CN107022563A - Genetically modified plants - Google Patents
Genetically modified plants Download PDFInfo
- Publication number
- CN107022563A CN107022563A CN201610882497.3A CN201610882497A CN107022563A CN 107022563 A CN107022563 A CN 107022563A CN 201610882497 A CN201610882497 A CN 201610882497A CN 107022563 A CN107022563 A CN 107022563A
- Authority
- CN
- China
- Prior art keywords
- nucleic acid
- plant
- plants
- acid construct
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Nutrition Science (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
发明领域field of invention
本发明涉及具有改善的特性,例如生长,和改善的氮代谢的表达移动信号HY5的转基因植物,制备这样的植物的方法和用于改善氮代谢和生长的方法。The present invention relates to transgenic plants expressing the mobile signal HY5 having improved properties, such as growth, and improved nitrogen metabolism, methods for producing such plants and methods for improving nitrogen metabolism and growth.
背景技术Background technique
氮(N)对作物发育是根本的,因为它形成很多有机分子、核酸和蛋白的基础成分。N营养影响所有水平的植物功能,从代谢到资源分配,生长和发育。由于施用的有机和肥料N的强烈的硝化,对于植物根的N获取的最丰富的来源是天然有氧土壤中的硝酸根(NO3-)。Nitrogen (N) is fundamental to crop development as it forms the building blocks of many organic molecules, nucleic acids and proteins. N nutrition affects plant functions at all levels, from metabolism to resource allocation, growth and development. Due to the intense nitrification of applied organic and fertilizer N, the most abundant source of N acquisition for plant roots is nitrate (NO3 − ) in naturally aerobic soils.
在过去的五十年期间,全球作物生产能力品著增加,这主要是由于改良的作物品种和化肥、特别是氮的大量投入。然而,对于很多作物,肥料N利用效率仅为约30-50%,大部分损失到环境中,导致各种有害影响,如空气和水质的恶化以及生物多样性的丧失(Ju,X.T.等人Proc Natl AcadSci USA.106,3041-3046(2009))。此外,氮是供应的最昂贵的营养物之一并且商购肥料代表了植物生产中的主要成本。据估计,环境中多余的N目前每年花费欧盟700亿欧元到3200亿欧元(Sutton等人,Nature 472,159-61(2011)。在中国,过去30年间谷物产量的增加伴随着N利用效率(NUE)从55急剧减少到20kg谷物/kg施用的肥料N(Guo,等人Science 327,1008-1010(2010))。增加NUE和限制氮肥料使用都是保护环境和改善可持续和多产的农业的重要挑战。该挑战特别与需要大量N肥以获得最大产量并且估计NUE远小于50%的谷类作物相关(Hirel等人,Journal ofExperimental Botany,Vol.58,No.9,pp.2369-2387(2007))。During the past five decades, global crop production capacity has increased dramatically, mainly due to improved crop varieties and large inputs of fertilizers, especially nitrogen. However, for many crops, fertilizer N use efficiency is only about 30-50%, and most of it is lost to the environment, leading to various harmful effects such as deterioration of air and water quality and loss of biodiversity (Ju, X.T. et al. Proc Natl AcadSci USA. 106, 3041-3046 (2009)). Furthermore, nitrogen is one of the most expensive nutrients supplied and commercial fertilizers represent a major cost in plant production. It is estimated that excess N in the environment currently costs the EU between €70 billion and €320 billion per year (Sutton et al., Nature 472, 159-61 (2011). In China, the increase in grain production over the past 30 years has been accompanied by an increase in N use efficiency ( NUE) was drastically reduced from 55 to 20 kg grain/kg applied fertilizer N (Guo, et al. Science 327, 1008-1010 (2010)). Increasing NUE and limiting N fertilizer use are both protective of the environment and improving sustainable and productive An important challenge in agriculture. This challenge is particularly relevant to cereal crops that require large amounts of N fertilizer to obtain maximum yield and whose NUE is estimated to be much less than 50% (Hirel et al., Journal of Experimental Botany, Vol.58, No.9, pp.2369-2387 (2007)).
因此重要的是鉴别控制植物N代谢(包括N利用效率(NUE)和N摄取)的关键步骤。对于大多数植物物种,NUE主要取决于植物怎样从土壤提取无机氮,吸收硝酸盐和铵,以及循环有机氮。NUE可以定义为每单位的土壤中可获得的N(包括土壤和肥料中存在的残留N)的谷物产率,即产出(总植物N、谷物N、生物量产率、谷物产率)和投入(施用的总N、土壤N或N-肥)的比率。因此,NUE可以分为两个过程:摄取效率(NupE;植物从土壤以硝酸根和铵离子去除N的能力)和利用效率(NutE;使用N产生谷物产量的能力)。It is therefore important to identify key steps that control plant N metabolism, including N use efficiency (NUE) and N uptake. For most plant species, NUE depends primarily on how the plant extracts inorganic nitrogen from the soil, absorbs nitrate and ammonium, and cycles organic nitrogen. NUE can be defined as the grain yield per unit of N available in soil (including residual N present in soil and manure), i.e. output (total plant N, grain N, biomass yield, grain yield) and The ratio of inputs (total N applied, soil N or N-fertilizer). Thus, NUE can be divided into two processes: uptake efficiency (NupE; the ability of a plant to remove N from soil as nitrate and ammonium ions) and utilization efficiency (NutE; ability to use N to produce grain yield).
植物对氮的利用涉及多个步骤,包括摄取、吸收、迁移,和当植物衰老时,再循环和再活化。为了控制土壤中改变的硝酸根浓度,植物根发展出至少三种硝酸根摄取体系,两个高亲和力转运体系(HATS)和一个低亲和力转运体系(LATS),负责硝酸根的获得(Crawfordand Glass Trends Plant Sci3:389-395(1998))。组成型HATS(cHATS)和硝酸根诱导型HATS(iHATS)操作从而在外部介质中以低的硝酸根浓度摄取硝酸根,饱和范围是0.2-0.5mM。相比之前,LATS在硝酸根获得中以较高外部硝酸根浓度起作用。通过LATS和HATS的摄取由分别属于NRT1和NRT2家族的硝酸根转运蛋白介导。经由根的摄取通过负反馈调节,将硝酸根摄取的表达和活性与植物的N状态相关联。Nitrogen utilization by plants involves multiple steps, including uptake, uptake, migration, and as plants age, recycling and reactivation. To control changing nitrate concentrations in soil, plant roots have developed at least three nitrate uptake systems, two high-affinity transport systems (HATS) and one low-affinity transport system (LATS), responsible for nitrate acquisition (Crawford and Glass Trends Plant Sci 3:389-395 (1998)). Constitutive HATS (cHATS) and nitrate-inducible HATS (iHATS) operate to uptake nitrate in the external medium at low nitrate concentrations, with a saturation range of 0.2-0.5 mM. LATS played a role in nitrate acquisition with a higher external nitrate concentration than before. Uptake through LATS and HATS is mediated by nitrate transporters belonging to the NRT1 and NRT2 families, respectively. Uptake via the root is regulated by negative feedback, linking the expression and activity of nitrate uptake to the N status of the plant.
拟南芥(At)蛋白HY5,是一种碱性亮氨酸拉链(bZIP)转录因子,已知其整合多种植物激素的(例如,生长素和脱落酸)和环境的(例如,低温)信号,并且在控制植物光敏形态发生的发育(photomorphogenic development)中发挥作用(18,28-30)。还已知侧根形成在丧失hy5功能的突变体中增加(18,28)。The Arabidopsis thaliana (At) protein HY5, a basic leucine zipper (bZIP) transcription factor, is known to integrate a variety of phytohormonal (e.g., auxin and abscisic acid) and environmental (e.g., low temperature) signaling and play a role in the control of plant photomorphogenic development (18, 28-30). Lateral root formation is also known to be increased in hy5 loss-of-function mutants (18, 28).
已经确立,嫩芽到根的长距离信号传导诱导根生长和N摄取(26,27)。本发明人首次鉴别了该信号的分子基础并且表明HY5是介导植物中N代谢的嫩芽到根移动信号。这提供了用于改善作物中营养利用效率的备选策略。It is well established that shoot-to-root long-distance signaling induces root growth and N uptake (26, 27). The present inventors identified for the first time the molecular basis of this signal and showed that HY5 is a shoot-to-root movement signal that mediates N metabolism in plants. This provides an alternative strategy for improving nutrient use efficiency in crops.
多产的农业需要大量昂贵的含氮肥料。改善作物植物的NUE因此至关重要。需要为作物植物提供更多地营养有效基因型以保证用于全球食品安全的可持续作物生产,并且减少化肥投入的成本和消极环境效应,如对空气和水质量的消极环境效应,和生物多样性的丧失。本发明旨在解决该需求。Productive agriculture requires large quantities of expensive nitrogenous fertilizers. Improving the NUE of crop plants is therefore crucial. There is a need to provide crop plants with more nutritionally efficient genotypes to ensure sustainable crop production for global food security, and to reduce the cost of fertilizer inputs and negative environmental effects, such as those on air and water quality, and biodiversity loss of sex. The present invention aims to address this need.
发明概述Summary of the invention
本发明人出人意料地发现,HY5参与N代谢。如本文中所述的实例中表明的,在转基因植物中表达AtHY5导致根中硝酸根摄取的增加。此外,本发明人表明,HY5作为响应光从嫩芽移动到根的移动信号起作用并且介导根生长和硝酸根摄取。因此,尽管HY5在根中产生,仅当由于光感在嫩芽/叶中产生的HY5蛋白移动到根时,其积累至有效水平,并且诱导根发育和NO3-摄取。The present inventors surprisingly found that HY5 is involved in N metabolism. As demonstrated in the Examples described herein, expression of AtHY5 in transgenic plants resulted in increased nitrate uptake in roots. Furthermore, the present inventors showed that HY5 functions as a mobile signal from shoots to roots in response to light and mediates root growth and nitrate uptake. Therefore, although HY5 is produced in roots, only when HY5 protein produced in shoots/leaves due to light perception moves to roots, it accumulates to effective levels and induces root development and NO3 - uptake.
HY5是调节光响应的碳和氮代谢、使得植物能够在对环境光改变的整个生物响应中协调嫩芽和根生长的嫩芽-根移动蛋白的出人意料的发现,打开了增强作物营养利用、生长和生产率的生物技术途径的方法,特别是使用组织特异性启动子以提升HY5水平用于有利的效应。The unexpected discovery of HY5, a shoot-root mobile protein that regulates light-responsive carbon and nitrogen metabolism, enables plants to coordinate shoot and root growth throughout the biological response to changes in ambient light, opens the door to enhanced crop nutrient utilization, growth and productive biotechnological approaches, especially the use of tissue-specific promoters to elevate HY5 levels for beneficial effects.
在第一个方面,本发明涉及用于增加植物中氮代谢的方法,其包括在植物中引入并表达包含HY5核酸序列的核酸构建体。In a first aspect, the present invention relates to a method for increasing nitrogen metabolism in plants, comprising introducing and expressing in a plant a nucleic acid construct comprising a HY5 nucleic acid sequence.
在另一方面,本发明涉及转基因植物,其包含含有HY5核酸序列和组织特异性调节序列的核酸构建体。In another aspect, the present invention relates to transgenic plants comprising a nucleic acid construct comprising a HY5 nucleic acid sequence and tissue-specific regulatory sequences.
在另一方面,本发明涉及转基因植物,其包含含有HY5核酸序列的核酸构建体,其中所述植物不是拟南芥。In another aspect, the present invention relates to a transgenic plant comprising a nucleic acid construct comprising a HY5 nucleic acid sequence, wherein said plant is not Arabidopsis thaliana.
在另一方面,本发明涉及包含HY5核酸序列和组织特异性启动子的核酸构建体。In another aspect, the present invention relates to a nucleic acid construct comprising a HY5 nucleic acid sequence and a tissue-specific promoter.
在进一步的方面,本发明涉及包含如本文中所述的核酸构建体的载体。In a further aspect, the invention relates to a vector comprising a nucleic acid construct as described herein.
在另一方面,本发明涉及宿主细胞,其包含如本文中所述的核酸构建体或如本文中所述的载体。In another aspect, the invention relates to a host cell comprising a nucleic acid construct as described herein or a vector as described herein.
在进一步的方面,本发明涉及用于产生具有增加的氮摄取的植物的方法,其包括在植物中引入并表达包含HY5核酸序列和组织特异性启动子的核酸构建体。In a further aspect, the present invention relates to a method for producing plants with increased nitrogen uptake, comprising introducing and expressing in a plant a nucleic acid construct comprising a HY5 nucleic acid sequence and a tissue-specific promoter.
在另一方面,本发明涉及用于增加植物根中HY5蛋白的存在的方法,其包括在植物中引入并表达包含与绿色组织特异性启动子可操作连接的HY5核酸序列的核酸构建体。In another aspect, the present invention relates to a method for increasing the presence of HY5 protein in plant roots, comprising introducing and expressing in a plant a nucleic acid construct comprising a HY5 nucleic acid sequence operably linked to a green tissue-specific promoter.
在另一方面,本发明涉及用于调节植物中C和N代谢平衡的方法,其包括在植物中引入并表达包含HY5核酸序列的核酸构建体。In another aspect, the present invention relates to a method for regulating C and N metabolic balance in a plant, which comprises introducing and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence in a plant.
在另一方面,本发明涉及用于增加植物根中HY5蛋白的存在的方法,其包括在植物的绿色组织中引入并表达包含HY5核酸序列的核酸构建体。In another aspect, the present invention relates to a method for increasing the presence of HY5 protein in plant roots, comprising introducing and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence in the green tissue of a plant.
在最后的方面,本发明涉及遗传改变的植物,其中所述植物在内源性HY5核酸序列或内源性HY5启动子中携带突变,或其中所述突变向植物基因组中引入至少一个额外拷贝的HY5核酸。In a final aspect, the present invention relates to genetically altered plants, wherein said plants carry mutations in the endogenous HY5 nucleic acid sequence or endogenous HY5 promoter, or wherein said mutations introduce at least one extra copy of HY5 nucleic acid.
综上所述,本发明提供下述技术方案:In summary, the present invention provides the following technical solutions:
1.用于增加植物中氮代谢的方法,所述方法包括在植物中引入并表达包含HY5核酸序列的核酸构建体。1. A method for increasing nitrogen metabolism in plants, said method comprising introducing and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence in a plant.
2.根据第1项所述的方法,其中所述核酸构建体包含编码SEQ ID NO:3所限定的AtHY5蛋白或其功能变体的SEQ ID NO:1或2或编码SEQ IDNO:3的同系物的核酸序列。2. The method according to item 1, wherein said nucleic acid construct comprises SEQ ID NO: 1 or 2 or a homologous sequence encoding SEQ ID NO: 3 of the AtHY5 protein or its functional variants defined by encoding SEQ ID NO: 3 the nucleic acid sequence of the object.
3.根据第2项所述的方法,其中所述同系物与SEQ ID NO:3具有至少30%的序列同一性。3. The method according to item 2, wherein said homologue has at least 30% sequence identity to SEQ ID NO:3.
4.根据第2或3项所述的方法,其中所述同系物选自SEQ ID NOs:4至29。4. The method according to item 2 or 3, wherein said homologue is selected from SEQ ID NOs: 4 to 29.
5.根据前述各项所述的方法,其中所述植物选自玉米、水稻、小麦、欧洲油菜/加拿大油菜、高粱、大豆、向日葵、苜蓿、马铃薯、番茄、烟草、葡萄、大麦、豌豆、豆、蚕豆、莴苣、棉花、甘蔗、糖用甜菜、西兰花或其他芸苔属蔬菜或杨树。5. The method according to the preceding items, wherein the plant is selected from the group consisting of corn, rice, wheat, Brassica napus/Canola, sorghum, soybean, sunflower, alfalfa, potato, tomato, tobacco, grape, barley, pea, bean , beans, lettuce, cotton, sugar cane, sugar beets, broccoli or other Brassica vegetables or poplar.
6.根据前述各项所述的方法,其中所述核酸构建体包含调节序列。6. The method according to the preceding items, wherein the nucleic acid construct comprises regulatory sequences.
7.根据第6项所述的方法,其中所述调节序列选自组成型启动子或组织特异性启动子。7. The method according to item 6, wherein the regulatory sequence is selected from a constitutive promoter or a tissue-specific promoter.
8.根据第7项所述的方法,其中所述组织特异性启动子是绿色组织特异性启动子。8. The method according to item 7, wherein the tissue-specific promoter is a green tissue-specific promoter.
9.转基因植物,其包含含有HY5核酸序列和组织特异性调节序列的核酸构建体。9. A transgenic plant comprising a nucleic acid construct comprising a HY5 nucleic acid sequence and tissue-specific regulatory sequences.
10.根据第9项所述的转基因植物,其中所述组织特异性启动子是绿色组织特异性启动子。10. The transgenic plant according to item 9, wherein the tissue-specific promoter is a green tissue-specific promoter.
11.根据第10项所述的转基因植物,其中所述核酸构建体包含编码SEQ ID NO:3限定的AtHY5蛋白的SEQ ID NO:1或2或编码SEQ ID NO:3的同系物的核酸序列。11. The transgenic plant according to item 10, wherein said nucleic acid construct comprises the nucleic acid sequence of SEQ ID NO: 1 or 2 of the AtHY5 protein defined by SEQ ID NO: 3 or the homologue of encoding SEQ ID NO: 3 .
12.根据第11项所述的转基因植物,其中所述同系物与SEQ ID NO:3具有至少30%的序列同一性。12. The transgenic plant according to item 11, wherein said homologue has at least 30% sequence identity to SEQ ID NO:3.
13.根据第11或12项所述的转基因植物,其中所述同系物来自SEQID NOs:4至29。13. The transgenic plant according to item 11 or 12, wherein said homologue is from SEQ ID NOs: 4 to 29.
14.根据第9-13项中任一项所述的转基因植物,其中所述植物选自玉米、水稻、小麦、欧洲油菜/加拿大油菜、高粱、大豆、向日葵、苜蓿、马铃薯、番茄、烟草、葡萄、大麦、豌豆、豆、蚕豆、莴苣、棉花、甘蔗、糖用甜菜、西兰花或其他芸苔属蔬菜或杨树。14. The transgenic plant according to any one of items 9-13, wherein said plant is selected from the group consisting of corn, rice, wheat, Brassica napus/Canola, sorghum, soybean, sunflower, alfalfa, potato, tomato, tobacco, Grapes, barley, peas, beans, fava beans, lettuce, cotton, sugar cane, sugar beets, broccoli or other Brassica vegetables or poplar.
15.转基因植物,其包含含有HY5核酸序列的核酸构建体,其中所述植物不是拟南芥。15. A transgenic plant comprising a nucleic acid construct comprising a HY5 nucleic acid sequence, wherein said plant is not Arabidopsis.
16.核酸构建体,其包含HY5核酸序列和组织特异性启动子。16. A nucleic acid construct comprising a HY5 nucleic acid sequence and a tissue-specific promoter.
17.根据第16项所述的核酸构建体,其中所述组织特异性启动子是绿色组织特异性启动子。17. The nucleic acid construct according to item 16, wherein the tissue-specific promoter is a green tissue-specific promoter.
18.根据第16或17项所述的核酸构建体,其中所述核酸构建体包含编码SEQ IDNO:3所限定的AtHY5蛋白的SEQ ID NO:1或2或编码SEQID NO:3的同系物的核酸序列。18. The nucleic acid construct according to item 16 or 17, wherein said nucleic acid construct comprises SEQ ID NO: 1 or 2 of the AtHY5 protein defined by SEQ ID NO: 3 or a homologue encoding SEQ ID NO: 3 nucleic acid sequence.
19.根据第18项所述的核酸构建体,其中所述同系物与SEQ ID NO:3具有至少30%的序列同一性。19. The nucleic acid construct according to item 18, wherein said homologue has at least 30% sequence identity to SEQ ID NO:3.
20.根据第18项所述的核酸构建体,其中所述同系物选自SEQ IDNOs:4至29。20. The nucleic acid construct according to item 18, wherein the homologue is selected from SEQ ID NOs: 4 to 29.
21.根据第16至20项中任一项所述的核酸构建体,其中所述植物选自玉米、水稻、小麦、欧洲油菜/加拿大油菜、高粱、大豆、向日葵、苜蓿、马铃薯、番茄、烟草、葡萄、大麦、豌豆、豆、蚕豆、莴苣、棉花、甘蔗、糖用甜菜、西兰花或其他芸苔属蔬菜或杨树。21. The nucleic acid construct according to any one of items 16 to 20, wherein the plant is selected from the group consisting of corn, rice, wheat, Brassica napus/Canola, sorghum, soybean, sunflower, alfalfa, potato, tomato, tobacco , grapes, barley, peas, beans, fava beans, lettuce, cotton, sugar cane, sugar beets, broccoli or other Brassica vegetables or poplar.
22.载体,其包含根据第16至21项中任一项所述的核酸构建体。22. A vector comprising the nucleic acid construct according to any one of items 16 to 21.
23.宿主细胞,其包含根据第16至21项中任一项所述的核酸构建体或根据第22项所述的载体。23. A host cell comprising the nucleic acid construct according to any one of items 16 to 21 or the vector according to item 22.
24.用于产生具有增加的氮摄取的植物的方法,其包括向植物中引入并表达包含HY5核酸序列和组织特异性启动子的核酸构建体。24. A method for producing plants with increased nitrogen uptake, comprising introducing into a plant and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence and a tissue-specific promoter.
25.用于增加植物根中HY5蛋白的存在的方法,其包括在植物中引入并表达包含与绿色组织特异性启动子可操作连接的HY5核酸序列的核酸构建体。25. A method for increasing the presence of HY5 protein in plant roots, comprising introducing and expressing in a plant a nucleic acid construct comprising a HY5 nucleic acid sequence operably linked to a green tissue-specific promoter.
26.用于调节植物中C和N代谢之间的平衡的方法,其包括在植物中引入并表达包含HY5核酸序列的核酸构建体。26. A method for regulating the balance between C and N metabolism in a plant, comprising introducing and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence in a plant.
27.用于增加植物根中HY5蛋白的存在的方法,其包括在植物的绿色组织中引入并表达包含HY5核酸序列的核酸构建体。27. A method for increasing the presence of a HY5 protein in plant roots, comprising introducing and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence in the green tissue of a plant.
28.遗传改变的植物,其中所述植物在内源性HY5核酸序列或内源性HY5启动子携带突变或其中所述突变将至少一个额外拷贝的HY5核酸引入植物基因组。28. A genetically altered plant, wherein said plant carries a mutation in the endogenous HY5 nucleic acid sequence or in the endogenous HY5 promoter or wherein said mutation introduces at least one additional copy of the HY5 nucleic acid into the plant genome.
本发明在以下非限制性附图中进一步描述。The invention is further described in the following non-limiting figures.
附图Attached picture
图1.HY5调控根生长和NRT2.1-依赖性的NO3-摄取的嫩芽-照射促进。(A)差别性嫩芽/根照射条件的图示。将5-日龄幼苗暴露于3天差别性光处理(100μmol.s-1.m-2):照射的(S(L))或暗生的(S(D))嫩芽,照射的(R(L))或暗生的(R(D))根。(B)对WT和hy5-526初生根生长的差别性嫩芽/根照射效应。箭头表明实验开始时的根尖位置。比例尺,1cm。(C)对WT、hy5-526、hy5和cop1-4幼苗初生根延伸长度的差别性嫩芽/根照射影响。(D)对幼苗根的15NO3-摄取的差别性嫩芽/根照射影响。(E)对10-日龄嫁接的植物的初生根延伸长度的差别性嫩芽/根照射影响。嫁接物表示为接穗/砧木(例如,HY5/hy5-526具有HY5接穗和hy5-526砧木)。(F)对如(E)中嫁接的植物的根的15NO3-摄取的差别性嫩芽/根照射影响。(C-F)数据表示为平均值±s.e.m.(n=30)。相同的小写字母表示平均值之间不显著的差异(P<0.05)。Figure 1. HY5 regulates root growth and shoot-irradiation promotion of NRT2.1-dependent NO3 - uptake. (A) Schematic representation of differential shoot/root irradiation conditions. 5-day-old seedlings were exposed to 3 days of differential light treatment (100 μmol.s -1 .m -2 ): irradiated (S(L)) or dark (S(D)) shoots, irradiated ( R(L)) or dark (R(D)) roots. (B) Differential shoot/root irradiation effects on WT and hy5-526 primary root growth. Arrows indicate the apical position at the start of the experiment. Scale bar, 1 cm. (C) Differential shoot/root irradiation effects on primary root extension length of WT, hy5-526, hy5 and cop1-4 seedlings. (D) Differential shoot/root irradiation effects on 15 NO3 - uptake by seedling roots. (E) Differential shoot/root irradiation effects on primary root extension length of 10-day-old grafted plants. Grafts are indicated as scion/rootstock (eg, HY5/hy5-526 has HY5 scion and hy5-526 rootstock). (F) Differential shoot/root irradiation effects on 15 NO3 -uptake by roots of plants grafted as in (E). (CF) Data are expressed as mean±sem (n=30). The same lowercase letters indicate non-significant differences (P<0.05) between means.
图2.HY5从嫩芽到根迁移调节根生长和NO3-摄取。Figure 2. Translocation of HY5 from shoots to roots regulates root growth and NO3 - uptake.
(A)对转基因植物的初生根延伸生长的差别性嫩芽/根照射影响。(B)HY5-GFP在pHY5;HY5-GFP hy5根中的分布。(C)在pCAB3:HY5-GFP hy5根中可检测的HY5-GFP的分布。(D)14-日龄植物中的相对myc-HY5转录物丰度,相对于pCAB3:myc-HY5hy5植物的水平的转录设为1。数据显示为平均值±s.e.m.(n=3)。(E)嫩芽(S)和根(R)中myc-HY5的免疫学检测,HSP90上样对照。(F)嫩芽-照射的pCAB3:HY5-GFP hy5/hy5嫁接物的根中HY5-GFP的分布。(G)嫩芽-照射的表达TEV蛋白酶的pCAB3:2×GUS TEVre-HY5-GFP hy5植物的根中HY5-GFP的检测。(H)对表达TEV蛋白酶的植物的初生根延伸生长的差别性嫩芽/根照射影响。(I)对表达TEV蛋白酶的植物的根15NO3-摄取的差别性嫩芽/根照射影响。(J)对根中pHY5:GFP转基因的表达的差别性嫩芽/根照射影响。(K)幼苗根(如所示嫁接的)中HY5-GFP的分布。(B,C,F,G,J,K)比例尺,50μm。(A,D,H,I)数据表示为平均值±s.e.m.(n=30)。相同的小写字母表示平均值之间不显著的差异(P<0.05)。(A) Differential shoot/root irradiation effects on primary root extension growth of transgenic plants. (B) Distribution of HY5-GFP in pHY5; HY5-GFP hy5 roots. (C) Distribution of detectable HY5-GFP in pCAB3:HY5-GFP hy5 roots. (D) Relative myc-HY5 transcript abundance in 14-day-old plants, with transcripts set to 1 relative to the level of pCAB3:myc-HY5hy5 plants. Data are shown as mean±sem (n=3). (E) Immunological detection of myc-HY5 in shoots (S) and roots (R), HSP90 loading control. (F) Distribution of HY5-GFP in roots of shoot-irradiated pCAB3:HY5-GFP hy5/hy5 grafts. (G) Detection of HY5-GFP in roots of shoot-irradiated TEV protease-expressing pCAB3:2×GUS TEV re -HY5-GFP hy5 plants. (H) Differential shoot/root irradiation effects on primary root extension growth of plants expressing TEV protease. (I) Differential shoot/root irradiation effects on root15NO3- uptake of plants expressing TEV protease. (J) Differential shoot/root irradiation effects on the expression of the pHY5:GFP transgene in roots. (K) Distribution of HY5-GFP in seedling roots (grafted as indicated). (B, C, F, G, J, K) Scale bars, 50 μm. (A, D, H, I) Data are expressed as mean±sem (n=30). The same lowercase letters indicate non-significant differences (P<0.05) between means.
图3.HY5协调N和C代谢。(A)初生幼苗根(如所示的基因型/嫁接嵌合体)中的NRT2.1转录物水平,相对于WT根的水平的转录设为1。数据显示为平均值±s.e.m.(n=3)。(B)嫁接嵌合体的根NO3-摄取。数据显示为平均值±s.e.m.(n=30)。(C)显示用于来自14-日龄pHY5:myc-HY5hy5植物的提取物的ChIP分析的NRT2.1启动子片段。数据显示为平均值±s.e.m(n=3)。箭头表示C/G盒序列基序。(D)将来自(C)的片段3与MBP-HY5孵育。用10,20,50或100-倍过量的未标记的探针进行竞争。(E)7-日龄幼苗中PSY、TPS1、SWEET11和SWEET12转录物的相对丰度。值相对于WT水平表示,数据为平均值±s.e.m.(n=3)。(F)ChIP测定。在TPS1,SWEET11和SWEET12启动子中含有G-盒基序的片段用于来自14-日龄pHY5:myc-HY5hy5植物的提取物的ChIP分析。数据显示为平均值±s.e.m(n=3)。(G)蔗糖影响NRT2.1转录物丰度。相对于WT S(L)/R(D)幼苗的水平的转录设为1。数据显示为平均值±s.e.m.(n=3)。(H)蔗糖影响根15NO3-摄取。数据显示为平均值±s.e.m.(n=30)。(I)HY5对NRT2.1启动子的体内结合。使用10-日龄pHY5:myc-HY5hy5植物进行ChIP-PCR分析。数据显示为平均值±s.e.m(n=3)。相同的小写字母表示平均值之间不显著的差异(P<0.05)。Figure 3. HY5 coordinates N and C metabolism. (A) NRT2.1 transcript levels in primary seedling roots (genotypes/graft chimeras as indicated), with transcripts set to 1 relative to levels in WT roots. Data are shown as mean±sem (n=3). (B) Root NO3 - uptake in grafted chimeras. Data are shown as mean±sem (n=30). (C) shows the NRT2.1 promoter fragment used for ChIP analysis of extracts from 14-day-old pHY5:myc-HY5hy5 plants. Data are shown as mean±sem (n=3). Arrows indicate C/G box sequence motifs. (D) Fragment 3 from (C) was incubated with MBP-HY5. Competition was performed with 10, 20, 50 or 100-fold excess of unlabeled probe. (E) Relative abundance of PSY, TPS1, SWEET11 and SWEET12 transcripts in 7-day-old seedlings. Values are expressed relative to WT levels, data are mean±sem (n=3). (F) ChIP assay. Fragments containing G-box motifs in the TPS1, SWEET11 and SWEET12 promoters were used for ChIP analysis of extracts from 14-day-old pHY5:myc-HY5hy5 plants. Data are shown as mean±sem (n=3). (G) Sucrose affects NRT2.1 transcript abundance. Transcript was set to 1 relative to the level of WT S(L)/R(D) seedlings. Data are shown as mean±sem (n=3). (H) Sucrose affects root 15 NO3 - uptake. Data are shown as mean±sem (n=30). (I) In vivo binding of HY5 to NRT2.1 promoter. ChIP-PCR analysis was performed using 10-day-old pHY5:myc-HY5hy5 plants. Data are shown as mean±sem (n=3). The same lowercase letters indicate non-significant differences (P<0.05) between means.
图4.HY5响应波动的光环境协调植物生长和营养。(A)以如所示的注量率(fluencerate)生长的幼苗的初生根延伸长度。数据显示为平均值±s.e.m.(n=30)。(B)以如所示的注量率生长的幼苗的15NO3-摄取。数据显示为平均值±s.e.m.(n=30)(C)不同注量率的幼苗嫩芽生物量。数据显示为平均值±s.e.m.(n=30)。(D)以不同光注量率在土壤生长21天(16h光周期)的植物的整个植物生物量。(E)D中所示植物的C含量。(F)D中所示植物的N含量。(G)以如所示的注量率生长的21-日龄植物的C/N含量比。(D-G)数据显示为平均值±s.e.m.(n=16)。相同的小写字母表示平均值间不显著的差异(P<0.05)。Figure 4. HY5 coordinates plant growth and nutrition in response to fluctuating light environments. (A) Primary root extension length of seedlings grown at the indicated fluence rates. Data are shown as mean±sem (n=30). (B) 15 NO3 -uptake by seedlings grown at the indicated fluence rates. Data are shown as mean±sem (n=30) (C) Seedling shoot biomass at different fluence rates. Data are shown as mean±sem (n=30). (D) Whole plant biomass of plants grown in soil for 21 days (16 h photoperiod) at different light fluence rates. (E) C content of plants shown in D. (F) N content of plants shown in D. (G) C/N content ratios of 21-day-old plants grown at the indicated fluence rates. (DG) Data are shown as mean±sem (n=16). The same lowercase letters indicate non-significant differences between means (P<0.05).
图5.PpHY5在拟南芥中的表达和OsHY5在拟南芥中的表达。来自拟南芥、水稻(Oryza sativa)和小立碗藓(Physcomitrella patens)的HY5同源物的保守功能。(A-C)光生长的6-日龄拟南芥植物(如所示,WT、hy5和含有表达HY5-GFP的转基因的hy5)的下胚轴长度(A)、初生根分生组织细胞数(B)和根NRT2.1转录水平(C)。数据显示为平均值±s.e.m(n=30)。(D)嫁接的植物的砧木部分(WT根)中与AtHY5、OsHY5或PpHY5融合的GFP的分布。Figure 5. Expression of PpHY5 in Arabidopsis and expression of OsHY5 in Arabidopsis. Conserved function of HY5 homologues from Arabidopsis thaliana, rice (Oryza sativa) and Physcomitrella patens. (A-C) Hypocotyl length (A), primary root meristem cell number ( B) and root NRT2.1 transcript levels (C). Data are shown as mean ± s.e.m (n=30). (D) Distribution of GFP fused to AtHY5, OsHY5 or PpHY5 in rootstock parts (WT roots) of grafted plants.
图6.a)AtHY5与同源物的比对;b)AtHY5与AtHYH序列的比对,c)同源物树。Figure 6. a) Alignment of AtHY5 and homologues; b) Alignment of AtHY5 and AtHYH sequences, c) homologue tree.
图7.差别性嫩芽/根照射对侧根发育的影响。(A)差别性嫩芽/根照射对侧根发育的影响。将3-日龄WT幼苗转移至新的板,然后暴露于10d差别性光处理(100μmol.s-1.m-2)。比例尺,1cm。(B)不同处理中的侧根产生。数据显示为平均值±s.e.m.(n=30)。相同的小写字母表示平均值之间不显著的差异(P<0.05)。Figure 7. Effect of differential shoot/root irradiation on lateral root development. (A) Effect of differential shoot/root irradiation on lateral root development. 3-day-old WT seedlings were transferred to new plates and then exposed to differential light treatment (100 μmol.s −1 .m −2 ) for 10 d. Scale bar, 1 cm. (B) Lateral root development in different treatments. Data are shown as mean±sem (n=30). The same lowercase letters indicate non-significant differences (P<0.05) between means.
图8.HY5序列的等位基因变异。(A)hy5-526中的剪接位点突变。深灰色框表示外显子,黑线表示内含子,并且数字表示外显子大小(bp)。(B)HY5和突变的hy5-526之间的蛋白序列比较。右侧的数字表示全蛋白中的残基位置。相同的残基由深灰色框表示,并且变体残基由浅灰色框表示。Figure 8. Allelic variation of the HY5 sequence. (A) Splice site mutation in hy5-526. Dark gray boxes indicate exons, black lines indicate introns, and numbers indicate exon size (bp). (B) Protein sequence comparison between HY5 and mutant hy5-526. Numbers on the right indicate residue positions in the whole protein. Identical residues are indicated by dark gray boxes and variant residues are indicated by light gray boxes.
图9.光生长的6-日龄幼苗(如所示,WT、hy5和含有表达HY5-GFP或myc-HY5的转基因的hy5)的下胚轴长度。数据显示为平均值±s.e.m.(n=30)。相同的小写字母表示平均值之间不显著的差异(P<0.05)。Figure 9. Hypocotyl length of light-grown 6-day-old seedlings (WT, hy5, and hy5 containing transgenes expressing HY5-GFP or myc-HY5, as indicated). Data are shown as mean ± s.e.m. (n=30). The same lowercase letters indicate non-significant differences (P<0.05) between means.
图10.在嫁接的植物pCAB3:HY5-GFPhy5接穗中可检测的HY5-GFP的分布。(A)实验使用下胚轴嫁接嵌合体。(B)10-日龄嫁接的植物的接穗叶中的HY5-GFP分布。Figure 10. Distribution of detectable HY5-GFP in grafted plant pCAB3:HY5-GFPhy5 scions. (A) Experiments using hypocotyl grafted chimeras. (B) HY5-GFP distribution in scion leaves of 10-day-old grafted plants.
图11.10-日龄嫁接的植物的根中HY5-GFP的分布。(A)在嫁接的植物的pHY5:HY5-GFPhy5砧木根中可检测的HY5-GFP的分布。比例尺,50μm。(B)嫁接的植物的嫩芽和根中的相对HY5-GFP转录物丰度,如(A)中表达的,相对于嫁接的植物的pHY5:myc-HY5hy5接穗叶的水平的转录设为1。数据显示为平均值±s.e.m.(n=3)。(C)接穗(嫩芽)和砧木(根)中HY5-GFP的免疫学检测,利用HSP90上样对照。Figure 11. Distribution of HY5-GFP in roots of 10-day-old grafted plants. (A) Distribution of detectable HY5-GFP in pHY5:HY5-GFPhy5 rootstock roots of grafted plants. Scale bar, 50 μm. (B) Relative HY5-GFP transcript abundance in shoots and roots of grafted plants, as expressed in (A), relative to pHY5:transcript levels of myc-HY5hy5 scion leaves of grafted plants set to 1 . Data are shown as mean ± s.e.m. (n=3). (C) Immunological detection of HY5-GFP in scion (shoot) and rootstock (root), using HSP90 loading control.
图12.差别性嫩芽/根照射对叶中的HY5-GFP的分布的影响。(A)嫩芽-照射的pCAB3:2×GUS-TEVre-HY5-GFP hy5植物的叶中HY5-GFP的分布。(B)表达TEV蛋白酶的嫩芽-照射的pCAB3:2×GUS-TEVre-HY5-GFP hy5植物的叶中HY5-GFP的分布。Figure 12. Effect of differential shoot/root irradiation on the distribution of HY5-GFP in leaves. (A) Distribution of HY5-GFP in leaves of shoot-irradiated pCAB3:2×GUS-TEV re -HY5-GFP hy5 plants. (B) Distribution of HY5-GFP in leaves of shoot-irradiated pCAB3:2×GUS-TEV re -HY5-GFP hy5 plants expressing TEV protease.
图13.HYH不是调控根生长的光调节的嫩芽至根移动信号。(A)嫩芽-照射对6-日龄Ws、hyh-1和hy5hyh-1幼苗的初生根生长的影响。(B)对Ws、hyh-1和hy5hyh-1幼苗初生根延伸长度的差别性嫩芽/根照射影响。数据显示为平均值±s.e.m.(n=30)。相同的小写字母表示平均值之间不显著的差异(P<0.05)。(C)HYH-GFP不可检测地从嫩芽移动到根。将由pSUC2:HYH-GFP hyh-1接穗和HYH(Ws)砧木构成的10-日龄嫁接的植物的接穗(叶)和砧木(根)中的HYH-GFP分布与由pSUC2:HY5-GFP hy5接穗和HY5(Col)砧木构成的10-日龄嫁接的植物的接穗(叶)和砧木(根)中的HY5-GFP分布相比较。Figure 13. HYH is not a light-regulated shoot-to-root movement signal that regulates root growth. (A) Effect of shoot-irradiation on primary root growth of 6-day-old Ws, hyh-1 and hy5hyh-1 seedlings. (B) Differential shoot/root irradiation effects on primary root extension length of Ws, hyh-1 and hy5hyh-1 seedlings. Data are shown as mean ± s.e.m. (n=30). The same lowercase letters indicate non-significant differences (P<0.05) between means. (C) HYH-GFP undetectably moves from shoots to roots. The distribution of HYH-GFP in the scions (leaves) and stock (roots) of 10-day-old grafted plants consisting of pSUC2:HYH-GFP hyh-1 scions and HYH(Ws) rootstocks was compared with that of pSUC2:HY5-GFP hy5 scions. Comparison of HY5-GFP distribution in scions (leaves) and rootstocks (roots) of 10-day-old grafted plants constructed from HY5(Col) rootstocks.
图14.HY5结合HY5启动子。(A)ChIP测定。该图表描绘推定的用于ChIP分析的HY5启动子和片段(1-7)。使用14-日龄pHY5:myc-HY5hy5植物进行ChIP-PCR。数据显示为平均值±s.e.m(n=3)。(B)EMSA测定。将在A中显示的含T/G-盒-基序的HY5启动子片段与所示的MBP-HY5孵育。用于HY5结合的竞争分别利用含有T/G-盒基序的10×,20×,50×和100×未标记的探针进行。Figure 14. HY5 binds to the HY5 promoter. (A) ChIP assay. The diagram depicts the putative HY5 promoter and fragments (1-7) used for ChIP analysis. ChIP-PCR was performed using 14-day-old pHY5:myc-HY5hy5 plants. Data are shown as mean ± s.e.m (n=3). (B) EMSA assay. The HY5 promoter fragment containing the T/G-box-motif shown in A was incubated with the indicated MBP-HY5. Competition for HY5 binding was performed with 10x, 20x, 50x and 100x unlabeled probes containing the T/G-box motif, respectively.
图15.葡萄糖对根NRT2.1转录物丰度和15NO3-摄取的影响。(A)WT和hy5幼苗的根中的NRT2.1转录物丰度。转录物水平相对拟南芥肌动蛋白2的丰度表示。数据显示为平均值±s.e.m.(n=3)。(B)7-日龄WT和hy5幼苗根的15NO3-摄取。数据显示为平均值±s.e.m.(n=10)。Figure 15. Effect of glucose on root NRT2.1 transcript abundance and 15 NO3 - uptake. (A) NRT2.1 transcript abundance in roots of WT and hy5 seedlings. Transcript levels are expressed relative to the abundance of Arabidopsis actin2. Data are shown as mean±sem (n=3). (B) 15 NO3 - uptake in roots of 7-day-old WT and hy5 seedlings. Data are shown as mean±sem (n=10).
图16.蔗糖对HY5启动子活性、HY5转录物和HY5对HY5启动子的结合亲和力的影响。(A)蔗糖水平对根中HY5转录(如通过由pHY5:GFP转基因驱动的GFP表达可显现的)和HY5稳定性(从pHY5:HY5-GFP表达的HY5-GFP)的影响。比例尺,50μm。(B)蔗糖水平对根HY5转录物丰度的影响。转录物水平相对拟南芥肌动蛋白2的丰度表示。数据显示为平均值±s.e.m.(n=3)。(C)使用在含有1%或3%蔗糖的1/2MS培养基上生长的10-日龄pHY5:myc-HY5hy5植物进行的ChIP-PCR分析。数据显示为平均值±s.e.m.(n=3)。利用Student’s t-检验产生P值。Figure 16. Effect of sucrose on HY5 promoter activity, HY5 transcript and binding affinity of HY5 to HY5 promoter. (A) Effect of sucrose levels on HY5 transcription (as visualized by GFP expression driven by pHY5:GFP transgene) and HY5 stability (HY5-GFP expressed from pHY5:HY5-GFP) in roots. Scale bar, 50 μm. (B) Effect of sucrose level on root HY5 transcript abundance. Transcript levels are expressed relative to the abundance of Arabidopsis actin2. Data are shown as mean ± s.e.m. (n=3). (C) ChIP-PCR analysis using 10-day-old pHY5:myc-HY5hy5 plants grown on 1/2 MS medium containing 1% or 3% sucrose. Data are shown as mean ± s.e.m. (n=3). P values were generated using Student's t-test.
图17.myc-HY5的表达恢复对WT水平的hy5蔗糖敏感性。(A)蔗糖-处理的hy5和pHY5:myc-HY5hy5根中NRT2.1转录物的水平。转录物水平相对于拟南芥肌动蛋白2的丰度表示。数据显示为平均值±s.e.m.(n=3)。(B)蔗糖-处理的hy5和pHY5:myc-HY5hy5根中15NO3-摄取率。数据显示为平均值±s.e.m(n=30)。相同的小写字母的存在表示平均值之间不显著的差异(P<0.05)。Figure 17. Expression of myc-HY5 restores hy5 sucrose sensitivity to WT levels. (A) NRT2.1 transcript levels in sucrose-treated hy5 and pHY5:myc-HY5hy5 roots. Transcript levels are expressed relative to the abundance of Arabidopsis actin2. Data are shown as mean±sem (n=3). (B) 15 NO3 -uptake rates in sucrose-treated hy5 and pHY5:myc-HY5hy5 roots. Data are shown as mean±sem (n=30). The presence of identical lowercase letters indicates non-significant differences (P<0.05) between means.
图18.增加光注量率对植物生长的影响。以不同光注量率在土壤中生长21天(16h光周期)的WT植物的嫩芽(上图)和根(下图)系统。比例尺,1cm。Figure 18. Effect of increasing light fluence rate on plant growth. Shoot (top) and root (bottom) systems of WT plants grown in soil at different light fluence rates for 21 days (16 h photoperiod). Scale bar, 1 cm.
详述detail
现在将进一步描述本发明。在以下段落,更详细限定本发明的不同方面。可以将这样限定的各个方面与任何其他一个方面或多个方面组合,除非有明确相反指示。尤其是,指明为优选的或有利的任何特征可以与指明为优选或有利的任何其他一个特征或多个特征组合。The present invention will now be further described. In the following paragraphs, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as preferred or advantageous may be combined with any other feature or features indicated as preferred or advantageous.
除非另有指示,本发明的实践将利用本领域技术内的植物学、微生物学、组织培养、分子生物学、化学、生物化学和重组DNA技术、生物信息学的常规技术。这样的技术在文献中充分解释。The practice of the present invention will employ, unless otherwise indicated, conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry and recombinant DNA techniques, bioinformatics, within the skill of the art. Such techniques are explained fully in the literature.
如本文中使用的,术语″核酸″、″核酸序列″、″核苷酸″、″核酸分子″或″多核苷酸″意在包括DNA分子(例如,cDNA或基因组DNA)、RNA分子(例如,mRNA)、天然存在的、突变的、合成的DNA或RNA分子和使用核苷酸类似物产生的DNA或RNA的类似物。其可以是单链或双链的。这样的核酸或多核苷酸包括,但不限于,结构基因的编码序列,反义序列,和不编码mRNAs或蛋白产物的非编码调节序列。这些术语还包括基因。术语″基因″或“基因序列“广泛地用于指与生物功能相关的DNA核酸。因此,基因可以包括如基因组序列中的内含子和外显子,或可以仅包括如cDNA中的编码序列,和/或可以包括与调节序列组合的eDNA。As used herein, the terms "nucleic acid", "nucleic acid sequence", "nucleotide", "nucleic acid molecule" or "polynucleotide" are intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g. , mRNA), naturally occurring, mutated, synthetic DNA or RNA molecules, and analogs of DNA or RNA produced using nucleotide analogs. It can be single-stranded or double-stranded. Such nucleic acids or polynucleotides include, but are not limited to, coding sequences of structural genes, antisense sequences, and non-coding regulatory sequences that do not code for mRNAs or protein products. These terms also include genes. The term "gene" or "gene sequence" is used broadly to refer to a DNA nucleic acid associated with a biological function. Thus, a gene may include introns and exons as in the genomic sequence, or may include only the coding sequence as in cDNA, and/or may include cDNA in combination with regulatory sequences.
术语“肽”、″多肽″和″蛋白″在本文中可交替使用,并且指通过肽键连接在一起的以任何长度的多聚形式的氨基酸。The terms "peptide", "polypeptide" and "protein" are used interchangeably herein and refer to a polymeric form of amino acids of any length linked together by peptide bonds.
如本文中使用的,术语“遗传改变的”包括,但不限于,转基因植物和突变体植物。As used herein, the term "genetically altered" includes, but is not limited to, transgenic plants and mutant plants.
为了本发明的目的,″转基因的″、“转基因”或″重组″意为关于例如核酸序列、表达盒、基因构建体或包含核酸序列的载体或转化有本发明所述的核酸序列、表达盒或载体的生物体,所有那些构建体通过重组方法产生,其中For the purposes of the present invention, "transgenic", "transgenic" or "recombinant" means, for example, a nucleic acid sequence, an expression cassette, a gene construct or a vector comprising a nucleic acid sequence or transformed with a nucleic acid sequence, an expression cassette according to the present invention or vector organisms, all those constructs produced by recombinant methods in which
(a)编码用于本发明的方法的蛋白的核酸序列,或(a) a nucleic acid sequence encoding a protein used in the methods of the present invention, or
(b)与本发明所述的核酸序列可操作连接的遗传控制序列,例如启动子,或(b) a genetic control sequence, such as a promoter, operably linked to the nucleic acid sequence of the present invention, or
(c)a)和b)不是处在它们的天然遗传环境或已经通过重组方法修饰,对于修饰,例如,可能采取一个或多个核苷酸残基的取代、添加、删除、倒位或插入的形式。天然遗传环境理解为意为原植物中的天然基因组或染色体基因座或基因组文库中的存在。在基因组文库的情况下,优选,至少部分保留核酸序列的天然遗传环境。环境在核酸序列至少一侧侧连并且具有至少50bp,优选至少500bp,特别优选至少1000bp,最优选至少5000bp的序列长度。当该表达盒被非天然、合成的(″人工″)方法如,例如,诱变处理修饰时,天然存在的表达盒-例如如上文定义的核酸序列的天然启动子与编码用于本发明的方法的多肽的相应核酸序列的天然存在的组合-变为转基因表达盒。合适的方法,例如,记述在US 5,565,350或WO 00/15815中,其通过参考结合。(c) a) and b) are not in their natural genetic environment or have been modified by recombinant methods, for which modification, for example, may take the substitution, addition, deletion, inversion or insertion of one or more nucleotide residues form. The natural genetic environment is understood to mean the presence in the natural genome or chromosomal loci or genomic libraries in the original plant. In the case of a genomic library, preferably, the natural genetic environment of the nucleic acid sequence is at least partially preserved. The environment flanks the nucleic acid sequence on at least one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, most preferably at least 5000 bp. When the expression cassette is modified by non-natural, synthetic ("artificial") methods such as, for example, mutagenesis treatment, the natural promoter of the naturally occurring expression cassette - for example a nucleic acid sequence as defined above, is associated with the Naturally occurring combinations of corresponding nucleic acid sequences of polypeptides of the method-become transgenic expression cassettes. Suitable methods are described, for example, in US 5,565,350 or WO 00/15815, which are incorporated by reference.
在某些实施方案中,用于本发明的目的的转基因植物因此理解为意为,如上文所述的,用于本发明的方法的核酸不在所述植物的基因组中它们的天然基因座,对于核酸,可能同源或异源表达。因此,植物表达转基因。然而,如所述的,在某些实施方案中,转基因还意为,当本发明的不同实施方案所述的核酸在植物的基因组中其天然位置时,就天然序列而言,该序列已被修饰,和/或天然序列的调节序列被修饰,例如通过诱变进行修饰。In certain embodiments, transgenic plants for the purposes of the present invention are thus understood to mean, as described above, that the nucleic acids used in the methods of the present invention are not at their natural loci in the genome of said plants, for Nucleic acid, which may be expressed homologously or heterologously. Thus, the plants express the transgene. However, as mentioned, in certain embodiments, transgenic also means that when the nucleic acid according to the various embodiments of the present invention is in its natural position in the genome of a plant, the sequence has been replaced with respect to the native sequence. Modification, and/or regulatory sequences of the native sequence are modified, for example by mutagenesis.
转基因优选理解为意为,本发明所述的核酸在基因组的非天然基因座的表达,即发生核酸的同源表达或优选地发生核酸的异源表达。根据本发明,转基因稳定整合入植物,并且植物优选对于转基因是纯合的。Transgenic is preferably understood to mean the expression of a nucleic acid according to the invention at an unnatural locus of the genome, ie a homologous or preferably heterologous expression of the nucleic acid takes place. According to the invention, the transgene is stably integrated into the plant, and the plant is preferably homozygous for the transgene.
本发明的方面涉及重组DNA技术,并且在优选的实施方案中排除仅基于通过常规育种方法产生植物的实施方案。Aspects of the invention relate to recombinant DNA technology, and in preferred embodiments exclude embodiments based solely on the production of plants by conventional breeding methods.
为了本发明的目的,“突变体”植物是与天然存在的野生型(WT)植物相比遗传改变的植物。在一个实施方案中,突变体植物是与天然存在的野生型(WT)植物相比,使用诱变方法,如本文中所述的诱变方法改变的植物。在一个实施方案中,诱变方法靶向基因组修饰或基因组编辑。在一个实施方案中,与野生型序列相比,使用诱变方法改变内源性HY5核酸或HY5启动子序列。与野生型植物相比,这些突变可以引起激活或另外增强HY5启动子或其功能同系物或变体的活性或可以增强HY5核酸或功能同系物或其变体的表达水平。与野生型植物相比,这样的植物具有如本文中所述的改变的表型,如增加的氮代谢。因此,在该实例中,植物基因组中存在突变的内源性HY5基因或HY5启动子序列赋予增加的氮代谢。在优选的实施方案中,使用靶向基因组修饰特异性靶向内源性HY5基因或HY5启动子序列,并且,存在在植物中表达的转基因不赋予突变的HY5基因或HY5启动子序列的存在。在备选的实施方案中,提供表达SEQ ID NO:1,2或3中限定的核酸、或其功能同系物或变体的突变体植物。此外,与野生型植物相比,这样的植物具有改变的表型并且显示增加的氮代谢。此外,再次,在一个实施方案中,这样的植物的表型不由一种或多种转基因的存在赋予。For the purposes of the present invention, a "mutant" plant is a plant that is genetically altered compared to a naturally occurring wild-type (WT) plant. In one embodiment, a mutant plant is a plant that has been altered using a mutagenesis method, such as those described herein, compared to a naturally occurring wild-type (WT) plant. In one embodiment, the mutagenesis method targets genome modification or genome editing. In one embodiment, mutagenesis methods are used to alter the endogenous HY5 nucleic acid or HY5 promoter sequence compared to the wild-type sequence. These mutations may result in activation or otherwise enhance the activity of the HY5 promoter or a functional homologue or variant thereof or may enhance the expression level of the HY5 nucleic acid or functional homologue or variant thereof compared to wild type plants. Such plants have an altered phenotype as described herein, such as increased nitrogen metabolism, compared to wild-type plants. Thus, in this example, the presence of a mutated endogenous HY5 gene or HY5 promoter sequence in the plant genome confers increased nitrogen metabolism. In preferred embodiments, the endogenous HY5 gene or HY5 promoter sequence is specifically targeted using targeted genomic modifications, and the presence of a transgene expressed in a plant does not confer the presence of a mutated HY5 gene or HY5 promoter sequence. In an alternative embodiment there is provided a mutant plant expressing a nucleic acid as defined in SEQ ID NO: 1, 2 or 3, or a functional homologue or variant thereof. Furthermore, such plants have an altered phenotype and show increased nitrogen metabolism compared to wild-type plants. Furthermore, again, in one embodiment, the phenotype of such plants is not conferred by the presence of one or more transgenes.
本发明人发现,HY5是调节嫩芽生长和C吸收与根生长和N摄取的光调节的偶联的嫩芽至根移动信号。HY5从嫩芽转移到根并且然后通过自身调节反馈环激活根HY5表达。此外,如拟南芥中所示,AtHY5直接调节硝酸根转运蛋白AtNRT2.1的表达。因此,HY5的嫩芽-至-根迁移是光激活的AtNRT2.1转录和根中N摄取(以NO3-的形式)所需要的。换句话说,尽管HY5在根中产生,但是,仅当由于光感而在嫩芽/叶中产生的HY5蛋白移动到根时,其积累有效的水平并且诱导根发育和N-摄取。The inventors found that HY5 is a shoot-to-root movement signal that regulates shoot growth and C uptake coupled with photoregulation of root growth and N uptake. HY5 is transferred from shoots to roots and then activates root HY5 expression through a self-regulatory feedback loop. Furthermore, AtHY5 directly regulates the expression of the nitrate transporter AtNRT2.1, as shown in Arabidopsis. Thus, shoot-to-root migration of HY5 is required for light-activated AtNRT2.1 transcription and N uptake ( in the form of NO3-) in roots. In other words, although HY5 is produced in roots, only when HY5 protein produced in shoots/leaves due to light perception moves to roots, it accumulates effective levels and induces root development and N-uptake.
因此,在一个方面,本发明涉及用于增加植物中的硝酸根代谢的方法,其包括在植物中引入并表达包含植物HY5核酸序列的核酸构建体。Therefore, in one aspect, the present invention relates to a method for increasing nitrate metabolism in a plant, which comprises introducing and expressing in a plant a nucleic acid construct comprising a plant HY5 nucleic acid sequence.
HY5在陆生植物中高度保守。保守的功能由本文中所述的实验证明,并且本发明人表明,水稻HY5、OsHY5在转基因拟南芥中表达时,可以诱导AtNRT2.1,并且来自苔藓、小立碗藓(Physcomitrella)的HY5也可以诱导AtNRT2.1(图5)。HY5 is highly conserved in terrestrial plants. The conserved function was demonstrated by experiments described herein, and the inventors showed that rice HY5, OsHY5, when expressed in transgenic Arabidopsis, could induce AtNRT2.1, and that HY5 from moss, Physcomitrella AtNRT2.1 could also be induced (Figure 5).
根据本发明的各个方面,包括上述方法,植物HY5核酸编码的植物HY5蛋白特征在于COP1相互作用结构域和碱性亮氨酸拉链结构域的存在(Holme等人,EMBO journal,Vol.20,第118-127页,2001)。对于AtHY5的这些结构域的序列在下文显示。然而,这些序列在其他HY5蛋白中高度保守(参见例如图6),并且技术人员因此将能够容易地鉴定除拟南芥之外的植物的HY5蛋白。According to various aspects of the invention, including the methods described above, the plant HY5 protein encoded by the plant HY5 nucleic acid is characterized by the presence of a COP1 interaction domain and a basic leucine zipper domain (Holme et al., EMBO journal, Vol.20, p. pp. 118-127, 2001). The sequences of these domains for AtHY5 are shown below. However, these sequences are highly conserved among other HY5 proteins (see eg Figure 6), and the skilled person will thus be able to readily identify HY5 proteins of plants other than Arabidopsis.
因此,根据本发明的各个方面的植物HY5蛋白包含一个或多个以下鉴别的保守的结构域或与下文显示的基序具有至少70%,71%,72%,73%,74%,75%,76%,77,78%,79%,80%,81%,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%,92%,93%,94%,95%,96%,97%,98%或至少99%的全序列同一性的结构域。Thus, plant HY5 proteins according to various aspects of the invention comprise one or more of the conserved domains identified below or have at least 70%, 71%, 72%, 73%, 74%, 75% of the motifs shown below , 76%, 77, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92% , 93%, 94%, 95%, 96%, 97%, 98% or at least 99% overall sequence identity domains.
AtHY5蛋白包括以下COP1相互作用结构域:ESDEEIRRVPEF(SEQID NO:30,参见图6)。这包括推定的用于磷酸化的CKII位点(ESDEE SEQID NO:31)。该结构域(包括COP1相互作用结构域)的核心V-P-E/D-X-G基序(SEQ ID NO:32,X是疏水残基)是高度保守的结构基序,其对于与COP1的相互作用是必需的。The AtHY5 protein includes the following COP1 interacting domain: ESDEEIRRVPEF (SEQ ID NO: 30, see Figure 6). This includes the putative CKII site for phosphorylation (ESDEE SEQ ID NO: 31). The core V-P-E/D-X-G motif (SEQ ID NO: 32, X is a hydrophobic residue) of this domain (including the COP1 interaction domain) is a highly conserved structural motif that is essential for the interaction with COP1.
AtHY5蛋白还包括下文所示的碱性亮氨酸拉链结构域:The AtHY5 protein also includes a basic leucine zipper domain shown below:
碱性基序:KRLKRLLRNRVSAQQARERKK(SEQ ID NO:33)Basic motif: KRLKRLLRNRVSAQQARERKK (SEQ ID NO: 33)
亮氨酸拉链:LENRVKDLENKNSELEERLSTLQNENQML(SEQ IDNO:34)Leucine zipper: LENRVKDLENKNSELEERLSTLQNENQML (SEQ ID NO: 34)
在一个实施方案中,HY5核酸构建体包含编码SEQ ID NO:3限定的AtHY5蛋白的SEQID NO:1或2或其功能变体或同系物。In one embodiment, the HY5 nucleic acid construct comprises SEQ ID NO: 1 or 2 encoding the AtHY5 protein defined by SEQ ID NO: 3 or a functional variant or homologue thereof.
如本文中使用的术语“核酸序列的功能变体”,就SEQ ID NO:1或另一序列而言是指保留完全非变体序列的生物功能的变体基因序列或基因序列的部分,例如当在转基因植物中表达时赋予增加的生长或产量。功能变体还包括研目的基因的变体,其具有不影响功能的序列改变,例如在非保守的残基中的改变。还包括的是与本文中所示的野生型序列相比,基本上相同,即仅具有相一些序列改变,例如在非保守的残基中的改变,并且是有生物活性的变体。The term "functional variant of a nucleic acid sequence" as used herein, with reference to SEQ ID NO: 1 or another sequence, refers to a variant gene sequence or part of a gene sequence that retains the biological function of the complete non-variant sequence, e.g. Confers increased growth or yield when expressed in transgenic plants. Functional variants also include variants of the gene of interest that have sequence changes that do not affect function, such as changes in non-conserved residues. Also included are variants that are substantially identical, ie, have only some sequence changes, such as changes in non-conserved residues, compared to the wild-type sequence shown herein, and are biologically active.
因此,如本领域技术人员理解的,要理解,本发明的方面,包括方法和用途,不仅包括包含或由SEQ ID NO:1组成的核酸序列,而且还包括不影响所得到的蛋白的生物活性和功能的SEQ ID NO:1的功能变体或部分。导致在给定位点产生不同氨基酸的不影响编码的多肽的功能特性的核酸序列的改变是本领域中公知的。例如,用于氨基酸丙氨酸(一种疏水氨基酸)的密码子可以被编码另一较不疏水残基,如甘氨酸,或更疏水残基,如缬氨酸、亮氨酸、或异亮氨酸的密码子取代。类似地,导致一种带负电的残基替代另一种,如天冬氨酸替代谷氨酸,或一种带正电的残基替代另一种,如赖氨酸替代天冬酰胺的改变,也可以预期产生功能相当的产物。导致多肽分子的N-末端和C-末端部分的改变的核苷酸变化将不会预期改变多肽的活性。每种建议的修饰充分在本领域常规技术中,这是编码产物保留生物活性的决定因素。Therefore, as understood by those skilled in the art, it is to be understood that aspects of the present invention, including methods and uses, not only include the nucleic acid sequence comprising or consisting of SEQ ID NO: 1, but also include those that do not affect the biological activity of the resulting protein. and functional variants or parts of SEQ ID NO: 1. Alterations in a nucleic acid sequence that result in a different amino acid at a given position that do not affect the functional properties of the encoded polypeptide are well known in the art. For example, a codon for the amino acid alanine, a hydrophobic amino acid, could be coded for another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine Acid codon substitutions. Similarly, changes that result in the substitution of one negatively charged residue for another, such as aspartate for glutamate, or one positively charged residue for another, such as lysine for asparagine , can also be expected to yield functionally equivalent products. Nucleotide changes that result in changes to the N-terminal and C-terminal portions of the polypeptide molecule would not be expected to alter the activity of the polypeptide. Each suggested modification is well within the routine skill in the art, which is a determinant of the retention of biological activity of the encoded product.
功能变体与非变体氨基酸序列具有至少25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%的全序列同一性。The functional variant has at least 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54% , 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71 %, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity.
技术人员将理解,本发明不限于使用AtHY5的方面。因此,在本发明的方面的一个实施方案中,核酸序列编码SEQ ID NO:3的同系物。The skilled person will appreciate that the invention is not limited to aspects using AtHY5. Thus, in one embodiment of the aspects of the invention, the nucleic acid sequence encodes a homologue of SEQ ID NO:3.
如本文中使用的术语同系物还意味着来自其他植物物种的AtHY5同源物。AtHY5多肽或AtHY5核酸序列的同系物分别以优先性增加的顺序与SEQ ID NO:3表示的氨基酸或与SEQ ID NO:1或2中所示的核酸序列具有至少25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少99%的全序列同一性。在一个实施方案中,全序列同一性是至少37%。在一个实施方案中,全序列同一性是至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、或99%,最优选90%、91%、92%、93%、94%、95%、96%、97%、98%、或至少99%。The term homologue as used herein also means AtHY5 homologues from other plant species. The homologues of the AtHY5 polypeptide or the AtHY5 nucleic acid sequence share at least 25%, 26%, and 27% with the amino acid represented by SEQ ID NO: 3 or with the nucleic acid sequence shown in SEQ ID NO: 1 or 2, respectively, in order of increasing preference , 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44 %, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77% , 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94 %, 95%, 96%, 97%, 98%, or at least 99% overall sequence identity. In one embodiment, the overall sequence identity is at least 37%. In one embodiment, the overall sequence identity is at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82% , 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, most preferably 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99%.
HY5同系物的功能变体也在本发明的范围内。Functional variants of HY5 homologues are also within the scope of the invention.
如果两个序列中的核苷酸或氨基酸残基序列分别在如下文所述对最大一致性进行比对时相同,两个核酸序列或多肽被称为″同一的″。在一个或两个核酸或多肽序列的情况下,术语″同一的″或百分数″同一性″是指当如使用以下序列比较算法之一或通过人工比对和肉眼检查测量,经比较窗口对最大一致性比较和比对时,相同的或具有相同的指定的氨基酸残基或核苷酸百分数的两个或更多个序列或子序列。当就蛋白或肽而言使用序列同一性的百分数时,认为不相同的残基位置常常差异在于保守氨基酸取代,其中氨基酸残基替代其他具有相似化学性质(例如,电荷或疏水性)的氨基酸残基,并且因此不改变分子的功能特性。在序列差异在于保守取代时,百分数序列同一性可以上调以校正取代的保守性质。进行此调节的方式是本领域技术人员公知的。对于序列比较,通常一个序列用作参考序列,测试序列与其比较。当使用序列比较算法时,将测试和参考序列输入计算机,指定随后的坐标,并且如果需要,指定序列算法程序参数。可以使用默认的程序参数,或可以指定替代的参数。然后基于程序参数,序列比较算法计算测试序列相对于参考序列的百分数序列同一性。适于确定序列同一性和序列相似性的算法的非限制性实例是BLAST和BLAST 2.0算法。Two nucleic acid sequences or polypeptides are said to be "identical" if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is identical when aligned for maximum identity, as described below. The term "identical" or percent "identity" in the context of one or two nucleic acid or polypeptide sequences means that the comparison window corresponds to the maximum Identity When compared and aligned, two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same. When percentages of sequence identity are used with respect to proteins or peptides, residue positions that are considered non-identical often differ by conservative amino acid substitutions, in which an amino acid residue substitutes for another amino acid residue of similar chemical properties (e.g., charge or hydrophobicity) groups, and thus do not alter the functional properties of the molecule. Where the sequences differ in conservative substitutions, the percent sequence identity can be adjusted upwards to correct for the conservative nature of the substitution. The manner in which this adjustment is made is well known to those skilled in the art. For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequent coordinates are designated, and, if necessary, sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Non-limiting examples of algorithms suitable for determining sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms.
同系物的实例在图6、表1和SEQ ID NOs:4-29中显示。本发明人表明,来自小立碗藓(Physcomitrella patens)的与AtHY5具有38.6%序列同一性的同系物和与AtHY5具有65.5%序列同一性的OsHY5当在拟南芥中表达时均诱导AtNRT2.1(图5),并且挽救功能突变体的hy5损失。Examples of homologues are shown in Figure 6, Table 1 and SEQ ID NOs: 4-29. The inventors have shown that a homologue from Physcomitrella patens with 38.6% sequence identity to AtHY5 and OsHY5 with 65.5% sequence identity to AtHY5 both induce AtNRT2.1 when expressed in Arabidopsis (Fig. 5), and rescued the hy5 loss of function mutants.
合适的同系物可以通过序列比较和保守的结构域的鉴定来鉴别。本领域中存在可以用于鉴别这样的序列的预测器。同系物的功能可以如本文中所述的鉴别,并且例如在植物中过表达时或当通过挽救突变体表型在hy5功能缺失突变体中表达时,技术人员由此能够确认该功能。Suitable homologues can be identified by sequence comparison and identification of conserved domains. Predictors exist in the art that can be used to identify such sequences. The function of a homolog can be identified as described herein, and the skilled person can thus confirm the function, eg when overexpressed in plants or when expressed in a hy5 loss-of-function mutant by rescuing the mutant phenotype.
因此,本发明和本文中所述的HY5核苷酸序列也可以用于从其他生物、特别是其他植物,例如作物植物分离相应序列。以这种方式,如PCR、杂交等方法可以用于基于它们与本文中所述的序列的序列同源性鉴别这样的序列。当鉴别和分离同系物时,也可以考虑序列的拓扑结构和特征结构域结构。可以基于它们与整个序列或与其片段的序列同一性分离序列。在杂交技术中,已知核苷酸序列的全部或部分用作探针,其与存在于来自选择的植物的克隆的基因组DNA片段或cDNA片段的群体(即,基因组或cDNA文库)中的其他相应核苷酸序列选择性杂交。杂交探针可以是基因组DNA片段、cDNA片段、RNA片段、或其他寡核苷酸,并且可以用可检测的基团,或任何其他可检测的标志物标记。用于杂交和用于构建cDNA和基因组文库的探针的制备方法一般在本领域中已知,并且在Sambrook,等人.,(1989)MolecularCloning:A Library Manual(第2版,Cold Spring Harbor Laboratory Press,Plainview,New York)中描述。Accordingly, the HY5 nucleotide sequences of the invention and described herein may also be used to isolate corresponding sequences from other organisms, in particular other plants, such as crop plants. In this manner, methods such as PCR, hybridization, etc. can be used to identify such sequences based on their sequence homology to the sequences described herein. When identifying and isolating homologues, sequence topology and characteristic domain structures can also be considered. Sequences can be isolated based on their sequence identity to the entire sequence or to fragments thereof. In hybridization techniques, all or part of a known nucleotide sequence is used as a probe with other DNA fragments present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., a genomic or cDNA library) from a selected plant. Corresponding nucleotide sequences hybridize selectively. Hybridization probes can be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and can be labeled with a detectable group, or any other detectable marker. Methods for the preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and described in Sambrook, et al., (1989) Molecular Cloning: A Library Manual (2nd Edition, Cold Spring Harbor Laboratory Press, Plainview, New York).
这样的序列的杂交可以在严格条件下进行。″严格条件″或″严格杂交条件″意为这样的条件,在该条件下,探针与其靶序列杂交的可检测程度高于与其他序列的杂交程度(例如,高于背景至少2-倍)。严格条件是序列依赖性的并且在不同情况下将不同。通过控制杂交的严格性和/或洗涤条件,可以鉴别与探针100%互补的靶序列(同源探测)。备选地,可以调整严格性条件以允许序列中的一些错配,从而检测较低程度的相似性(异源探测)。通常,探针长度小于约1000个核苷酸,优选长度小于500个核苷酸。Hybridization of such sequences can be performed under stringent conditions. "Stringent conditions" or "stringent hybridization conditions" mean conditions under which a probe hybridizes to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold above background) . Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of hybridization and/or wash conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatches in the sequences, thereby detecting lower degrees of similarity (heterologous probing). Typically, probes are less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.
通常,严格条件将是这样的条件:其中在pH 7.0至8.3盐浓度小于约1.5M Na离子,通常约0.01至1.0M Na离子浓度(或其他盐),并且对于短探针(例如,10至50个核苷酸),温度是至少约30℃,并且对于长探针(例如,大于50个核苷酸),温度是至少约60℃。杂交持续时间通常小于约24小时,通常约4至12小时。还可以通过加入去稳定剂如甲酰胺来获得严格条件。Typically, stringent conditions will be those in which the salt concentration is less than about 1.5M Na ion concentration at pH 7.0 to 8.3, usually about 0.01 to 1.0M Na ion concentration (or other salt), and for short probes (e.g., 10 to 50 nucleotides), the temperature is at least about 30°C, and for long probes (eg, greater than 50 nucleotides), the temperature is at least about 60°C. Duration of hybridization is usually less than about 24 hours, usually about 4 to 12 hours. Stringent conditions can also be achieved by the addition of destabilizing agents such as formamide.
根据本发明,优选的AtHY5同系物选自玉米、水稻、小麦、欧洲油菜/加拿大油菜、高粱、大豆、向日葵、苜蓿、马铃薯、番茄、烟草、葡萄、大麦、豌豆、豆、蚕豆、莴苣、棉花、甘蔗、糖用甜菜、西兰花或其他芸苔属蔬菜或杨树。According to the invention, preferred AtHY5 homologues are selected from the group consisting of maize, rice, wheat, Brassica napus/Canola, sorghum, soybean, sunflower, alfalfa, potato, tomato, tobacco, grape, barley, pea, bean, broad bean, lettuce, cotton , sugar cane, sugar beet, broccoli or other brassica vegetables or poplar.
根据本文中所述的方法,植物表达对于个体植物是″外源的″多核苷酸,所述″外源的″多核苷酸是通过除有性杂交之外的任何方式引入植物的多核苷酸。下文描述了通过其可以实现这点的方式的实例。在方法的一个实施方案中,外源的核酸是在转基因植物中表达的,其对于所述植物不是内源的,而是源自另一植物物种的植物HY5核酸序列。例如,AtHY5可以在不是拟南芥(Arabidopsis)的另一植物中表达。在方法的一个实施方案中,内源性核酸在转基因植物中表达,其是包含内源性HY5核酸或源自其的序列的核酸构建体。例如,OsHY5可以在水稻中表达。According to the methods described herein, a plant expresses a polynucleotide that is "foreign" to the individual plant, said "exogenous" polynucleotide being a polynucleotide introduced into the plant by any means other than sexual crossing . Examples of ways by which this can be achieved are described below. In one embodiment of the method, an exogenous nucleic acid is expressed in a transgenic plant, which is not endogenous to said plant, but is derived from a plant HY5 nucleic acid sequence of another plant species. For example, AtHY5 can be expressed in another plant than Arabidopsis. In one embodiment of the method, an endogenous nucleic acid is expressed in a transgenic plant, which is a nucleic acid construct comprising an endogenous HY5 nucleic acid or a sequence derived therefrom. For example, OsHY5 can be expressed in rice.
根据本发明的各个方面、本文所述的方法和应用的植物,包括转基因植物,可以是单子叶或双子叶植物。Plants, including transgenic plants, according to the various aspects of the invention, methods and uses described herein, may be monocots or dicots.
双子叶植物可以选自包括但不限于以下各项的科:菊科(Asteraceae),十字花科(Brassicaceae)(例如欧洲油菜(Brassica napus)),藜科(Chenopodiaceae),葫芦科(Cucurbitaceae),豆科(Leguminosae)(苏木科(Caesalpiniaceae),Aesalpiniaceae,含羞草科(Mimosaceae),Papilionaceae或豆科(Fabaceae)),锦葵科(Malvaceae),蔷薇科(Rosaceae)或茄科(Solanaceae)。例如,植物可以选自莴苣、向日葵、拟南芥、西兰花、菠菜、西瓜、笋瓜、甘蓝、番茄、马铃薯、山药、辣椒、烟草、棉花、秋葵、苹果、玫瑰、草莓、苜蓿、豆、大豆、蚕豆、豌豆、扁豆、花生、鹰嘴豆、杏、梨、桃、葡萄藤、甜椒、辣椒或柑橘物种。Dicotyledonous plants may be selected from families including but not limited to Asteraceae, Brassicaceae (e.g. Brassica napus), Chenopodiaceae, Cucurbitaceae, Leguminosae (Caesalpiniaceae, Aesalpiniaceae, Mimosaceae, Papilionaceae or Fabaceae), Malvaceae, Rosaceae or Solanaceae. For example, the plant may be selected from lettuce, sunflower, Arabidopsis, broccoli, spinach, watermelon, winter squash, kale, tomato, potato, yam, pepper, tobacco, cotton, okra, apple, rose, strawberry, alfalfa, bean , soybeans, beans, peas, lentils, peanuts, chickpeas, apricots, pears, peaches, vines, bell peppers, peppers or citrus species.
单子叶植物可以是,例如,选自科槟榔科(Arecaceae)、石蒜科(Amaryllidaceae)或禾本科(Poaceae)。例如,植物可以是谷类作物,如玉米、小麦、水稻、大麦、燕麦、高粱、黑麦、粟、荞麦、或饲料作物如黑麦草属(Lolium species)或羊茅属(Festuca species),或作物如甘蔗、洋葱、韭菜、山药或香蕉。The monocot may be, for example, selected from the families Arecaceae, Amaryllidaceae or Poaceae. For example, the plant may be a cereal crop such as corn, wheat, rice, barley, oats, sorghum, rye, millet, buckwheat, or a forage crop such as Lolium species or Festuca species, or a crop Such as sugar cane, onions, leeks, yams or bananas.
还包括的是生物燃料和生物能源作物如油菜/加拿大油菜、甘蔗、甜高粱、柳枝稷(Panicum virgatum)(柳枝稷(switchgrass))、亚麻籽、羽扇豆和柳树、杨树、杨树杂交种、芒草(Miscanthus)或裸子植物,如火炬松。还包括的是用于用于青贮饲料(玉米)、放牧或草料(草、三叶草、sanfoin、苜蓿)、纤维(例如棉花、亚麻)、建筑材料(例如松树、橡树)、制浆(例如杨树)、用于化学工业的进料储备(例如高芥酸油料种子油菜、亚麻籽)和用于舒适目的(例如用于高尔夫球场的草皮草)、公共和私人花园的观赏植物(例如金鱼草、矮牵牛、玫瑰、天竺葵、烟草属)和家用的植物和切花(非洲堇(African violets)、秋海棠(Begonias)、菊花(chrysanthemums)、天竺葵、毛蜘蛛植物(Coleus spider plants)、龙血树(Dracaena)、橡胶植物)的作物。Also included are biofuel and bioenergy crops such as canola/canola, sugar cane, sweet sorghum, switchgrass (Panicum virgatum) (switchgrass), flaxseed, lupine and willow, poplar, poplar hybrids, miscanthus (Miscanthus) or gymnosperms such as loblolly pine. Also included are those used for silage (corn), grazing or forage (grass, clover, sanfoin, alfalfa), fibers (e.g. cotton, flax), building materials (e.g. pine, oak), pulping (e.g. poplar ), feed stock for the chemical industry (e.g. high erucic acid oilseed rape, linseed) and for amenity purposes (e.g. turfgrass for golf courses), ornamental plants for public and private gardens (e.g. snapdragon, Petunias, roses, geraniums, Nicotiana) and household plants and cut flowers (African violets, Begonias, chrysanthemums, geraniums, Coleus spider plants, Dracaena ( Dracaena), rubber plant) crops.
优选,植物是作物植物。作物植物意为以商业规模的种植的用于人或动物消耗或使用的任何植物。在优选的实施方案中,植物是谷物。Preferably, the plants are crop plants. By crop plant is meant any plant grown on a commercial scale for human or animal consumption or use. In a preferred embodiment, the plant is a cereal.
最优选的植物是玉米、水稻、小麦、欧洲油菜/加拿大油菜、高粱、大豆、向日葵、苜蓿、马铃薯、番茄、烟草、葡萄、大麦、豌豆、豆、蚕豆、莴苣、棉花、甘蔗、糖用甜菜、西兰花或其他芸苔属蔬菜或杨树。Most preferred plants are corn, rice, wheat, rape/canola, sorghum, soybean, sunflower, alfalfa, potato, tomato, tobacco, grape, barley, pea, bean, broad bean, lettuce, cotton, sugar cane, sugar beet , broccoli or other brassica vegetables or poplar.
如本文中使用的术语″植物″包括完整的植物、植物的祖先和后代和植物部分,包括种子、果实、嫩芽、茎、叶、根(包括块茎)、花、组织和器官,其中前述每一个包含如本文中所述的核酸构建体。术语″植物″还包括植物细胞、悬浮培养物、愈伤组织、胚、分生区、配偶体、孢子体、花粉和小孢子,同样地,其中前述每一个包含如本文中所述的核酸构建体。The term "plant" as used herein includes whole plants, ancestors and descendants of plants and plant parts, including seeds, fruits, shoots, stems, leaves, roots (including tubers), flowers, tissues and organs, wherein each of the foregoing One comprising a nucleic acid construct as described herein. The term "plant" also includes plant cells, suspension cultures, callus, embryos, meristematic zones, partners, sporophytes, pollen and microspores, likewise wherein each of the foregoing comprises a nucleic acid construct as described herein body.
所述方法还可以包括从植物中筛选出包含本文所述的多核苷酸构建体和/或具有本文中所述的任何表型(如增加的氮代谢)的那些植物,并且选择具有所述表型(如增加的氮代谢)的植物。在另一实施方案中,进一步的步骤包括测量所述植物后代或其部分中的氮代谢,并且与对照植物比较氮代谢。优选地,将后代植物稳定转化,并且包含在植物细胞中遗传保持的外源的多核苷酸,并且所述方法可以包括验证构建体稳定整合的步骤。所述方法还可以包括从选择的后代植物收集种子的另外步骤。The method may also comprise screening for those plants comprising a polynucleotide construct described herein and/or having any of the phenotypes described herein (such as increased nitrogen metabolism) from the plants, and selecting those plants having said phenotype type (such as increased nitrogen metabolism) in plants. In another embodiment, a further step comprises measuring nitrogen metabolism in progeny of said plants or parts thereof, and comparing nitrogen metabolism to control plants. Preferably, progeny plants are stably transformed and comprise the exogenous polynucleotide genetically maintained in the plant cell, and the method may include a step of verifying stable integration of the construct. The method may also comprise the additional step of collecting seeds from selected progeny plants.
本发明的方面还延伸至从该植物的可收获部分衍生的、优选直接衍生的产物,如干颗粒或粉末、油、脂肪和脂肪酸、淀粉或蛋白。本发明还涉及包含本发明的植物或其部分的食品和食物补充物。Aspects of the invention also extend to products derived, preferably directly derived, from harvestable parts of the plant, such as dry granules or powders, oils, fats and fatty acids, starches or proteins. The invention also relates to foods and food supplements comprising the plants of the invention or parts thereof.
根据本发明的各个方面,与对照植物相比,转基因植物中的氮代谢增加。如本文中使用的根据本发明的所有方面的对照植物是未按照本发明的方法修饰的植物。因此,未将对照植物遗传修饰以表达编码HY5的核酸。在一个实施方案中,对照植物是野生型植物。对照植物通常是相同植物物种,优选与修饰的植物具有相同的遗传背景。According to various aspects of the invention, nitrogen metabolism is increased in transgenic plants compared to control plants. A control plant according to all aspects of the invention as used herein is a plant which has not been modified according to the methods of the invention. Therefore, control plants were not genetically modified to express the nucleic acid encoding HY5. In one embodiment, the control plant is a wild type plant. The control plant is usually the same plant species, preferably of the same genetic background as the modified plant.
根据本发明的氮代谢包括根据本发明增加的NUE和氮获取(NO3-的摄取)。根据本发明的各个方面使用的术语″增加″、″改善″或″增强″可交替使用。NUE可以定义为土壤中每单位的可获得的N(包括土壤和肥料中存在的残留N)的谷物产量。植物的总体N使用效率包含摄取和利用效率并且可以计算为UpE。在一个实施方案中,与对照植物相比,NUE增加5%-50%以上,例如至少5%,10%,15%,20%,25%,30%,35%,40%,45%或50%。在另一实施方案中,与对照植物相比,氮摄取增加5%-50%以上,例如至少5%,10%,15%,20%,25%,30%,35%,40%,45%或50%。Nitrogen metabolism according to the invention includes increased NUE and nitrogen uptake (NO3 − uptake) according to the invention. The terms "increase", "improvement" or "enhancement" as used in accordance with various aspects of the present invention are used interchangeably. NUE can be defined as the grain yield per unit of N available in soil (including residual N present in soil and fertilizer). The overall N use efficiency of a plant includes both uptake and use efficiency and can be calculated as UpE. In one embodiment, NUE is increased by more than 5%-50%, such as at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50%. In another embodiment, nitrogen uptake is increased by more than 5%-50%, such as at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, compared to control plants % or 50%.
增加的氮代谢导致增加的产率。因此,本发明的方法可以用于增加的产率。术语“产率”包括以下特征的非限制性列表中的一种或多种:早期开花时间、生物量(植物的生物量(根和/或嫩芽生物量)或种子/谷物生物量)、种子/谷物产率、种子/谷物生存力和萌芽效率、种子/谷物尺寸、谷物淀粉含量、早期活力、绿度值、增加的生长率、绿色组织延迟的衰老。术语″产率″通常意为典型地与指定作物、区域和时期相关的经济值的可测量产生。个体植物部分基于其数量、尺寸和/或重量直接促进产率。实际产率是每年每平方米作物年的产率,其通过用总产量(包括收获和评估的产量)除以种植的平方米确定。Increased nitrogen metabolism leads to increased yield. Thus, the method of the invention can be used for increased yields. The term "yield" includes one or more of the following characteristics in a non-limiting list: early flowering time, biomass (plant biomass (root and/or shoot biomass) or seed/grain biomass), Seed/grain yield, seed/grain viability and germination efficiency, seed/grain size, grain starch content, early vigor, greenness value, increased growth rate, delayed senescence of green tissue. The term "yield" generally means the measurable production of economic value typically associated with a given crop, area and time period. Individual plant parts directly contribute to yield based on their number, size and/or weight. Actual yield is the yield per square meter per year of the crop year, determined by dividing the total yield (including harvested and assessed yield) by the square meter planted.
因此,根据本发明,产率包括以下各项的一种或多种,并且可以通过评价以下各项中的一种或多种测量:每株植物增加的种子产率,增加的种子饱满率,增加的饱满种子的数量,增加的收获指数,增加的生存力/萌发效率,增加的种子/蒴果(capsule)/荚/谷粒的数量或大小,增加的生长或增加的分枝,例如具有更多分枝的花序,增加的生物量或谷物填充。优选地,增加的产率包括增加的谷粒/种子/蒴果/荚数量,增加的生物量,增加的生长,增加的花器官和/或增加分枝的花的数量。相对于对照植物产率增加。例如,与对照植物相比,产率增加2%,3%,4%,5%-50%以上,例如,至少10%,15%,20%,25%,30%,35%,40%,45%或50%。Thus, according to the present invention, yield comprises one or more of, and can be measured by evaluating one or more of: increased seed yield per plant, increased seed filling, Increased number of filled seeds, increased harvest index, increased viability/germination efficiency, increased number or size of seeds/capsules/pods/grains, increased growth or increased branching, e.g. with more Multi-branched inflorescences for increased biomass or grain filling. Preferably, increased yield comprises increased number of grains/seeds/capsules/pods, increased biomass, increased growth, increased floral organs and/or increased number of branched flowers. Increased yield relative to control plants. For example, an increase in yield of more than 2%, 3%, 4%, 5%-50%, e.g., at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, compared to control plants , 45% or 50%.
如上文所述的用于增加植物中氮代谢的方法(包括在植物中引入并表达包含植物HY5核酸序列的核酸构建体)可以包括进一步的步骤,所述步骤包括评估转基因植物的表型、测量NUE和/或NO3-摄取、与对照植物比较NUE和/或NO3-摄取、测量产率和与对照植物比较产率中的一个或多个。The method for increasing nitrogen metabolism in plants as described above (comprising introducing and expressing in plants a nucleic acid construct comprising a plant HY5 nucleic acid sequence) may comprise further steps comprising evaluating the phenotype of the transgenic plant, measuring One or more of NUE and/or NO3 - uptake, comparing NUE and/or NO3 - uptake to control plants, measuring yield and comparing yield to control plants.
用于产生本发明的转基因植物的转化方法是本领域中已知的。因此,根据本发明的各个方面,将包含HY5核酸的核酸,例如SEQ D NO.1,其功能变体或同系物引入植物并作为转基因表达。将核酸序列通过称为转化的过程引入所述植物。如本文所称的术语″引入″或″转化″包括将外源的多核苷酸转移入宿主细胞,而不论用于转移的方法。不论通过器官发生还是胚胎发生能够后续克隆繁殖的植物组织,可以用本发明的遗传构建体转化,并且从其产生整体植物。选择的特定组织将根据对于转化的特定物种可获得的、并且与其最佳适应的克隆繁殖体系变化。示例性的组织靶点包括叶盘、花粉、胚、子叶、下胚轴、雌配子体、愈伤组织、现有的分生组织(例如,顶端分生组织、腋芽和根分生组织),以及诱导的分生组织(例如,子叶分生组织和下胚轴分生组织)。多核苷酸可以瞬时或稳定引入宿主细胞,并且可以保持未整合,例如,作为质粒存在。备选地,其可以整合入宿主基因组。可以随后将得到的转化的植物细胞用于以本领域技术人员已知的方式再生转化的植物。Transformation methods for producing transgenic plants of the invention are known in the art. Thus, according to various aspects of the invention, a nucleic acid comprising a HY5 nucleic acid, such as SEQ D NO. 1 , functional variants or homologues thereof, is introduced into plants and expressed as a transgene. The nucleic acid sequence is introduced into the plant by a process called transformation. The term "introduction" or "transformation" as referred to herein includes the transfer of an exogenous polynucleotide into a host cell, regardless of the method used for the transfer. Plant tissues capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, can be transformed with the genetic constructs of the invention and whole plants produced therefrom. The particular tissue chosen will vary according to the clonal propagation system available for, and best adapted to, the particular species being transformed. Exemplary tissue targets include leaf discs, pollen, embryos, cotyledons, hypocotyls, female gametophytes, callus tissue, existing meristems (e.g., apical meristems, axillary buds, and root meristems), and Induced meristems (eg, cotyledon meristem and hypocotyl meristem). A polynucleotide can be introduced into a host cell transiently or stably, and can remain unintegrated, eg, as a plasmid. Alternatively, it can integrate into the host genome. The resulting transformed plant cells can then be used to regenerate transformed plants in a manner known to those skilled in the art.
将外源基因转移到植物的基因组中称为转化。在很多物种中,植物的转化现在是常规技术。有利地,多种转化方法中的任一种可以用于将目的基因引入合适的祖细胞。对于从植物组织或植物细胞转化和再生植物所描述的方法可以用于瞬时或稳定转化。转化方法包括使用脂质体,电穿孔,增加游离DNA摄取的化学剂,将DNA直接注射入植物,粒子枪轰击,使用病毒或花粉和显微投影转化。方法可以选自用于原生质体的钙/聚乙二醇方法、电穿孔原生质体、显微注射入植物材料、DNA或RNA-包被的粒子轰击、用(非整合型)病毒感染等。转基因植物,包括转基因作物植物,优选通过根癌土壤杆菌(Agrobacterium tumefaciens)介导的转化产生。The transfer of a foreign gene into the genome of a plant is called transformation. Transformation of plants is now a routine technique in many species. Advantageously, any of a variety of transformation methods can be used to introduce the gene of interest into suitable progenitor cells. Methods described for transformation and regeneration of plants from plant tissues or plant cells can be used for transient or stable transformation. Transformation methods include the use of liposomes, electroporation, chemicals that increase the uptake of free DNA, direct injection of DNA into plants, particle gun bombardment, transformation using viruses or pollen, and microprojection. Methods can be selected from the calcium/polyethylene glycol method for protoplasts, electroporation of protoplasts, microinjection into plant material, bombardment of DNA or RNA-coated particles, infection with (non-integrating) virus, etc. Transgenic plants, including transgenic crop plants, are preferably produced by Agrobacterium tumefaciens-mediated transformation.
为了选择转化的植物,将转化中获得的植物材料进行选择性条件,从而可以将转化的植物与未转化的植物相区分。例如,可以种植以上述方式获得的种子,并且,在起始生长期之后,通过喷雾进行合适的选择。其他可能性是,如果合适,在灭菌后在使用合适的选择剂的琼脂板上种植种子,从而只有转化的种子可以生长为植物。备选地,对转化的植物筛选选择性标志物的存在。DNA转移和再生后,还可以例如使用DNA分析评价推定的转化的植物中目的基因的存在、拷贝数和/或基因组组成。备选地或另外地,可以使用RNA印迹和/或蛋白质印迹分析监测新引入的DNA的表达水平,这两种技术都是本领域普通技术人员公知的。In order to select transformed plants, the plant material obtained in the transformation is subjected to selective conditions so that transformed plants can be distinguished from non-transformed plants. For example, the seeds obtained in the above manner can be planted and, after the initial growth period, suitable selections can be carried out by spraying. Another possibility is, if appropriate, to grow the seeds after sterilization on agar plates with a suitable selection agent so that only transformed seeds can grow into plants. Alternatively, transformed plants are screened for the presence of a selectable marker. Following DNA transfer and regeneration, putative transformed plants can also be assessed for the presence, copy number and/or genomic composition of the gene of interest, eg, using DNA analysis. Alternatively or additionally, expression levels of newly introduced DNA can be monitored using Northern blot and/or Western blot analysis, both techniques are well known to those of ordinary skill in the art.
产生的转化植物可以通过多种方式繁殖,如通过克隆繁殖或经典育种技术。例如,第一代(或T1)转化的植物可以自交并选择纯合的第二代(或T2)转化子,并且T2植物可以随后进一步通过经典育种技术繁殖。产生的转化的生物可以是多种形式。例如,它们可以是转化的细胞和未转化的细胞的嵌合体;克隆转化子(例如,转化所有的细胞以含有表达盒);转化的和未转化的组织的嫁接物(例如,在植物中,嫁接到未转化的接穗的转化根茎)。The resulting transformed plants can be propagated in a variety of ways, such as by clonal propagation or classical breeding techniques. For example, first generation (or T1) transformed plants can be selfed and homozygous second generation (or T2) transformants selected, and the T2 plants can then be further propagated by classical breeding techniques. The resulting transformed organism can take a variety of forms. For example, they can be chimeras of transformed and untransformed cells; clonal transformants (e.g., transforming all cells to contain the expression cassette); grafts of transformed and non-transformed tissues (e.g., in plants, Transformed rhizomes grafted onto untransformed scions).
本发明用于增加植物中氮代谢的方法包括引入并表达包含植物HY5核酸序列的核酸构建体。所述核酸构建体优选包含与植物HY5核酸序列可操作连接的调节元件。The method of the present invention for increasing nitrogen metabolism in plants comprises introducing and expressing a nucleic acid construct comprising a plant HY5 nucleic acid sequence. The nucleic acid construct preferably comprises a regulatory element operably linked to a plant HY5 nucleic acid sequence.
根据本发明的所有方面,包括上述方法并且包括如本文中所述的植物、方法和用途,术语″调节元件″在本文中与″控制序列″和″启动子″交替使用,并且所有术语以宽的范围考虑,指能够影响与它们连接的序列的表达的调节核酸序列。According to all aspects of the invention, including the methods described above and including plants, methods and uses as described herein, the term "regulatory element" is used herein interchangeably with "control sequence" and "promoter", and all terms are used in a broad sense Considered in the context of , regulatory nucleic acid sequences capable of affecting the expression of sequences to which they are linked.
术语″启动子″通常是指位于基因的转录起始的上游的核酸控制序列,其参与RNA聚合酶和其他蛋白的结合,从而指导可操作连接的核酸的转录。上述术语包括的是源自经典真核基因组基因(包括精确转录起始所需的TATA盒,有或没有CCAAT盒序列)和另外的调节元件(即上游激活序列、增强子和沉默子)的转录调节序列,其响应发育和/或外部刺激或以组织特异的方式改变基因表达。该术语内还包括的是经典的原核基因的转录调节序列,在该情况下,其可以包括-35盒序列和/或-10盒转录调节序列。The term "promoter" generally refers to a nucleic acid control sequence located upstream of the initiation of transcription of a gene, which is involved in the binding of RNA polymerase and other proteins to direct the transcription of an operably linked nucleic acid. Included in the above terms are transcriptions derived from classical eukaryotic genomic genes (including the TATA box required for precise transcription initiation, with or without CCAAT box sequences) and additional regulatory elements (i.e., upstream activating sequences, enhancers and silencers) Regulatory sequences, which alter gene expression in response to developmental and/or external stimuli or in a tissue-specific manner. Also included within the term are the transcriptional regulatory sequences of classical prokaryotic genes, which in this case may include the -35 box sequence and/or the -10 box transcriptional regulatory sequence.
术语″调节元件″还包括赋予、激活或增强细胞、组织或器官中核酸分子的表达的合成的融合分子或衍生物。The term "regulatory element" also includes synthetic fusion molecules or derivatives that confer, activate or enhance the expression of a nucleic acid molecule in a cell, tissue or organ.
″植物启动子″包含调控植物细胞中编码序列片段的表达的调节元件。因此,植物启动子不必须是植物来源,而是可以源自病毒或微生物,例如来自攻击植物细胞的病毒。″植物启动子″也可以源自植物细胞,例如源自用本发明的方法中要表达的和本文中所述的核酸序列转化的植物。这也适用于其他″植物″调节信号,如″植物″终止子。用于本发明的方法的核苷酸序列上游的启动子可以由一个或多个核苷酸取代、插入和/或删除修饰,而不干扰启动子、开放阅读框(ORF)或3′-调节区如终止子或远离ORF的其他3′调节区任一个的功能或活性。还可能的是,启动子的活性通过修饰它们序列增加,或它们完全被更有活性的启动子替代,甚至被来自异源生物的启动子替代。对于植物中的表达,如上文所述的核酸分子,优选与合适的启动子可操作连接或包含合适的启动子,所述启动子在正确的时间点并且以所需的空间表达模式表达所述基因。A "plant promoter" comprises regulatory elements that regulate the expression of a coding sequence segment in plant cells. Thus, a plant promoter need not be of plant origin, but may be derived from viruses or microorganisms, for example from viruses that attack plant cells. A "plant promoter" may also be derived from a plant cell, eg from a plant transformed with a nucleic acid sequence to be expressed in the methods of the invention and described herein. This also applies to other "plant" regulatory signals, such as "plant" terminators. The promoter upstream of the nucleotide sequence used in the method of the invention may be modified by one or more nucleotide substitutions, insertions and/or deletions without interfering with the promoter, open reading frame (ORF) or 3'-regulation The function or activity of any of the regions such as the terminator or other 3' regulatory regions remote from the ORF. It is also possible that the activity of promoters is increased by modifying their sequences, or that they are completely replaced by more active promoters, even by promoters from heterologous organisms. For expression in plants, a nucleic acid molecule as described above is preferably operably linked to or comprises a suitable promoter which expresses the Gene.
为了鉴别功能等价的启动子,候选启动子的启动子强度和/或表达模式可以例如通过将启动子与报告基因可操作连接并且测定报告基因在植物的不同组织中的表达水平和模式来分析。合适的公知报告基因是技术人员已知的,并且包括例如β-葡糖苷酸酶或β-半乳糖苷酶。To identify functionally equivalent promoters, the promoter strength and/or expression pattern of a candidate promoter can be analyzed, for example, by operably linking the promoter to a reporter gene and determining the expression level and pattern of the reporter gene in different tissues of the plant . Suitable well known reporter genes are known to the skilled person and include for example beta-glucuronidase or beta-galactosidase.
如本文中使用的术语″可操作连接的″是指启动子序列和目的基因之间的功能连接,从而所述启动子序列能够起始目的基因的转录。The term "operably linked" as used herein refers to a functional linkage between a promoter sequence and a gene of interest such that the promoter sequence is capable of initiating transcription of the gene of interest.
例如,核酸序列可以使用驱动过表达的启动子表达。根据本发明的过表意为转基因以高于由其内源性启动子驱动的内源性对应物的表达的水平表达。例如,过表达可以使用强启动子,如组成型启动子进行。“组成型启动子”是指在生长和发育的大多数、但不必要所有阶段期间和在多数环境条件下,在至少一种细胞、组织或器官中有转录活性的启动子。组成型启动子的实例包括花椰菜花叶病毒启动子(CaMV35S或19S)、水稻肌动蛋白启动子、玉米泛素启动子、核酮糖二磷酸羟化酶(rubisco)小亚基、玉米或苜蓿H3组蛋白、OCS、SAD1或2、GOS2或产生增强的表达的任何启动子。备选地,增强的或增加的表达可以通过使用转录或翻译增强子或激活剂实现,并且可以将增强子结合入基因以进一步增加表达。For example, a nucleic acid sequence can be expressed using a promoter that drives overexpression. Overexpression according to the invention means that the transgene is expressed at a level higher than that of its endogenous counterpart driven by its endogenous promoter. For example, overexpression can be performed using strong promoters, such as constitutive promoters. A "constitutive promoter" refers to a promoter that is transcriptionally active in at least one cell, tissue or organ during most, but not necessarily all, stages of growth and development and under most environmental conditions. Examples of constitutive promoters include cauliflower mosaic virus promoter (CaMV35S or 19S), rice actin promoter, maize ubiquitin promoter, ribulose bisphosphate hydroxylase (rubisco) small subunit, maize or alfalfa H3 histone, OCS, SAD1 or 2, GOS2 or any promoter that produces enhanced expression. Alternatively, enhanced or increased expression can be achieved through the use of transcriptional or translational enhancers or activators, and enhancers can be incorporated into genes to further increase expression.
在一个实施方案中,启动子是组成型或强启动子。在优选的实施方案中,调节序列是诱导型启动子或应激诱导型启动子。应激诱导型启动子选自以下非限制性列表:HaHB1启动子、RD29A(其驱动DREB1A的干旱诱导性表达),玉米rabl7干旱诱导型启动子、P5CS1(其驱动脯氨酸生物合成酶P5CS1的干旱诱导型表达),拟南芥进化枝A PP2C的ABA-和干旱诱导型启动子(ABI1,ABI2,HAB1,PP2CA,HAI1,HAI2和HAI3)或它们相应的作物同源物。In one embodiment, the promoter is a constitutive or strong promoter. In preferred embodiments, the regulatory sequence is an inducible promoter or a stress-inducible promoter. The stress-inducible promoter is selected from the following non-limiting list: HaHB1 promoter, RD29A (which drives the drought-inducible expression of DREB1A), maize rabl7 drought-inducible promoter, P5CS1 (which drives the expression of the proline biosynthesis enzyme P5CS1 Drought-inducible expression), the ABA- and drought-inducible promoters of Arabidopsis clade A PP2C (ABI1, ABI2, HAB1, PP2CA, HAI1, HAI2 and HAI3) or their corresponding crop homologues.
启动子还可以是组织特异的。这些类型的启动子在现有技术中描述,但非限制性实例在下文列出。其他合适的启动子也是技术人员已知的。Promoters can also be tissue specific. These types of promoters are described in the prior art, but non-limiting examples are listed below. Other suitable promoters are also known to the skilled person.
组织特异性启动子是在植物发育期间的特定时间仅在特定细胞或组织(如在营养组织或生殖组织)中有活性的转录控制元件。在发育控制下的组织-特异性启动子的实例包括仅(或主要仅)在特定组织(如营养组织,例如,根或叶,或生殖组织,如果实、胚珠、种子、花粉、雌蕊(pistols)、花)或任何胚组织或表皮或叶肉中起始转录的启动子。生殖组织特异的启动子可以是,例如,胚珠-特异的,胚-特异的,胚乳-特异的,珠被-特异的,种子和种皮-特异的,花粉-特异的,花瓣-特异的,萼片-特异的,或它们的一些组合。在一些实施方案中,启动子是细胞类型特异的,例如,保卫细胞-特异的。Tissue-specific promoters are transcriptional control elements that are active only in specific cells or tissues, such as in vegetative or reproductive tissues, at specific times during plant development. Examples of tissue-specific promoters under developmental control include promoters that are expressed only (or predominantly only) in specific tissues (such as vegetative tissues, e.g., roots or leaves, or reproductive tissues, such as fruits, ovules, seeds, pollen, pistols ), flower) or any promoter that initiates transcription in embryonic tissue or epidermis or mesophyll. Reproductive tissue-specific promoters can be, for example, ovule-specific, embryo-specific, endosperm-specific, integument-specific, seed and testa-specific, pollen-specific, petal-specific, Sepals - specific, or some combination thereof. In some embodiments, the promoter is cell type specific, eg, guard cell-specific.
在一个实施方案中,可以使用绿色组织-特异的启动子。绿色组织包括叶和嫩芽。例如,绿色组织-特异的启动子可以选自玉米正磷酸激酶启动子、玉米磷酸烯醇丙酮酸盐羧化酶启动子、水稻磷酸烯醇丙酮酸盐羧化酶启动子、水稻小亚基核酮糖二磷酸羟化酶(rubisco)启动子、水稻β扩张蛋白EXBP9启动子、木豆小亚基核酮糖二磷酸羟化酶(rubisco)启动子、叶肉特异性启动子CAB3(Warnasooriya,S.N.,和Montgomery,B.L.(2009),Plant Physiol 149,424-433)或豌豆RBS3A启动子。In one embodiment, a green tissue-specific promoter can be used. Green tissues include leaves and shoots. For example, the green tissue-specific promoter can be selected from the group consisting of maize orthophosphokinase promoter, maize phosphoenolpyruvate carboxylase promoter, rice phosphoenolpyruvate carboxylase promoter, rice small subunit nuclear Ketose bisphosphate hydroxylase (rubisco) promoter, rice β-expandin EXBP9 promoter, pigeon pea small subunit ribulose bisphosphate hydroxylase (rubisco) promoter, mesophyll-specific promoter CAB3 (Warnasooriya, S.N. , and Montgomery, B.L. (2009), Plant Physiol 149, 424-433) or the pea RBS3A promoter.
叶-特异的启动子的实例还包括二磷酸核酮糖羧化酶(RBCS)启动子。例如,番茄RBCS1、RBCS2和RBCS3A基因在叶和光生长的幼苗中表达,仅RBCS1和RBCS2在发育中的番茄果实中表达(Meier FEBS Lett.415:91-95,1997)。可以使用由Matsuoka Plant J.6:311-319,1194描述的几乎仅在叶片和叶鞘中的叶肉细胞中高水平表达的二磷酸核酮糖羧化酶启动子。另一叶-特异的启动子是捕光叶绿素a/b结合蛋白基因启动子,参见,例如,ShiinaPlant Physiol.115:477-483,1997;Casal Plant Physiol.116:1533-1538,1998。Li FEBSLett.379:1 17-121,1996描述的拟南芥myb-相关基因启动子(Atmyb5)也是叶-特异的。Atmyb5启动子在幼花环和茎生叶边缘上的发育中的叶表皮毛(leaf trichomes)、托叶和表皮细胞,和未成熟种子中表达。Atmyb5mR A在受精和胚发育的16细胞阶段出现,并且存留超过胚期(heart stage)。Examples of leaf-specific promoters also include the ribulose diphosphate carboxylase (RBCS) promoter. For example, the tomato RBCS1, RBCS2, and RBCS3A genes are expressed in leaves and light-grown seedlings, and only RBCS1 and RBCS2 are expressed in developing tomato fruit (Meier FEBS Lett. 415:91-95, 1997). The ribulose diphosphate carboxylase promoter described by Matsuoka Plant J. 6: 311-319, 1194, which is expressed at a high level almost only in mesophyll cells in leaves and leaf sheaths, can be used. Another leaf-specific promoter is the light-harvesting chlorophyll a/b binding protein gene promoter, see, eg, Shiina Plant Physiol. 115:477-483, 1997; Casal Plant Physiol. 116: 1533-1538, 1998. The Arabidopsis myb-related gene promoter (Atmyb5) described by Li FEBS Lett. 379:1 17-121, 1996 is also leaf-specific. The Atmyb5 promoter is expressed in developing leaf trichomes on young rosettes and stem leaf margins, stipules and epidermal cells, and immature seeds. Atmyb5mRA appears at the 16-cell stage of fertilization and embryonic development and persists beyond the heart stage.
另一类型的有用的营养组织-特异的启动子是分生组织的启动子,其驱动嫩芽尖端中的表达。例如,可以使用″SHOOTMERISTEMLESS″和″SCARECROW″启动子,它们在发育中的嫩芽或根顶端分生组织中有活性,由Di Laurenzio,Cell 86:423-433,1996;和Long,Nature 379:66-69,1996描述。另一有用的启动子是这样的启动子,其控制3-羟基-3-甲基戊二酰辅酶A还原酶HMG2基因的表达,其表达限于分生组织和花(柱头的分泌区、成熟花粉粒、雌蕊群脉管组织和受精的胚珠)组织(参见,例如,Enjuto Plant Cell.7:517-527,1995)。还可用的是来自玉米和其他物种的knl-相关基因,其表现分生组织-特异的表达,参见,例如,Granger Plant Mol.Biol.31:373-378,1996;Kerstetter Plant Cell 6:1877-1887,1994;Hake Philos.Trans.R.Soc.Lond.B.Biol.Sci.350:45-51,1995。Another type of useful vegetative tissue-specific promoter is a meristem promoter, which drives expression in shoot tips. For example, the "SHOOTMERISTEMLESS" and "SCARECROW" promoters, which are active in developing shoot or root apical meristems, can be used by Di Laurenzio, Cell 86:423-433, 1996; and Long, Nature 379: 66-69, 1996 description. Another useful promoter is one that controls the expression of the 3-hydroxy-3-methylglutaryl-CoA reductase HMG2 gene, the expression of which is restricted to the meristems and flowers (secretory region of the stigma, mature pollen pistil group vascular tissue and fertilized ovule) tissue (see, eg, Enjuto Plant Cell. 7:517-527, 1995). Also available are knl-related genes from maize and other species that exhibit meristem-specific expression, see, e.g., Granger Plant Mol. Biol. 31:373-378, 1996; Kerstetter Plant Cell 6:1877- 1887, 1994; Hake Philos. Trans. R. Soc. Lond. B. Biol. Sci. 350:45-51, 1995.
本发明还涉及遗传改变的植物,其包含HY5核酸序列和组织特异性调节序列。The invention also relates to genetically altered plants comprising a HY5 nucleic acid sequence and tissue-specific regulatory sequences.
在一个方面,本发明涉及转基因植物包含含有HY5核酸序列和组织特异性调节序列的核酸构建体。In one aspect, the present invention relates to a transgenic plant comprising a nucleic acid construct comprising a HY5 nucleic acid sequence and a tissue-specific regulatory sequence.
术语HY5核酸序列和组织特异性调节序列在本文中其他地方描述。优选地,组织特异性调节序列是叶或嫩芽特异性的启动子。在一个实施方案中,所述植物不是拟南芥。The terms HY5 nucleic acid sequence and tissue-specific regulatory sequence are described elsewhere herein. Preferably, the tissue-specific regulatory sequence is a leaf or shoot-specific promoter. In one embodiment, the plant is not Arabidopsis.
本发明还延伸至转基因植物,其包含含有HY5核酸序列的核酸构建体,其中所述植物不是拟南芥。The invention also extends to transgenic plants comprising a nucleic acid construct comprising a HY5 nucleic acid sequence, wherein said plant is not Arabidopsis.
本发明还涉及核酸构建体,其包含与组织特异性启动子可操作连接的植物HY5核酸序列。组织特异性启动子可以选自如上文所述的绿色组织特异性启动子。本发明还涉及表达载体,其包含含有与组织特异性启动子可操作连接的植物HY5核酸序列的核酸构建体。The present invention also relates to a nucleic acid construct comprising a plant HY5 nucleic acid sequence operably linked to a tissue-specific promoter. Tissue-specific promoters may be selected from green tissue-specific promoters as described above. The present invention also relates to an expression vector comprising a nucleic acid construct comprising a plant HY5 nucleic acid sequence operably linked to a tissue-specific promoter.
在另一方面,本发明涉及分离的宿主细胞,其转化有如上文所述的核酸构建体或载体。宿主细胞可以是细菌细胞,如根癌土壤杆菌,或分离的植物细胞。本发明还涉及培养基或试剂盒,所述试剂盒包含培养基和如上文所述的分离的宿主细胞。In another aspect, the invention relates to an isolated host cell transformed with a nucleic acid construct or vector as described above. The host cell can be a bacterial cell, such as Agrobacterium tumefaciens, or an isolated plant cell. The invention also relates to a culture medium or a kit comprising a culture medium and an isolated host cell as described above.
上文所述的核酸构建体或载体可以用于使用本领域中已知的转化方法产生转基因植物。因此,在另一方面,本发明涉及上述核酸构建体或载体在增加植物中氮代谢方面的用途。在另一方面,本发明涉及包含HY5核酸序列和组织特异性启动子的核酸构建体或载体在增加植物根中HY5水平方面的用途。The nucleic acid constructs or vectors described above can be used to generate transgenic plants using transformation methods known in the art. Thus, in a further aspect, the present invention relates to the use of the above-mentioned nucleic acid construct or vector for increasing nitrogen metabolism in plants. In another aspect, the present invention relates to the use of a nucleic acid construct or vector comprising a HY5 nucleic acid sequence and a tissue-specific promoter for increasing the level of HY5 in plant roots.
本发明还涉及产生具有增加的氮代谢的植物的方法,其包括在植物中引入并表达包含与绿色组织特异性启动子可操作连接的HY5核酸序列的核酸构建体。The present invention also relates to a method for producing plants with increased nitrogen metabolism, comprising introducing and expressing in plants a nucleic acid construct comprising a HY5 nucleic acid sequence operably linked to a green tissue-specific promoter.
在另一方面,本发明涉及用于增加植物根中HY5蛋白的存在的方法,其包括在植物引入并表达包含与绿色组织特异性启动子可操作连接的HY5核酸序列的核酸构建体。In another aspect, the present invention relates to a method for increasing the presence of HY5 protein in plant roots, which comprises introducing and expressing in a plant a nucleic acid construct comprising a HY5 nucleic acid sequence operably linked to a green tissue-specific promoter.
本发明人还证明了HY5调节C和N代谢之间的平衡。编码与蔗糖形式的固定碳的利用度相关的蛋白(例如TPS1)或编码蔗糖外排转运体(例如SWEET11和12)的基因转录物的相对丰度在hy5幼苗(缺少HY5)中强烈降低,提示HY5调节蔗糖合成和C代谢的迁移方面二者。他们还发现,蔗糖或葡萄糖基本上增强WT植物中的AtNRT2.1转录物丰度和NO3-摄取,但在hy5突变体中,这些效应基本上降低。高亲和力硝酸根转运子表达和N-摄取的HY5-依赖性的蔗糖诱导促进C和N代谢的协调的稳态平衡。因此,本发明还涉及在植物中调节C和N代谢之间的平衡的方法,其包括在植物中引入并表达包含HY5核酸序列的核酸构建体。在一个实施方案中,HY5核酸序列与绿色组织特异性启动子可操作连接。The inventors also demonstrated that HY5 regulates the balance between C and N metabolism. The relative abundance of transcripts encoding proteins associated with the availability of fixed carbon in the form of sucrose (e.g. TPS1) or encoding sucrose efflux transporters (e.g. SWEET11 and 12) was strongly reduced in hy5 seedlings (lacking HY5), suggesting HY5 regulates both sucrose synthesis and migratory aspects of C metabolism. They also found that sucrose or glucose substantially enhanced AtNRT2.1 transcript abundance and NO3 - uptake in WT plants, but these effects were substantially reduced in hy5 mutants. High-affinity nitrate transporter expression and HY5-dependent sucrose induction of N-uptake promote a coordinated homeostatic balance of C and N metabolism. Therefore, the present invention also relates to a method for regulating the balance between C and N metabolism in plants, which comprises introducing and expressing a nucleic acid construct comprising a HY5 nucleic acid sequence in a plant. In one embodiment, the HY5 nucleic acid sequence is operably linked to a green tissue-specific promoter.
本发明还涉及增加植物根中HY5水平的方法,其包括在植物中引入并表达包含与绿色组织特异性启动子可操作连接的HY5核酸序列的核酸构建体。The present invention also relates to a method for increasing HY5 levels in plant roots, which comprises introducing and expressing in plants a nucleic acid construct comprising a HY5 nucleic acid sequence operably linked to a green tissue-specific promoter.
本发明还延伸至通过如本文中所述的方法,例如增加硝酸根代谢的方法获得或可获得的植物。The invention also extends to plants obtained or obtainable by a method as described herein, for example a method of increasing nitrate metabolism.
在另一方面,本发明涉及突变体植物,即具有增加的内源性HY5核酸表达的植物,其中内源性HY5启动子携带通过诱变或靶向的基因组编辑引入的突变,并且所述突变导致增加的内源性HY5核酸表达。在该实施方案中,表达的增加是相对于对照或野生型植物中的水平而言的,如本文中其他地方所述。在一个实施方案中,靶向的基因组编辑用于修饰(例如,插入或改变)HY5启动子、或其功能同系物或变体的核酸序列中的至少一种核酸。在优选的实施方案中,该突变增强内源性启动子的活性。例如,靶向的基因组修饰可以用于插入至少一个增强子或启动子位点,如TATA盒(TATAAA),GC盒(GGGCGG)或CAAT(GGCCAATCT)盒,或其功能变体。在另一方面,本发明涉及具有增加的内源性HY5核酸表达的植物,其中内源性HY5核酸携带通过诱变或靶向的基因组编辑引入的突变,其导致所述核酸的增加的表达。在另一方面,本发明涉及具有增加的HY5核酸表达的植物,其中HY5表达通过将一个以上额外拷贝的HY5核酸结合入植物基因组而增加。在优选的实施方案中,所述结合基因组编辑实现。In another aspect, the present invention relates to mutant plants, i.e. plants having increased expression of an endogenous HY5 nucleic acid, wherein the endogenous HY5 promoter carries a mutation introduced by mutagenesis or targeted genome editing, and said mutation Resulting in increased expression of endogenous HY5 nucleic acid. In this embodiment, the increase in expression is relative to the level in a control or wild-type plant, as described elsewhere herein. In one embodiment, targeted genome editing is used to modify (eg, insert or alter) at least one nucleic acid in the nucleic acid sequence of the HY5 promoter, or a functional homologue or variant thereof. In preferred embodiments, the mutation increases the activity of the endogenous promoter. For example, targeted genomic modification can be used to insert at least one enhancer or promoter site, such as a TATA box (TATAAA), GC box (GGGCGG) or CAAT (GGCCAATCT) box, or functional variants thereof. In another aspect, the present invention relates to plants having increased expression of an endogenous HY5 nucleic acid, wherein the endogenous HY5 nucleic acid carries a mutation introduced by mutagenesis or targeted genome editing, which results in increased expression of said nucleic acid. In another aspect, the present invention relates to plants having increased expression of a HY5 nucleic acid, wherein HY5 expression is increased by incorporation of one or more additional copies of the HY5 nucleic acid into the plant genome. In preferred embodiments, said combined genome editing is achieved.
在一个实施方案中,HY5核酸是SEQ ID NO:1或2或其功能同系物或变体。在一个实施方案中,内源性启动子是SEQ ID NO:35或其功能同系物或变体。In one embodiment, the HY5 nucleic acid is SEQ ID NO: 1 or 2 or a functional homologue or variant thereof. In one embodiment, the endogenous promoter is SEQ ID NO: 35 or a functional homolog or variant thereof.
在本发明的另一方面中,提供增加植物中氮代谢的方法,所述方法包括将至少一种突变引入内源性HY5序列或其调节序列中以增强内源性HY5核酸的表达。还提供的是产生具有增加的氮摄取的植物的方法,增加植物根中HY5蛋白的存在的方法,调节植物中C和N代谢之间平衡的方法和增加植物根中HY5蛋白的存在的方法,其中所述方法包括将至少一种突变引入内源性(即天然或天生的)HY5序列或其调节序列以增强内源性HY5核酸的表达。In another aspect of the invention, there is provided a method of increasing nitrogen metabolism in a plant, the method comprising introducing at least one mutation into an endogenous HY5 sequence or a regulatory sequence thereof to enhance expression of an endogenous HY5 nucleic acid. Also provided are methods of producing plants with increased nitrogen uptake, methods of increasing the presence of HY5 protein in plant roots, methods of modulating the balance between C and N metabolism in plants and methods of increasing the presence of HY5 protein in plant roots, Wherein the method comprises introducing at least one mutation into an endogenous (ie native or native) HY5 sequence or its regulatory sequence to enhance expression of an endogenous HY5 nucleic acid.
在一个实施方案中,所述至少一个突变使用靶向的基因组编辑引入。在一个实施方案中,靶向的基因组编辑用于修饰(例如,插入或改变)HY5启动子、或其功能同系物或变体的核酸序列中的至少一个核酸。在优选的实施方案中,该突变增强内源性启动子的活性。例如,靶向的基因组修饰可以用于插入至少一个增强子或启动子位点,如TATA盒(TATAAA)、GC盒(GGGCGG)或CAAT(GGCCAATCT)盒,或其功能变体。在另一实施方案中,靶向的基因组编辑用于将一个以上另外拷贝的HY5核酸结合入植物基因组。In one embodiment, said at least one mutation is introduced using targeted genome editing. In one embodiment, targeted genome editing is used to modify (eg, insert or alter) at least one nucleic acid in the nucleic acid sequence of the HY5 promoter, or a functional homologue or variant thereof. In preferred embodiments, the mutation increases the activity of the endogenous promoter. For example, targeted genomic modification can be used to insert at least one enhancer or promoter site, such as a TATA box (TATAAA), GC box (GGGCGG) or CAAT (GGCCAATCT) box, or functional variants thereof. In another embodiment, targeted genome editing is used to incorporate one or more additional copies of the HY5 nucleic acid into the plant genome.
在一个实施方案中,HY5核酸是SEQ ID NO:1或2或其功能同系物或变体。在一个实施方案中,内源性启动子是SEQ ID NO:35或其功能同系物或变体。In one embodiment, the HY5 nucleic acid is SEQ ID NO: 1 or 2 or a functional homologue or variant thereof. In one embodiment, the endogenous promoter is SEQ ID NO: 35 or a functional homolog or variant thereof.
在上述实施方案中,‘内源性’核酸可以指植物基因组中天生的或天然的序列。In the above embodiments, an 'endogenous' nucleic acid may refer to a sequence that is native or native to the genome of a plant.
靶向的基因组修饰或靶向的基因组编辑是通过同源重组(HR)-介导的重组事件使用靶向的DNA双链断裂(DSBs)刺激基因组编辑的基因组工程技术。为了通过引入位点-特异的DNADSB实现有效的基因组编辑,可以使用四种主要类型的可定制DNA结合蛋白:来源于微生物移动遗传元件的大范围核酸酶(meganucleases),基于真核转录因子的ZF核酶,来自黄单胞菌属细菌(Xanthomonas bacteria)的转录激活剂样效应子(TALEs),和来自II型细菌适应性免疫系统CRISPR(规律成簇间隔短回文重复)的RNA-引导的DNA核酸内切酶Cas9。大范围核酸酶、ZF和TALE蛋白均通过蛋白-DNA相互作用识别特定的DNA序列。尽管大范围核酸酶整合核酸酶和DNA-结合结构域,ZF和TALE蛋白分别由靶向DNA的3或1个核苷酸(nt)的个体模块组成。ZF和TALE可以以所需的组合组装并且连接于FokI的核酸酶结构域以引导针对特定基因组基因座的溶核活性。Targeted genome modification or targeted genome editing is a genome engineering technique that uses targeted DNA double-strand breaks (DSBs) to stimulate genome editing through homologous recombination (HR)-mediated recombination events. To achieve efficient genome editing by introducing site-specific DNADSBs, four main classes of customizable DNA-binding proteins are available: meganucleases derived from mobile genetic elements of microorganisms, ZFs based on eukaryotic transcription factors Ribozymes, transcription activator-like effectors (TALEs) from Xanthomonas bacteria, and CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided DNA endonuclease Cas9. Meganucleases, ZFs, and TALE proteins all recognize specific DNA sequences through protein-DNA interactions. Whereas meganucleases integrate nuclease and DNA-binding domains, ZF and TALE proteins consist of individual modules of 3 or 1 nucleotide (nt), respectively, that target DNA. ZFs and TALEs can be assembled in desired combinations and linked to the nuclease domain of Fokl to direct nucleolytic activity against specific genomic loci.
在通过细菌III型分泌体系递送到宿主细胞中时,TAL效应子进入核,结合宿主基因启动子中的效应子-特异的序列并激活转录。它们的靶向特异性由串联的33-35个氨基酸重复的中央结构域决定。这接着单个截短的20个氨基酸的重复。大多数检查的天然存在的TAL效应子具有12和27个完全重复。Upon delivery into a host cell via the bacterial type III secretion system, TAL effectors enter the nucleus, bind effector-specific sequences in host gene promoters and activate transcription. Their targeting specificity is determined by a central domain of tandem 33-35 amino acid repeats. This is followed by a single truncated 20 amino acid repeat. Most naturally occurring TAL effectors examined have between 12 and 27 complete repeats.
这些重复彼此仅区别于两个相邻的氨基酸,它们的重复-可变二残基(RVD)。决定TAL效应子将识别哪个单个核苷酸的RVD:一个RVD对应于一个核苷酸,四种最常见的RVD各自优选与四种碱基之一相关联。天然存在的识别位点一致地在TAL效应子活性所需的T之后。TAL效应子可以融合于FokI核酸酶的催化结构域以产生TAL效应子核酸酶(TALEN),其在体内产生靶向的DNA双链断裂(DSBs)用于基因组编辑。该技术在基因组编辑中的使用在本领域中得到充分的描述,例如在US 8,440,431,US 8,440,432和US 8,450,471中描述。参考文献38描述了一组定制的质粒,其可以与Golden Gate克隆方法一起使用以组装多个DNA片段。如其中所述的,Golden Gate方法使用IIS型限制性核酸内切酶,其在其识别位点外侧切割产生独特的4bp突出。克隆通过在同一反应混合物中消化和连接来加速,原因在于正确组装消除了酶识别位点。定制的TALEN或TAL效应子构建体的组装涉及两个步骤:(i)将重复模块组装为1-10个重复的中间阵列,和(ii)将中间阵列连接为骨架以制备最终的构建体。These repeats differ from each other only by two adjacent amino acids, their repeat-variable diresidues (RVD). Decide which single nucleotide RVD the TAL effector will recognize: one RVD corresponds to one nucleotide, and the four most common RVDs are each preferably associated with one of the four bases. The naturally occurring recognition site is consistently followed by a T required for TAL effector activity. TAL effectors can be fused to the catalytic domain of FokI nuclease to generate TAL effector nucleases (TALENs), which generate targeted DNA double-strand breaks (DSBs) for genome editing in vivo. The use of this technique in genome editing is well described in the art, for example in US 8,440,431 , US 8,440,432 and US 8,450,471 . Reference 38 describes a set of custom-made plasmids that can be used with the Golden Gate cloning method to assemble multiple DNA fragments. As described therein, the Golden Gate method uses a type IIS restriction endonuclease that cleaves outside its recognition site to generate a unique 4 bp overhang. Cloning is accelerated by digestion and ligation in the same reaction mixture, since enzyme recognition sites are eliminated for proper assembly. Assembly of custom TALEN or TAL effector constructs involves two steps: (i) assembly of repeat modules into intermediate arrays of 1-10 repeats, and (ii) joining of intermediate arrays into a backbone to make the final construct.
可以根据本发明的各个方面使用的另一基因组编辑方法是CRISPR。该技术在基因组编辑中的使用在本领域中得到充分描述,例如在US 8,697,359和本文引用的参考文献中充分描述。简言之,CRISPR是参与抵御入侵的噬菌体和质粒的微生物核酸酶体系。微生物宿主中的CRISPR基因座含有CRISPR-相关(Cas)基因以及能够编程CRISPR-介导的核酸切割(sgRNA)的特异性的非编码RNA元件的组合。在宽范围的细菌宿主中鉴定了三种类型的(I-III)CRISPR体系。各个CRISPR基因座的一个关键特征是由短的非重复序列区段(间隔臂)间隔的重复序列(同向重复(direct repeats))阵列的存在。非编码CRISPR阵列被转录,并且在同向重复内切割为含有个体间隔臂序列的短的crRNA,其引导Cas核酸酶至靶位点(原间隔(protospacer))。II型CRISPR是最充分表征的体系之一,并且在四个顺序步骤中携带靶向的DNA双链断裂。第一,两个非编码RNA,即前-crRNA阵列和tracrRNA,从CRISPR基因座转录。第二,tracrRNA与前-crRNA的重复区杂交,并且介导前-crRNA加工为含有个体间隔臂序列的成熟crRNA。第三,成熟crRNA:tracrRNA复合体通过通过crRNA上的间隔臂和与原间隔相邻基序(PAM)相邻的靶DNA上的原间隔之间的沃森克里克碱基配对将Cas9引导至靶DNA,这是对于靶标识别另外所需的。最后,Cas9调控靶DNA的切割以在原间隔内产生双链断裂。Another genome editing method that can be used in accordance with various aspects of the invention is CRISPR. The use of this technique in genome editing is well described in the art, for example in US 8,697,359 and references cited therein. In short, CRISPR is a microbial nuclease system involved in defense against invading phages and plasmids. CRISPR loci in microbial hosts contain combinations of CRISPR-associated (Cas) genes and specific non-coding RNA elements capable of programming CRISPR-mediated nucleic acid cleavage (sgRNA). Three types of (I-III) CRISPR systems have been identified in a wide range of bacterial hosts. A key feature of each CRISPR locus is the presence of an array of repeat sequences (direct repeats) interspersed by short non-repetitive sequence segments (spacers). The non-coding CRISPR array is transcribed and cleaved within the direct repeat into short crRNAs containing individual spacer sequences that guide the Cas nuclease to the target site (protospacer). Type II CRISPR is one of the best characterized systems and carries targeted DNA double-strand breaks in four sequential steps. First, two noncoding RNAs, the pre-crRNA array and tracrRNA, are transcribed from the CRISPR locus. Second, tracrRNA hybridizes to the repeat region of the pre-crRNA and mediates the processing of the pre-crRNA into a mature crRNA containing individual spacer sequences. Third, the mature crRNA:tracrRNA complex directs Cas9 through Watson-Crick base-pairing between the spacer arm on the crRNA and the protospacer on the target DNA adjacent to the protospacer adjacent motif (PAM) to the target DNA, which is additionally required for target recognition. Finally, Cas9 regulates cleavage of target DNA to generate double-strand breaks within the protospacer.
因此,Cas9是II型CRISPR-Cas体系的标志蛋白,并且是大的单体DNA核酸酶,其被两个非编码RNA(CRISPR RNA(crRNA)和反激活crRNA(tracrRNA))的复合体被引导至与PAM(原间隔相邻基序)序列基序相邻的DNA靶序列。Cas9蛋白含有两个与RuvC和HNH核酸酶同源的核酸酶结构域。HNH核酸酶结构域切割互补DNA链,而RuvC-样结构域切割非互补链,并且由此在靶DNA中引入钝性切割。Cas9连同sgRNA的异源表达可以将位点-特异的双链断裂(DSBs)引入来自各种生物的活细胞的基因组DNA。为了应用于真核生物,使用Cas9的密码子优化版本,其初始来自细菌酿脓链球菌(Streptococcus pyogenes)。Thus, Cas9 is the hallmark protein of type II CRISPR-Cas systems and is a large monomeric DNA nuclease guided by a complex of two noncoding RNAs, CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA) To a DNA target sequence adjacent to a PAM (protospacer adjacent motif) sequence motif. The Cas9 protein contains two nuclease domains homologous to RuvC and HNH nucleases. The HNH nuclease domain cleaves the complementary DNA strand, while the RuvC-like domain cleaves the non-complementary strand and thereby introduces a blunt cleavage in the target DNA. Heterologous expression of Cas9 together with sgRNA can introduce site-specific double-strand breaks (DSBs) into the genomic DNA of living cells from various organisms. For eukaryotic application, a codon-optimized version of Cas9, originally from the bacterium Streptococcus pyogenes, was used.
单个引导RNA(sgRNA)是CRISPR/Cas体系的第二组分,其与Cas9核酸酶形成复合体。sgRNA是通过将crRNA与tracrRNA融合产生的合成的RNA嵌合体。位于其5′末端的sgRNA引导序列赋予DNA靶标特异性。因此,通过修饰引导序列,可能产生具有不同靶标特异性的sgRNA。引导序列的典型长度是20bp。在植物中,已经使用植物RNA聚合酶III启动子(如U6和U3)来表达sgRNA。A single guide RNA (sgRNA), the second component of the CRISPR/Cas system, forms a complex with the Cas9 nuclease. sgRNAs are synthetic RNA chimeras produced by fusing crRNA to tracrRNA. The sgRNA guide sequence at its 5' end confers DNA target specificity. Therefore, by modifying the guide sequence, it is possible to generate sgRNAs with different target specificities. A typical length of the leader sequence is 20bp. In plants, plant RNA polymerase III promoters such as U6 and U3 have been used to express sgRNAs.
本发明的方法中使用的Cas9表达质粒可以如本领域中描述进行构建。Cas9 expression plasmids used in the methods of the invention can be constructed as described in the art.
因此,本发明的方面涉及靶向的诱变方法,特别是基因组编辑,并且在优选的实施方案中,排除仅基于通过传统育种方法产生植物的实施方案。Thus, aspects of the invention relate to targeted mutagenesis methods, in particular genome editing, and in preferred embodiments exclude embodiments based solely on the generation of plants by traditional breeding methods.
在本发明另一方面,提供检测具有增加的或高的HY5表达水平和/或增加的或高的氮代谢水平的植物品种的筛选方法,所述方法包括在至少一种植物中检测HY5表达水平,并且选择具有最高或较高HY5表达水平所述一种或多种植物。在优选的实施方案中,选择的植物还通过多种方式,如上文所述的那些繁殖。In another aspect of the present invention, there is provided a screening method for detecting plant species with increased or high expression levels of HY5 and/or increased or high levels of nitrogen metabolism, said method comprising detecting HY5 expression levels in at least one plant , and selecting the one or more plants with the highest or higher expression level of HY5. In preferred embodiments, selected plants are also propagated by various means, such as those described above.
术语HY5和植物在上文定义。The term HY5 and plant is defined above.
前述公开内容提供包括在本发明的范围内的主题的一般描述,包括制备和使用本发明的方法,以及其最佳方式,提供以下实例以进一步使得本领域技术人员实践本发明,并提供其完整的书面描述。然而,本领域技术人员将理解,这些实例的具体内容不应该理解为限制本发明,其范围应该从本公开所附的权利要求和其等价物理解。根据本公开内容,本发明的各种其他方面和实施方案对于本领域技术人员将是显而易见的。The foregoing disclosure provides a general description of subject matter encompassed within the scope of the invention, including methods of making and using the invention, and the best mode thereof, the following examples are provided to further enable those skilled in the art to practice the invention, and a complete written description of . However, those skilled in the art will appreciate that the specifics of these examples should not be construed as limiting the invention, the scope of which should be understood from the appended claims of this disclosure and their equivalents. Various other aspects and embodiments of the invention will be apparent to those skilled in the art from the present disclosure.
″和/或″在本文中使用的情况下要认为是两个指定特征或成分的每一个与或不与另一个的具体公开。例如″A和/或B″要理解为(i)A,(ii)B以及(iii)A和B中的每个的具体公开,就像每个在本文中单独列出。"And/or" as used herein is to be considered as a specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be understood as specific disclosure of each of (i) A, (ii) B, and (iii) A and B, as if each were individually listed herein.
除非上下文另有指示,上述特征的描述的定义不限于本发明的任何特定方面或实施方案,并且等效应用于描述的所有方面和实施方案。Unless the context dictates otherwise, the described definitions of the above features are not limited to any particular aspect or embodiment of the invention and apply equally to all aspects and embodiments described.
前述申请,和其中或它们的审查过程中引用的所有文献和序列登记号(″申请引用的文献″)和以及申请引用的文献中引用或参考的所有文献,和本文中引用或参考的所有文献(″本文引用的文献″),和本文引用的文献中引用或参考的所有文献,连同对于本文中或本文中通过参考结合的任何文献中所述的任何产品的任何制造商的使用说明、说明书、产品说明书和产品小册,在此通过参考结合于本文,并且可以用于本发明的实践。更具体地,所有参考的文献通过参考结合至与好像指明各个个体文献具体和分别通过参考结合相同的程度。The foregoing applications, and all documents and sequence accession numbers cited therein or during their prosecution (“Application Cited Documents”) and all documents cited or referenced in Application Cited Documents, and all documents cited or referenced herein ("documents cited herein"), and all documents cited or referenced in documents cited herein, together with any manufacturer's instructions, instructions for any product described herein or in any document incorporated by reference herein , Product Specification and Product Brochure, which are hereby incorporated by reference and may be used in the practice of the present invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference.
实施例Example
材料和方法Materials and methods
植物材料和生长条件。将拟南芥种子在4℃吸胀三天,然后置于1/2MS培养基上。将漏出的幼苗在22℃暴露于16h光周期。涉及幼苗嫁接的实验如之前所述进行(17)。Plant material and growing conditions. Arabidopsis seeds were imbibed at 4 °C for three days and then placed on 1/2 MS medium. Exposed seedlings were exposed to a 16h photoperiod at 22°C. Experiments involving grafting of seedlings were performed as previously described (17).
质粒构建体。扩增HY5cDNA并亚克隆入pCaMV35S:nos载体(32)。将HY5、SUC2和CAB3启动子的序列扩增并亚克隆入pCaMV35S:nos载体,HY5启动子和GFP编码序列二者也是这样以产生pHY5:GFP表达盒。将HY5编码序列克隆入pSK-N-Tagged-myc载体(33),并且然后亚克隆入pCaMV35S:nos载体。为了制备pCAB3:2×GUS-TEVrs-HY5-GFP融合构建体,通过PCR将TEV识别位点(TEVrs)融合于2×GUS编码序列的3′-末端,并且将PCR产物引入pCAB3:HY5-GFP载体。将TEV蛋白酶扩增和克隆入pCaMV35S:nos载体(32)。为了构建pHY5:HY5-GFP转基因,将HY5编码序列克隆入pHY5:GFP构建体。用于PCR扩增的引物序列在表2中给出。Plasmid constructs. HY5 cDNA was amplified and subcloned into pCaMV35S:nos vector (32). The sequences of the HY5, SUC2 and CAB3 promoters were amplified and subcloned into the pCaMV35S:nos vector, as were both the HY5 promoter and the GFP coding sequence to generate the pHY5:GFP expression cassette. The HY5 coding sequence was cloned into the pSK-N-Tagged-myc vector (33) and then subcloned into the pCaMV35S:nos vector. To prepare the pCAB3:2×GUS-TEVrs-HY5-GFP fusion construct, a TEV recognition site (TEV rs ) was fused to the 3′-end of the 2×GUS coding sequence by PCR, and the PCR product was introduced into pCAB3:HY5- GFP vector. The TEV protease was amplified and cloned into pCaMV35S:nos vector (32). To construct the pHY5:HY5-GFP transgene, the HY5 coding sequence was cloned into the pHY5:GFP construct. The primer sequences used for PCR amplification are given in Table 2.
转录物分析。使用TRIzol试剂(Invitrogen,New York,USA)提取总RNA,并且使用M-MLV反转录酶试剂盒(Promega,Wisconsin,USA)反转录。如前所述进行qRT-PCR分析(34)。由三次生物学重复代表各个实验,每个生物学重复至少三次技术重复。拟南芥肌动蛋白2用作参比基因。相关引物在表3中给出。Transcript analysis. Total RNA was extracted using TRIzol reagent (Invitrogen, New York, USA) and reverse transcribed using M-MLV reverse transcriptase kit (Promega, Wisconsin, USA). qRT-PCR analysis was performed as previously described (34). Each experiment was represented by three biological replicates with at least three technical replicates per biological replicate. Arabidopsis actin 2 was used as a reference gene. The relevant primers are given in Table 3.
免疫印迹分析。粗制蛋白的制备通过在50mM Tris-HCl(pH 7.5),150mM KCl,10mMMgCl2,1mM EDTA,10%甘油,0.1%NP-40,1×完全蛋白酶抑制剂(Roche)中提取获得。将等分试样经10%(w/v)SDS-聚丙烯酰胺凝胶电泳并转移到Hybond ECL硝酸纤维素膜上。随后按照已建立的方案(35)操作膜。分别使用抗-myc抗体(Santa Cruz Biotechnology,SantaCruz,USA)和抗-GFP抗体(Roche Diagnostics GmbH,德国)检测myc-HY5和HY5-GFP融合蛋白,并且使用uperSignal West Pico化学发光底物(Thermo Fisher Scientific,Waltham,USA)显现信号。Western blot analysis. Crude protein was prepared by extraction in 50 mM Tris-HCl (pH 7.5), 150 mM KCl, 10 mM MgCl2, 1 mM EDTA, 10% glycerol, 0.1% NP-40, 1X complete protease inhibitor (Roche). Aliquots were electrophoresed on 10% (w/v) SDS-polyacrylamide gels and transferred to Hybond ECL nitrocellulose membranes. The membrane was then operated according to the established protocol (35). Anti-myc antibody (Santa Cruz Biotechnology, Santa Cruz, USA) and anti-GFP antibody (Roche Diagnostics GmbH, Germany) were used to detect myc-HY5 and HY5-GFP fusion proteins, respectively, and uperSignal West Pico chemiluminescent substrate (Thermo Fisher Scientific, Waltham, USA) to visualize the signal.
总碳和氮含量的测量。将脱水的植物组织研磨,并且使用ElementarVario PYROCube分析仪(Elementar Analysensysteme GmbH,Frankfurt,德国),使用高温燃烧过程(36)以确定粉末化材料的总碳和氮含量。Measurement of total carbon and nitrogen content. The dehydrated plant tissue was ground and the total carbon and nitrogen content of the powdered material was determined using a high temperature combustion process (36) using an Elementar Vario PYROCube analyzer (Elementar Analysensysteme GmbH, Frankfurt, Germany).
15NO3-摄取活性测定。如其他地方所述(3)测定根15NO3-流入。将根在80℃干燥过夜,并且使用ANCA-MS体系(PDZ Europa Ltd)测量15N含量。 15 NO3-uptake activity assay. Root 15 NO3 -influx was determined as described elsewhere (3). The roots were dried overnight at 80°C and the15N content was measured using the ANCA-MS system (PDZ Europa Ltd).
ChIP-PCR测定。将hy5和pHY5:myc-HY5hy5幼苗在1/2MS板上生长14天。然后将植物组织的2g等分试样通过甲醛交联固定。如之前所述(37),ChIP测定使用抗-myc抗体(SantaCruz Biotechnology,Santa Cruz,USA)。DNA片段的富集通过qRT-PCR分析确定。进行三次独立的生物学重复。相关引物序列在表4中给出。ChIP-PCR assay. hy5 and pHY5:myc-HY5hy5 seedlings were grown on ½ MS plates for 14 days. A 2 g aliquot of the plant tissue was then fixed by formaldehyde crosslinking. ChIP assays used anti-myc antibodies (Santa Cruz Biotechnology, Santa Cruz, USA) as previously described (37). Enrichment of DNA fragments was determined by qRT-PCR analysis. Three independent biological replicates were performed. The relevant primer sequences are given in Table 4.
EMSA测定。将HY5cDNA扩增并克隆入pMALTM-c2X载体(New England Biolabs,Ipswich,USA)。根据制造商的说明,纯化MBP和MBP-HY5融合蛋白。扩增DNA探针并使用生物素标记试剂盒(Invitrogen,New York,USA)用生物素在其3-末端标记。使用LightShift化学发光EMSA试剂盒(Thermo Fisher Scientific,Waltham,USA)进行DNA凝胶迁移测定。使用的引物序列在表5中给出。EMSA assay. HY5 cDNA was amplified and cloned into pMAL ™ -c2X vector (New England Biolabs, Ipswich, USA). MBP and MBP-HY5 fusion proteins were purified according to the manufacturer's instructions. The DNA probe was amplified and labeled at its 3-terminus with biotin using a biotin labeling kit (Invitrogen, New York, USA). DNA gel shift assays were performed using the LightShift Chemiluminescent EMSA Kit (Thermo Fisher Scientific, Waltham, USA). The primer sequences used are given in Table 5.
结果result
尽管植物嫩芽和根按照不同的发育轨迹,但是协调其生物学以在波动的环境中优化整体植物性能。代谢吸收的协调至关重要:嫩芽固定大气中的碳(C;CO2),根获取土壤离子氮(N;主要是硝酸根(NO3-))(1)。因为N是必需的,土壤NO3-水平常常限制天然和农业环境中的生产率(2,3)。已知N和C获取率的调节是紧密关联的(4,5),利用光调节这两个过程(6)。然而,潜在的调节长距离嫩芽-根通讯的分子机制尚是未知的。Although plant shoots and roots follow different developmental trajectories, their biology is coordinated to optimize overall plant performance in fluctuating environments. Coordination of metabolic uptake is crucial: shoots fix atmospheric carbon (C; CO 2 ), and roots acquire soil ionized nitrogen (N; mainly nitrate (NO3 − )) (1). Because N is essential, soil NO3 - levels often limit productivity in natural and agricultural environments (2, 3). The regulation of N and C uptake rates is known to be closely linked (4, 5), and light is used to regulate these two processes (6). However, the underlying molecular mechanisms regulating long-distance shoot-root communication are unknown.
作为调节嫩芽-根通讯的明显报告子,并且因为根通常不暴露于光,我们因此确定分开的嫩芽或根照射对根生长的影响(图1A)。我们发现,野生型(WT)拟南芥(Col-0实验株)幼苗(其嫩芽(仅)暴露于光(S(L)/R(D))的初生根与完全暴露于光(S(L)/R(L)的WT幼苗的初生根具有相似长度(图1A-C)。相比之下,WT S(D)/R(L)幼苗的根比S(L)/R(D)幼苗的短,并且与S(D)/R(D)幼苗具有相似长度(图1B,C)。此外,S(L)/R(D)幼苗的侧根增殖类似于S(L)/R(L)的,而S(D)/R(L)幼苗的侧根增殖少得多,类似于S(D)/R(D)的侧根增殖(图7)。因此,嫩芽照射最可能通过嫩芽-至-根信号传导促进根生长。As an apparent reporter of regulation of shoot-root communication, and because roots are not normally exposed to light, we therefore determined the effect of separate shoot or root irradiation on root growth (Fig. 1A). We found that primary roots of wild-type (WT) Arabidopsis (Col-0 experimental strain) seedlings whose shoots were (only) exposed to light (S(L)/R(D)) were significantly different from those fully exposed to light (S(L)/R(D)). Primary roots of WT seedlings of (L)/R(L) had similar lengths (Fig. 1A-C). In contrast, roots of WT S(D)/R(L) seedlings were more D) The seedlings are short and have similar length to S(D)/R(D) seedlings (Fig. 1B, C). In addition, the lateral root proliferation of S(L)/R(D) seedlings is similar to that of S(L)/ R(L), while S(D)/R(L) seedlings had much less lateral root proliferation, similar to that of S(D)/R(D) (Fig. 7). Therefore, shoot irradiation most likely Promotes root growth through shoot-to-root signaling.
我们接着筛选在嫩芽-照射促进的根生长方面被特异性破坏的拟南芥突变体,并且发现,它们之一含有新的HY5功能缺失等位基因(hy5-526;图1B;图8)。进一步分析表明,hy5无效等位基因(7;图8)也消除嫩芽-照射促进的根生长(图1C)。HY5编码光敏形态发生的bZIP转录因子HY5(8)。HY5由COP1泛素连接酶调节,所述泛素连接酶靶向HY5,用于在黑暗中的蛋白质降解(9,10)。因此,我们发现,功能缺失copl-4突变体模拟暗生幼苗中根生长的嫩芽-照射促进(图1C)。这些结果提示,HY5调控根生长的嫩芽-照射促进。We next screened Arabidopsis mutants specifically disrupted in shoot-irradiation-promoted root growth and found that one of them contained a novel HY5 loss-of-function allele (hy5-526; Fig. 1B; Fig. 8) . Further analysis showed that the hy5 null allele (7; Figure 8) also abolished shoot-irradiation-promoted root growth (Figure 1C). HY5 encodes the photosensitive morphogenetic bZIP transcription factor HY5 (8). HY5 is regulated by the COP1 ubiquitin ligase, which targets HY5 for protein degradation in the dark (9, 10). Thus, we found that loss-of-function copl-4 mutants mimic shoot-irradiation promotion of root growth in dark-grown seedlings (Figure 1C). These results suggest that HY5 regulates shoot-irradiation promotion of root growth.
我们接着发现,WT根NO3-摄取由嫩芽的照射促进,但不由根的照射促进(图1D)。NO3-由植物经由双重低亲和力/高亲和力CHL1/NRT1.1/NPF6.3和高亲和力NRT2.1转运子摄取(11-15)。嫩芽-照射促进的NO3-摄取在缺乏NRT2.1的nrt2.1-2突变体中大量减少,但在缺乏CHL1/NRT1.1/NPF6.3的chl1-5突变体中相对不受影响(图1D),表明根NO3-摄取的嫩芽-照射促进是显著NRT2.1-依赖性的。此外,嫩芽-照射促进的根NO3-摄取在hy5和hy5-526二者中大量消除(图1D),这提示HY5调节NRT2.1-依赖性的对根NO3-摄取的嫩芽-照射促进。We next found that WT root NO3 - uptake was promoted by irradiation of shoots, but not roots (Fig. 1D). NO3 - Uptake by plants via dual low-affinity/high-affinity CHL1/NRT1.1/NPF6.3 and high-affinity NRT2.1 transporters (11-15). Shoot-irradiation-promoted NO3 - uptake was substantially reduced in the nrt2.1-2 mutant lacking NRT2.1, but was relatively unaffected in the chl1-5 mutant lacking CHL1/NRT1.1/NPF6.3 ( Figure 1D), showing that shoot-irradiation promotion of root NO3 - uptake is significantly NRT2.1-dependent. Furthermore, shoot-irradiation-promoted root NO3 - uptake was largely abolished in both hy5 and hy5-526 (Fig. 1D), suggesting that HY5 regulates NRT2.1-dependent shoot-irradiation promotion of root NO3 - uptake .
随后的实验使用下胚轴移植嵌合体,并且发现HY5接穗允许根生长和NO3-摄取的嫩芽-照射促进(相对于hy5-526接穗;图1E,F),这提示HY5-依赖性的嫩芽-衍生的信号调节根NO3-摄取。为了确定HY5是否是该信号(的部分),我们接着使用非组织特异性pHY5(8)、光合组织-特异的pCAB3(16,17)或韧皮部伴细胞-特异的pSUC2启动子(18)在hy5中表达编码HY5-GFP或myc-HY5融合蛋白的转基因,发现HY5-GFP和myc-HY5二者补充hy5表型(图9),并且因此保留HY5活性。我们还发现pHY5:HY5-GFP、pCAB3:HY5-GFP和pSUC2:HY5-GFP全部恢复hy5的初生根生长的嫩芽照射调节(图2A)。因为pCAB3-驱动的表达是光合组织-特异性的,这些观察结果提示HY5转录物、HY5、或HY5-依赖性的信号从嫩芽移动到根。Subsequent experiments used hypocotyl grafted chimeras and found that HY5 scions allowed shoot-irradiated enhancement of root growth and NO3 - uptake (relative to hy5-526 scions; Fig. 1E,F), suggesting a HY5-dependent shoot-irradiation enhancement. Shoot-derived signals regulate root NO3 - uptake. To determine whether HY5 is (part of) this signal, we next used non-tissue-specific pHY5 (8), photosynthetic tissue-specific pCAB3 (16, 17) or phloem companion cell-specific pSUC2 promoters (18) in hy5 Transgenes encoding HY5-GFP or myc-HY5 fusion proteins were expressed in , and both HY5-GFP and myc-HY5 were found to complement the hy5 phenotype ( FIG. 9 ), and thus retain HY5 activity. We also found that pHY5:HY5-GFP, pCAB3:HY5-GFP and pSUC2:HY5-GFP all restored shoot irradiation regulation of primary root growth of hy5 (Fig. 2A). Because pCAB3-driven expression is photosynthetic tissue-specific, these observations suggest that HY5 transcripts, HY5, or HY5-dependent signals move from shoots to roots.
我们接着发现HY5-GFP可在S(L)/R(D)pHY5:HY5-GFP hy5幼苗的整个根中检测,但在S(D)/R(D)中不被检测到(图2B),这提示HY5在暗生根中相对稳定,并且特别是根HY5丰度受嫩芽照射调节。我们此外在S(L)/R(D)pCAB3:HY5-GFP hy5幼苗的根中检测到HY5-GFP,但在S(D)/R(D)对照中没有检测到(图2C),这暗示HY5转录物、或HY5(或二者)从嫩芽移动到根。我们接着比较pCAB3:myc-HY5hy5幼苗中myc-HY5转录物和myc-HY5的分布(图2D,E)。尽管myc-HY3转录物仅可在S(L)/R(D)嫩芽中检测到(图2D),myc-HY5在S(L)/R(D)嫩芽和根中检测到(图2E)。该结果通过检测S(L)/R(D)-生长的pCAB3:HY5-GFP hy5/hy5嫁接嵌合体的根中的HY5-GFP确认(图2F;图10)。利用pHY3:HY5-GFP hy5幼苗的进一步实验在嫁接的植物的S(L)/R(D)砧木根中检测HY5-GFP(图11),这提示在韧皮部脉管中HY5从嫩芽移动到根。We next found that HY5-GFP was detectable in the whole root of S(L)/R(D)pHY5:HY5-GFP hy5 seedlings but not in S(D)/R(D) (Fig. 2B) , which suggested that HY5 was relatively stable in dark rooting, and especially root HY5 abundance was regulated by shoot irradiation. We also detected HY5-GFP in the roots of S(L)/R(D)pCAB3:HY5-GFP hy5 seedlings, but not in S(D)/R(D) controls (Fig. 2C), suggesting that It is suggested that HY5 transcripts, or HY5 (or both) move from shoots to roots. We next compared the distribution of myc-HY5 transcripts and myc-HY5 in pCAB3:myc-HY5hy5 seedlings (Fig. 2D, E). Although myc-HY3 transcripts could only be detected in S(L)/R(D) shoots (Fig. 2D), myc-HY5 was detected in S(L)/R(D) shoots and roots (Fig. 2E). This result was confirmed by detection of HY5-GFP in roots of S(L)/R(D)-grown pCAB3:HY5-GFP hy5/hy5 graft chimeras (Fig. 2F; Fig. 10). Further experiments with pHY3:HY5-GFP hy5 seedlings detected HY5-GFP in S(L)/R(D) rootstock roots of grafted plants (Fig. 11), suggesting that HY5 migrates from shoots to root.
我们接着从pCAB3表达融合的HY5-GFP、TEVrs(TEV蛋白酶识别位点)和双β-葡糖苷酸酶(2×GUS)(2×GUS-TEVrs-HY5-GFP)蛋白。在嫩芽中检测到该蛋白,但在S(L)/R(D)植物的根中没有检测到,可能因为其相对大的尺寸阻止嫩芽-根移动(图2G;图12)。然而,35S:TEVP(表达TEV蛋白酶)的共表达使得能够在TEVrs切割(19),这导致在嫩芽和根中检测到HY5-GFP(图2G;图12)。HY5-GFP移动性的这些变化平行地反映了对嫩芽-照射促进的初生根生长(图2H)和NO3-摄取(图2I)的影响。这些结果表明,HY5的嫩芽-根移动是嫩芽-照射促进的根生长和NO3-摄取所必需的。有趣的是,HYH,即一种与HY5密切相关的转录调节剂(20),不是嫩芽-根移动型的(图13)。因此,HY5(但不是HY5mRNA)是调控根生长和NO3-摄取的光调节的嫩芽-根移动信号。We then expressed the fused HY5-GFP, TEVrs (TEV protease recognition site) and double β-glucuronidase (2×GUS) (2×GUS-TEVrs-HY5-GFP) proteins from pCAB3. The protein was detected in shoots but not in roots of S(L)/R(D) plants, probably because its relatively large size prevents shoot-root movement (Fig. 2G; Fig. 12). However, co-expression of 35S:TEVP (expressing TEV protease) enabled cleavage at TEV rs (19), which resulted in the detection of HY5-GFP in shoots and roots (Fig. 2G; Fig. 12). These changes in HY5-GFP mobility mirrored parallel effects on shoot-irradiation-promoted primary root growth (Fig. 2H) and NO3 - uptake (Fig. 2I). These results suggest that shoot-root movement of HY5 is required for shoot-irradiation-promoted root growth and NO3 - uptake. Interestingly, HYH, a transcriptional regulator closely related to HY5 (20), is not shoot-root mobile (Fig. 13). Thus, HY5 (but not HY5 mRNA) is a light-regulated shoot-root movement signal that regulates root growth and NO3 - uptake.
由pHY5:HY5-GFP(图2B)、pCAB3:HY5-GFP(图2C)和pHY5:HY5-GFP hy5/hy5嫁接嵌合体(图11)赋予hy5根的HY5-GFP分布不同。pHY5:HY5-GFP导致HY5-GFP在整个根中检测到,而pCAB3:HY5-GFP和pHY5:HY5-GFP hy5/hy5幼苗赋予与根脉管系统更密切相关的HY5-GFP位置。该差异可能是因为HY5激活根HY5表达。首先,在hy5中,pHY5:GFP转基因(报告pHY5活性)的根表达的嫩芽-照射诱导降低(图2J),这提示源自嫩芽的HY5通常激活根pHY5。第二,HY5-GFP可在嫩芽-照射的pCAB3:myc-HY5hy5/pHY5:HY5-GFP hy5嫁接物的根中检测到,但在嫩芽-照射的hy5/pHY5:HY5-GFP hy5嫁接物的根中不能检测到(图2K)。第三,使用pHY5:myc-HY5hy5幼苗的根的EMSA测定和ChIP分析确认HY5对pHY5的结合(21;图14)。这些观察结果表明,嫩芽-根转移的HY5通过自调节反馈环路激活根HY5。The distribution of HY5-GFP to hy5 roots was different from pHY5:HY5-GFP (Fig. 2B), pCAB3:HY5-GFP (Fig. 2C), and pHY5:HY5-GFP hy5/hy5 graft chimera (Fig. 11). pHY5:HY5-GFP resulted in HY5-GFP being detected throughout the root, whereas pCAB3:HY5-GFP and pHY5:HY5-GFP hy5/hy5 seedlings conferred HY5-GFP positions more closely associated with root vasculature. This difference may be due to HY5 activation of root HY5 expression. First, shoot-irradiation induction of root expression of the pHY5:GFP transgene (reporting pHY5 activity) was reduced in hy5 (Fig. 2J), suggesting that shoot-derived HY5 normally activates root pHY5. Second, HY5-GFP was detectable in the roots of shoot-irradiated pCAB3:myc-HY5hy5/pHY5:HY5-GFP hy5 grafts, but not in shoot-irradiated hy5/pHY5:HY5-GFP hy5 grafts could not be detected in the roots of (Fig. 2K). Third, the binding of HY5 to pHY5 was confirmed using EMSA assay and ChIP analysis of roots of pHY5:myc-HY5hy5 seedlings (21; Figure 14). These observations suggest that shoot-root transferred HY5 activates root HY5 through a self-regulatory feedback loop.
我们接着发现,根NRT2.1转录物水平的嫩芽-照射促进在hy5中大量消除(图3A)。进一步实验表明,HY5接穗/pHY5:HY5-GFP hy5砧木或pCAB3:HY5-GFP hy5接穗/HY5砧木允许根NR72.1转录物水平的嫩芽-照射-依赖性升高到与在HY5植物中观察到的相似的程度,但pCAB3:HY5-GFP hy5接穗/hy5砧木的水平相对于在HY5植物中观察到的降低(图3A)。这些差别效应平行反映对嫩芽-照射和NRT2.1-依赖性的NO3-摄取的影响(图3B),并且涉及根中对功能性HY5的需要。ChIP和EMSA测定表明HY5对NRT2.1启动子的体内和体外结合(图3C,D),这表明HY5直接调节NRT2.1表达。综上,这些结果提示嫩芽-根移动性的HY5通过由根HY5的自活化放大的机制激活根NRT2.1,由此增加NO3-摄取。We next found that shoot-irradiation promotion of root NRT2.1 transcript levels was largely eliminated in hy5 (Fig. 3A). Further experiments showed that HY5 scion/pHY5:HY5-GFP hy5 rootstock or pCAB3:HY5-GFP hy5 scion/HY5 rootstock allowed a shoot-irradiation-dependent increase in root NR72.1 transcript levels comparable to that observed in HY5 plants To a similar extent, pCAB3:HY5-GFP hy5 scion/hy5 rootstock levels were reduced relative to that observed in HY5 plants (Fig. 3A). These differential effects paralleled effects on shoot-irradiation and NRT2.1-dependent NO3 - uptake (Fig. 3B), and involved the requirement for functional HY5 in roots. ChIP and EMSA assays demonstrated the in vivo and in vitro binding of HY5 to the NRT2.1 promoter (Fig. 3C,D), suggesting that HY5 directly regulates NRT2.1 expression. Taken together, these results suggest that shoot-root mobility of HY5 activates root NRT2.1 through a mechanism amplified by self-activation of root HY5, thereby increasing NO3 - uptake.
近期的研究表明HY5部分通过控制叶绿素生物合成和光合成相关的基因(例如八氢番茄红素合酶(PHYTOENE SYNTHASE)(PSY,图3E))的表达调整光合成能力(22,23)。固定的C以蔗糖的形式经韧皮部主要转运到下沉组织(sink tissues)(例如,根)(24),并且海藻糖前体海藻糖-6-磷酸盐(T6P)用作光合成的碳水化合物状态的代替物(25)。我们还发现,HY5通过促进TPS1(编码海藻糖-6-磷酸盐合酶的基因(25))以及SWEET11和SWEET12(编码蔗糖流出转运体的基因)的表达水平(24)影响蔗糖代谢和嫩芽-根转运(图3E)。进一步的ChIP实验确认HY5对TPS1、SWEET11和SWEET12启动子的结合(图3F)。因此,HY5调节C固定和输入韧皮部细胞,用于嫩芽-根迁移。Recent studies have shown that HY5 regulates photosynthetic capacity in part by controlling the expression of genes related to chlorophyll biosynthesis and photosynthesis, such as phytoene synthase (PHYTOENE SYNTHASE) (PSY, Fig. 3E) (22, 23). Immobilized C is mainly transported via the phloem in the form of sucrose to sink tissues (e.g., roots) (24), and the trehalose precursor trehalose-6-phosphate (T6P) is used as the carbohydrate state for photosynthesis alternatives (25). We also found that HY5 affects sucrose metabolism and shoot growth by promoting the expression levels of TPS1, a gene encoding trehalose-6-phosphate synthase (25), and SWEET11 and SWEET12, genes encoding sucrose efflux transporters (24) - Root transport (Fig. 3E). Further ChIP experiments confirmed the binding of HY5 to the TPS1, SWEET11 and SWEET12 promoters (Fig. 3F). Thus, HY5 regulates C fixation and import into phloem cells for shoot-root migration.
因为C-状态调节N-状态(4,5),我们接着确定糖水平是否影响根NRT2.1转录物水平和光-调节的NRT2.1-依赖性的NO3-摄取。我们发现糖(蔗糖或葡萄糖)增强NRT2.1表达和NO3-摄取的嫩芽-照射促进(在hy5中大量消除的作用)(图3G,H;图15)。此外,ChIP测定表明,蔗糖促进光激活的myc-HY5对NRT2.1启动子的体内结合,并且该效应在糖不敏感型突变体sis4中消除(图3I)。因为HY5启动子活性和HY5-GFP丰度都不由蔗糖增加(图16),增加的HY5水平不可能促进蔗糖诱导的myc-HY5对NRT2.1启动子结合亲和力的增加。不论何种机制,NRT2.1表达和NO3-摄取的蔗糖诱导依赖于HY5(图17)。综上,HY5蛋白移动促进C和N代谢的协调的稳态平衡。Because C-states regulate N-states (4, 5), we next determined whether sugar levels affect root NRT2.1 transcript levels and light-regulated NRT2.1-dependent NO3 - uptake. We found that sugar (sucrose or glucose) enhanced NRT2.1 expression and NO3 - shoot-irradiation promotion of uptake (effect largely eliminated in hy5) (Fig. 3G,H; Fig. 15). Furthermore, ChIP assays showed that sucrose promoted the in vivo binding of light-activated myc-HY5 to the NRT2.1 promoter, and this effect was abolished in the sugar-insensitive mutant sis4 (Fig. 3I). Since neither HY5 promoter activity nor HY5-GFP abundance was increased by sucrose (Figure 16), it is unlikely that increased HY5 levels contributed to the sucrose-induced increase in the binding affinity of myc-HY5 to the NRT2.1 promoter. Regardless of the mechanism, sucrose induction of NRT2.1 expression and NO3 - uptake was dependent on HY5 (Fig. 17). In summary, HY5 protein movement promotes a coordinated homeostatic balance of C and N metabolism.
因为入射光能量密度(incident light fluence)的天然波动影响C-固定(26)和HY5丰度(27)二者,我们因此确定增加能量密度(5-100μmol.s-1.m-2)对根生长和NO3-摄取的影响。我们发现增加能量密度促进WT初生根延伸长度(图4A)和NO3-摄取(图4B),这引起生物量积累的能量密度-依赖性的增加(图4C)。然而,这些能量密度-依赖性效应在hy5中大量消除(图4A-C)。我们接着确定HY5是否在更成熟的植物中继续协调生长、C和N代谢。首先,我们发现,缺少HY5降低21-日龄土壤-生长的植物的生物量,随增加的能量密度增加的效应(图4D,图18)。接着,我们发现21-日龄WT和hy5完整植物的C含量随着增加的能量密度相对不变(图4E)。相比之下,尽管WT完整植物的N含量保持相对不变,但是hy5的N含量随能量密度增加显著下降(图4F)。结果,缺少HY5引起C/N含量比的能量密度-依赖性的增加(其在WT中保持相对不变;图4G)。这些结果提示,移动HY5调节嫩芽和根生长、C和N获取的协调。尤其是,HY5在改变的光能量密度维持C和N代谢的稳态平衡。Because natural fluctuations in incident light fluence affect both C-fixation (26) and HY5 abundance (27), we therefore determined that increasing fluence (5-100 μmol.s −1 .m −2 ) has a significant effect on Effects on root growth and NO3 - uptake. We found that increasing energy density promoted WT primary root extension length (Fig. 4A) and NO3 - uptake (Fig. 4B), which caused an energy density-dependent increase in biomass accumulation (Fig. 4C). However, these energy density-dependent effects were largely abolished in hy5 (Fig. 4A-C). We next determined whether HY5 continues to coordinate growth, C and N metabolism in more mature plants. First, we found that lack of HY5 reduced the biomass of 21-day-old soil-grown plants, an effect that increased with increasing energy density (Fig. 4D, Fig. 18). Next, we found that the C content of 21-day-old WT and hy5 intact plants was relatively unchanged with increasing energy density (Fig. 4E). In contrast, while the N content of WT intact plants remained relatively unchanged, the N content of hy5 decreased significantly with increasing energy density (Fig. 4F). As a result, absence of HY5 caused an energy density-dependent increase in the C/N content ratio (which remained relatively unchanged in WT; FIG. 4G ). These results suggest that mobile HY5 regulates the coordination of shoot and root growth, C and N acquisition. Notably, HY5 maintains a homeostatic balance of C and N metabolism under altered light energy density.
尽管之前的研究表明,在拟南芥的早期幼苗发育期间韧皮部-移动的蔗糖作为来源于子叶的信号以控制初生根延伸(28),调节侧根生长和N摄取的嫩芽-根长距离信号传导的分子机制仍然不清楚(29)。这里,我们表明HY5是调控嫩芽生长和C吸收与根生长和N摄取的光调节的关联的嫩芽-根移动信号。该关联通过嫩芽中C固定的HY5-调节以及通过根中HY5-依赖性的N-摄取的蔗糖-增强的促进来实现。结果,HY5调控完整植物C相对于完整植物N状态的稳态调节。已经已知在植物生长和发育的控制中,HY5整合多种植物激素(例如,脱落酸)和环境(例如,低温)信号传导输入(30,31)。Although previous studies have shown that phloem-mobilized sucrose acts as a cotyledon-derived signal to control primary root extension during early seedling development in Arabidopsis (28), shoot-root long-distance signaling that regulates lateral root growth and N uptake The molecular mechanism remains unclear (29). Here, we show that HY5 is a shoot-root mobility signal that regulates shoot growth and C uptake linked to photoregulation of root growth and N uptake. This association is achieved by HY5-regulation of C fixation in shoots and by sucrose-enhanced promotion of HY5-dependent N-uptake in roots. As a result, HY5 regulates the homeostatic regulation of intact plant C relative to intact plant N status. HY5 is already known to integrate various phytohormone (eg, abscisic acid) and environmental (eg, low temperature) signaling inputs in the control of plant growth and development (30, 31).
我们关于HY5是移动信号的发现对该知识增加另外的维度。我们的关于HY5移动调控C和N代谢的稳态协调的发现增强对如何在波动的环境中维持植物C和N营养平衡的理解,并且提示改善作物种营养使用效率的新策略。Our finding that HY5 is a mobile signal adds another dimension to this knowledge. Our findings that HY5 mobilization regulates homeostatic coordination of C and N metabolism enhance understanding of how plant C and N nutrient balance is maintained in fluctuating environments and suggest new strategies to improve nutrient use efficiency in crop species.
HY5同源物的鉴别Identification of HY5 homologues
两个蛋白序列之间同一性的百分数通过将匹配数除以总位置(包括缺口位置)来获得。The percent identity between two protein sequences is obtained by dividing the number of matches by the total positions (including gap positions).
表1:HY5同源物同一性(基于蛋白序列)Table 1: HY5 Homologue Identity (Based on Protein Sequence)
At:拟南芥(Arabidopsis thaliana);Bn:欧洲油菜(Brassica napus);Gb:海岛棉(Gossypium barbadense);Gm:大豆(Glycine max);Hv:大麦(Hordeum vulgare);Ta:普通小麦(Triticum astivum);Os:水稻(Oryza sativa);So:甘蔗(Saccharum officinarum);Zm:玉米(Zea mays);Sm:江南卷柏(Selaginella moellendo rffii);Pp:小立碗藓(Physcomitrella patens)。At: Arabidopsis thaliana; Bn: Brassica napus; Gb: Gossypium barbadense; Gm: soybean (Glycine max); Hv: barley (Hordeum vulgare); Ta: common wheat (Triticum astivum); Os: rice (Oryza sativa); So: sugarcane (Saccharum officinarum); Zm: corn (Zea mays); Sm: Selaginella moellendo rffii; Pp: Physcomitrella patens.
拟南芥中的PpHY5的表达和拟南芥中OsHY5的表达(图5)Expression of PpHY5 in Arabidopsis and expression of OsHY5 in Arabidopsis (Figure 5)
为了研究是否存在HY5功能的进化保守性,我们接着产生在hy5中使用拟南芥HY5基因的启动子表达OsHY5-GFP和PpHY5-GFP融合蛋白的转基因植物。我们发现pAtHY5:OsHY5-GFP和pAtHY5:PpHY5-GFP补充hy5下胚轴延伸表型(图5a)。我们还发现,pAtHY3:OsHY5-GFP和pAtHY5:PpHY5-GFP二者恢复hy5的根分生组织大小和NRT2.1表达的嫩芽-照射调节(图5b,c)。接着的实验使用下胚轴嫁接嵌合体,并且发现,OsHY5-GFP和PpHY5-GFP的分布可以在嫁接的植物的砧木根中检测,这提示PpHY5-GFP和OsHY5-GFP融合蛋白二者都是移动的(图5d)。To investigate whether there is evolutionary conservation of HY5 function, we next generated transgenic plants expressing OsHY5-GFP and PpHY5-GFP fusion proteins in hy5 using the promoter of the Arabidopsis HY5 gene. We found that pAtHY5:OsHY5-GFP and pAtHY5:PpHY5-GFP complement the hy5 hypocotyl elongation phenotype (Fig. 5a). We also found that both pAtHY3:OsHY5-GFP and pAtHY5:PpHY5-GFP restored root meristem size of hy5 and shoot-irradiation regulation of NRT2.1 expression (Fig. 5b,c). Subsequent experiments used hypocotyl grafted chimeras and found that the distribution of OsHY5-GFP and PpHY5-GFP could be detected in rootstock roots of grafted plants, suggesting that both PpHY5-GFP and OsHY5-GFP fusion proteins are mobile of (Fig. 5d).
参考文献references
1.G.Coruzzi,D.R.Bush,Plant Physiol,125,61-64(2001).1. G. Coruzzi, D. R. Bush, Plant Physiol, 125, 61-64 (2001).
2.N.M.Crawford,Plam Cell 7,859-868(1995).2. N.M. Crawford, Plam Cell 7, 859-868 (1995).
3.C.H.Ho,S.H.Lin,H.C.Hu,Y.F.Tsay,Cell 138,1184-1194(2009)3. C.H.Ho, S.H.Lin, H.C.Hu, Y.F.Tsay, Cell 138, 1184-1194 (2009)
4.A.Nunes-Nesi,A.R.Fernie,M.Stitt,Mol.Plant 3,973-996(2010).4. A. Nunes-Nesi, A. R. Fernie, M. Stitt, Mol. Plant 3, 973-996 (2010).
5.P.Matt等人,Plant Cell Environ.24,1119-1137(2001).5. P. Matt et al., Plant Cell Environ. 24, 1119-1137 (2001).
6.C.Lillo,Biochem.J.415,11-19(2008).6. C. Lillo, Biochem. J. 415, 11-19 (2008).
7.H.Lian等人,Genes Dev.25,1023-1028(2011).7. H. Lian et al., Genes Dev.25, 1023-1028 (2011).
8.T.Oyama,Y.Shimura,K.Okada,Genes Dev.15,2983-2995(1997).8. T. Oyama, Y. Shimura, K. Okada, Genes Dev.15, 2983-2995 (1997).
9.L.H.Ang等人,Mol.Cell 1,213-222(1998).9. L.H.Ang et al., Mol. Cell 1, 213-222 (1998).
10.M.T.Osterlund,C.S.Hardtke,N.Wei,X.W.Deng,Nature 405,462-466(2000).10. M.T. Osterlund, C.S. Hardtke, N. Wei, X.W. Deng, Nature 405, 462-466 (2000).
11.M.Cerezo等人,Plant Physiol.127,262-271(2001).11. M. Cerezo et al., Plant Physiol. 127, 262-271 (2001).
12.D.Y.Little等人,Proc.Natl.Acad.Sci.U.S.A.102,13693-13698(2005).12. D.Y.Little et al., Proc. Natl. Acad. Sci. U.S.A. 102, 13693-13698 (2005).
13.N.C.Huang,K.H.Liu,H.J.Lo,Y.F.Tsay,Plant Cell 11,1381-1392(1999).13. N.C.Huang, K.H.Liu, H.J.Lo, Y.F.Tsay, Plant Cell 11, 1381-1392(1999).
14.C.Masclaux-Daubresse等人,Ann.Bot.105,1141-1157(2010).14. C. Masclaux-Dauresse et al., Ann. Bot. 105, 1141-1157 (2010).
15.Q.Liu,X.Chen,K.Wu,X.Fu,Curr Opin Plant Biol.27,192-198(2015).15.Q.Liu, X.Chen, K.Wu, X.Fu, Curr Opin Plant Biol.27, 192-198(2015).
16.H.An等人,Development 131,3615-3626(2004).16. H.An et al., Development 131, 3615-3626 (2004).
17,L.Corbesier等人,Science 316,1030-1033(2007).17. L. Corbesier et al., Science 316, 1030-1033 (2007).
18.A.Imlau,E.Truernit,N.Sauer,Plant Cell 11,309-322(1999).18. A. Imlau, E. Truenit, N. Sauer, Plant Cell 11, 309-322 (1999).
19.J.Mathieu,N.Warthmann,F.Küttner,M.Schmid,Curr Biol.19,1055-1060(2007).19. J. Mathieu, N. Warthmann, F. Küttner, M. Schmid, Curr Biol. 19, 1055-1060 (2007).
20.M.Holm,L.G.Ma,L.J.Qu,X.W.Deng,Genes Dev.16,1247-1259(2002).20. M.Holm, L.G.Ma, L.J.Qu, X.W.Deng, Genes Dev.16, 1247-1259(2002).
21.N.Abbas,J.P.Maurya,D.Senapati,S.N.Gangappa,S.Chattopadhyay,PlantCell21. N. Abbas, J.P. Maurya, D. Senapati, S.N. Gangappa, S. Chattopadhyay, PlantCell
26,1036-1052(2014).26, 1036-1052 (2014).
22.K.Kobayashi,T.Obayashi,T.Masuda,Plant Signal Behav.7,922-926(2012).22. K. Kobayashi, T. Obayashi, T. Masuda, Plant Signal Behav. 7, 922-926 (2012).
23.G.Toledo-Ortiz等人,PLOS Genet.10,e1004416(2014).23. G. Toledo-Ortiz et al., PLOS Genet. 10, e1004416 (2014).
24.L.Q.Chen等人,Science 335,207-211(2012).24. L.Q. Chen et al., Science 335, 207-211 (2012).
25.V.Wahl等人,Science 339,704-707(2013).25. V. Wahl et al., Science 339, 704-707 (2013).
26.B.Moore等人,Science 300,332-336(2003).26. B. Moore et al., Science 300, 332-336 (2003).
27.M.T.Osterlund,N.Wei,X.W.Deng,Plant Physiol.124,1520-1524(2000).27. M.T. Osterlund, N. Wei, X. W. Deng, Plant Physiol. 124, 1520-1524 (2000).
28.S.Kircher,P.Schopfer,Proc.Natl.Acad.Sci.U.S.A.109,11217-11221(2012).28. S. Kircher, P. Schopfer, Proc. Natl. Acad. Sci. U.S.A. 109, 11217-11221 (2012).
29.B.G.Forde,J.A.Cole,Plant Physiol.131,395-400(2003).29. B.G. Forde, J.A. Cole, Plant Physiol. 131, 395-400 (2003).
30.D.Xu等人,PLOS Genet.10,e1004197(2014).30. D.Xu et al., PLOS Genet.10, e1004197 (2014).
31.R.Catalá,J.Medina,J.Salinas,Proc.Natl.Acad.Sci.U.S.A.108,16475-1648031. R. Catalá, J. Medina, J. Salinas, Proc. Natl. Acad. Sci. U.S.A. 108, 16475-16480
(2011).(2011).
32.S.Wang等人,Nat.Genet.44,950-954(2012).32. S. Wang et al., Nat. Genet. 44, 950-954 (2012).
33.S.Wang等人,Nat.Genet.47,949-954(2015).33. S. Wang et al., Nat. Genet. 47, 949-954 (2015).
34.H.Sun等人,Nat.Genet.46,652-656(2014).34. H. Sun et al., Nat. Genet. 46, 652-656 (2014).
35.C.Jiang,X.Gao,L.Liao,N.P.Harberd,X.Fu,Plant Physiol.145,1460-147035. C. Jiang, X. Gao, L. Liao, N. P. Harberd, X. Fu, Plant Physiol. 145, 1460-1470
(2007).(2007).
36.I.Matejovic,Commun.Soil Sci.Plant Anal.24,2213-2222(1993).36. I. Matejovic, Commun. Soil Sci. Plant Anal. 24, 2213-2222 (1993).
37.A.V.Gendrel,Z.Lippman,R.Martienssen,V.Colot,Nat.Methods2,213-21837. A.V. Gendrel, Z. Lippman, R. Martienssen, V. Colot, Nat. Methods 2, 213-218
(2005).(2005).
38.Cermak,T.等人Efficient design and assembly of custom TALEN andother TAL effector-based constructs for DNA targeting.Nucleic Acids Res.39(2011).38. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39(2011).
序列信息sequence information
拟南芥Arabidopsis
SEQ ID NO:1用于构建体的AtHY5CDS:SEQ ID NO: 1 AtHY5CDS used in the construct:
atgcaggaacaagcgactagctctttagctgcaagctctttaccatcaagcagcgagaggtcatcaagctctgctccacatttggagatcaaagaaggaattgaaagcgatgaggagatacggcgagtgccggagtttggaggagaagctgtcggaaaagaaacttccggtagagaatctggatcggcgaccggtcaggagcggacacaggcgactgtcggagaaagtcaaaggaagcgagggaggacaccggcggagaaagagaacaagcggctgaagaggttgttgaggaacagagtttcagctcagcaagcaagagagaggaaaaaggcttacttgagcgagttggaaaacagagtgaaagacttggagaacaaaaactctgaacttgaagagcgactctctactcttcagaacgagaaccagatgcttagacatattctgaagaacacaacaggaaacaagagaggaggtggtggtggttctaatgctgatgcaagcctttgaatgcaggaacaagcgactagctctttagctgcaagctctttaccatcaagcagcgagaggtcatcaagctctgctccacatttggagatcaaagaaggaattgaaagcgatgaggagatacggcgagtgccggagtttggaggagaagctgtcggaaaagaaacttccggtagagaatctggatcggcgaccggtcaggagcggacacaggcgactgtcggagaaagtcaaaggaagcgagggaggacaccggcggagaaagagaacaagcggctgaagaggttgttgaggaacagagtttcagctcagcaagcaagagagaggaaaaaggcttacttgagcgagttggaaaacagagtgaaagacttggagaacaaaaactctgaacttgaagagcgactctctactcttcagaacgagaaccagatgcttagacatattctgaagaacacaacaggaaacaagagaggaggtggtggtggttctaatgctgatgcaagcctttga
SEQ ID NO:2AtHY5mRNA(NM_121164)SEQ ID NO: 2AtHY5 mRNA (NM_121164)
cagagatctgacggcggtagccagagtaatctattccttcccaaaatgtctcgcaattagattctttccaagttcttctgtaaatcccaagtcccgctcttttcctctttatccttttcaccagcttcgctactaagacaacaaatctttccctctctctctcgcctgatcgatcttcaaagagtaagaaaaatgcaggaacaagcgactagctctttagctgcaagctctttaccatcaagcagcgagaggtcatcaagctctgctccacatttggagatcaaagaaggaattgaaagcgatgaggagatacggcgagtgccggagtttggaggagaagctgtcggaaaagaaacttccggtagagaatctggatcggcgaccggtcaggagcggacacaggcgactgtcggagaaagtcaaaggaagcgagggaggacaccggcggagaaagagaacaagcggctgaagaggttgttgaggaacagagtttcagctcagcaagcaagagagaggaaaaaggcttacttgagcgagttggaaaacagagtgaaagacttggagaacaaaaactctgaacttgaagagcgactctctactcttcagaacgagaaccagatgcttagacatattctgaagaacacaacaggaaacaagagaggaggtggtggtggttctaatgctgatgcaagcctttgatctccttcttcttcttgtgttatatttttgtggataaaatttacagagaattgtatcaataattatcatgttaaaattatatgggatgtgagagctaatattgcaattgtagaccaagttctcttattgtagtcttagatttctcttaattgaaacataatgttgttttataacaaaaataagctaatttttgttctatgatacagagatctgacggcggtagccagagtaatctattccttcccaaaatgtctcgcaattagattctttccaagttcttctgtaaatcccaagtcccgctcttttcctctttatccttttcaccagcttcgctactaagacaacaaatctttccctctctctctcgcctgatcgatcttcaaagagtaagaaaaatgcaggaacaagcgactagctctttagctgcaagctctttaccatcaagcagcgagaggtcatcaagctctgctccacatttggagatcaaagaaggaattgaaagcgatgaggagatacggcgagtgccggagtttggaggagaagctgtcggaaaagaaacttccggtagagaatctggatcggcgaccggtcaggagcggacacaggcgactgtcggagaaagtcaaaggaagcgagggaggacaccggcggagaaagagaacaagcggctgaagaggttgttgaggaacagagtttcagctcagcaagcaagagagaggaaaaaggcttacttgagcgagttggaaaacagagtgaaagacttggagaacaaaaactctgaacttgaagagcgactctctactcttcagaacgagaaccagatgcttagacatattctgaagaacacaacaggaaacaagagaggaggtggtggtggttctaatgctgatgcaagcctttgatctccttcttcttcttgtgttatatttttgtggataaaatttacagagaattgtatcaataattatcatgttaaaattatatgggatgtgagagctaatattgcaattgtagaccaagttctcttattgtagtcttagatttctcttaattgaaacataatgttgttttataacaaaaataagctaatttttgttctatgata
SEQ ID No:3AtHY5蛋白SEQ ID No: 3AtHY5 protein
mqeqatsslaasslpssserssssaphleikegiesdeeirrvpefggeavgketsgresgsatgqertqatvgesqrkrgrtpaekenkrlkrllrnrvsaqqarerkkaylselenrvkdlenknseleerlstlqnenqmlrhilknttgnkrgggggsnadaslmqeqatsslaasslpsssserssssaphleikegiesdeeirrvpefggeavgketsgresgsatgqertqatvgesqrkrgrtpaekenkrlkrllrnrvsaqqarerkkaylselenrvkdlenknseleerlstlqnenqmlrhilknttgnkrgggggsnadasl
水稻(Oryza sativa)Rice (Oryza sativa)
SEQ ID NO:4用于构建体的OsHY5CDS:SEQ ID NO: 4 OsHY5 CDS used in the construct:
atgcaggagcaggcgacgagctcgcggccgtccagctccgagaggtcgtccagctccggcggccaccacatggagatcaaggaaggaatggagagcgacgaggagatagggagagtgccggagctggggctggagccgggcggcgcttcgacgtcggggagggcggccggcggcggcggcggcggggcggagcgcgcgcagtcgtcgacggcgcaggccagcgcgcgccgccgcgggcgcagccccgcggataaggagcacaagcgcctcaaaaggttgctgaggaaccgggtatcagcgcagcaggcaagggagagaaagaaggcatacttgaatgatcttgaggtgaaggtgaaggacttggagaagaagaactcagagttggaagaaagattctccaccctacagaatgagaaccagatgctcagacagatactgaagaatacaactgtgagcagaagagggccaggtagcactgctagtggagagggtcaatagatgcaggagcaggcgacgagctcgcggccgtccagctccgagaggtcgtccagctccggcggccaccacatggagatcaaggaaggaatggagagcgacgaggagatagggagagtgccggagctggggctggagccgggcggcgcttcgacgtcggggagggcggccggcggcggcggcggcggggcggagcgcgcgcagtcgtcgacggcgcaggccagcgcgcgccgccgcgggcgcagccccgcggataaggagcacaagcgcctcaaaaggttgctgaggaaccgggtatcagcgcagcaggcaagggagagaaagaaggcatacttgaatgatcttgaggtgaaggtgaaggacttggagaagaagaactcagagttggaagaaagattctccaccctacagaatgagaaccagatgctcagacagatactgaagaatacaactgtgagcagaagagggccaggtagcactgctagtggagagggtcaatag
SEQ ID NO:5OsHY5mRNASEQ ID NO: 5OsHY5 mRNA
atgcaggagcaggcgacgagctcgcggccgtccagctccgagaggtcgtccagctccggcggccaccacatggagatcaaggaaggaatggagagcgacgaggagatagggagagtgccggagctggggctggagccgggcggcgcttcgacgtcggggagggcggccggcggcggcggcggcggggcggagcgcgcgcagtcgtcgacggcgcaggccagcgcgcgccgccgcgggcgcagccccgcggataaggagcacaagcgcctcaaaaggttgctgaggaaccgggtatcagcgcagcaggcaagggagagaaagaaggcatacttgaatgatcttgaggtgaaggtgaaggacttggagaagaagaactcagagttggaagaaagattctccaccctacagaatgagaaccagatgctcagacagatactgaagaatacaactgtgagcagaagagggccaggtagcactgctagtggagagggtcaatagatgcaggagcaggcgacgagctcgcggccgtccagctccgagaggtcgtccagctccggcggccaccacatggagatcaaggaaggaatggagagcgacgaggagatagggagagtgccggagctggggctggagccgggcggcgcttcgacgtcggggagggcggccggcggcggcggcggcggggcggagcgcgcgcagtcgtcgacggcgcaggccagcgcgcgccgccgcgggcgcagccccgcggataaggagcacaagcgcctcaaaaggttgctgaggaaccgggtatcagcgcagcaggcaagggagagaaagaaggcatacttgaatgatcttgaggtgaaggtgaaggacttggagaagaagaactcagagttggaagaaagattctccaccctacagaatgagaaccagatgctcagacagatactgaagaatacaactgtgagcagaagagggccaggtagcactgctagtggagagggtcaatag
SEQ ID NO:6OsHY5蛋白SEQ ID NO: 6OsHY5 protein
mqeqatssrpssserssssgghhmeikegmesdeeigrvpelglepggastsgraaggggggaeraqsstaqasarrrgrspadkehkrlkrllrnrvsaqqarerkkaylndlevkvkdlekknseleerfstlqnenqmlrqilknttvsrrgpgstasgegqmqeqatssrpsssserssssgghhmeikegmesdeeigrvpelglepggastsgraaggggggaeraqsstaqasarrrgrspadkehkrlkrllrnrvsaqqarerkkaylndlevkvkdlekknseleerfstlqnenqmlrqilknttvsrrgpgstasgegq
小立碗藓Physcomitrella patens
SEQ ID NO:7用于构建体的PpHY5CDS:SEQ ID NO: 7 PpHY5 CDS for construct:
atggcagacgcacaaaatggtaagggcttttcgcagttgacttcagttattggaaacatcaatagtgttgcaaatagtagcaggaggggtcccagagaagcggttgatattggccggaactggaaacctgtcaattttggtgagtaccaaggtttgggcgaaatcttgcccatgcaggcctctactgtgggtcccgcttcttctccgccctcttcgaagcagcagacgggcactgatatatcagtatcacctcctttggcgactgcagctgttgacaaactcatgaaagacggcaatgaaagcgactctgatgttaggagggttccagagctatctgcgaagactagtggaggggtttctgggtcgcatacacaagataaaggtctcactggatcttctcatcggaaaagagggggagcttctgctgataaagaacacaagcgtctgaagaggctgcttaggaaccgtgtttcagctcagcaagccagagaacgaaaaaaagcatatctcggtgaattggaagttagatcaaaggagttggagcatcgaaatgcagaattagaagaaagagtgtccaccctacaaagggagaaccagatgttgcgtcaaatcgtcaagaacactgctctgaagaagacttatagtggtggtaacgctgaggatggtgcgcaatgaatggcagacgcacaaaatggtaagggcttttcgcagttgacttcagttattggaaacatcaatagtgttgcaaatagtagcaggaggggtcccagagaagcggttgatattggccggaactggaaacctgtcaattttggtgagtaccaaggtttgggcgaaatcttgcccatgcaggcctctactgtgggtcccgcttcttctccgccctcttcgaagcagcagacgggcactgatatatcagtatcacctcctttggcgactgcagctgttgacaaactcatgaaagacggcaatgaaagcgactctgatgttaggagggttccagagctatctgcgaagactagtggaggggtttctgggtcgcatacacaagataaaggtctcactggatcttctcatcggaaaagagggggagcttctgctgataaagaacacaagcgtctgaagaggctgcttaggaaccgtgtttcagctcagcaagccagagaacgaaaaaaagcatatctcggtgaattggaagttagatcaaaggagttggagcatcgaaatgcagaattagaagaaagagtgtccaccctacaaagggagaaccagatgttgcgtcaaatcgtcaagaacactgctctgaagaagacttatagtggtggtaacgctgaggatggtgcgcaatga
SEQ ID NO:8:PpHY5mRNASEQ ID NO: 8: PpHY5 mRNA
cagttttgttccattgtagtatgtactttgagccagtaatgcgttgtagttaaactgagagtcctgcactattatttagctaggtctgttcatgtttttcccattgcagtagggattgaagagtgttggaaacaacgacagtaaaactaaacgttcatatgggatggcagacgcacaaaatggtaagggcttttcgcagttgacttcagttattggaaacatcaatagtgttgcaaatagtagcaggaggggtcccagagaagcggtttgtgttggccggaactggaaacctgtcaattttggtgagtaccaaggtttgggcgaaatcttgcccatgcaggcctctactgtgggtcccgcgtcttctccgccctcttcgaagcagcagacgggcactgatatatcagtatcacctcctttggcgactgcagctgttgacaaactcatgaaagacggcaatgaaagcgactctgatgttaggagggttccagagctatctgcgaagactagtggaggggtttctgggtcgcatacacaagataaaggtctcactggatcttctcatcggaaaagagggggagcttctgctgataaagaacacaagcgtctgaagaggctgcttaggaaccgtgtttcagctcagcaagccagagaacgaaaaaaagcatatctcggtgaattggaagttagatcaaaggagttggagcatcgaaatgcagaattagaagaaagagtgtccaccctacaaagggagaaccagatgttgcgtcaaatcgtcaagaacactgctctgaagaagacttatagtggtggtaacgctgaggatggtgcgcaatgatggaatattcgagagatgtgtggcctaccgttttttgttattcataatcaaccatttagtatgtaatgcaggaagtttttatttcaagtatgccccgcttcacattaagttcaaaataagtttggtaatcgaaggtcagaattctctcagcgttgtccttcattccatcaacttccgttgttttatggaatgaccgttggatgctttgttgctgttacaatcgcaagaactatatttccattgaagtcatatttttgaagcaattctcaataactgtatgaaggccatggttcattataaccaagcgattcttgatagcatcagttttgttccattgtagtatgtactttgagccagtaatgcgttgtagttaaactgagagtcctgcactattatttagctaggtctgttcatgtttttcccattgcagtagggattgaagagtgttggaaacaacgacagtaaaactaaacgttcatatgggatggcagacgcacaaaatggtaagggcttttcgcagttgacttcagttattggaaacatcaatagtgttgcaaatagtagcaggaggggtcccagagaagcggtttgtgttggccggaactggaaacctgtcaattttggtgagtaccaaggtttgggcgaaatcttgcccatgcaggcctctactgtgggtcccgcgtcttctccgccctcttcgaagcagcagacgggcactgatatatcagtatcacctcctttggcgactgcagctgttgacaaactcatgaaagacggcaatgaaagcgactctgatgttaggagggttccagagctatctgcgaagactagtggaggggtttctgggtcgcatacacaagataaaggtctcactggatcttctcatcggaaaagagggggagcttctgctgataaagaacacaagcgtctgaagaggctgcttaggaaccgtgtttcagctcagcaagccagagaacgaaaaaaagcatatctcggtgaattggaagttagatcaaaggagttggagcatcgaaatgcagaattagaagaaagagtgtccaccctacaaagggagaaccagatgttgcgtcaaatcgtcaagaacactgctctgaagaagacttatagtggtggtaacgctgaggatggtgcgcaatgatggaatattcgagagatgtgtggcctaccgttttttgttattcataatcaaccatttagtatgtaatgcaggaagtttttatttcaagtatgccccgcttcacattaagttcaaaataagtttggtaatcgaaggtcagaattctctcagcgttgtccttca ttccatcaacttccgttgttttatggaatgaccgttggatgctttgttgctgttacaatcgcaagaactatatttccattgaagtcatatttttgaagcaattctcaataactgtatgaaggccatggttcattataaccaagcgattcttgatagcat
SEQ ID NO:9PpHY5蛋白SEQ ID NO: 9PpHY5 protein
MadaqngkgfsqltsvigninsvanssrrgpreavcvgrnwkpvnfgeyqglgeilpmqastvgpassppsskqqtgtdisvspplataavdklmkdgnesdsdvrrvpelsaktsggvsgshtqdkgltgsshrkrggasadkehkrlkrllrnrvsaqqarerkkaylgelevrskelehrnaeleervstlqrenqmlrqivkntalkktysggnaedgaqMadaqngkgfsqltsvigninsvanssrrgpreavcvgrnwkpvnfgeyqglgeilpmqastvgpassppsskqqtgtdisvsppplataavdklmkdgnesdsdvrrvpelsaktsggvsgshtqdkgltgsshrkrggasadkehkrlkrllrnrvsaqqarerkkaylgelevrskelehrnaeleervsggntalkedrkgq
江南卷柏(Selaginella moellendorffii)Selaginella moellendorffii
SEQ ID NO:10SmHY5A mRNA(XM_002970018)SEQ ID NO: 10SmHY5A mRNA (XM_002970018)
atagtcacgtgaaatatctttctctcttggcggagaagctgaaagcggtccaagagctttcggtgtccggatcgagctagtgcttgggggaggcggtgaattttggttccatcgcaatgcggtgactcgggggtgtgaggagtatctattcagtcatgcgatcggcgtccgcggtgaagaggccggttgcgagtttcaatcccggcagggtggagaatttgtcgcggaagaaaggctcgattggcggtgaagcagcggagaatgccgaggtcgtggatgatttgagcagcctcaaagctgagtgtgatatcgagtctgttggatacgagagccaggcggcggccagcattgcgaatttcggctgcaagtcgtttgcaggggcttggaagcccgtcatcgacggaaaaatccaacctttggagccaccaaacagcgccaccaacagcatcacctggaattggacgagcgagtccaacaggacgaattcgtcatcgaggcatggatcagacaggccctctgtttcgaacatctccggctcatcggatatgaagaaagacgacgaaggcaacgatagcgactcggacatcagacgagtgcccgagctgccagagaagagcagcaaaggtcgctctcagaagcttgtcggtggaagctcgtcgtcgagaaggcgatccggaggctcttccaatgacaaggaaggcaagcgactaaagaggttgctgaggaatcgcgtgtcggcacaacaggcccgagagcgcaaaaaggcttacttggtcgagctggagcaaaaggccaaggatctggaaactagaaacgctgagctggaggagaaaaacgcgacgcttcaaagagaaaactacatgctccgacagattgtcaagaacactaccatccggggcggtggcgattgataatccaaatcttccaagacgaaagaaacaggagtaaacaagatctttggccattttacaacatacattggctatataacaagagaagttatggtgttacaacaaaaataatttagctatgactaagatatagtcacgtgaaatatctttctctcttggcggagaagctgaaagcggtccaagagctttcggtgtccggatcgagctagtgcttgggggaggcggtgaattttggttccatcgcaatgcggtgactcgggggtgtgaggagtatctattcagtcatgcgatcggcgtccgcggtgaagaggccggttgcgagtttcaatcccggcagggtggagaatttgtcgcggaagaaaggctcgattggcggtgaagcagcggagaatgccgaggtcgtggatgatttgagcagcctcaaagctgagtgtgatatcgagtctgttggatacgagagccaggcggcggccagcattgcgaatttcggctgcaagtcgtttgcaggggcttggaagcccgtcatcgacggaaaaatccaacctttggagccaccaaacagcgccaccaacagcatcacctggaattggacgagcgagtccaacaggacgaattcgtcatcgaggcatggatcagacaggccctctgtttcgaacatctccggctcatcggatatgaagaaagacgacgaaggcaacgatagcgactcggacatcagacgagtgcccgagctgccagagaagagcagcaaaggtcgctctcagaagcttgtcggtggaagctcgtcgtcgagaaggcgatccggaggctcttccaatgacaaggaaggcaagcgactaaagaggttgctgaggaatcgcgtgtcggcacaacaggcccgagagcgcaaaaaggcttacttggtcgagctggagcaaaaggccaaggatctggaaactagaaacgctgagctggaggagaaaaacgcgacgcttcaaagagaaaactacatgctccgacagattgtcaagaacactaccatccggggcggtggcgattgataatccaaatcttccaagacgaaagaaacaggagtaaacaagatctttggccattttacaacatacattggctatataacaagagaagt tatggtgttacaacaaaaataatttagctatgactaagat
SEQ ID NO:11SmHY5A蛋白SEQ ID NO: 11SmHY5A protein
MrsasavkrpvasfnpgrvenlsrkkgsiggeaaenaevvddlsslkaecdiesvgyesqaaasianfgcksfagawkpvidgkiqpleppnsatnsitwnwtsesnrtnsssrhgsdrpsvsnisgssdmkkddegndsdsdirrvpelpeksskgrsqklvggssssrrrsggssndkegkrlkrllrnrvsaqqarerkkaylveleqkakdletrnaeleeknatlqrenymlrqivknttirgggdMrsasavkrpvasfnpgrvenlsrkkgsiggeaaenaevvddlsslkaecdiesvgyesqaaasianfgcksfagawkpvidgkiqpleppnsatnsitwnwtsesnrtnsssrhgsdrpsvsnisgssdmkkddegndsdsdirrvpelpeksskgrsqklvggssssrrrsggssndkegkrlkrllrnrvsaqqarerkkaylveleqkakdletrnaeleeknatlqrenymlrqivknttirgggd
SEQ ID NO:12SmHY5BmRNA(XM_002973152)SEQ ID NO: 12SmHY5B mRNA (XM_002973152)
GgagttttcttggtgctggtgtttctcgcttccacagctcggcattgccccaatcgcgacgagaggacgcatccatagcaatcgacgcgatgattctgaggaacgattgctagaagttcctctctctctctctctgcctctccagccagctccagatttgttccaggatgcaagcagcggcatcagcgtcgccgacaatgcacaagcaattcagcgatttgatggctcttcccaacgccgagatgaaagtggacgaggattgggcaggaaatgagagtgactcggaagtaagaaaggtccccgacttacctggaggtaaaatcgtgactgcgttgccagagcaagacacggcagcatccaattctcgcaagaggggtgctgttcctgctgacaaagaacacaagcgattgaaaagacttttacgcaatcgagtctcggcacaacaagccagggagagaaaaaaggcttacgttgttgagctcgaagcaaaagcccgggatttggagctcaggaatgcggagctagaggaacgggtaaacacgttacaaaaggaaacattcatgctgcgacagattttgaagaacataaagaacaatggctccactgctggactagaacaagcacagtaaaaaaccaaaaactttacttgagggggccaacgtagcaacgaaagtcggccaccactgtaagattgtttctccacaatcagttttggtaaccatcttctcggcGgagttttcttggtgctggtgtttctcgcttccacagctcggcattgccccaatcgcgacgagaggacgcatccatagcaatcgacgcgatgattctgaggaacgattgctagaagttcctctctctctctctctgcctctccagccagctccagatttgttccaggatgcaagcagcggcatcagcgtcgccgacaatgcacaagcaattcagcgatttgatggctcttcccaacgccgagatgaaagtggacgaggattgggcaggaaatgagagtgactcggaagtaagaaaggtccccgacttacctggaggtaaaatcgtgactgcgttgccagagcaagacacggcagcatccaattctcgcaagaggggtgctgttcctgctgacaaagaacacaagcgattgaaaagacttttacgcaatcgagtctcggcacaacaagccagggagagaaaaaaggcttacgttgttgagctcgaagcaaaagcccgggatttggagctcaggaatgcggagctagaggaacgggtaaacacgttacaaaaggaaacattcatgctgcgacagattttgaagaacataaagaacaatggctccactgctggactagaacaagcacagtaaaaaaccaaaaactttacttgagggggccaacgtagcaacgaaagtcggccaccactgtaagattgtttctccacaatcagttttggtaaccatcttctcggc
SEQ ID NO:13SmHY5B蛋白SEQ ID NO: 13SmHY5B protein
mqaaasasptmhkqfsdlmalpnaemkvdedwagnesdsevrkvpdlpggkivtalpeqdtaasnsrkrgavpadkehkrlkrllrnrvsaqqarerkkayvveleakardlelrnaeleervntlqketfmlrqilkniknngstagleqaqmqaaasasptmhkqfsdlmalpnaemkvdedwagnesdsevrkvpdlpggkivtalpeqdtaasnsrkrgavpadkehkrlkrllrnrvsaqqarerkkayvveleakardlelrnaeleervntlqketfmlrqilkniknngstagleqaq
大麦(Hordeum vulgare)Barley (Hordeum vulgare)
SEQ ID NO:14HvHY5mRNA(AK365526)SEQ ID NO: 14HvHY5 mRNA (AK365526)
GgttttcctcgggattgggagggacgagagaggcggggagagaatgcaggagcagggggagagctcgcggccttcgagcagcgagaggtcgtccagctccggcaaccacatggagcacaaggaagggatggagagcgacgacgaaatagggacggtgccggagctaggcctggggccaagcggcgcgtccacgtccggcaggagggaagccgacgggccggagcgtgcccagtcctccaacgcgcaaggcagcgcgcgccgccgcggacgcaccccggctgacaaggagcacaagcgcctcaagaggttgctgaggaaccgggtatcagcccagcaggcaagggagaggaagaaagcttatttgggcgatctggaggtgaaggtgaaggacctagagaagaagaattcggagctggaagagaggcattccaccctacagaatgagaaccagatgctccgacagatcctgaagaacaccactgtgagcagaagagggccaagtgagggtcaatagcacagaagttgtaagggtcgattcgcagaattttcacagcagaatcaaagaagccctaggatcgaatatagctgcgttgattgatcccaaaatacaccatgtctcgaacttaaaatggttggaagctttctgaccaatggataacctcaaaaactggggtcaaaaacctgtgtagatcttcagagatgtccccatcatactctatgaagttcagcactacgtgttgcacttcagtaataatttcagaaaattagttttgggtggtttaacatatgatctgtactatcatttttatgtatctacaagtacaatccaaacattttattgttggataatttactttctactattggaaaatgcgcGgttttcctcgggattgggagggacgagagaggcggggagagaatgcaggagcagggggagagctcgcggccttcgagcagcgagaggtcgtccagctccggcaaccacatggagcacaaggaagggatggagagcgacgacgaaatagggacggtgccggagctaggcctggggccaagcggcgcgtccacgtccggcaggagggaagccgacgggccggagcgtgcccagtcctccaacgcgcaaggcagcgcgcgccgccgcggacgcaccccggctgacaaggagcacaagcgcctcaagaggttgctgaggaaccgggtatcagcccagcaggcaagggagaggaagaaagcttatttgggcgatctggaggtgaaggtgaaggacctagagaagaagaattcggagctggaagagaggcattccaccctacagaatgagaaccagatgctccgacagatcctgaagaacaccactgtgagcagaagagggccaagtgagggtcaatagcacagaagttgtaagggtcgattcgcagaattttcacagcagaatcaaagaagccctaggatcgaatatagctgcgttgattgatcccaaaatacaccatgtctcgaacttaaaatggttggaagctttctgaccaatggataacctcaaaaactggggtcaaaaacctgtgtagatcttcagagatgtccccatcatactctatgaagttcagcactacgtgttgcacttcagtaataatttcagaaaattagttttgggtggtttaacatatgatctgtactatcatttttatgtatctacaagtacaatccaaacattttattgttggataatttactttctactattggaaaatgcgc
SEQ ID NO:15HvHY5蛋白(AK365526)SEQ ID NO: 15HvHY5 protein (AK365526)
mqeqgessrpssserssssgnhmehkegmesddeigtvpelglgpsgastsgrreadgperaqssnaqgsarrrgrtpadkehkrlkrllrnrvsaqqarerkkaylgdlevkvkdlekknseleerhstlqnenqmlrqilknttvsrrgpsegqmqeqgessrpsssserssssgnhmehkegmesddeigtvpelglgpsgastsgrreadgperaqssnaqgsarrrgrtpadkehkrlkrllrnrvsaqqarerkkaylgdlevkvkdlekknseleerhstlqnenqmlrqilknttvsrrgpsegq
普通小麦(Triticum astivum)Common Wheat (Triticum astivum)
SEQ ID NO:16TaHY5mRNASEQ ID NO: 16TaHY5 mRNA
GagtaagtagcagctgggaggaggagccgaggaagaggagcagaagataggaggagaggagcagcggtagcctcgtcttcctcgggattgggagggacgagagaggcggggggagaatgcaggagcagggggagagctcgcggccttcgagcagcgacaggtcgtccagctccggcaaccacatggggcacaaggaagggatggagagcgacgacgagatagggacggtgccggagctgggcctggggccaagcggcgcgtccacgtccggcaggagggaagccgacgggccggagcgtgcccagtcctccaccgcgcaaggcagcgcgcgccgccgcggacgcaccccggccgacaaggagcacaagcgcctcaagaggttgctgaggaaccgggtatcagcccagcaggcaagggagaggaagaaagcttatttgggcgatctggaggtgaaggtgaaggacctagagaagaagaattcggagctggaagagaggcattccaccctacagaatgagaaccagatgctccgacagatcctgaagaacaccactgtgagcagaagagggccaagtgagggtcaatagcacagaggttgtcagggttgattcacagaattttcacagcagacagttcaattccagtgaatcaaagaggccctaggatcgaatatagccgcgttgatcgatcccaaaacacaccatgtctggaacttaaactggttggaagctttctggccaaaggataacctcaaaaaccgggggcctaaacctgtgtagatcttcacagatgtccccatcatactctatgaagttcagcaccacgtgctgtgcttcgttaataatttcacaaaattagttttgggtgatttaacatatgatctgtatcattttttatgtatctacaagcacaatccaaacattttattgttgggcaatttactttgtactattggaaaatgcgcacgtccggtgtcggcaatgcagccctgtcatgttggctcttgcagaccagactatttgttttgttgaacttgcttcaataaagtggccgcatgcatctttccgatgcagaggccggggaagtcctccttttcaaaaaaaaaaaaaaaacgaGagtaagtagcagctgggaggaggagccgaggaagaggagcagaagataggaggagaggagcagcggtagcctcgtcttcctcgggattgggagggacgagagaggcggggggagaatgcaggagcagggggagagctcgcggccttcgagcagcgacaggtcgtccagctccggcaaccacatggggcacaaggaagggatggagagcgacgacgagatagggacggtgccggagctgggcctggggccaagcggcgcgtccacgtccggcaggagggaagccgacgggccggagcgtgcccagtcctccaccgcgcaaggcagcgcgcgccgccgcggacgcaccccggccgacaaggagcacaagcgcctcaagaggttgctgaggaaccgggtatcagcccagcaggcaagggagaggaagaaagcttatttgggcgatctggaggtgaaggtgaaggacctagagaagaagaattcggagctggaagagaggcattccaccctacagaatgagaaccagatgctccgacagatcctgaagaacaccactgtgagcagaagagggccaagtgagggtcaatagcacagaggttgtcagggttgattcacagaattttcacagcagacagttcaattccagtgaatcaaagaggccctaggatcgaatatagccgcgttgatcgatcccaaaacacaccatgtctggaacttaaactggttggaagctttctggccaaaggataacctcaaaaaccgggggcctaaacctgtgtagatcttcacagatgtccccatcatactctatgaagttcagcaccacgtgctgtgcttcgttaataatttcacaaaattagttttgggtgatttaacatatgatctgtatcattttttatgtatctacaagcacaatccaaacattttattgttgggcaatttactttgtactattggaaaatgcgcacgtccggtgtcggcaatgcagccctgtcatgttgg ctcttgcagaccagactatttgttttgttgaacttgcttcaataaagtggccgcatgcatctttccgatgcagaggccggggaagtcctccttttcaaaaaaaaaaaaaaaacga
SEQ ID NO:17TaHY5蛋白SEQ ID NO: 17TaHY5 protein
mqeqgessrpsssdrssssgnhmghkegmesddeigtvpelglgpsgastsgrreadgperaqsstaqgsarrrgrtpadkehkrlkrllrnrvsaqqarerkkaylgdlevkvkdlekknseleerhstlqnenqmlrqilknttvsrrgpsegqmqeqgessrpsssdrssssgnhmghkegmesddeigtvpelglgpsgastsgrreadgperaqsstaqgsarrrgrtpadkehkrlkrllrnrvsaqqarerkkaylgdlevkvkdlekknseleerhstlqnenqmlrqilknttvsrrgpsegq
玉米(Zea mays)Corn (Zea mays)
SEQ ID NO:18ZmHY5/ZmbZIP61mRNA(KJ726945)SEQ ID NO: 18ZmHY5/ZmbZIP61 mRNA (KJ726945)
AtgcaggagcaggcggcgagctcgcggccttccagcagcgagaggtcgtccagctccgggcaccacgtggacatggaggtcaaggaagggatggagagcgacgatgagataaggagagtgccggagctgggcctggagttgccgggagcctccacgtcgggcagggaggctggccctggcgctgcgggcgcagaccgcgcccttgcccagtcgtccacggcgcaggccagcgcgcgccgccgcgtccgcagccacgccgacaaggagcacaagcgcctcaaaaggttactgaggaacagggtgtcagctcaacaggctagagagaggaagaaggcttatttaactgatctggaggtgaaggtgagagatctggagaagaagaactcggagatggaagagaggctctccaccctccagaacgagaaccagatgctccgacagatactgaagaacaccgctgtaaacagaagaggttcaggaagcactgctagtggagagggccacggccaaAtgcaggagcaggcggcgagctcgcggccttccagcagcgagaggtcgtccagctccgggcaccacgtggacatggaggtcaaggaagggatggagagcgacgatgagataaggagagtgccggagctgggcctggagttgccgggagcctccacgtcgggcagggaggctggccctggcgctgcgggcgcagaccgcgcccttgcccagtcgtccacggcgcaggccagcgcgcgccgccgcgtccgcagccacgccgacaaggagcacaagcgcctcaaaaggttactgaggaacagggtgtcagctcaacaggctagagagaggaagaaggcttatttaactgatctggaggtgaaggtgagagatctggagaagaagaactcggagatggaagagaggctctccaccctccagaacgagaaccagatgctccgacagatactgaagaacaccgctgtaaacagaagaggttcaggaagcactgctagtggagagggccacggccaa
SEQ ID NO:19ZmHY5/ZmbZIP61蛋白SEQ ID NO: 19ZmHY5/ZmbZIP61 protein
mqeqaassrpssserssssghhvdmevkegmesddeirrvpelglelpgastsgreagpgaagadralaqsstaqasarrrvrshadkehkrlkrllrnrvsaqqarerkkayltdlevkvrdlekknsemeerlstlqnenqmlrqilkntavnrrgsgstasgeghgqmqeqaassrpsssserssssghhvdmevkegmesddeirrvpelglelpgastsgreagpgaagadralaqsstaqasarrrvrshadkehkrlkrllrnrvsaqqarerkkayltdlevkvrdlekknsemeerlstlqnenqmlrqilkntavnrrgsgstasgeghgq
甘蔗(Saccharum officinarumL.)Sugarcane (Saccharum officinarum L.)
SEQ ID NO:20SoHY5mRNA(CA121289)SEQ ID NO: 20 SoHY5 mRNA (CA121289)
AgacaggaaggatcgcaggggaggaggagatagggaaggagaagcggagtgcgcgcgggcgactctgcagggcctcagtcggaggcggaggtggagagcgagccagaatgcaggagcaggcgacgagctcgcggccttccagcagcgagaggtcgtccagctccgcgcaccacatggacatggaggtcaaggaagggatggagagcgacgaggagataaggagagtgccggagctgggcctggagctgccgggcgcttccacgtcgggcagggaggctggcccgggcgccgccggcgcagaccgcgccttggcccagtcgtccacggcgcaggccagcgagcgccgccgcgtccgcagccccgccgacaaggagcacaagcgcctcaaaagattactgaggaaccgggtgtcagctcaacaggcaagagagaggaagaaggcttatttgactgatctggaggtgaaggtgaaacaccctgaagaagaagaacttcgaggttcgaagaagaggctctctacccttaaaaacgaagaaccagatgctccgggcagatacctgaagaatacccactgtaagcagaaagaggtttacggaagcactggttagtggaaaaaggccaattagttcaaaatgacaggaaaaatggtaatggcctatgcttaaatatatgtttatggggaAgacaggaaggatcgcaggggaggaggagatagggaaggagaagcggagtgcgcgcgggcgactctgcagggcctcagtcggaggcggaggtggagagcgagccagaatgcaggagcaggcgacgagctcgcggccttccagcagcgagaggtcgtccagctccgcgcaccacatggacatggaggtcaaggaagggatggagagcgacgaggagataaggagagtgccggagctgggcctggagctgccgggcgcttccacgtcgggcagggaggctggcccgggcgccgccggcgcagaccgcgccttggcccagtcgtccacggcgcaggccagcgagcgccgccgcgtccgcagccccgccgacaaggagcacaagcgcctcaaaagattactgaggaaccgggtgtcagctcaacaggcaagagagaggaagaaggcttatttgactgatctggaggtgaaggtgaaacaccctgaagaagaagaacttcgaggttcgaagaagaggctctctacccttaaaaacgaagaaccagatgctccgggcagatacctgaagaatacccactgtaagcagaaagaggtttacggaagcactggttagtggaaaaaggccaattagttcaaaatgacaggaaaaatggtaatggcctatgcttaaatatatgtttatgggga
SEQ ID NO:21SoHY5蛋白SEQ ID NO: 21 SoHY5 protein
mqeqatssrpssserssssahhmdmevkegmesdeeirrvpelglelpgastsgreagpgaagadralaqsstaqaserrrvrspadkehkrlkrllrnrvsaqqarerkkayltdlevkvkhpeeeelrgskkrlstlkneepdapgrylknthckqkevygstgmqeqatssrpssssersssssahhmdmevkegmesdeeirrvpelglelpgastsgreagpgaagadralaqsstaqaserrrvrspadkehkrlkrllrnrvsaqqarerkkayltdlevkvkhpeeeelrgskkrlstlkneepdapgrylknthckqkevygstg
欧洲油菜Brassica napus
SEQ ID NO:22BnHY5mRNA(EV071015)SEQ ID NO: 22BnHY5 mRNA (EV071015)
gaaagtcccgctcttttccatctctatcttcatcaccagcttctgtaaatcccaatccatcttcaaaggagattcaaagagtaaggaaaaaaaaatgcaggagcaaacgactagctctttacctgcaagctctctaccatcaagcagcgagagatcctcaagctctgctcctcatttggagatcaaagaaggaattgaaagcgatgaagagatacggcgagttccggagtttggaggagaagctaccggaaaggaaatctctggatcggcgaccggtcaggaccagacacaagcaacggtcggaggagagggtcaaaggaagagagggaggactccggctgagaaagagaccaagcggcttaagaggttgttgaggaacagagtttcagcacagcaagcaagagagaggaagaaagcttacttgggtgagttggaaaacagagtgaaagacttggagaacagaaactctgaacttgaagagagactctctaccttgcagaacgagaaccagatgcttagacagattctgaagaacacaacaggaaacaagaggggaagcggtggttctaacgctgatgcaagcctatgatctccttgttcttgtattattatttacctggataaactttacaaggaattgtattaaataaatatttttgaaagtcccgctcttttccatctctatcttcatcaccagcttctgtaaatcccaatccatcttcaaaggagattcaaagagtaaggaaaaaaaaatgcaggagcaaacgactagctctttacctgcaagctctctaccatcaagcagcgagagatcctcaagctctgctcctcatttggagatcaaagaaggaattgaaagcgatgaagagatacggcgagttccggagtttggaggagaagctaccggaaaggaaatctctggatcggcgaccggtcaggaccagacacaagcaacggtcggaggagagggtcaaaggaagagagggaggactccggctgagaaagagaccaagcggcttaagaggttgttgaggaacagagtttcagcacagcaagcaagagagaggaagaaagcttacttgggtgagttggaaaacagagtgaaagacttggagaacagaaactctgaacttgaagagagactctctaccttgcagaacgagaaccagatgcttagacagattctgaagaacacaacaggaaacaagaggggaagcggtggttctaacgctgatgcaagcctatgatctccttgttcttgtattattatttacctggataaactttacaaggaattgtattaaataaatattttt
SEQ ID NO:23BnHY5蛋白SEQ ID NO: 23BnHY5 protein
mqeqttsslpasslpssserssssaphleikegiesdeeirrvpefggeatgkeisgsatgqdqtqatvggegqrkrgrtpaeketkrlkrllrnrvsaqqarerkkaylgelenrvkdlenrnseleerlstlqnenqmlrqilknttgnkrgsggsnadaslmqeqttsslpasslpsssserssssaphleikegiesdeeirrvpefggeatgkeisgsatgqdqtqatvggegqrkrgrtpaeketkrlkrllrnrvsaqqarerkkaylgelenrvkdlenrnseleerlstlqnenqmlrqilknttgnkrgsggsnadasl
海岛棉(Gossypium barbadense)Sea Island cotton (Gossypium barbadense)
SEQ ID NO:24GbHY5mRNA(JK803801)SEQ ID NO: 24GbHY5 mRNA (JK803801)
CcaaaaaattaattttattttgttttttctataacgaagaaatgcaagaacaaggaacgagttcaatagcagctagttccttaccttcaagcagtgaaagatcttcaagctctgctcttcaagttgaagtcaaggaaggcatggaaagtgatgaagagatccggagagtgcctgagataggaggtgaagcatcagcagctccggccgccggtcgtgaacccggttcactgacccgactggaccggcctcaaccatcgggtgaaggcggtcagagaaagagagggagaagcccaacggataaagaaaacaagcgcttaaagaggttgttgaggaacagagtatcagcgcaacaagcaagggaaaggaaaaaggcgtacttgaatgaaccggaaaccagagttagagacttggagaagaagaactctgaactagaagagaggctatccacgttgcacaatgagaatcagatgcttcgacaaatagtcaagaacacaactgctagcaggagaggtggaaatggcagttcaaatgcagctgatggaaccctttaaaggaaatgcatgggtataaaaaattataaagggattttttttaaaaaaatattaattttatgctttagggaaaaaaaaaccgctattagcaatgcaatgaagtagcaaaacatgacaattggaactttggttctctctaatcttaatcataaaagtaaattatcCcaaaaaattaattttattttgttttttctataacgaagaaatgcaagaacaaggaacgagttcaatagcagctagttccttaccttcaagcagtgaaagatcttcaagctctgctcttcaagttgaagtcaaggaaggcatggaaagtgatgaagagatccggagagtgcctgagataggaggtgaagcatcagcagctccggccgccggtcgtgaacccggttcactgacccgactggaccggcctcaaccatcgggtgaaggcggtcagagaaagagagggagaagcccaacggataaagaaaacaagcgcttaaagaggttgttgaggaacagagtatcagcgcaacaagcaagggaaaggaaaaaggcgtacttgaatgaaccggaaaccagagttagagacttggagaagaagaactctgaactagaagagaggctatccacgttgcacaatgagaatcagatgcttcgacaaatagtcaagaacacaactgctagcaggagaggtggaaatggcagttcaaatgcagctgatggaaccctttaaaggaaatgcatgggtataaaaaattataaagggattttttttaaaaaaatattaattttatgctttagggaaaaaaaaaccgctattagcaatgcaatgaagtagcaaaacatgacaattggaactttggttctctctaatcttaatcataaaagtaaattatc
SEQ ID NO:25GbHY5蛋白SEQ ID NO: 25GbHY5 protein
mqeqgtssiaasslpssserssssalqvevkegmesdeeirrvpeiggeasaapaagrepgsltrldrpqpsgeggqrkrgrsptdkenkrlkrllrnrvsaqqarerkkaylnepetrvrdlekknseleerlstlhnenqmlrqivknttasrrggngssnaadgtlmqeqgtssiaasslpsssserssssalqvevkegmesdeeirrvpeiggeasaapaagrepgsltrldrpqpsgeggqrkrgrsptdkenkrlkrllrnrvsaqqarerkkaylnepetrvrdlekknseleerlstlhnenqmlrqivknttasrrggngssnaadgtl
大豆soybeans
SEQ ID NO:26GmHY5LmRNA(BT093548)SEQ ID NO: 26GmHY5L mRNA (BT093548)
gggaagaaagagagagagagagagagagagaggtgtgaagttggtgaaggtttttgagaagaaagatggaacgaagtggcggaatggtaactgggtcgcatgaaaggaacgaacttgttagagttagacacggctctgatagtaggtctaaacccttgaagaatttgaatggtcagagttgtcaaatatgtggtgataccattggattaacggctactggtgatgtctttgtcgcttgtcatgagtgtggcttcccactttgtcattcttgttacgagtatgaactgaaacatatgagccagtcttgtccccagtgcaagactgcattcacaagtcaccaagagggtgctgaagtggagggagatgatgatgatgaagacgatgctgatgatctagataatgagatcaactatggccaaggaaacagttccaaggcggggatgctatgggaagaagatgctgacctctcttcatcttctggacatgatttctcaaataccaaacccccatctagcaaacgggcaaccgatgtctggtgagtttccatgtgctacttctgatgctcaatctatgcaaactacatctataggtcaatccgaaaaggttcactcactttcatatgctgatccaaagcaaccaggtcctgagagtgatgaagagataagaagagtgccagagattggaggtgaaagtgccggaacttcggcctctcagccagatgccggttcaaatgctggtacagagcgtgttcaggggacaggggagggtcagaagaagagagggagaagcccagctgataaagaaagtaaacggctaaagaggctactgaggaaccgagtttcagctcagcaagcaagggagaggaagaaggcatacttgattgatttggaaacaagagtcaaagacttagagaagaagaactcagagctcaaagaaagactttccactttgcagaatgagaaccaaatgcttagacaaatattgaagaacacaacagcaagcaggagagggagcaataatggtaccaataatgctgagtgaacataatgtcaaaagatggcagagaaaacttatagatggaatagatttagaaagagagaatacattagccagaaagagaaaaaaaaaattggacattagttgatgattctttctaggtgtgcgtttggaatacaatgaagtaaaggatgaaccttaagacatgctttatcctaaaatagtgtgatctgatattccattgttaatgagtaatgtaattatcatacaaacaatttgtagtctcattttaattaataattattaaactacttgattaaaaaaaaaaaaaaaaagggaagaaagagagagagagagagagagagaggtgtgaagttggtgaaggtttttgagaagaaagatggaacgaagtggcggaatggtaactgggtcgcatgaaaggaacgaacttgttagagttagacacggctctgatagtaggtctaaacccttgaagaatttgaatggtcagagttgtcaaatatgtggtgataccattggattaacggctactggtgatgtctttgtcgcttgtcatgagtgtggcttcccactttgtcattcttgttacgagtatgaactgaaacatatgagccagtcttgtccccagtgcaagactgcattcacaagtcaccaagagggtgctgaagtggagggagatgatgatgatgaagacgatgctgatgatctagataatgagatcaactatggccaaggaaacagttccaaggcggggatgctatgggaagaagatgctgacctctcttcatcttctggacatgatttctcaaataccaaacccccatctagcaaacgggcaaccgatgtctggtgagtttccatgtgctacttctgatgctcaatctatgcaaactacatctataggtcaatccgaaaaggttcactcactttcatatgctgatccaaagcaaccaggtcctgagagtgatgaagagataagaagagtgccagagattggaggtgaaagtgccggaacttcggcctctcagccagatgccggttcaaatgctggtacagagcgtgttcaggggacaggggagggtcagaagaagagagggagaagcccagctgataaagaaagtaaacggctaaagaggctactgaggaaccgagtttcagctcagcaagcaagggagaggaagaaggcatacttgattgatttggaaacaagagtcaaagacttagagaagaagaactcagagctcaaagaaagactttccactttgcagaatgagaaccaaatgcttagacaaatattgaagaacacaacagcaa gcaggagagggagcaataatggtaccaataatgctgagtgaacataatgtcaaaagatggcagagaaaacttatagatggaatagatttagaaagagagaatacattagccagaaagagaaaaaaaaaattggacattagttgatgattctttctaggtgtgcgtttggaatacaatgaagtaaaggatgaaccttaagacatgctttatcctaaaatagtgtgatctgatattccattgttaatgagtaatgtaattatcatacaaacaatttgtagtctcattttaattaataattattaaactacttgattaaaaaaaaaaaaaaaaa
SEQ ID NO:27GmHY5L蛋白SEQ ID NO: 27GmHY5L protein
mrstmaketvprrgcygkkmltslhlldmisqipnphlangqpmsgefpcatsdaqsmqttsigqsekvhslsyadpkqpgpesdeeirrvpeiggesagtsasqpdagsnagtervqgtgegqkkrgrspadkeskrlkrllrnrvsaqqarerkkaylidletrvkdlekknselkerlstlqnenqmlrqilknttasrrgsnngtnnaemrstmaketvprrgcygkkmltslhlldmisqipnphlangqpmsgefpcatsdaqsmqttsigqsekvhslsyadpkqpgpesdeeirrvpeiggesagtsasqpdagsnagtervqgtgegqkkrgrspadkeskrlkrllrnrvsaqqarerkkaylidletrvkdlekknselkerlstlqnentmlqnengq
SEQ ID NO:28GmbZIP36/STF1mRNA(NM_001250343.1)SEQ ID NO: 28GmbZIP36/STF1 mRNA (NM_001250343.1)
actgaagtaagaaagagagagagagagagaaagagaagtgtgtagttggtgaagtttttgagaagaatatggaacgaagtggcggaatggtaacggggtcgcatgaaaggaacgaacttgttagagttagacacggttctgacagtgggatttgtcaaatatgtggtgacaccattggattaacggctactggtgacctctttgttgcttgtcatgagtgtggcttcccactttgtcattcttgttacgagtatgagctgaaaaatgtgagccaatcttgtccccagtgcaagactacattcacaagtcgccaagagggtgctgaagtggagggagatgatgatgacgaagacgatgctgatgatctagataatgggatcaactatggccaaggaaacaattccaagtcggggatgctgtgggaagaagatgctgacctctcttcatcttctggacatgattctcatataccaaacccccatctagtaaacgggcaaccgatgtctggtgagtttccatgtgctacttctgatgctcaatctatgcaaactacatcagatcctatgggtcaatccgaaaaggttcactcacttccatatgctgatccaaagcaaccaggtcctgagagtgatgaagagataagaagagtgccggagattggaggtgaaagcgctggaacttcagcctctcggccagatgccggttcaaatgctggtacagaacgtgctcaggggacaggggacagccagaagaagagagggagaagcccagctgataaagaaagcaagcggctaaagaggctactgaggaatagagtttcggctcagcaagcaagggagaggaagaaggcatatttgattgatttggaaacaagagtcaaagacttagagaagaagaactcagagctcaaagaaagactttccactttgcagaatgaaaaccaaatgcttagacaaatattgaagaacacaacagcaagcaggagagggagcaatagtggtaccaataatgctgagtaaacttatagatggagtagatatagagagagagaaagagaaaaaaattaaacattagttgatgattctttctaggtgtgcgtttggaatacaatgaagtaaaggatgaaccttaagacatgctttgtcctaaaatagtgtgatctgatgtaccattgttgatgagtaatgtaattatcatacacagttttttacagtctcattttaattaataattatcaaactacttgattacttatggttaaactgaagtaagaaagagagagagagagagaaagagaagtgtgtagttggtgaagtttttgagaagaatatggaacgaagtggcggaatggtaacggggtcgcatgaaaggaacgaacttgttagagttagacacggttctgacagtgggatttgtcaaatatgtggtgacaccattggattaacggctactggtgacctctttgttgcttgtcatgagtgtggcttcccactttgtcattcttgttacgagtatgagctgaaaaatgtgagccaatcttgtccccagtgcaagactacattcacaagtcgccaagagggtgctgaagtggagggagatgatgatgacgaagacgatgctgatgatctagataatgggatcaactatggccaaggaaacaattccaagtcggggatgctgtgggaagaagatgctgacctctcttcatcttctggacatgattctcatataccaaacccccatctagtaaacgggcaaccgatgtctggtgagtttccatgtgctacttctgatgctcaatctatgcaaactacatcagatcctatgggtcaatccgaaaaggttcactcacttccatatgctgatccaaagcaaccaggtcctgagagtgatgaagagataagaagagtgccggagattggaggtgaaagcgctggaacttcagcctctcggccagatgccggttcaaatgctggtacagaacgtgctcaggggacaggggacagccagaagaagagagggagaagcccagctgataaagaaagcaagcggctaaagaggctactgaggaatagagtttcggctcagcaagcaagggagaggaagaaggcatatttgattgatttggaaacaagagtcaaagacttagagaagaagaactcagagctcaaagaaagactttccactttgcagaatgaaaaccaaatgcttagacaaatattgaagaacacaacagcaagcaggagagggagcaatagtgg taccaataatgctgagtaaacttatagatggagtagatatagagagagagaaagagaaaaaaattaaacattagttgatgattctttctaggtgtgcgtttggaatacaatgaagtaaaggatgaaccttaagacatgctttgtcctaaaatagtgtgatctgatgtaccattgttgatgagtaatgtaattatcatacacagttttttacagtctcattttaattaataattatcaaactacttgattacttatggttaa
SEQ ID NO:29GmbZIP36/STF1蛋白SEQ ID NO: 29GmbZIP36/STF1 protein
MersggmvtgshernelvrvrhgsdsgskplknlngqicqicgdtigltatgdlfvachecgfplchscyeyelknvsqscpqckttftsrqegaevegddddeddaddldnginygqgnnsksgmlweedadlssssghdshipnphlvngqpmsgefpcatsdaqsmqttsdpmgqsekvhslpyadpkqpgpesdeeirrvpeiggesagtsasrpdagsnagteraqgtgdsqkkrgrspadkeskrlkrllrnrvsaqqarerkkaylidletrvkdlekknselkerlstlqnenqmlrqilknttasrrgsnsgtnnavMersggmvtgshernelvrvrhgsdsgskplknlngqicqicgdtigltatgdlfvachecgfplchscyeyelknvsqscpqckttftsrqegaevegddddeddaddldnginygqgnnsksgmlweedadlssssghdshipnphlvngqpmsgefpcatsdaqsmqttsdpmgqsekvhslpyadpkqpgpesdeeirrvpeiggesagtsasrpdagsnagteraqgtgdsqkkrgrspadkeskrlkrllrnrvsaqqarerkkaylidletrvkdlekknselkerlstlqnenqmlrqilknttasrrgsnsgtnnav
SEQ ID NO:35:HY5启动子(2.2.kb)SEQ ID NO: 35: HY5 promoter (2.2.kb)
cttcgtcgtcaggattatccgtcaacagagttctgtttcggaatcggaacgctagtccttgtggtctatctcttccaattctcaatccgtctcggtctgtacttgtttttgctcgtggcaagaatcgaaaaggattcgtgtcttcgtcttcttcgtctccgaagaaaaacaaaaaggtaagaaaatcagaatgagaatgatttatgttcgcaattgctcttacctgctgctttcgccgaatttgactagaatttggatacactaactaagtgagctattatcggttagaattggtgaatcctcgaattagactttggctctttttgattttgtatcagcctttgatttcatggtttgtggcagaaaagtttggatggagctgataatggaggaggtgaggaggaggaggatccatttgaggcattgtttaatcttttagaagaagatttgaagaatgataactcggatgatgaggagataagtgaggaagagttagaggcattagccgatgagttagctcgagcattgggtgttggtgacgatgttgatgacatcgacttgtttggttcagtcactggtgatgttgatgttgatgttgataatgatgatgatgataatgatgatgatgataatgatgatgatgatgatgacagcgaagaagatgaaagaccgactaagctgaagaattggcagcttaaaagactggcttatgcattgaaagctgggcgtcgtaaaactagtgtaagttttagttcagtgttgaagtgatgttgaatacattgtgtaaagcatagtgcttgagttagtgtctgctttggagattttgcttacgaattgtttaagagttgacaaagaacaagtagttctctggttttcaaatgcataattgataacggatggttttgttgtgatctgtagattaaaaatctggcagctgaggtttgtcttgacagggcttatgttcttgaattgcttcgtgacccgcctccaaagctgctaatgctaagtgctacactaccagatgaaaaaccgccagtagcagcacctgagaactcctcacctgatccaagtcctgtggaatcattatcagctgaagatgttgtggtcgaacctaaggaaaaagtaaaagatgaagcagttcatgtgatgcaacagagatggtctgctcagaaaagagtgaagaaagctcacattgaaacgctagagaaagtttacagaagatcaaaacgacccactgtaaggattctccttttacatttgaatcaatttctatgttacttgaatgctctatctcacatatgatcatgtttgatgatgctgtgaatagaatgctgtggttagcagcattgttcaagtgaccaatcttccaaggaagcgagttttgaagtggttcgaagataaaagagcagaagacggagttccagataagcgagctccatatcaagctccggtttgatctaatgttaacgttgagatggcaatgatttgtatacttgattctcagaaactcatcaacattgtcgtcaaggacaagtttttttggtgatacgaggagtgtttatagtagtagattctgtccaatggtgtggctggatatgttggactatgaaattttaggatatcttgtattcagtttttagttatttccttgctgagattgtgtcttgtagaaaaccgtttcaactttgtttggtttatggcggctataaagtttaattttaatgcatgacaaaaacaaatcaccaaaaataaaataaattactttcacgacacttttgaaagcactgccctaggcgtgggccatgtgacagaatgaaagaactcagaccaaacttttctgtccaaggacaggaatggggcccacccaattagctcccctatccattattcaccgtaagatgctaaccagatctaacggctaaaatccacccacgttccaatctcaattgcctttggatccttgtatttcctcaaggctcacctttctccacgattcactctcgatatccgttcgattcttcagagatctgacggcggtagccagagtaatctattccttcccaaaatgtctcgcaattagattctttccaagttcttctgtaaatcccaagtcccgctcttttcctctttatccttttcaccagcttcgctactaagacaacaaatctttccctctctctctcgcctgatcgatcttcaaagagtaagaaacttcgtcgtcaggattatccgtcaacagagttctgtttcggaatcggaacgctagtccttgtggtctatctcttccaattctcaatccgtctcggtctgtacttgtttttgctcgtggcaagaatcgaaaaggattcgtgtcttcgtcttcttcgtctccgaagaaaaacaaaaaggtaagaaaatcagaatgagaatgatttatgttcgcaattgctcttacctgctgctttcgccgaatttgactagaatttggatacactaactaagtgagctattatcggttagaattggtgaatcctcgaattagactttggctctttttgattttgtatcagcctttgatttcatggtttgtggcagaaaagtttggatggagctgataatggaggaggtgaggaggaggaggatccatttgaggcattgtttaatcttttagaagaagatttgaagaatgataactcggatgatgaggagataagtgaggaagagttagaggcattagccgatgagttagctcgagcattgggtgttggtgacgatgttgatgacatcgacttgtttggttcagtcactggtgatgttgatgttgatgttgataatgatgatgatgataatgatgatgatgataatgatgatgatgatgatgacagcgaagaagatgaaagaccgactaagctgaagaattggcagcttaaaagactggcttatgcattgaaagctgggcgtcgtaaaactagtgtaagttttagttcagtgttgaagtgatgttgaatacattgtgtaaagcatagtgcttgagttagtgtctgctttggagattttgcttacgaattgtttaagagttgacaaagaacaagtagttctctggttttcaaatgcataattgataacggatggttttgttgtgatctgtagattaaaaatctggcagctgaggtttgtcttgacagggcttatgttcttgaattgcttcgtgacccgcctccaaagctgctaa tgctaagtgctacactaccagatgaaaaaccgccagtagcagcacctgagaactcctcacctgatccaagtcctgtggaatcattatcagctgaagatgttgtggtcgaacctaaggaaaaagtaaaagatgaagcagttcatgtgatgcaacagagatggtctgctcagaaaagagtgaagaaagctcacattgaaacgctagagaaagtttacagaagatcaaaacgacccactgtaaggattctccttttacatttgaatcaatttctatgttacttgaatgctctatctcacatatgatcatgtttgatgatgctgtgaatagaatgctgtggttagcagcattgttcaagtgaccaatcttccaaggaagcgagttttgaagtggttcgaagataaaagagcagaagacggagttccagataagcgagctccatatcaagctccggtttgatctaatgttaacgttgagatggcaatgatttgtatacttgattctcagaaactcatcaacattgtcgtcaaggacaagtttttttggtgatacgaggagtgtttatagtagtagattctgtccaatggtgtggctggatatgttggactatgaaattttaggatatcttgtattcagtttttagttatttccttgctgagattgtgtcttgtagaaaaccgtttcaactttgtttggtttatggcggctataaagtttaattttaatgcatgacaaaaacaaatcaccaaaaataaaataaattactttcacgacacttttgaaagcactgccctaggcgtgggccatgtgacagaatgaaagaactcagaccaaacttttctgtccaaggacaggaatggggcccacccaattagctcccctatccattattcaccgtaagatgctaaccagatctaacggctaaaatccacccacgttccaatctcaattgcctttggatccttgtatttcctcaaggctcacctttctccacgattcactc tcgatatccgttcgattcttcagagatctgacggcggtagccagagtaatctattccttcccaaaatgtctcgcaattagattctttccaagttcttctgtaaatcccaagtcccgctcttttcctctttatccttttcaccagcttcgctactaagacaacaaatctttccctctctctctcgcctgatcgattagtcaa
表2:用于产生DNA构建体的引物序列Table 2: Primer sequences used to generate DNA constructs
表3:用于qRT-PCR分析的引物序列Table 3: Primer sequences used for qRT-PCR analysis
表4:用于ChIP-PCR的引物序列Table 4: Primer sequences for ChIP-PCR
表5:用干EMSA测定的DNA探针Table 5: DNA probes assayed with dry EMSA
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2015/091635 | 2015-10-10 | ||
CN2015091635 | 2015-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107022563A true CN107022563A (en) | 2017-08-08 |
Family
ID=59525095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610882497.3A Pending CN107022563A (en) | 2015-10-10 | 2016-10-10 | Genetically modified plants |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107022563A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109628439A (en) * | 2018-12-11 | 2019-04-16 | 沈阳农业大学 | A kind of gene and application promoting tomato Chlorophyll synthesis and photosynthetic efficiency |
CN109810181A (en) * | 2019-01-04 | 2019-05-28 | 南京农业大学 | Pear transcription factor PyHY5 and its recombinant expression vector and application |
CN113480625A (en) * | 2021-08-19 | 2021-10-08 | 中国热带农业科学院海口实验站 | Application of banana bZIP transcription factor in regulating and controlling quality formation in fruit development process and construction of expression vector thereof |
CN113789334A (en) * | 2021-09-28 | 2021-12-14 | 浙江大学 | Application of HY5 gene in regulating plant resistance to pests and diseases |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057201A2 (en) * | 2000-02-01 | 2001-08-09 | Pioneer Hi-Bred International, Inc. | Root transcriptional factors and methods of use |
CN101591383A (en) * | 2008-05-27 | 2009-12-02 | 中国农业科学院作物科学研究所 | A plant stress tolerance-related protein, its coding gene and application |
CN101781674A (en) * | 2009-10-23 | 2010-07-21 | 中国科学院遗传与发育生物学研究所 | Method for detecting whether protein to be detected is ubiquitin ligase substrate |
-
2016
- 2016-10-10 CN CN201610882497.3A patent/CN107022563A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057201A2 (en) * | 2000-02-01 | 2001-08-09 | Pioneer Hi-Bred International, Inc. | Root transcriptional factors and methods of use |
CN101591383A (en) * | 2008-05-27 | 2009-12-02 | 中国农业科学院作物科学研究所 | A plant stress tolerance-related protein, its coding gene and application |
CN101781674A (en) * | 2009-10-23 | 2010-07-21 | 中国科学院遗传与发育生物学研究所 | Method for detecting whether protein to be detected is ubiquitin ligase substrate |
Non-Patent Citations (6)
Title |
---|
CORINE P.CLUIS ET AL.: ""The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways"", 《THE PLANT JOURNAL》 * |
ELSE MULLER JONASSEN ET AL.: ""HY5 and HYH are positive regulators of nitrate reductase in seedling and rosette stage plants"", 《PLANTA》 * |
LIFEN HUANG ET AL.: ""HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings"", 《PLANT SCIENCE》 * |
RICHARD SIBOUT ET AL.: ""Opposite Root Growth Phenotypes of hy5 versus hy5 hyh Mutants Correlate with Increased Constitutive Auxin Signaling"", 《PLOS GENETICS》 * |
SWARBRECK,D. ET AL.: ""Arabidopsis thaliana transcription factor HY5 mRNA,complete cds",Accession Number:NM_121164.4", 《GENBANK》 * |
TOTOKI,Y. ET AL.: ""Arabidopsis thaliana mRNA for bZip transcription factor HY5/AtZip56,complete cds clone:RAFL16-60-N08",Accession Number:AK229362.1", 《GENBANK》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109628439A (en) * | 2018-12-11 | 2019-04-16 | 沈阳农业大学 | A kind of gene and application promoting tomato Chlorophyll synthesis and photosynthetic efficiency |
CN109628439B (en) * | 2018-12-11 | 2022-02-08 | 沈阳农业大学 | A gene for promoting chlorophyll synthesis and photosynthetic efficiency in tomato and its application |
CN109810181A (en) * | 2019-01-04 | 2019-05-28 | 南京农业大学 | Pear transcription factor PyHY5 and its recombinant expression vector and application |
CN113480625A (en) * | 2021-08-19 | 2021-10-08 | 中国热带农业科学院海口实验站 | Application of banana bZIP transcription factor in regulating and controlling quality formation in fruit development process and construction of expression vector thereof |
CN113480625B (en) * | 2021-08-19 | 2023-03-14 | 中国热带农业科学院海口实验站 | Application of banana bZIP transcription factor in regulating and controlling quality formation in fruit development process and construction of expression vector thereof |
CN113789334A (en) * | 2021-09-28 | 2021-12-14 | 浙江大学 | Application of HY5 gene in regulating plant resistance to pests and diseases |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108603197B (en) | Methods to improve nitrogen use efficiency of plants | |
US9809827B2 (en) | Transgenic maize | |
CN102131934A (en) | Plants having enhanced yield-related traits and a method for making the same | |
US20190085355A1 (en) | Drought tolerant maize | |
US20200354735A1 (en) | Plants with increased seed size | |
WO2019038417A1 (en) | Methods for increasing grain yield | |
CN111630171A (en) | plant lodging resistance | |
EP4025589A1 (en) | Methods of improving seed size and quality | |
CN107022563A (en) | Genetically modified plants | |
CN105585623B (en) | Breeding method of disease-resistant transgenic TaMYB-KW wheat and related biological materials and application | |
CN104744579B (en) | Applications of the resistance relevant protein GmL16 in regulating and controlling stress resistance of plant | |
CN106397556A (en) | Plant drought-resistant related protein ZmNAC111, coding gene and applications thereof | |
CN102618516B (en) | Low-phosphorus resistant gene and application thereof | |
CN106854238B (en) | Plant adversity resistance related protein TabZIP14 and its encoding gene and application | |
CN104945492B (en) | Plant stress tolerance correlative protein TaAREB3 and its encoding gene and application | |
CN103275202A (en) | Disease resistance-related protein RCR1 derived from wheat, related biomaterials thereof, and application for same | |
EP3712271A1 (en) | Altering thermoresponsive growth in plants via genome editing of phytochrome interacting factor 4 (pif4) regulatory elements | |
CN117106820A (en) | Method for creating few lateral branches of tomatoes through genome editing and application of method | |
WO2009072676A1 (en) | Transformed plant with promoted growth | |
CN104844699B (en) | Soybean GmNEK1 albumen and its encoding gene and application | |
CN114591409A (en) | Application of TaDTG6 protein in improving plant drought resistance | |
CN103865936B (en) | Control plant leaf blade and turn green gene and using method thereof and application | |
CN112125964A (en) | Plant grain weight-related protein GmJAZ3 and its encoding gene and application | |
CN113773374B (en) | Transcription factor ZmbZIPa6 and coding gene and application thereof | |
WO2004092380A1 (en) | Ubiquitin fused gene promoter and utilization thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170808 |
|
RJ01 | Rejection of invention patent application after publication |