg cgtgacgatc 360ctcggccgct acctcaccat cgccatcttc accgccgtcc aggcctcggg cgtgacgatc 360

ctgacgatct cgacggcggc gccggggcta cggccggcgt cctgctccgc gaccggcgga 420ctgacgatct cgacggcggc gccggggcta cggccggcgt cctgctccgc gaccggcgga 420

ggcgtcgtcg gggagtgcgc gcgggcgtcg ggggcgcagc tgggggtgct gtacctggcg 480ggcgtcgtcg gggagtgcgc gcgggcgtcg ggggcgcagc tgggggtgct gtacctggcg 480

ctgtacctga cggcgctggg cacgggtggg ctaaagtcga gcgtgtcggg gttcgggtcg 540ctgtacctga cggcgctggg cacgggtggg ctaaagtcga gcgtgtcggg gttcgggtcg 540

gaccagttcg acgagtcgga cggcggggag aagcggcaga tgatgcgctt cttcaactgg 600gaccagttcg acgagtcgga cggcggggag aagcggcaga tgatgcgctt cttcaactgg 600

ttcttcttct tcatctcgct ggggtcgctg ctggccgtca ccgtgctggt gtacgtccag 660ttcttcttct tcatctcgct ggggtcgctg ctggccgtca ccgtgctggt gtacgtccag 660

gacaacctgg gcaggcgctg gggctacggc gcctgcgcct gcgccatcgc cgcgggcctc 720gacaacctgg gcaggcgctg gggctacggc gcctgcgcct gcgccatcgc cgcgggcctc 720

ctcgtcttcc tggccggcac acgcaggtac cgcttcaaga agctggccgg cagccccctc 780ctcgtcttcc tggccggcac acgcaggtac cgcttcaaga agctggccgg cagccccctc 780

acgcagatcg ccgccgtcgt cgtcgccgcc tggcgcaagc gccgcctccc tctccccgcc 840acgcagatcg ccgccgtcgt cgtcgccgcc tggcgcaagc gccgcctccc tctccccgcc 840

gaccccgcca tgctctacga cgtcgacgtc ggcaaggccg ccgccgtcga ggatgggtcc 900gaccccgcca tgctctacga cgtcgacgtc ggcaaggccg ccgccgtcga ggatgggtcc 900

tccagcaaga agagcaagcg caaggagcgc ctcccccaca ccgaccagtt ccgcttcctg 960tccagcaaga agagcaagcg caaggagcgc ctcccccaca ccgaccagtt ccgcttcctg 960

gaccacgcgg cgatcaacga ggatccggcg gcgggggcga gcagcagcag caagtggcgg 1020gaccacgcgg cgatcaacga ggatccggcg gcgggggcga gcagcagcag caagtggcgg 1020

ctggcgacgc tgacggacgt ggaggaggtg aagacggtgg cgcggatgct gccgatctgg 1080ctggcgacgc tgacggacgt ggaggaggtg aagacggtgg cgcggatgct gccgatctgg 1080

gcgaccacga tcatgttctg gacggtgtac gcgcagatga ccaccttctc ggtgtcgcag 1140gcgaccacga tcatgttctg gacggtgtac gcgcagatga ccaccttctc ggtgtcgcag 1140

gccaccacca tggaccgccg cgtcgggggc tcgttccaga tccccgcggg ctccctcacc 1200gccaccacca tggaccgccg cgtcgggggc tcgttccaga tccccgcggg ctccctcacc 1200

gtcttcttcg tcggctccat cctgctcacc gtgcccgtct acgaccgcct ggtggtgccc 1260gtcttcttcg tcggctccat cctgctcacc gtgcccgtct acgaccgcct ggtggtgccc 1260

gtcgcgcgcc gcgtcagcgg caacccgcac ggcctcaccc cgctgcagcg gatcgccgtc 1320gtcgcgcgcc gcgtcagcgg caacccgcac ggcctcaccc cgctgcagcg gatcgccgtc 1320

ggcctcgcgc tctccgtcgt cgccatggcg ggcgccgcgc tcacggaggt ccgccgcctc 1380ggcctcgcgc tctccgtcgt cgccatggcg ggcgccgcgc tcacggaggt ccgccgcctc 1380

cgcgtcgcgc gcgattcctc cgagtccgcc tccggaggcg tcgtgcccat gtccgtgttc 1440cgcgtcgcgc gcgattcctc cgagtccgcc tccggaggcg tcgtgcccat gtccgtgttc 1440

tggctcatcc cgcagttctt cctcgtgggg gcgggcgagg cgttcacgta catcggccag 1500tggctcatcc cgcagttctt cctcgtgggg gcgggcgagg cgttcacgta catcggccag 1500

ctcgacttct tcctgcgcga gtgccccaag gggatgaaga ccatgagcac ggggctgttc 1560ctcgacttct tcctgcgcga gtgccccaag gggatgaaga ccatgagcac ggggctgttc 1560

ctcagcaccc tgtcgctggg attcttcgtc agctccgcgc tcgtcgccgc cgtgcacagg 1620ctcagcaccc tgtcgctggg attcttcgtc agctccgcgc tcgtcgccgc cgtgcacagg 1620

gtcacgggcg accgccaccc ctggatcgcc aacgacctca acaagggccg cctcgacaac 1680gtcacgggcg accgccaccc ctggatcgcc aacgacctca acaagggccg cctcgacaac 1680

ttctactggc tgctcgccgc cgtctgcctc gccaacctac tagtctacct cgtcgccgcc 1740ttctactggc tgctcgccgc cgtctgcctc gccaacctac tagtctacct cgtcgccgcc 1740

cgctggtaca agtacaaggc gggccgcccc ggcgccgacg gcagcgtcaa cggcgtcgag 1800cgctggtaca agtacaaggc gggccgcccc ggcgccgacg gcagcgtcaa cggcgtcgag 1800

atggccgacg agcccacgct ccactga 1827atggccgacg agcccacgct ccactga 1827

<210> 2<210> 2

<211> 1788<211> 1788

<212> DNA<212> DNA

<213> Zea mays<213> Zea mays

<400> 2<400> 2

atggcctccg tcctgccgga tactgcgtcg gatggcaagg ccttgacgga cgcctgggac 60atggcctccg tcctgccgga tactgcgtcg gatggcaagg ccttgacgga cgcctgggac 60

tacaagggcc gccccgctag ccgcgccacc accggcggct gggcgtgcgc cgccatgata 120tacaagggcc gccccgctag ccgcgccacc accggcggct gggcgtgcgc cgccatgata 120

ctaggcgcgg agctgttcga gcggatgacg acgctgggca tcgcggtgaa cctggtgccg 180ctaggcgcgg agctgttcga gcggatgacg acgctgggca tcgcggtgaa cctggtgccg 180

tacatgaccg gcaccatgca cctcggcaat gcctccgccg ccaacaccgt caccaacttc 240tacatgaccg gcaccatgca cctcggcaat gcctccgccg ccaacaccgt caccaacttc 240

atcggggctt ccttcatgct ctgcctcctc ggcgggttcg tcgccgacac ctacctcggc 300atcggggctt ccttcatgct ctgcctcctc ggcgggttcg tcgccgacac ctacctcggc 300

cgctacctca ccatcgccat cttcaccgcc gtccaggcca cgggggtgat gatcctgacg 360cgctacctca ccatcgccat cttcaccgcc gtccaggcca cgggggtgat gatcctgacg 360

atctcaacgg ccgctcccgg gctgcgtccg ccggcgtgtg cggacgccaa gggggcgagc 420atctcaacgg ccgctcccgg gctgcgtccg ccggcgtgtg cggacgccaa gggggcgagc 420

cccgactgcg tgccggcgaa cgggacgcag ctcggggtgc tatacctggg tctgtacctg 480cccgactgcg tgccggcgaa cgggacgcag ctcggggtgc tatacctggg tctgtacctg 480

acggcgctgg gcacgggcgg gctcaagtcc agcgtgtcgg gcttcggctc cgaccagttc 540acggcgctgg gcacgggcgg gctcaagtcc agcgtgtcgg gcttcggctc cgaccagttc 540

gacgaggcgc acggcggcga gcgcaagagg atgctgcgct tcttcaactg gttctacttc 600gacgaggcgc acggcggcga gcgcaagagg atgctgcgct tcttcaactg gttctacttc 600

ttcgtcagca tcggcgcgct gctggccgtc acggtgctgg tgtacgtgca ggacaacgtg 660ttcgtcagca tcggcgcgct gctggccgtc acggtgctgg tgtacgtgca ggacaacgtg 660

ggccgccgct ggggctacgg catctgcgcc gtcggcatcc tgtgcgggct gggcgtcttc 720ggccgccgct ggggctacgg catctgcgcc gtcggcatcc tgtgcgggct gggcgtcttc 720

ctgctgggca cccggaggta ccggttcagg aagctggtgg ggagcccgct cacccaggtg 780ctgctgggca cccggaggta ccggttcagg aagctggtgg ggagcccgct cacccaggtg 780

gccgccgtga cggccgccgc ctggagcaag cgcgcgctgc cgctgccgtc cgacccggac 840gccgccgtga cggccgccgc ctggagcaag cgcgcgctgc cgctgccgtc cgacccggac 840

atgctctacg acgtggacga cgcggccgcc gccggcgccg acgtcaaggg gaaggagaaa 900atgctctacg acgtggacga cgcggccgcc gccggcgccg acgtcaaggg gaaggagaaa 900

ctgccccaca gcaaggaatg caggttcctg gaccacgcgg ccatcgtcgt cgtcgacggc 960ctgccccaca gcaaggaatg caggttcctg gaccacgcgg ccatcgtcgt cgtcgacggc 960

ggcggcgagt cgtcaccggc ggcgagcaag tgggcgctgt gcacgcggac ggacgtggag 1020ggcggcgagt cgtcaccggc ggcgagcaag tgggcgctgt gcacgcggac ggacgtggag 1020

gaggtgaagc aggtggtgcg gatgctgccc atctgggcca ccaccatcat gttctggacc 1080gaggtgaagc aggtggtgcg gatgctgccc atctgggcca ccaccatcat gttctggacc 1080

atccacgcgc agatgaccac cttctcggtg gcgcaggccg aggtcatgga ccgggccctc 1140atccacgcgc agatgaccac cttctcggtg gcgcaggccg aggtcatgga ccgggccctc 1140

ggcggcggct cgggcttcct catccccgcg ggctccctca ccgtcttcct catcggctcc 1200ggcggcggct cgggcttcct catccccgcg ggctccctca ccgtcttcct catcggctcc 1200

atcctgctca ccgtgcccgt ctacgaccgc ctcctggcgc ccctcgcccg ccgcctcacg 1260atcctgctca ccgtgcccgt ctacgaccgc ctcctggcgc ccctcgcccg ccgcctcacg 1260

ggcaacccgc acggcctcac cccgctgcag cgcgtcttcg tcggcctcct cctctccgtc 1320ggcaacccgc acggcctcac cccgctgcag cgcgtcttcg tcggcctcct cctctccgtc 1320

gccggcatgg ccgtggccgc gctcgtcgag cgccaccgcc aggtggcctc cggccacggg 1380gccggcatgg ccgtggccgc gctcgtcgag cgccaccgcc aggtggcctc cggccacggg 1380

gccacgctca cggtgttcct gctcatgccg cagttcgtgc tcgtcggcgc gggcgaggca 1440gccacgctca cggtgttcct gctcatgccg cagttcgtgc tcgtcggcgc gggcgaggca 1440

ttcacgtaca tgggccagct cgccttcttc ctgcgcgagt gccccaaggg catgaagacc 1500ttcacgtaca tgggccagct cgccttcttc ctgcgcgagt gccccaaggg catgaagacc 1500

atgagcacgg gcctgttcct cagcacctgc gcgctcgggt tcttcttcag caccctgctc 1560atgagcacgg gcctgttcct cagcacctgc gcgctcgggt tcttcttcag caccctgctc 1560

gtcaccatcg tgcacaaggt cacggcccac gccggccgtg acggttggct cgccgacaac 1620gtcaccatcg tgcacaaggt cacggcccac gccggccgtg acggttggct cgccgacaac 1620

ctcgacgacg ggaggctcga ctacttctac tggctgctcg ccgtcatcag cgccatcaac 1680ctcgacgacg ggaggctcga ctacttctac tggctgctcg ccgtcatcag cgccatcaac 1680

ctcgtcctct tcacgttcgc cgccaggggc tacgtctata aggagaagcg cctggccgac 1740ctcgtcctct tcacgttcgc cgccaggggc tacgtctata aggagaagcg cctggccgac 1740

gccggcatcg agctcgcaga cgaggagtct attgccgtcg gccactga 1788gccggcatcg agctcgcaga cgaggagtct attgccgtcg gccactga 1788

<210> 3<210> 3

<211> 608<211> 608

<212> PRT<212> PRT

<213> 玉米(Zea mays)<213> Corn (Zea mays)

<400> 3<400> 3

Met Val Gly Leu Leu Pro Glu Thr Asn Ala Ala Ala Glu Thr Asp ValMet Val Gly Leu Leu Pro Glu Thr Asn Ala Ala Ala Glu Thr Asp Val

1 5 10 151 5 10 15

Leu Leu Asp Ala Trp Asp Phe Lys Gly Arg Pro Ala Pro Arg Ala ThrLeu Leu Asp Ala Trp Asp Phe Lys Gly Arg Pro Ala Pro Arg Ala Thr

20 25 30 20 25 30

Thr Gly Arg Trp Gly Ala Ala Ala Met Ile Leu Val Ala Glu Leu AsnThr Gly Arg Trp Gly Ala Ala Ala Met Ile Leu Val Ala Glu Leu Asn

35 40 45 35 40 45

Glu Arg Leu Thr Thr Leu Gly Ile Ala Val Asn Leu Val Thr Tyr LeuGlu Arg Leu Thr Thr Leu Gly Ile Ala Val Asn Leu Val Thr Tyr Leu

50 55 60 50 55 60

Thr Gly Thr Met His Leu Gly Asn Ala Glu Ser Ala Asn Val Val ThrThr Gly Thr Met His Leu Gly Asn Ala Glu Ser Ala Asn Val Val Thr

65 70 75 8065 70 75 80

Asn Phe Met Gly Thr Ser Phe Met Leu Cys Leu Leu Gly Gly Phe ValAsn Phe Met Gly Thr Ser Phe Met Leu Cys Leu Leu Gly Gly Phe Val

85 90 95 85 90 95

Ala Asp Ser Phe Leu Gly Arg Tyr Leu Thr Ile Ala Ile Phe Thr AlaAla Asp Ser Phe Leu Gly Arg Tyr Leu Thr Ile Ala Ile Phe Thr Ala

100 105 110 100 105 110

Val Gln Ala Ser Gly Val Thr Ile Leu Thr Ile Ser Thr Ala Ala ProVal Gln Ala Ser Gly Val Thr Ile Leu Thr Ile Ser Thr Ala Ala Pro

115 120 125 115 120 125

Gly Leu Arg Pro Ala Ser Cys Ser Ala Thr Gly Gly Gly Val Val GlyGly Leu Arg Pro Ala Ser Cys Ser Ala Thr Gly Gly Gly Val Val Gly

130 135 140 130 135 140

Glu Cys Ala Arg Ala Ser Gly Ala Gln Leu Gly Val Leu Tyr Leu AlaGlu Cys Ala Arg Ala Ser Gly Ala Gln Leu Gly Val Leu Tyr Leu Ala

145 150 155 160145 150 155 160

Leu Tyr Leu Thr Ala Leu Gly Thr Gly Gly Leu Lys Ser Ser Val SerLeu Tyr Leu Thr Ala Leu Gly Thr Gly Gly Leu Lys Ser Ser Val Ser

165 170 175 165 170 175

Gly Phe Gly Ser Asp Gln Phe Asp Glu Ser Asp Gly Gly Glu Lys ArgGly Phe Gly Ser Asp Gln Phe Asp Glu Ser Asp Gly Gly Glu Lys Arg

180 185 190 180 185 190

Gln Met Met Arg Phe Phe Asn Trp Phe Phe Phe Phe Ile Ser Leu GlyGln Met Met Arg Phe Phe Asn Trp Phe Phe Phe Phe Ile Ser Leu Gly

195 200 205 195 200 205

Ser Leu Leu Ala Val Thr Val Leu Val Tyr Val Gln Asp Asn Leu GlySer Leu Leu Ala Val Thr Val Leu Val Tyr Val Gln Asp Asn Leu Gly

210 215 220 210 215 220

Arg Arg Trp Gly Tyr Gly Ala Cys Ala Cys Ala Ile Ala Ala Gly LeuArg Arg Trp Gly Tyr Gly Ala Cys Ala Cys Ala Ile Ala Ala Gly Leu

225 230 235 240225 230 235 240

Leu Val Phe Leu Ala Gly Thr Arg Arg Tyr Arg Phe Lys Lys Leu AlaLeu Val Phe Leu Ala Gly Thr Arg Arg Tyr Arg Phe Lys Lys Leu Ala

245 250 255 245 250 255

Gly Ser Pro Leu Thr Gln Ile Ala Ala Val Val Val Ala Ala Trp ArgGly Ser Pro Leu Thr Gln Ile Ala Ala Val Val Val Ala Ala Trp Arg

260 265 270 260 265 270

Lys Arg Arg Leu Pro Leu Pro Ala Asp Pro Ala Met Leu Tyr Asp ValLys Arg Arg Leu Pro Leu Pro Ala Asp Pro Ala Met Leu Tyr Asp Val

275 280 285 275 280 285

Asp Val Gly Lys Ala Ala Ala Val Glu Asp Gly Ser Ser Ser Lys LysAsp Val Gly Lys Ala Ala Ala Val Glu Asp Gly Ser Ser Ser Lys Lys

290 295 300 290 295 300

Ser Lys Arg Lys Glu Arg Leu Pro His Thr Asp Gln Phe Arg Phe LeuSer Lys Arg Lys Glu Arg Leu Pro His Thr Asp Gln Phe Arg Phe Leu

305 310 315 320305 310 315 320

Asp His Ala Ala Ile Asn Glu Asp Pro Ala Ala Gly Ala Ser Ser SerAsp His Ala Ala Ile Asn Glu Asp Pro Ala Ala Gly Ala Ser Ser Ser

325 330 335 325 330 335

Ser Lys Trp Arg Leu Ala Thr Leu Thr Asp Val Glu Glu Val Lys ThrSer Lys Trp Arg Leu Ala Thr Leu Thr Asp Val Glu Glu Val Lys Thr

340 345 350 340 345 350

Val Ala Arg Met Leu Pro Ile Trp Ala Thr Thr Ile Met Phe Trp ThrVal Ala Arg Met Leu Pro Ile Trp Ala Thr Thr Ile Met Phe Trp Thr

355 360 365 355 360 365

Val Tyr Ala Gln Met Thr Thr Phe Ser Val Ser Gln Ala Thr Thr MetVal Tyr Ala Gln Met Thr Thr Phe Ser Val Ser Gln Ala Thr Thr Met

370 375 380 370 375 380

Asp Arg Arg Val Gly Gly Ser Phe Gln Ile Pro Ala Gly Ser Leu ThrAsp Arg Arg Val Gly Gly Ser Phe Gln Ile Pro Ala Gly Ser Leu Thr

385 390 395 400385 390 395 400

Val Phe Phe Val Gly Ser Ile Leu Leu Thr Val Pro Val Tyr Asp ArgVal Phe Phe Val Gly Ser Ile Leu Leu Thr Val Pro Val Tyr Asp Arg

405 410 415 405 410 415

Leu Val Val Pro Val Ala Arg Arg Val Ser Gly Asn Pro His Gly LeuLeu Val Val Pro Val Ala Arg Arg Val Ser Gly Asn Pro His Gly Leu

420 425 430 420 425 430

Thr Pro Leu Gln Arg Ile Ala Val Gly Leu Ala Leu Ser Val Val AlaThr Pro Leu Gln Arg Ile Ala Val Gly Leu Ala Leu Ser Val Val Ala

435 440 445 435 440 445

Met Ala Gly Ala Ala Leu Thr Glu Val Arg Arg Leu Arg Val Ala ArgMet Ala Gly Ala Ala Leu Thr Glu Val Arg Arg Leu Arg Val Ala Arg

450 455 460 450 455 460

Asp Ser Ser Glu Ser Ala Ser Gly Gly Val Val Pro Met Ser Val PheAsp Ser Ser Glu Ser Ala Ser Gly Gly Val Val Pro Met Ser Val Phe

465 470 475 480465 470 475 480

Trp Leu Ile Pro Gln Phe Phe Leu Val Gly Ala Gly Glu Ala Phe ThrTrp Leu Ile Pro Gln Phe Phe Leu Val Gly Ala Gly Glu Ala Phe Thr

485 490 495 485 490 495

Tyr Ile Gly Gln Leu Asp Phe Phe Leu Arg Glu Cys Pro Lys Gly MetTyr Ile Gly Gln Leu Asp Phe Phe Leu Arg Glu Cys Pro Lys Gly Met

500 505 510 500 505 510

Lys Thr Met Ser Thr Gly Leu Phe Leu Ser Thr Leu Ser Leu Gly PheLys Thr Met Ser Thr Gly Leu Phe Leu Ser Thr Leu Ser Leu Gly Phe

515 520 525 515 520 525

Phe Val Ser Ser Ala Leu Val Ala Ala Val His Arg Val Thr Gly AspPhe Val Ser Ser Ala Leu Val Ala Ala Val His Arg Val Thr Gly Asp

530 535 540 530 535 540

Arg His Pro Trp Ile Ala Asn Asp Leu Asn Lys Gly Arg Leu Asp AsnArg His Pro Trp Ile Ala Asn Asp Leu Asn Lys Gly Arg Leu Asp Asn

545 550 555 560545 550 555 560

Phe Tyr Trp Leu Leu Ala Ala Val Cys Leu Ala Asn Leu Leu Val TyrPhe Tyr Trp Leu Leu Ala Ala Val Cys Leu Ala Asn Leu Leu Val Tyr

565 570 575 565 570 575

Leu Val Ala Ala Arg Trp Tyr Lys Tyr Lys Ala Gly Arg Pro Gly AlaLeu Val Ala Ala Arg Trp Tyr Lys Tyr Lys Ala Gly Arg Pro Gly Ala

580 585 590 580 585 590

Asp Gly Ser Val Asn Gly Val Glu Met Ala Asp Glu Pro Thr Leu HisAsp Gly Ser Val Asn Gly Val Glu Met Ala Asp Glu Pro Thr Leu His

595 600 605 595 600 605

<210> 4<210> 4

<211> 595<211> 595

<212> PRT<212> PRT

<213> 玉米(Zea mays)<213> Corn (Zea mays)

<400> 4<400> 4

Met Ala Ser Val Leu Pro Asp Thr Ala Ser Asp Gly Lys Ala Leu ThrMet Ala Ser Val Leu Pro Asp Thr Ala Ser Asp Gly Lys Ala Leu Thr

1 5 10 151 5 10 15

Asp Ala Trp Asp Tyr Lys Gly Arg Pro Ala Ser Arg Ala Thr Thr GlyAsp Ala Trp Asp Tyr Lys Gly Arg Pro Ala Ser Arg Ala Thr Thr Gly

20 25 30 20 25 30

Gly Trp Ala Cys Ala Ala Met Ile Leu Gly Ala Glu Leu Phe Glu ArgGly Trp Ala Cys Ala Ala Met Ile Leu Gly Ala Glu Leu Phe Glu Arg

35 40 45 35 40 45

Met Thr Thr Leu Gly Ile Ala Val Asn Leu Val Pro Tyr Met Thr GlyMet Thr Thr Leu Gly Ile Ala Val Asn Leu Val Pro Tyr Met Thr Gly

50 55 60 50 55 60

Thr Met His Leu Gly Asn Ala Ser Ala Ala Asn Thr Val Thr Asn PheThr Met His Leu Gly Asn Ala Ser Ala Ala Asn Thr Val Thr Asn Phe

65 70 75 8065 70 75 80

Ile Gly Ala Ser Phe Met Leu Cys Leu Leu Gly Gly Phe Val Ala AspIle Gly Ala Ser Phe Met Leu Cys Leu Leu Gly Gly Phe Val Ala Asp

85 90 95 85 90 95

Thr Tyr Leu Gly Arg Tyr Leu Thr Ile Ala Ile Phe Thr Ala Val GlnThr Tyr Leu Gly Arg Tyr Leu Thr Ile Ala Ile Phe Thr Ala Val Gln

100 105 110 100 105 110

Ala Thr Gly Val Met Ile Leu Thr Ile Ser Thr Ala Ala Pro Gly LeuAla Thr Gly Val Met Ile Leu Thr Ile Ser Thr Ala Ala Pro Gly Leu

115 120 125 115 120 125

Arg Pro Pro Ala Cys Ala Asp Ala Lys Gly Ala Ser Pro Asp Cys ValArg Pro Pro Ala Cys Ala Asp Ala Lys Gly Ala Ser Pro Asp Cys Val

130 135 140 130 135 140

Pro Ala Asn Gly Thr Gln Leu Gly Val Leu Tyr Leu Gly Leu Tyr LeuPro Ala Asn Gly Thr Gln Leu Gly Val Leu Tyr Leu Gly Leu Tyr Leu

145 150 155 160145 150 155 160

Thr Ala Leu Gly Thr Gly Gly Leu Lys Ser Ser Val Ser Gly Phe GlyThr Ala Leu Gly Thr Gly Gly Leu Lys Ser Ser Val Ser Gly Phe Gly

165 170 175 165 170 175

Ser Asp Gln Phe Asp Glu Ala His Gly Gly Glu Arg Lys Arg Met LeuSer Asp Gln Phe Asp Glu Ala His Gly Gly Glu Arg Lys Arg Met Leu

180 185 190 180 185 190

Arg Phe Phe Asn Trp Phe Tyr Phe Phe Val Ser Ile Gly Ala Leu LeuArg Phe Phe Asn Trp Phe Tyr Phe Phe Val Ser Ile Gly Ala Leu Leu

195 200 205 195 200 205

Ala Val Thr Val Leu Val Tyr Val Gln Asp Asn Val Gly Arg Arg TrpAla Val Thr Val Leu Val Tyr Val Gln Asp Asn Val Gly Arg Arg Trp

210 215 220 210 215 220

Gly Tyr Gly Ile Cys Ala Val Gly Ile Leu Cys Gly Leu Gly Val PheGly Tyr Gly Ile Cys Ala Val Gly Ile Leu Cys Gly Leu Gly Val Phe

225 230 235 240225 230 235 240

Leu Leu Gly Thr Arg Arg Tyr Arg Phe Arg Lys Leu Val Gly Ser ProLeu Leu Gly Thr Arg Arg Tyr Arg Phe Arg Lys Leu Val Gly Ser Pro

245 250 255 245 250 255

Leu Thr Gln Val Ala Ala Val Thr Ala Ala Ala Trp Ser Lys Arg AlaLeu Thr Gln Val Ala Ala Val Thr Ala Ala Ala Trp Ser Lys Arg Ala

260 265 270 260 265 270

Leu Pro Leu Pro Ser Asp Pro Asp Met Leu Tyr Asp Val Asp Asp AlaLeu Pro Leu Pro Ser Asp Pro Asp Met Leu Tyr Asp Val Asp Asp Ala

275 280 285 275 280 285

Ala Ala Ala Gly Ala Asp Val Lys Gly Lys Glu Lys Leu Pro His SerAla Ala Ala Gly Ala Asp Val Lys Gly Lys Glu Lys Leu Pro His Ser

290 295 300 290 295 300

Lys Glu Cys Arg Phe Leu Asp His Ala Ala Ile Val Val Val Asp GlyLys Glu Cys Arg Phe Leu Asp His Ala Ala Ile Val Val Val Asp Gly

305 310 315 320305 310 315 320

Gly Gly Glu Ser Ser Pro Ala Ala Ser Lys Trp Ala Leu Cys Thr ArgGly Gly Glu Ser Ser Pro Ala Ala Ser Lys Trp Ala Leu Cys Thr Arg

325 330 335 325 330 335

Thr Asp Val Glu Glu Val Lys Gln Val Val Arg Met Leu Pro Ile TrpThr Asp Val Glu Glu Val Lys Gln Val Val Arg Met Leu Pro Ile Trp

340 345 350 340 345 350

Ala Thr Thr Ile Met Phe Trp Thr Ile His Ala Gln Met Thr Thr PheAla Thr Thr Ile Met Phe Trp Thr Ile His Ala Gln Met Thr Thr Phe

355 360 365 355 360 365

Ser Val Ala Gln Ala Glu Val Met Asp Arg Ala Leu Gly Gly Gly SerSer Val Ala Gln Ala Glu Val Met Asp Arg Ala Leu Gly Gly Gly Ser

370 375 380 370 375 380

Gly Phe Leu Ile Pro Ala Gly Ser Leu Thr Val Phe Leu Ile Gly SerGly Phe Leu Ile Pro Ala Gly Ser Leu Thr Val Phe Leu Ile Gly Ser

385 390 395 400385 390 395 400

Ile Leu Leu Thr Val Pro Val Tyr Asp Arg Leu Leu Ala Pro Leu AlaIle Leu Leu Thr Val Pro Val Tyr Asp Arg Leu Leu Ala Pro Leu Ala

405 410 415 405 410 415

Arg Arg Leu Thr Gly Asn Pro His Gly Leu Thr Pro Leu Gln Arg ValArg Arg Leu Thr Gly Asn Pro His Gly Leu Thr Pro Leu Gln Arg Val

420 425 430 420 425 430

Phe Val Gly Leu Leu Leu Ser Val Ala Gly Met Ala Val Ala Ala LeuPhe Val Gly Leu Leu Leu Ser Val Ala Gly Met Ala Val Ala Ala Leu

435 440 445 435 440 445

Val Glu Arg His Arg Gln Val Ala Ser Gly His Gly Ala Thr Leu ThrVal Glu Arg His Arg Gln Val Ala Ser Gly His Gly Ala Thr Leu Thr

450 455 460 450 455 460

Val Phe Leu Leu Met Pro Gln Phe Val Leu Val Gly Ala Gly Glu AlaVal Phe Leu Leu Met Pro Gln Phe Val Leu Val Gly Ala Gly Glu Ala

465 470 475 480465 470 475 480

Phe Thr Tyr Met Gly Gln Leu Ala Phe Phe Leu Arg Glu Cys Pro LysPhe Thr Tyr Met Gly Gln Leu Ala Phe Phe Leu Arg Glu Cys Pro Lys

485 490 495 485 490 495

Gly Met Lys Thr Met Ser Thr Gly Leu Phe Leu Ser Thr Cys Ala LeuGly Met Lys Thr Met Ser Thr Gly Leu Phe Leu Ser Thr Cys Ala Leu

500 505 510 500 505 510

Gly Phe Phe Phe Ser Thr Leu Leu Val Thr Ile Val His Lys Val ThrGly Phe Phe Phe Ser Thr Leu Leu Val Thr Ile Val His Lys Val Thr

515 520 525 515 520 525

Ala His Ala Gly Arg Asp Gly Trp Leu Ala Asp Asn Leu Asp Asp GlyAla His Ala Gly Arg Asp Gly Trp Leu Ala Asp Asn Leu Asp Asp Gly

530 535 540 530 535 540

Arg Leu Asp Tyr Phe Tyr Trp Leu Leu Ala Val Ile Ser Ala Ile AsnArg Leu Asp Tyr Phe Tyr Trp Leu Leu Ala Val Ile Ser Ala Ile Asn

545 550 555 560545 550 555 560

Leu Val Leu Phe Thr Phe Ala Ala Arg Gly Tyr Val Tyr Lys Glu LysLeu Val Leu Phe Thr Phe Ala Ala Arg Gly Tyr Val Tyr Lys Glu Lys

565 570 575 565 570 575

Arg Leu Ala Asp Ala Gly Ile Glu Leu Ala Asp Glu Glu Ser Ile AlaArg Leu Ala Asp Ala Gly Ile Glu Leu Ala Asp Glu Glu Ser Ile Ala

580 585 590 580 585 590

Val Gly HisVal Gly His

595 595

Claims (10)

1.硝酸盐吸收相关蛋白或调控所述硝酸盐吸收相关蛋白含量或活性的物质在调控植物对硝酸盐吸收或在制备调控植物对硝酸盐吸收产品中的应用,所述基因编码硝酸盐吸收相关蛋白,所述硝酸盐吸收相关蛋白是如下A1、A2或A3的蛋白质:1. the application of nitrate absorption-related protein or regulating and controlling the nitrate absorption-related protein content or active substance in regulating plant to nitrate absorption or in the preparation of regulating plant to nitrate absorption product, and described gene encodes nitrate absorption-related protein, the nitrate absorption-related protein is the following A1, A2 or A3 protein: A1、氨基酸序列是序列表中序列3或序列4中任一种所示的氨基酸序列的蛋白质;A1. The amino acid sequence is a protein of the amino acid sequence shown in either Sequence 3 or Sequence 4 in the sequence listing; A2、将序列表中序列3或序列4中任一种所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有80%以上的同一性且与植物白粉病抗性和/或纹枯病抗性相关的蛋白质;A2. The amino acid sequence shown in either Sequence 3 or Sequence 4 in the Sequence Listing is 80% identical to the protein shown in A1) obtained by substitution and/or deletion and/or addition of one or more amino acid residues A protein that is identical to the above and is associated with plant powdery mildew resistance and/or sheath blight resistance; A3、在A1)或A2)的N末端或/和C末端连接蛋白标签得到的融合蛋白质。A3. A fusion protein obtained by linking a protein tag to the N-terminus or/and C-terminus of A1) or A2). 2.根据权利要求1所述的应用,其特征在于,所述植物为单子叶植物或双子叶植物。2. The application according to claim 1, wherein the plant is a monocotyledonous plant or a dicotyledonous plant. 3.根据权利要求2所述的应用,其特征在于,所述单子叶植物为禾本科植物,所述双子叶植物为十字花科植物。3. The application according to claim 2, wherein the monocotyledonous plant is a gramineous plant, and the dicotyledonous plant is a cruciferous plant. 4.根据权利要求3所述的应用,其特征在于,所述禾本科植物为玉米,所述十字花科植物为拟南芥。4. The application according to claim 3, wherein the grasses are maize, and the crucifers are Arabidopsis. 5.调控基因表达的物质在调控植物对硝酸盐吸收中的应用或在制备调控植物对硝酸盐吸收产品中的应用,所述基因编码权利要求1所述的硝酸盐吸收相关蛋白。5. The application of a substance that regulates gene expression in regulating the absorption of nitrate by a plant or in the preparation of a product for regulating the absorption of nitrate by a plant, wherein the gene encodes the nitrate absorption-related protein of claim 1. 6.根据权利要求5所述的应用,其特征在于,所述调控基因表达的物质为与所述的硝酸盐吸收相关蛋白相关的生物材料;所述生物材料为下述C1-C3中的任一种:6. The application according to claim 5, wherein the material for regulating gene expression is a biological material related to the nitrate absorption-related protein; the biological material is any of the following C1-C3 A sort of: C1、编码权利要求1所述硝酸盐吸收相关蛋白的核酸分子;C1, a nucleic acid molecule encoding the nitrate absorption-related protein of claim 1; C2、提高权利要求1所述硝酸盐吸收相关蛋白表达的核酸分子;C2, the nucleic acid molecule that improves the expression of the nitrate absorption-related protein of claim 1; C3、含有C1或C2所述的核酸分子的表达盒、重组载体、重组微生物、转基因植物细胞系、转基因植物组织或转基因植物器官。C3. An expression cassette, recombinant vector, recombinant microorganism, transgenic plant cell line, transgenic plant tissue or transgenic plant organ comprising the nucleic acid molecule described in C1 or C2. 7.根据权利要求6所述的应用,其特征在于,C1所述核酸分子为如下D1或D2所示的基因:7. application according to claim 6 is characterized in that, the nucleic acid molecule described in C1 is the gene shown in following D1 or D2: D1、编码链的编码序列是序列表序列1或序列表序列2所示的DNA分子;D1. The coding sequence of the coding strand is the DNA molecule shown in Sequence Listing Sequence 1 or Sequence Listing Sequence 2; D2、核苷酸序列是序列表序列1或序列表序列2所示的DNA分子。D2. The nucleotide sequence is the DNA molecule shown in Sequence Listing Sequence 1 or Sequence Listing Sequence 2. 8.植物试剂,其特征在于,含有权利要求1所述的蛋白质、或权利要求5-7任一所述调控基因表达的物质,所述植物试剂是促进植物对氮的吸收利用的植物试剂。8. A plant agent, characterized in that it contains the protein of claim 1 or the substance that regulates gene expression according to any one of claims 5-7, and the plant agent is a plant agent that promotes the absorption and utilization of nitrogen by plants. 9.一种促进植物对硝酸盐吸收的方法,其特征在于,包括如下步骤:提高受体植物中权利要求1所述硝酸盐吸收相关蛋白的表达、提高权利要求1所述硝酸盐吸收相关蛋白的丰度,得到在低氮环境下硝酸盐吸收率高于所述受体植物的目的植物。9. A method for promoting the absorption of nitrate by a plant, comprising the steps of: improving the expression of the nitrate absorption-related protein of claim 1 in the recipient plant, improving the nitrate absorption-related protein of claim 1 The abundance of the target plants was obtained with a higher nitrate uptake rate than the recipient plants in a low nitrogen environment. 10.根据权利要求9所述的方法,其特征在于,包括将编码权利要求1所述蛋白质的核酸导入受体植物中,得到硝酸盐吸收率高于所述受体植物的目的植物。10 . The method according to claim 9 , comprising introducing the nucleic acid encoding the protein of claim 1 into a recipient plant to obtain a target plant with a higher nitrate absorption rate than the recipient plant. 11 .
CN202110136217.5A 2021-02-01 2021-02-01 Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn Active CN114920810B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110136217.5A CN114920810B (en) 2021-02-01 2021-02-01 Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110136217.5A CN114920810B (en) 2021-02-01 2021-02-01 Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn

Publications (2)

Publication Number Publication Date
CN114920810A true CN114920810A (en) 2022-08-19
CN114920810B CN114920810B (en) 2023-02-21

Family

ID=82804068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110136217.5A Active CN114920810B (en) 2021-02-01 2021-02-01 Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn

Country Status (1)

Country Link
CN (1) CN114920810B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887903A (en) * 2006-07-19 2007-01-03 北京优利康生物农业技术有限公司 Nitrate transport protein of diatom and its coding gene and application
CN101845088A (en) * 2010-06-04 2010-09-29 中国农业大学 Ammonium salt absorption-related protein and encoding gene and application thereof
US20110167517A1 (en) * 2010-01-06 2011-07-07 Pioneer Hi-Bred International, Inc. Identification of diurnal rhythms in photosynthetic and non-photsynthetic tissues from zea mays and use in improving crop plants
US20150315605A1 (en) * 2014-02-21 2015-11-05 E I Du Pont De Nemours And Company Novel transcripts and uses thereof for improvement of agronomic characteristics in crop plants
US20160010101A1 (en) * 2013-03-13 2016-01-14 Pioneer Hi-Bred International, Inc. Enhanced nitrate uptake and nitrate translocation by over- expressing maize functional low-affinity nitrate transporters in transgenic maize
CN107208100A (en) * 2014-09-24 2017-09-26 中国科学院遗传与发育生物学研究所 Plant nitrate transport albumen and application thereof
CN107779468A (en) * 2016-08-17 2018-03-09 中国科学院遗传与发育生物学研究所 The application of rice NRT1.1A genes and its encoding proteins in plant products breeding is improved

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1887903A (en) * 2006-07-19 2007-01-03 北京优利康生物农业技术有限公司 Nitrate transport protein of diatom and its coding gene and application
US20110167517A1 (en) * 2010-01-06 2011-07-07 Pioneer Hi-Bred International, Inc. Identification of diurnal rhythms in photosynthetic and non-photsynthetic tissues from zea mays and use in improving crop plants
CN101845088A (en) * 2010-06-04 2010-09-29 中国农业大学 Ammonium salt absorption-related protein and encoding gene and application thereof
US20160010101A1 (en) * 2013-03-13 2016-01-14 Pioneer Hi-Bred International, Inc. Enhanced nitrate uptake and nitrate translocation by over- expressing maize functional low-affinity nitrate transporters in transgenic maize
US20150315605A1 (en) * 2014-02-21 2015-11-05 E I Du Pont De Nemours And Company Novel transcripts and uses thereof for improvement of agronomic characteristics in crop plants
CN107208100A (en) * 2014-09-24 2017-09-26 中国科学院遗传与发育生物学研究所 Plant nitrate transport albumen and application thereof
CN107779468A (en) * 2016-08-17 2018-03-09 中国科学院遗传与发育生物学研究所 The application of rice NRT1.1A genes and its encoding proteins in plant products breeding is improved

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DARREN PLETT 等: ""Dichotomy in the NRT Gene Families of Dicots and Grass Species"", 《PLOS ONE》 *
PENG YU 等: ""A novel morphological response of maize (Zea mays) adult roots to heterogeneous nitrate supply revealed by a split-root experiment"", 《PHYSIOLOGIA PLANTARUM》 *
PENG YU 等: ""Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability"", 《PLANTA》 *
TREVOR GARNETT 等: ""The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle"", 《NEW PHYTOLOGIST》 *
TREVOR GARNETT 等: ""Variation for N Uptake System in Maize: Genotypic Response to N Supply"", 《FRONT. PLANT SCI.》 *
WARE,D.: ""Protein NRT1/ PTR FAMILY 6.3 [Zea mays]"", 《GENBANK》 *
ZHENGYU WEN 等: ""Maize NPF6 Proteins Are Homologs of Arabidopsis CHL1 That Are Selective for Both Nitrate and Chloride"", 《PLANT CELL》 *
熊威 等: ""玉米ZmNRT关键基因挖掘以及氮响应基因共表达网络构建"", 《玉米科学》 *

Also Published As

Publication number Publication date
CN114920810B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
US12173300B2 (en) Plants having increased tolerance to heat stress
CN101605902B (en) Plants having enhanced yield-related traits and/or increased abiotic stress resistance, and a method for making the same
US9809827B2 (en) Transgenic maize
CA3008808A1 (en) Plant traits conferred by isolated polynucleotides and polypeptides
CN103233037A (en) Plants having enhanced yield-related traits and/or increased abiotic stress resistance, and a method for making the same
BR122020018472B1 (en) Method for increasing yield, growth rate, biomass, root length and/or root cover relative growth rate, and isolated nucleic acid construction
CN102925455A (en) Plants having improved growth characteristics and a method for making the same
CN110713526B (en) Wheat stress-resistant protein TaBZR2D and coding gene and application thereof
CN113337536B (en) Application of RS2Z32 gene as a negative regulator of plant immunity in improving crop resistance
US20190352661A1 (en) Methods of increasing specific plants traits by over-expressing polypeptides in a plant
US10072271B2 (en) Methods for improving crop yield
CN107022563A (en) Genetically modified plants
CN106661584B (en) Methods and compositions for increasing plant growth and yield
CN108276481A (en) Upland cotton GhLEA3 genes and its application in terms of low-temperature resistance stress
CN101874116A (en) Plants having increased yield-related traits and a method for making the same
US7238865B2 (en) SOS1 gene from halophila that confers salt tolerance
CN114920810B (en) Application of nitrate absorption related protein in regulation and control of nitrate absorption of corn
CN104650204B (en) The albumen related to rice ATP transports and Development of Chloroplasts and its encoding gene and application
CN114920812A (en) GhERF9 protein related to low potassium stress response and its related biomaterials and applications
CA3178261A1 (en) Enhancement of productivity in c3 plants
CN114015666B (en) Application of OsPARP3 gene in regulation and control of plant drought tolerance
US20240425842A1 (en) Method for improving plant growth with a trna synthetase gene that activates tor
CN114196644B (en) Protein palmitoyl transferase DHHC16 and application thereof in improving salt tolerance of rice
CN103725701B (en) A kind of method of cultivating the drought-resistant plant of transgenosis
CN118048386A (en) Application of OsMAK7 gene and its encoded protein in improving salt tolerance of rice

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant