CN114859232A - Method and device for quantitatively evaluating thermal runaway dangerousness of lithium batteries in different charge states - Google Patents
Method and device for quantitatively evaluating thermal runaway dangerousness of lithium batteries in different charge states Download PDFInfo
- Publication number
- CN114859232A CN114859232A CN202210502280.0A CN202210502280A CN114859232A CN 114859232 A CN114859232 A CN 114859232A CN 202210502280 A CN202210502280 A CN 202210502280A CN 114859232 A CN114859232 A CN 114859232A
- Authority
- CN
- China
- Prior art keywords
- gas
- index
- lithium battery
- thermal runaway
- risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供不同荷电状态锂电池热失控危险性定量评估方法及装置,方法包括:在恒流放电模式下放电至不同荷电状态,构造指标集;实验获取锂电池热滥用致燃差压、火焰特征直径、热释放速率、氧气浓度、排烟管道燃烧产物温度、有毒及窒息气体浓度。基于热释放速率评估公式及有毒气体或窒息气体评价模型,评估锂电池热失控致燃的热危险性指数无量纲火焰热释放速率、有毒气体危险性指数或窒息气体危险性指数,建立评价集。采用熵值法确定各危险性指数权重系数,构造一电池危险度定量评估公式,获得不同荷电状态下的电池危险度。本发明解决了缺乏定量评估及危险性评估不全面的技术问题。
The invention provides a method and a device for quantitatively evaluating the thermal runaway risk of lithium batteries with different states of charge. Flame characteristic diameter, heat release rate, oxygen concentration, temperature of combustion products in exhaust duct, concentration of toxic and asphyxiating gases. Based on the heat release rate evaluation formula and the toxic gas or asphyxiating gas evaluation model, an evaluation set is established to evaluate the thermal hazard index, dimensionless flame heat release rate, toxic gas hazard index or asphyxiating gas hazard index caused by thermal runaway of lithium batteries. The entropy method is used to determine the weight coefficient of each risk index, and a quantitative evaluation formula for battery risk is constructed to obtain the battery risk under different states of charge. The invention solves the technical problems of lack of quantitative assessment and incomplete risk assessment.
Description
技术领域technical field
本发明涉及储能电池热失控致燃危险性定量评估领域,更具体涉及不同荷电状态锂电池热失控危险性定量评估方法及装置。The invention relates to the field of quantitative assessment of the risk of thermal runaway of energy storage batteries, and more particularly to a method and device for quantitative assessment of the risk of thermal runaway of lithium batteries with different states of charge.
背景技术Background technique
在能源短缺和生态环境恶化的双重压力下,以锂离子电池为主要存储介质的电化学储能系统发展迅速。作为电化学储能系统核心部件,锂电池由于其较高的能量密度和易燃易爆的材料体系,在热、电、机械损伤等滥用条件下极易发生热失控。储能系统内锂电池数量多、装机容量大和散热条件不佳,一旦单个电池发生热失控释放的巨大热量将会引起整个电池模组发生连锁热失控,进而导致模组乃至整个储能系统发生火灾,因此有必要评估锂电池热滥用情形下热失控导致燃烧的危险性。Under the dual pressures of energy shortage and ecological environment deterioration, electrochemical energy storage systems with lithium-ion batteries as the main storage medium have developed rapidly. As the core component of electrochemical energy storage systems, lithium batteries are prone to thermal runaway under abuse conditions such as thermal, electrical, and mechanical damage due to their high energy density and flammable and explosive material systems. Due to the large number of lithium batteries, large installed capacity and poor heat dissipation conditions in the energy storage system, once the huge heat released by a single battery thermal runaway will cause a chain thermal runaway of the entire battery module, which will lead to a fire in the module and even the entire energy storage system. , so it is necessary to evaluate the risk of thermal runaway leading to combustion in the case of thermal abuse of lithium batteries.
申请号为CN202111109557.5的现有发明专利《一种基于梯度提升树的锂离子电池故障诊断方法》包括以下步骤:获取锂离子电池的历史故障数据并上传到数据库平台,对数据的处理、筛选出电池特征值参数或关键数值,形成数据集,将数据集划分为训练集和测试集,将选取的训练集及预测指标带入梯度提升树模型进行训练,通过迭代优化,待梯度提升树模型收敛后输出梯度提升树模型;采集锂离子电池运行中电池特征值参数或关键数值,输入训练后的梯度提升树模型,进行锂离子电池故障诊断。从该现有专利的说明书中可知,该现有专利通过构建和训练梯度提升树模型,对锂电池热失控等安全事故进行预警,但该现有专利通过利用模型处理样本数据,仅能对热失控等故障进行定性预警,无法定量评估锂电池危险性。The existing invention patent with the application number of CN202111109557.5, "A Gradient Boosting Tree-Based Lithium-ion Battery Fault Diagnosis Method", includes the following steps: acquiring historical fault data of lithium-ion batteries and uploading them to a database platform, processing and screening the data Obtain battery characteristic value parameters or key values to form a data set, divide the data set into a training set and a test set, and bring the selected training set and prediction indicators into the gradient boosting tree model for training, and through iterative optimization, the gradient boosting tree model After convergence, the gradient boosting tree model is output; the battery eigenvalue parameters or key values during the operation of the lithium-ion battery are collected, and the trained gradient boosting tree model is input to diagnose the fault of the lithium-ion battery. It can be seen from the description of the existing patent that the existing patent provides early warning of safety accidents such as thermal runaway of lithium batteries by constructing and training a gradient boosting tree model. Qualitative early warning is given for failures such as runaway, and it is impossible to quantitatively assess the danger of lithium batteries.
申请号为CN201911311757.1的现有发明专利《一种具备锂电池故障早期预警功能的电池管理系统及方法》包括:主控制器以及与主控制器连接的气体浓度检测模块,所述气体浓度检测模块包括一个或多个内置于电池箱内的气体检测单元,每个气体检测单元包括气体传感器和数据处理子单元,所述数据处理子单元分别通过不同种类的气体传感器采集多种气体浓度数据,并将采集到的数据传送至主控制器,所述主控制器根据接收到的多种气体浓度数据及其在电池产气中的占比综合分析,判断电池故障级别。本发明有益效果:采用多种气体传感器组合的方式对电池故障产生气体进行检测,并对检测气体浓度和成分占比进行分析,综合计算从而准确判断电池故障等级。该现有专利虽然通过传感器采集多种气体浓度数据,但该现有专利仅将气体浓度数据作为故障预警输入参数,并未评估锂电池在燃烧时释放的有毒气体浓度和窒息性气体的危害,该现有专利与本申请的技术方案存在显著区别,同时无法评估锂电池在燃烧时释放的有毒气体浓度和窒息性气体的危害。The existing invention patent with the application number of CN201911311757.1 "A battery management system and method with an early warning function of lithium battery failure" includes: a main controller and a gas concentration detection module connected to the main controller. The gas concentration detection The module includes one or more gas detection units built in the battery box, each gas detection unit includes a gas sensor and a data processing subunit, and the data processing subunit collects various gas concentration data through different types of gas sensors respectively, The collected data is transmitted to the main controller, and the main controller judges the failure level of the battery according to the comprehensive analysis of the received data of various gas concentrations and their proportions in the gas production of the battery. The beneficial effects of the invention are as follows: a combination of multiple gas sensors is used to detect the gas generated by the battery failure, and the concentration and composition ratio of the detected gas are analyzed, and comprehensive calculation is performed to accurately determine the battery failure level. Although the existing patent collects various gas concentration data through sensors, the existing patent only uses the gas concentration data as a fault warning input parameter, and does not evaluate the toxic gas concentration and the hazards of asphyxiating gas released by the lithium battery during combustion. The existing patent is significantly different from the technical solution of the present application, and at the same time, it is impossible to evaluate the toxic gas concentration and the hazard of asphyxiating gas released by the lithium battery during combustion.
由前述现有专利可见,现有评估锂电池热失控燃烧危险性的研究主要存在以下不足:As can be seen from the aforementioned existing patents, the existing researches on assessing the risk of thermal runaway combustion of lithium batteries mainly have the following deficiencies:
(1)锂电池在热滥用情形下发生热失控致燃时,现有的评估方法多数从定性的角度评估锂电池燃烧的危害性,缺乏定量评估锂电池危险性的方法或手段。(1) When a lithium battery is thermally runaway and ignited under thermal abuse, most of the existing evaluation methods evaluate the hazard of lithium battery combustion from a qualitative point of view, and there is a lack of methods or means to quantitatively evaluate the risk of lithium battery.
(2)评估锂电池热失控致燃的危险性时,现有的方法比较关注锂电池燃烧的热危害性,忽略了锂电池在燃烧时释放的有毒气体浓度和窒息性气体的危害,即危险性评估方法不能全面地反应锂电池燃烧的危害性。(2) When assessing the risk of thermal runaway of lithium batteries, the existing methods pay more attention to the thermal hazard of lithium battery combustion, ignoring the toxic gas concentration and suffocating gas released by lithium batteries during combustion, that is, dangerous The hazard assessment method cannot fully reflect the hazard of lithium battery combustion.
综上,现有技术缺乏定量评估及危险性评估不全面的技术问题。To sum up, the existing technology lacks quantitative assessment and the technical problems of incomplete risk assessment.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于如何解决现有技术缺乏定量评估及危险性评估不全面的技术问题。The technical problem to be solved by the present invention is how to solve the technical problems of lack of quantitative assessment and incomplete risk assessment in the prior art.
本发明是采用以下技术方案解决上述技术问题的:不同荷电状态锂电池热失控危险性定量评估方法包括:The present invention adopts the following technical solutions to solve the above-mentioned technical problems: a quantitative assessment method for the thermal runaway risk of lithium batteries with different states of charge includes:
S1、获取不少于预设种数的过充荷电SOC和预设种数的正常荷电SOC下的锂电池样品;S1. Obtain lithium battery samples with no less than a preset number of overcharged SOCs and a preset number of normal charged SOCs;
S2、根据所述锂电池样品的荷电状态,建立不同荷电状态的指标集U;S2, according to the state of charge of the lithium battery sample, establish the index set U of different states of charge;
S3、开展不同荷电状态SOC锂电池热滥用热失控致燃实验,获取热失控致燃危险性评估的特征参数,并将所述特征参数划分为热危险性特征参数、有毒有害气体危险性特征参数及窒息性气体危险性特征参数;S3. Carry out thermal abuse thermal runaway ignition experiments of SOC lithium batteries with different states of charge, obtain characteristic parameters of thermal runaway ignition risk assessment, and divide the characteristic parameters into thermal hazard characteristic parameters and toxic and harmful gas hazard characteristics parameters and asphyxiating gas hazard characteristic parameters;
S4、根据预置有毒有害或窒息性气体评价模型处理得无量纲火焰释放速率,根据所述特征参数定量评估不同荷电状态锂电池致燃的有毒气体指数FEC、窒息性气体指数FED和无量纲火焰释放速率Q*,以建立不同荷电状态锂电池致燃的评价集V;S4, according to the preset toxic and harmful or suffocating gas evaluation model, the dimensionless flame release rate is obtained, and the toxic gas index FEC, asphyxiating gas index FED and dimensionless gas index FEC, asphyxiating gas index FED and dimensionless ignited by lithium batteries of different states of charge are quantitatively evaluated according to the characteristic parameters The flame release rate Q * is used to establish the evaluation set V of the ignition of lithium batteries with different states of charge;
S5、根据不同荷电状态所述锂电池样品的所述指标集U和所述评价集V,建立样本矩阵S,将样本矩阵S经标准化处理,获得标准化矩阵X;S5. According to the index set U and the evaluation set V of the lithium battery samples with different states of charge, a sample matrix S is established, and the sample matrix S is standardized to obtain a standardized matrix X;
S6、利用熵值法根据所述标准化矩阵X依次确定所述无量纲火焰释放速率Q*、所述有毒气体指数FEC指数和所述窒息性气体指数FED指数的权重系数为ω1、ω2和ω3;S6, utilize the entropy value method to sequentially determine the weight coefficients of the dimensionless flame release rate Q * , the toxic gas index FEC index and the asphyxiating gas index FED index according to the standardized matrix X as ω 1 , ω 2 and ω 3 ;
S7、根据所述权重系数构造锂电池热滥用热失控致燃危险度关系,据以评估不同荷电状态锂电池致燃危险度。S7. Construct a risk relationship of the thermal runaway of lithium batteries according to the weight coefficient, so as to evaluate the risk of ignition of lithium batteries in different states of charge.
本发明基于热释放速率评估公式及有毒气体或窒息气体评价模型,评估锂电池热失控致燃的热危险性指数无量纲火焰热释放速率Q*、有毒气体危险性指数FEC或窒息气体危险性指数FED,建立不同荷电状态锂电池热失控致燃评价集V。采用熵值法确定热危害性、有毒气体刺激性和窒息气体危险性权重系数,构造电池危险度定量评估公式,实现了储能电池热失控致燃危险性的定量评估。Based on the heat release rate evaluation formula and the toxic gas or asphyxiating gas evaluation model, the present invention evaluates the thermal risk index dimensionless flame heat release rate Q * , the toxic gas risk index FEC or the asphyxiating gas risk index of the thermal runaway of the lithium battery. FED, establishes the evaluation set V of thermal runaway ignition of lithium batteries with different states of charge. The entropy method is used to determine the weight coefficients of thermal hazard, toxic gas irritant and asphyxiating gas hazard, and a quantitative evaluation formula for battery risk is constructed, which realizes the quantitative evaluation of the risk of thermal runaway of energy storage batteries.
在更具体的技术方案中,所述步骤S2包括:In a more specific technical solution, the step S2 includes:
S11、选取相同规格的锂电池;S11. Select lithium batteries of the same specification;
S12、利用电池充放电循环测试仪在恒流放电模式下使所述锂电池放电至不同荷电状态,获取预设正常数目的正常荷电状态锂电池和预设过充数目的过充荷电状态锂电池。S12. Use a battery charge-discharge cycle tester to discharge the lithium battery to different states of charge in a constant current discharge mode, and obtain a preset normal number of normal state-of-charge lithium batteries and a preset number of overcharge states of charge lithium battery.
在更具体的技术方案中,所述步骤S3包括:In a more specific technical solution, the step S3 includes:
S21、获取正常荷电状态锂电池及过充荷电状态锂电池的差异SOC数据;S21. Obtain the difference SOC data of the lithium battery in the normal state of charge and the lithium battery in the overcharge state;
S22、根据所述差异SOC数据构造锂电池荷电状态的所述指标集U。S22. Construct the indicator set U of the state of charge of the lithium battery according to the difference SOC data.
在更具体的技术方案中,所述步骤S4包括:In a more specific technical solution, the step S4 includes:
S31、在所述锂电池热滥用热失控致燃危险性平台对差异荷电状态的所述锂电池样品进行热失控致燃实验及热滥用致燃实验;S31, performing a thermal runaway ignition test and a thermal abuse ignition test on the lithium battery samples with different states of charge on the lithium battery thermal abuse thermal runaway ignition risk platform;
S32、对每种荷电状态的所述锂电池样品进行不少于2次的燃烧实验;S32, carrying out no less than 2 combustion experiments on the lithium battery samples in each state of charge;
S33、获取所述锂电池样品的第二次稳定燃烧状态下的火焰特征直径D、排烟管道内燃烧产物的差压Δp、燃烧产物的温度Te、氧气浓度X O2、有毒气体浓度及窒息性气体浓度;S33. Obtain the characteristic flame diameter D of the lithium battery sample in the second stable combustion state, the differential pressure Δp of the combustion product in the exhaust duct, the temperature Te of the combustion product, the oxygen concentration X O2 , the toxic gas concentration and suffocation gas concentration;
S34、对所述火焰特征直径D、所述排烟管道内燃烧产物的差压Δp、所述燃烧产物的温度Te、所述氧气浓度X O2、所述有毒气体浓度及所述窒息性气体浓度取平均值以作为所述特征参数;S34, the characteristic diameter D of the flame, the differential pressure Δp of the combustion product in the exhaust duct, the temperature Te of the combustion product, the oxygen concentration X O2 , the toxic gas concentration and the asphyxiating gas The concentration is averaged as the characteristic parameter;
S35、预处理所述锂电池样品的热滥用热失控致燃定量评估参数;S35, pretreatment of the thermal abuse thermal runaway quantitative evaluation parameter of the lithium battery sample;
S36、获取并分类锂电池热滥用致燃评估参数,以得到所述热危险性特征参数、所述有毒有害气体危险性特征参数及所述窒息性气体危险性特征参数。S36 , obtaining and classifying the lithium battery thermal abuse igniting evaluation parameters to obtain the thermal hazard characteristic parameter, the toxic and harmful gas hazard characteristic parameter, and the asphyxiating gas hazard characteristic parameter.
本发明利用锂电池热滥用致燃实验平台依次开展过充荷电状态和正常荷电状态锂电池热滥用致燃实验,获取所需锂电池致燃危险性定量评价参数平均值,根据锂电池热滥用致燃实验平台采集到的数据,以量化热滥用致燃相关参数,更加全面地评价锂电池在特定温度条件下的安全性。The invention utilizes the lithium battery thermal abuse ignition test platform to sequentially carry out the overcharge state and normal state of charge lithium battery thermal abuse ignition experiments, and obtains the required average value of the quantitative evaluation parameters of the lithium battery ignition risk. The data collected by the abuse ignition test platform is used to quantify the parameters related to thermal abuse ignition, and to more comprehensively evaluate the safety of lithium batteries under specific temperature conditions.
在更具体的技术方案中,所述步骤S41包括:In a more specific technical solution, the step S41 includes:
S43、根据所述有毒有害气体评价参数,以下述逻辑处理得到所述有毒气体指数FEC:S43, according to described poisonous and harmful gas evaluation parameter, obtain described poisonous gas index FEC with following logical processing:
,式中,表示每种气体的浓度,F是对逃生人员造成威胁的气体临界浓度。, where, Indicates the concentration of each gas, and F is the critical concentration of the gas that poses a threat to escaping personnel.
S44、根据所述窒息性气体危险性特征参数,以下述逻辑处理得到所述窒息性气体指数FED,即:S44, according to the characteristic parameter of the asphyxiant gas danger, obtain the asphyxiating gas index FED with the following logic processing, namely:
式中,表示气体的浓度,V表示气体分子的频率因子,Δt表示时间持续时间,即(t2-t10;In the formula, represents the concentration of the gas, V represents the frequency factor of the gas molecules, Δt represents the time duration, namely (t 2 -t 1 0;
S45、根据所述有毒气体指数FEC、所述窒息性气体指数FED和所述无量纲火焰释放速率Q*,依次计算每种荷电状态下所述锂电池样品对应的特征参数值,据以构造不同荷电状态SOC锂电池致燃的所述评价集V={Q*,FEC,FED}。S45, according to the toxic gas index FEC, the asphyxiating gas index FED and the dimensionless flame release rate Q * , sequentially calculate the characteristic parameter values corresponding to the lithium battery samples under each state of charge, and construct The evaluation set V={Q * , FEC, FED} for the ignition of lithium batteries with different states of charge SOC.
本发明的锂电池致燃危险性定量评估,是对其热危害、有毒气体危害和窒息气体危害的综合定量评估,本发明中的锂电池热滥用致燃热危害危险性可通过火焰直径D、锂电池热失控致燃热释放速率表征;有毒气体HF、SO2、NOX可通过有毒气体有效浓度百分数FEC来定量表征;窒息性气体CO、CO2可通过有效剂量百分数FED来表征。本发明通过前述三类指数将锂电池致燃危险性量化为特定值,以全面评估锂电池致燃危险性。The quantitative assessment of the flammability hazard of the lithium battery in the present invention is a comprehensive quantitative assessment of its thermal hazard, toxic gas hazard and suffocating gas hazard. Characterization of heat release rate due to thermal runaway of lithium battery; toxic gases HF, SO 2 , NO X can be quantitatively characterized by FEC of effective concentration percentage of toxic gases; asphyxiating gases CO and CO 2 can be characterized by FED of effective dose percentage. The present invention quantifies the flammability hazard of the lithium battery to a specific value through the aforementioned three types of indices, so as to comprehensively evaluate the flammability hazard of the lithium battery.
在更具体的技术方案中,所述步骤S41包括:In a more specific technical solution, the step S41 includes:
S411、以下述逻辑处理排烟管道内氧气的质量分数XO2、差压Δp、燃烧产物的温度Te,以得到火焰热释放速率 S411. Process the mass fraction of oxygen X O2 , the differential pressure Δp , and the temperature Te of combustion products in the exhaust pipe with the following logic to obtain the flame heat release rate
S412、以下述逻辑处理所述热危害性特征参数及所述火焰热释放速率以得到所述无量纲火焰释放速率:S412. Process the thermal hazard characteristic parameter and the flame heat release rate with the following logic To obtain the dimensionless flame release rate:
式中,D为火焰特征直径、为火焰的热释放速率。where D is the characteristic diameter of the flame, is the heat release rate of the flame.
在更具体的技术方案中,所述步骤S6包括:In a more specific technical solution, the step S6 includes:
S61、根据所述指标集U及所述指标集V,以下述逻辑建立所述样本矩阵S:S61, according to the index set U and the index set V, establish the sample matrix S with the following logic:
式中,sij为第i个锂电池样本关于指标j的实际值,1≤i≤15,1≤j≤3;In the formula, s ij is the actual value of the ith lithium battery sample about the index j, 1≤i≤15, 1≤j≤3;
S62、以下述逻辑标准化处理所述样本矩阵S,以获得所述标准矩阵X:S62, standardize the sample matrix S with the following logic to obtain the standard matrix X:
式中, In the formula,
在更具体的技术方案中,所述步骤S7包括:In a more specific technical solution, the step S7 includes:
S71、以下述逻辑确定第i个锂电池样本关于指标j的权重yij:S71. Determine the weight y ij of the ith lithium battery sample with respect to the index j with the following logic:
S72、根据所述权重yij,以下述逻辑确定第j个评价指标的熵值:S72, according to the weight y ij , determine the entropy value of the j-th evaluation index with the following logic:
式中,ej表示第j个评价指标的熵值;In the formula, e j represents the entropy value of the jth evaluation index;
S73、根据所述评价指标j的所述权重yij及所述熵值,以下述逻辑估算第j个所述评价指标的所述权重系数ωj:S73. According to the weight y ij and the entropy value of the evaluation index j, use the following logic to estimate the weight coefficient ω j of the j-th evaluation index:
在更具体的技术方案中,所述步骤S8中以下述逻辑,根据所述权重系数构造锂电池热滥用热失控致燃危险度关系数据:H=ω1·x11+ω2·x12+ω3·x13。In a more specific technical solution, in the step S8, the following logic is used to construct the lithium battery thermal abuse thermal runaway ignition risk relationship data according to the weight coefficient: H=ω 1 ·x 11 +ω 2 ·x 12 + ω 3 ·x 13 .
在更具体的技术方案中,一种不同荷电状态锂电池热失控危险性定量评估装置包括:In a more specific technical solution, a quantitative assessment device for thermal runaway risk of lithium batteries with different states of charge includes:
过充荷电SOC样品模块,用以获取不少于预设种数的过充荷电SOC和预设种数的正常荷电SOC下的锂电池样品;The overcharged SOC sample module is used to obtain not less than a preset number of overcharged SOCs and a preset number of lithium battery samples under normal charged SOCs;
指标集模块,用以根据所述锂电池样品的荷电状态,建立不同荷电状态的指标集U,所述指标集模块与所述锂电池热滥用热失控致燃实验平台连接;an indicator set module for establishing indicator sets U of different states of charge according to the state of charge of the lithium battery sample, and the indicator set module is connected to the lithium battery thermal abuse thermal runaway ignition experiment platform;
特征参数模块,用以进行不同荷电状态SOC锂电池热滥用热失控致燃实验,获取热失控致燃危险性评估的特征参数,并将所述特征参数划分为热危险性特征参数、有毒有害气体危险性特征参数及窒息性气体危险性特征参数,所述特征参数模块与所述指标集模块连接;The characteristic parameter module is used to carry out thermal abuse thermal runaway ignition experiments of SOC lithium batteries with different states of charge, obtain characteristic parameters of thermal runaway ignition risk assessment, and divide the characteristic parameters into thermal risk characteristic parameters, toxic and harmful gas hazard characteristic parameters and asphyxiating gas hazard characteristic parameters, the characteristic parameter module is connected to the indicator set module;
评价集模块,用以根据预置有毒有害或窒息性气体评价模型及无量纲火焰释放速率,根据所述特征参数定量评估不同荷电状态锂电池致燃的有毒气体指数FEC、窒息性气体指数FED和无量纲火焰释放速率Q*,以建立不同荷电状态锂电池致燃的评价集V,所述评价集模块与所述特征参数模块连接;The evaluation set module is used to quantitatively evaluate the toxic gas index FEC and asphyxiating gas index FED of lithium batteries with different states of charge according to the preset toxic and harmful or asphyxiating gas evaluation model and the dimensionless flame release rate according to the characteristic parameters. and the dimensionless flame release rate Q * to establish an evaluation set V of the ignition of lithium batteries with different states of charge, and the evaluation set module is connected with the characteristic parameter module;
标准化矩阵模块,用以根据不同荷电状态所述锂电池样品的所述指标集U和所述评价集V,建立样本矩阵S,将样本矩阵S经标准化处理,获得标准化矩阵X,所述标准化矩阵模块与所述评价集模块连接;The standardized matrix module is used to establish a sample matrix S according to the index set U and the evaluation set V of the lithium battery samples with different states of charge, and standardize the sample matrix S to obtain a standardized matrix X, the standardized The matrix module is connected with the evaluation set module;
权重模块,用以利用熵值法根据所述标准化矩阵X依次确定所述无量纲火焰释放速率Q*、所述有毒气体指数FEC指数和所述窒息性气体指数FED指数的权重系数为ω1、ω2和ω3,所述权重模块与所述标准化矩阵模块连接;A weighting module is used to sequentially determine the weighting coefficient of the dimensionless flame release rate Q * , the toxic gas index FEC index and the asphyxiating gas index FED index according to the standardized matrix X by using the entropy method as ω 1 , ω 2 and ω 3 , the weight module is connected with the normalization matrix module;
危险度评估模块,用以根据所述权重系数构造锂电池热滥用热失控致燃危险度关系,据以评估不同荷电状态锂电池致燃危险度,所述危险度评估模块与所述权重模块连接。The risk assessment module is used to construct the risk relationship of thermal runaway and thermal runaway of lithium batteries according to the weight coefficient, so as to evaluate the risk of ignition of lithium batteries in different states of charge, the risk assessment module and the weight module connect.
本发明相比现有技术具有以下优点:本发明基于热释放速率评估公式及有毒气体或窒息气体评价模型,评估锂电池热失控致燃的热危险性指数无量纲火焰热释放速率Q*、有毒气体危险性指数FEC或窒息气体危险性指数FED,建立不同荷电状态锂电池热失控致燃评价集V。采用熵值法确定热危害性、有毒气体刺激性和窒息气体危险性权重系数,构造电池危险度定量评估公式,实现了储能电池热失控致燃危险性的定量评估。Compared with the prior art, the present invention has the following advantages: based on the heat release rate evaluation formula and the toxic gas or suffocating gas evaluation model, the present invention evaluates the thermal hazard index dimensionless flame heat release rate Q * , the toxic gas or suffocating gas caused by the thermal runaway of the lithium battery. The gas hazard index FEC or the asphyxiating gas hazard index FED is used to establish the evaluation set V of thermal runaway ignition of lithium batteries with different states of charge. The entropy method is used to determine the weight coefficients of thermal hazard, toxic gas irritant and asphyxiating gas hazard, and a quantitative evaluation formula for battery risk is constructed, which realizes the quantitative evaluation of the risk of thermal runaway of energy storage batteries.
本发明依次开展过充荷电状态和正常荷电状态锂电池热滥用致燃实验,获取所需锂电池致燃危险性定量评价参数平均值,根据锂电池热滥用致燃实验平台采集到的数据,以量化热滥用致燃相关参数,更加全面地评价锂电池在特定温度条件下的安全性。The invention sequentially carries out the thermal abuse ignition test of the lithium battery in the overcharged state of charge and the normal state of charge, obtains the average value of the required quantitative evaluation parameters of the ignition risk of the lithium battery, and collects the data according to the lithium battery thermal abuse ignition test platform. , to quantify the related parameters of thermal abuse and ignition, and to more comprehensively evaluate the safety of lithium batteries under specific temperature conditions.
本发明的锂电池致燃危险性定量评估,是对其热危害、有毒气体危害和窒息气体危害的综合定量评估,本发明中的锂电池热滥用致燃热危害危险性可通过火焰直径D、锂电池热失控致燃热释放速率表征;有毒气体HF、SO2、NOX可通过有毒气体有效浓度百分数FEC来定量表征;窒息性气体CO、CO2可通过有效剂量百分数FED来表征。本发明通过前述三类指数将锂电池致燃危险性量化为特定值,以全面评估锂电池致燃危险性。本发明解决了现有技术中存在的缺乏定量评估及危险性评估不全面的技术问题。The quantitative assessment of the flammability hazard of the lithium battery in the present invention is a comprehensive quantitative assessment of its thermal hazard, toxic gas hazard and suffocating gas hazard. Characterization of heat release rate due to thermal runaway of lithium battery; toxic gases HF, SO 2 , NO X can be quantitatively characterized by FEC of effective concentration percentage of toxic gases; asphyxiating gases CO and CO 2 can be characterized by FED of effective dose percentage. The present invention quantifies the flammability hazard of the lithium battery to a specific value through the aforementioned three types of indices, so as to comprehensively evaluate the flammability hazard of the lithium battery. The invention solves the technical problems of lack of quantitative assessment and incomplete risk assessment in the prior art.
附图说明Description of drawings
图1为本发明实施例2的不同荷电状态锂电池热失控危险性定量评估方法流程示意图;1 is a schematic flowchart of a quantitative assessment method for thermal runaway risk of lithium batteries with different states of charge according to
图2为本发明实施例3的锂电池热失控致燃危险性定量评估装置组成示意图。FIG. 2 is a schematic diagram of the composition of the device for quantitative assessment of the risk of thermal runaway ignition of a lithium battery according to
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are part of the present invention. examples, but not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
本发明公开了一种用于不同荷电状态锂电池热滥用致燃危险性定量评估方法,应用于储能电池热失控致燃危险性定量评估领域。本方法用于现有技术手段无法解决不同荷电状态SOC(State Of Charge)锂电池热滥用致燃危险性定量评估的问题。锂电池热滥用致燃危险性涉及燃烧热危害、有毒气体危险性及窒息气体危险性。现有锂电池危害性的评估方法仅涉及上述三种危险性的一种,无法对储能用锂电池致燃危害性进行全面地定量评估。通过电池循环测试系统在恒流放电模式下放电至不同荷电状态,即100%SOC、80%SOC、60%SOC、50%SOC、30%SOC、10%SOC、0%SOC共7种正常荷电状态和8种过充荷电状态(125%SOC、150%SOC、175%SOC、200%SOC、225%SOC、250%SOC、275%SOC、300%SOC),构造不同荷电状态锂电池指标集U。依次开展不同荷电状态SOC锂电池热滥用致燃实验,获取锂电池热滥用致燃第二稳定阶段过程的差压Δ、火焰特征直径D、热释放速率、氧气O2浓度、排烟管道燃烧产物温度Te、有毒气体(HF、SO2、NOx)浓度及窒息气体(CO、CO2)浓度。基于热释放速率评估公式及有毒气体或窒息气体评价模型,评估锂电池热失控致燃的热危险性指数无量纲火焰热释放速率Q*、有毒气体危险性指数FEC或窒息气体危险性指数FED,建立不同荷电状态锂电池热失控致燃评价集V。采用熵值法确定热危害性、有毒气体刺激性和窒息气体危险性权重系数ωj,构造一电池危险度H=ω1·x11+ω2·x12+ω3·x13定量评估公式,包括致燃热危险性指数、有毒气体或窒息气体危险性指数,获得不同荷电状态下的电池危险度H。The invention discloses a method for quantitatively evaluating the risk of ignition caused by thermal abuse of lithium batteries in different states of charge, which is applied to the field of quantitative evaluation of the risk of ignition caused by thermal runaway of energy storage batteries. This method is used for the problem that the existing technical means cannot solve the problem of quantitative assessment of the risk of ignition caused by thermal abuse of lithium batteries with different states of charge SOC (State Of Charge). The flammability hazard of lithium battery thermal abuse involves the hazard of combustion heat, the hazard of toxic gas and the hazard of suffocating gas. The existing assessment methods for the hazard of lithium batteries only involve one of the above three hazards, and cannot comprehensively and quantitatively assess the hazard of lithium batteries for energy storage. Through the battery cycle test system, discharge to different states of charge in constant current discharge mode, namely 100% SOC, 80% SOC, 60% SOC, 50% SOC, 30% SOC, 10% SOC, 0% SOC, a total of 7 normal State of charge and 8 overcharge states of charge (125% SOC, 150% SOC, 175% SOC, 200% SOC, 225% SOC, 250% SOC, 275% SOC, 300% SOC) to construct different states of charge Lithium battery indicator set U. The thermal abuse ignition experiments of SOC lithium batteries with different states of charge were carried out in turn, and the differential pressure Δ, flame characteristic diameter D, heat release rate, oxygen O 2 concentration, and smoke exhaust duct combustion during the second stable stage of thermal abuse ignition of lithium batteries were obtained. Product temperature Te , toxic gas (HF, SO2, NOx ) concentration and asphyxiating gas (CO, CO2 ) concentration. Based on the evaluation formula of heat release rate and the evaluation model of toxic gas or asphyxiating gas, the thermal hazard index, dimensionless flame heat release rate Q * , toxic gas hazard index FEC or asphyxiating gas hazard index FED, caused by thermal runaway of lithium battery, are evaluated. The thermal runaway ignition evaluation set V of lithium batteries with different states of charge is established. The entropy method is used to determine the weight coefficient ω j of thermal hazard, toxic gas irritant and asphyxiating gas hazard, and a quantitative evaluation formula of battery hazard H=ω 1 ·x 11 +ω 2 ·x 12 +ω 3 ·x 13 is constructed , including flammable heat hazard index, toxic gas or suffocating gas hazard index, and obtain the battery hazard H under different states of charge.
实施例2Example 2
如图1所示,本实施例公开一种用于不同荷电状态锂电池热滥用致燃危险性定量评估方法,包括:As shown in FIG. 1 , the present embodiment discloses a quantitative assessment method for the risk of thermal abuse of lithium batteries with different states of charge, including:
S1、获取不少于预设种数的过充荷电SOC和预设种数的正常荷电SOC下的锂电池样品;在本实施例中,不同荷电状态的锂电池样本获取。选取同一供应商生产的相同容量的锂离子电池,通过电池充放电循环测试仪在恒流放电模式下放电至不同荷电状态,获取100%SOC、80%SOC、60%SOC、50%SOC、30%SOC、10%SOC、0%SOC共7种正常荷电状态的锂电池和8种过充荷电状态的锂电池(125%SOC、150%SOC、175%SOC、200%SOC、225%SOC、250%SOC、275%SOC、300%SOC)。在本实施例中,电池充放电循环测试仪,可在恒流、恒压以及恒功率充放电条件下将电池充至目标荷电状态SOC,且在充放电过程中可以实时监测并记录电压、电流、容量和温度等重要参数。在本实施例中,100%SOC的锂电池通过电池循环系统恒流充电的模式,获取过充模式下8种不同荷电状态,即125%SOC、150%SOC、175%SOC、200%SOC、225%SOC、250%SOC、275%SOC、300%SOC;100%SOC的锂电池通过电池循环系统恒流放电的模式,获取正常状态下7种不同荷电状态的锂电池,即100%SOC、80%SOC、60%SOC、50%SOC、30%SOC、10%SOC、0%SOC。每种荷电状态的锂电池准备5组,便于开展锂电池热失控致燃重复性实验。S1. Obtain not less than a preset number of overcharged SOC and a preset number of lithium battery samples under normal charge SOC; in this embodiment, lithium battery samples with different states of charge are obtained. Select lithium-ion batteries of the same capacity produced by the same supplier, discharge them to different states of charge in constant current discharge mode through a battery charge-discharge cycle tester, and obtain 100% SOC, 80% SOC, 60% SOC, 50% SOC, 30% SOC, 10% SOC, 0% SOC, a total of 7 normal state of charge lithium batteries and 8 overcharged lithium batteries (125% SOC, 150% SOC, 175% SOC, 200% SOC, 225 %SOC, 250%SOC, 275%SOC, 300%SOC). In this embodiment, the battery charge and discharge cycle tester can charge the battery to the target state of charge SOC under constant current, constant voltage and constant power charge and discharge conditions, and can monitor and record the voltage, Important parameters such as current, capacity and temperature. In this embodiment, the lithium battery with 100% SOC is charged with constant current through the battery cycle system to obtain 8 different states of charge in the overcharge mode, namely 125% SOC, 150% SOC, 175% SOC, 200% SOC , 225% SOC, 250% SOC, 275% SOC, 300% SOC; 100% SOC lithium battery is obtained through the constant current discharge mode of the battery cycle system to obtain lithium batteries with 7 different states of charge under normal conditions, that is, 100% SOC, 80% SOC, 60% SOC, 50% SOC, 30% SOC, 10% SOC, 0% SOC. Five groups of lithium batteries are prepared for each state of charge, which is convenient for repeatable experiments on thermal runaway ignition of lithium batteries.
S2、根据所述锂电池样品的荷电状态,建立不同荷电状态的指标集U,在本实施例中,构造包含15种锂电池荷电状态的指标集U={SOC300%,SOC275%,SOC250%,SOC225%,SOC200%,SOC175%,SOC150%,SOC125%,SOC100%,SOC80%,SOC60%,SOC50%,SOC30%,SOC10%,SOC0%}。S2. According to the state of charge of the lithium battery sample, establish an index set U of different states of charge, in this embodiment, construct an index set U={SOC 300% , SOC 275 including 15 kinds of state of charge of lithium batteries % , SOC 250% , SOC 225% , SOC 200% , SOC 175% , SOC 150% , SOC 125% , SOC 100% , SOC 80% , SOC 60% , SOC 50% , SOC 30% , SOC 10% , SOC 0% }.
在本实施例中,电池的荷电状态SOC是指电池剩余容量与电池容量的比值,即SOC=Qr/QI。其中,Qr是指当前电池剩余容量,QI是指电池以恒流I放电至截止电压时的电池容量。一般认为,先把电池通过充放电循环测试仪在I电流下放电至电池截止电压,随后使用恒流恒压的方法充电至充电截止电压至电流低于1.0A时,电池的荷电状态是100%SOC。In this embodiment, the state of charge SOC of the battery refers to the ratio of the remaining capacity of the battery to the capacity of the battery, that is, SOC=Q r /Q I . Among them, Q r refers to the current remaining capacity of the battery, and Q I refers to the battery capacity when the battery is discharged with a constant current I to the cut-off voltage. It is generally believed that the state of charge of the battery is 100 when the battery is first discharged to the cut-off voltage of the battery at I current through a charge-discharge cycle tester, and then charged to the cut-off voltage by a constant current and constant voltage method until the current is lower than 1.0A. %SOC.
S3、开展不同荷电状态SOC锂电池热滥用热失控致燃实验,获取热失控致燃危险性评估的特征参数,并将所述特征参数划分为热危险性特征参数、有毒有害气体危险性特征参数及窒息性气体危险性特征参数;在本实施例中,获取锂电池热滥用热失控致燃定量评估参数。在不同荷电状态锂电池热滥用热失控致燃危险性平台开展步骤二选取的不同荷电状态锂电池热失控致燃实验,不同荷电状态的软包锂电池依次开展热滥用致燃实验,每种荷电状态的锂电池燃烧实验重复三次,获取锂电池第二次稳定燃烧状态下火焰的特征直径D、排烟管道内燃烧产物的差压Δp、燃烧产物的温度Te、氧气浓度X O2、有毒气体(HF、SO2、NOx)浓度和窒息性气体(一氧化碳CO、二氧化碳CO2)的浓度,上述锂电池燃烧危害性定量评估的特征参数均取三次重复实验后的平均值。在本实施例中,锂电池燃烧过程的第二次稳定阶段,是基于锂电池热失控燃烧的整个火焰形态来划分的。整个锂电池热失控燃烧过程,可划分为第一次稳定燃烧阶段、喷发射流火阶段、第二次稳定燃烧阶段和火焰衰退阶段。锂电池热失控燃烧在第二个稳定燃烧阶段,火焰高度、火焰面积和火焰热释放速率均达到最大值,选择该阶段下火焰的特征宽度作为火焰特征直径具有更好的代表性,更能体现锂电池热失控燃烧的热危害性。S3. Carry out thermal abuse thermal runaway ignition experiments of SOC lithium batteries with different states of charge, obtain characteristic parameters of thermal runaway ignition risk assessment, and divide the characteristic parameters into thermal hazard characteristic parameters and toxic and harmful gas hazard characteristics parameters and asphyxiating gas hazard characteristic parameters; in this embodiment, the quantitative evaluation parameters for thermal runaway caused by thermal abuse of lithium batteries are obtained. The thermal runaway ignition experiment of lithium batteries with different states of charge selected in
预处理锂电池热滥用热失控致燃定量评估参数。步骤三获取锂电池热滥用致燃评估参数后,将其分为三类,依次是热危害性、有毒气体危害性和窒息性气体危害性。Quantitative evaluation parameters for thermal runaway ignition caused by thermal abuse of pretreated lithium batteries.
S4、根据预置有毒有害或窒息性气体评价模型及无量纲火焰释放速率,根据所述特征参数定量评估不同荷电状态锂电池致燃的有毒气体指数FEC、窒息性气体指数FED和无量纲火焰释放速率Q*,以建立不同荷电状态锂电池致燃的评价集V;在本实施例中,对于热危害性,建立一无量纲火焰释放速率,为了与有毒气体有效浓度百分数FEC、窒息气体有效剂量百分数FED评价指标类型一致,构造锂电池致燃火焰的无量纲热释放速率Q*表达式,涉及火焰直径D和火焰热释放速率即:S4. According to the preset toxic and harmful or asphyxiating gas evaluation model and the dimensionless flame release rate, quantitatively evaluate the toxic gas index FEC, the asphyxiating gas index FED and the dimensionless flame ignited by lithium batteries with different states of charge according to the characteristic parameters The release rate Q * is used to establish the evaluation set V of the ignition of lithium batteries with different states of charge; in this embodiment, for the thermal hazard, a dimensionless flame release rate is established, in order to be related to the effective concentration percentage of toxic gases FEC, asphyxiating gas The effective dose percentage FED evaluation index type is the same, and the dimensionless heat release rate Q * expression of the ignition flame of lithium battery is constructed, involving the flame diameter D and the flame heat release rate which is:
式中,是锂电池热失控致燃的热释放速率,ρ0是空气的密度,cp是空气比热容,T0环境初始温度,g是重力加速度,D是燃烧稳定第二阶段的火焰特征直径,这里火焰热释放速率为:In the formula, is the heat release rate due to thermal runaway of the lithium battery, ρ0 is the density of air, cp is the specific heat capacity of air, T0 is the initial ambient temperature, g is the acceleration of gravity, D is the characteristic flame diameter of the second stage of combustion stabilization, where the flame heat release rate for:
式中,是锂电池燃烧的热释放速率,Δhc/r0为消耗单位质量的氧气所消耗的能量,取一常数13.1kJ/g,C是孔板流量计校准常数,Δp是差压传感器测得的燃烧产物差压数值,Te为排烟管道内燃烧产物的温度,是某时刻t下气体分析仪测得得氧气浓度,是初始时刻气体分析仪测得得氧气浓度。在本实施例中,Servomex 4100气体分析仪,可在线精确测量氧气O2、一氧化碳CO、二氧化碳CO2的浓度数据,配置多个测量模块,可同时测四路样气的浓度数据,测得的排烟管道内的氧气浓度数据X O2、排烟管道内燃烧产物的温度Te和微差压传感器测得的差压Δp共同来评估计算锂电池热失控致燃的热释放速率傅里叶变换红外光谱分析仪23,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,以便携或可移动的形式设计,可在高分辨率下测量低浓度的复杂混合气体。In the formula, is the heat release rate of lithium battery combustion, Δh c /r 0 is the energy consumed by unit mass of oxygen, take a constant 13.1kJ/g, C is the calibration constant of the orifice flowmeter, and Δp is measured by the differential pressure sensor The differential pressure value of the combustion product, T e is the temperature of the combustion product in the exhaust pipe, is the oxygen concentration measured by the gas analyzer at a certain time t, is the oxygen concentration measured by the gas analyzer at the initial moment. In this embodiment, the Servomex 4100 gas analyzer can accurately measure the concentration data of oxygen O2, carbon monoxide CO, and carbon dioxide CO2 online. It is equipped with multiple measurement modules and can simultaneously measure the concentration data of four sample gases. The oxygen concentration data X O2 in the flue gas duct, the temperature Te of the combustion products in the flue gas duct and the differential pressure Δp measured by the differential pressure sensor are used to evaluate and calculate the heat release rate of the lithium battery caused by thermal runaway. The Fourier
对于有毒气体的评价参数,建立有毒气体有效浓度百分数FEC定量评价参数,即:For the evaluation parameters of toxic gases, establish the FEC quantitative evaluation parameters of the effective concentration percentage of toxic gases, namely:
式中,表示每种气体的浓度,F是对逃生人员造成威胁的气体临界浓度,为一常数。In the formula, Indicates the concentration of each gas, F is the critical concentration of gas that poses a threat to escape personnel, and is a constant.
对于窒息气体有效剂量百分数FED,即:The percent effective dose FED for asphyxiating gas is:
式中,表示气体的浓度,V表示气体分子的频率因子,Δt表示时间持续时间,即(t2-t1)。In the formula, represents the concentration of the gas, V represents the frequency factor of the gas molecules, and Δt represents the time duration, ie (t 2 -t 1 ).
根据上述三个定量评价指标,依次计算每种荷电状态下锂电池对应的特征参数值,构造不同荷电状态SOC锂电池致燃危险性一评价集V,即指标集V={Q*,FEC,FED};According to the above three quantitative evaluation indicators, the characteristic parameter values corresponding to the lithium battery under each state of charge are calculated in turn, and an evaluation set V of the ignition risk of SOC lithium batteries with different states of charge is constructed, that is, the index set V={Q * , FEC, FED};
S5、根据不同荷电状态所述锂电池样品的所述指标集U和所述评价集V,建立样本矩阵S,将样本矩阵S经标准化处理,获得标准化矩阵X;在本实施例中,定量评估锂电池热滥用热失控致燃危险度。S5. According to the index set U and the evaluation set V of the lithium battery samples with different states of charge, a sample matrix S is established, and the sample matrix S is standardized to obtain a standardized matrix X; in this embodiment, quantitative Assess the hazard of thermal runaway from thermal abuse of lithium batteries.
(1)根据步骤二不同荷电状态SOC锂电池的指标集U和步骤四锂电池评价指标集V,建立即样本矩阵S,在本实施例中,建立不同荷电状态锂电池致燃危险性样本评价矩阵:本发明有15种不同荷电状态的锂电池,3个评价指标,即样本矩阵S为:(1) According to the index set U of SOC lithium batteries with different states of charge in
式中,sij为第i个锂电池样本关于指标j的实际值,1≤i≤15,1≤j≤3,如s13为第1个锂电池样本关于指标3的实际值,即荷电状态SOC为300%的锂电池热滥用致燃产生的窒息气体有效剂量百分数FED。In the formula, s ij is the actual value of the ith lithium battery sample about the index j, 1≤i≤15, 1≤j≤3, for example, s 13 is the actual value of the first lithium battery sample about the
(2)将样本矩阵S进行标准化处理:锂电池致燃热危害的火焰无量纲热释放速率Q*、有毒气体有效浓度百分数FEC和窒息气体有效剂量百分数FED评价指标的数值量级差异较大,其中有毒气体有效浓度百分数FEC指标比窒息气体有效剂量百分数FED大一个量级,因此需要对样本矩阵S进行标准化处理。据国内外文献调研知,无量纲火焰热释放速率Q*、有毒气体有效浓度百分数FEC和窒息气体有效剂量百分数FED随电池荷电状态呈正相关关系,且上述三个指标越大锂电池致燃危险性则越大,则定义一标准化矩阵X为:(2) Standardize the sample matrix S: the dimensionless flame heat release rate Q * , the effective concentration percentage FEC of toxic gases and the effective dose percentage FED of asphyxiating gases have large differences in numerical order of magnitude of the evaluation indicators of the heat hazard caused by lithium batteries. Among them, the FEC index of the effective concentration percentage of toxic gases is one order of magnitude larger than the effective dose percentage FED of asphyxiating gases, so it is necessary to standardize the sample matrix S. According to domestic and foreign literature research, the dimensionless flame heat release rate Q * , the effective concentration percentage of toxic gases FEC and the effective dose percentage FED of asphyxiating gases are positively correlated with the state of charge of the battery, and the greater the above three indicators are, the greater the ignition risk of lithium batteries The greater the sex, the definition of a standardized matrix X is:
式中, In the formula,
S6、利用熵值法根据所述标准化矩阵X依次确定所述无量纲火焰释放速率Q*、所述有毒气体指数FEC指数和所述窒息性气体指数FED指数的权重系数为ω1、ω2和ω3;在本实施例中,(3)评价指标权重的确定:样本矩阵S经标准化处理成标准矩阵X后,定义第i个锂电池样本关于指标j的权重yij为:S6, utilize the entropy value method to sequentially determine the weight coefficients of the dimensionless flame release rate Q * , the toxic gas index FEC index and the asphyxiating gas index FED index according to the standardized matrix X as ω 1 , ω 2 and ω 3 ; in this embodiment, (3) the determination of the weight of the evaluation index: after the sample matrix S is standardized into a standard matrix X, the weight y ij of the i-th lithium battery sample with respect to the index j is defined as:
进一步地,第j个评价指标的熵值为:Further, the entropy value of the jth evaluation index is:
式中,ej表示第j个评价指标的熵值,k为常数,k=1/ln15。根据指标j的权重yij及其熵值,第j个评价指标的权重ωj可估算为:In the formula, e j represents the entropy value of the jth evaluation index, k is a constant, k=1/ln15. According to the weight y ij of the index j and its entropy value, the weight ω j of the j-th evaluation index can be estimated as:
不同荷电状态锂电池致燃危险度H的确定:根据标准样本矩阵X及评价指标权重系数,锂电池致燃危险度H=ω1·x11+ω2·x12+ω3·x13,至此可获得不同荷电状态下的锂电池致燃危险度H,该值越小说明锂电池危险性越小。Determination of the ignition risk H of lithium batteries in different states of charge: According to the standard sample matrix X and the weight coefficient of the evaluation index, the ignition risk H of lithium batteries = ω 1 · x 11 +ω 2 · x 12 +ω 3 · x 13 , so far, the ignition risk H of the lithium battery under different states of charge can be obtained. The smaller the value is, the lower the risk of the lithium battery is.
S7、根据所述权重系数构造锂电池热滥用热失控致燃危险度关系,据以评估不同荷电状态锂电池致燃危险度;在本实施例中,(4)锂电池热滥用热失控致燃危险度H的确定;根据标准样本矩阵X及评价指标权重系数,锂电池致燃危险度H=ω1·x11+ω2·x12+ω3·x13,至此可获得不同荷电状态下的锂电池致燃危险度H。S7. According to the weight coefficient, construct the risk relationship of thermal runaway of lithium battery due to thermal abuse, so as to evaluate the risk of ignition of lithium battery in different states of charge; According to the standard sample matrix X and the weight coefficient of the evaluation index, the ignition hazard H=ω 1 ·x 11 +ω 2 ·x 12 +ω 3 ·x 13 of the lithium battery can obtain different charges. Lithium battery in the state of ignition hazard H.
实施例3Example 3
如图2所示,锂电池热失控致燃定量评估装置包括锂电池热滥用热失控致燃危险性平台,其包括:软包锂电池样品1,电火花点火器2,与软包锂电池样品1上表面齐平放置,在本实施例中,本发明使用的锂电池,采用60Ah大尺寸长方体型软包磷酸铁锂电池或者三元锂离子电池,电池容量也可采用大于60Ah或小于60Ah的锂电池。电火花点火器2释放电火花3,用于点燃软包电池热失控释放的可燃气体,隔热板4,放置发生热失控的软包锂电池样品1释放的锂电池样品升降平台5,锂电池样品升降平台5,用于升降锂电池样品至一合适的高度,软包锂电池样品1热失控致燃燃烧室6,为便于空气进入热失控致燃燃烧室6通过支撑脚10与地面间隔一段距离,集烟罩7,用于收集锂电池热失控燃烧释放的有毒有害烟气,高温硅碳棒8,通电之后辐射热量,提供热滥用所需的热量,透气孔9,便于锂电池热失控释放的燃烧产物通过透气孔9进入排烟管道12,热失控致燃燃烧室6的观察窗11,用于摄像机13捕捉锂电池燃烧过程中火焰特征参数,变频风机14,用于收集软包锂电池样品1热失控燃烧产生的烟气并经排烟管道12排出,开展锂电池热失控致燃实验时,电池容量的差异会导致锂电池燃烧产生的烟气产量有所差异,根据容量的差异调整排烟管道变频风机的功率,防止有毒有害烟气在燃烧室聚集进而导致锂电池致燃危险性定量评价参数测量误差较高。微差压传感器探头15,与微差压传感器19相连,用于测量锂电池热失控燃烧产物混合气体的差压,热电偶16,与温度采集模块20(7018模块,将温度信号转化为RS232信号)、数据转换模块21(7520模块,将7018模块传输的RS232信号转化为RS485信号)相连,用于测量燃烧产物的温度Te,第一气体取样探针17,与Servomex 4100气体分析仪22相连,用于测量排烟管道12内的氧气O2、一氧化碳CO、二氧化碳CO2的浓度,第二气体取样探针18,与傅里叶变换红外光谱分析仪23相连,用于测量有毒气体的浓度,控制终端24,用来显示、保存、记录差压测量数据、排烟管道温度测量数据、气体浓度数据值。在本实施例中,锂电池热滥用热失控致燃实验平台,由热失控致燃室、集烟罩、辐射源、排烟管道、变频风机、气体采集与分析系统系统组成。热失控致燃室,是一个非密闭长方体,便于空气进入交换提供燃烧所需的氧气,用于不同荷电状态SOC的锂电池在辐射源作用下的热失控致燃实验。热辐射源,由18个相同尺寸、相互平行的硅碳棒加热原件构成,构成的辐射加热面大小为60cm×60cm,辐射强度的大小可以通过数控按钮进行调节。集烟罩7,可根据研究对象的大小来确定,用于收集锂电池热失控燃烧释放的烟气。排烟管道12,一方面用于排放热失控致燃燃烧室6释放的烟气,另一方面通过在排烟管道12上设置取样孔和测量孔,用于采集锂电池热失控燃烧产物的差压Δp、混合烟气中有毒气体和窒息气体的浓度。变频风机14,与排烟管道12末端相连,根据烟气量的大小调整变频风机14的转速将锂电池热失控燃烧释放的烟气或燃烧产物经排烟管道12全部收集。气体采集与分析系统,通过在排烟管道取样孔上放置第二气体取样探针18,采集到的气体经过过滤、冷却、干燥后与气体分析仪相连,用于测量有毒气体、窒息性气体和氧气的浓度。排烟管道12上设置的测量孔,分别放置微差压传感器探头15和热电偶16探头,用于测量不同荷电状态锂电池热失控燃烧产物的差压Δp及其温度Te。排烟管道12上的取样孔,用于放置第二气体取样探针18,用于采集氧气O2、二氧化碳CO2、一氧化碳CO及有毒气体氟化氢HF、二氧化硫SO2的浓度。第二气体取样探针18将采集到的气体经过过滤、冷却和干燥后通至气体分析仪。本发明中,无毒气体氧气O2、二氧化碳CO2、一氧化碳CO气体通过Servomex 4100气体分析仪来测量,有毒气体氟化氢HF、二氧化硫SO2等有毒气体的浓度通过傅里叶变换红外光谱分析仪23来测量。As shown in Figure 2, the lithium battery thermal runaway ignition quantitative evaluation device includes a lithium battery thermal abuse thermal runaway ignition risk platform, which includes: a soft-pack
在本实施例中,本发明设计的锂电池热滥用热失控致燃危险性平台,可获取锂电池热失控燃烧火焰特征参数、热失控释放速率、有毒气体浓度、窒息性气体浓度等参数,用于定量评估不同荷电状态锂电池热失控致燃的危害性。本发明设计的锂电池燃烧试验平台具体如下:In this embodiment, the lithium battery thermal abuse thermal runaway ignition risk platform designed by the present invention can obtain parameters such as the thermal runaway combustion flame characteristic parameters, thermal runaway release rate, toxic gas concentration, asphyxiating gas concentration and other parameters of the lithium battery. To quantitatively evaluate the hazard of thermal runaway ignition of lithium batteries with different states of charge. The lithium battery combustion test platform designed by the present invention is specifically as follows:
锂电池热滥用热失控致燃实验平台由热失控燃烧室6、集烟罩7、辐射源、气体采集与分析系统组成。不同荷电状态的软包锂电池样品1放置在锂电池样品升降台5之上,用于调节软包锂电池的水平高度,便于摄像机13采集软包锂电池样品1的燃烧火焰特征直径。软包锂电池样品1在热失控致燃燃烧室6内,在热辐射源工作条件下调整辐射功率至锂电池1发生膨胀,膨胀的软包锂电池1当电池本体内部压强过高时会在电池正负极耳见释放可燃性气体,释放的可燃性气体在点火器2的电火花3点燃下发生剧烈的燃烧化学反应,产生火焰并产生有毒有害等烟气。锂电池热失控燃烧产生的火焰通过摄像机13进行采集并分析。在变频风机14启动下烟气混合物经过辐射源上部的通气孔9进入集烟罩7,随后进入排烟管道12,在排烟管道12设置四个采样孔,依次放置微差压传感器探头15、热电偶16、第一气体取样探针17和第二气体取样探针18,微差压传感器探头15与微差压传感器19相连,显示气体混合产物的差压,热电偶16采集的温度信号经过温度采集模块20转化为RS232电信号,随后经过数据转换模块21转化为电脑可识别的RS485信号,第一气体取样探针17、第二气体取样探针18采集到的混合燃烧气体产物分别经过Servomex 4100气体分析仪22、傅里叶变换红外光谱分析仪23,控制终端24电脑用来显示上述测量的氧气O2、有毒气体何窒息性气体的浓度。本发明设计不同荷电状态锂电池热滥用热失控致燃实验平台,并依次开展过充荷电状态和正常荷电状态锂电池热滥用致燃实验,获取所需锂电池致燃危险性定量评价参数平均值,根据锂电池热滥用致燃实验平台采集到的数据,将其分为三类:锂电池致燃热危害性数据、锂电池致燃有毒气体HF、SO2、NOx的危害性和锂电池致燃窒息气体CO、CO2的危害性。通过摄像机采集锂电池燃烧过程视频并提取锂电池热失控第二次稳定燃烧阶段得的火焰特征直径D,通过微压差传感器获取差压Δp,通过气体分析仪获取气体CO、CO2和O2的浓度,通过傅里叶变换红外光谱烟气分析仪获取(HF、SO2、NOX)浓度。在本实施例中,锂电池热失控致燃,本发明采用的外加激励源是热辐射源,通过调整辐射源的辐射强度来触发不同荷电状态锂电池发生热失控。发生热失控的锂电池由于内部膨胀压强升高,内部产生的热失控可燃气体通常从电池正负极耳之间逃逸,在锂电池正负正负极耳之间放置一电火花点火器,用于点燃逃逸的可燃气体。电火花点火器,用于点燃逸出的可燃气体,放置在锂电池正负极耳之间与锂电池上表面齐平。The lithium battery thermal abuse thermal runaway ignition experimental platform consists of a thermal
在本实施例中,锂电池热滥用致燃热危害危险性可通过火焰直径D、锂电池热失控致燃热释放速率表征;有毒气体HF、SO2、NOX可通过有毒气体有效浓度百分数FEC来定量表征;窒息性气体CO、CO2可通过有效剂量百分数FED来表征。在本实施例中,火焰直径D,在锂电池热失控燃烧过程中通过摄像机获得锂电池燃烧视频,根据燃烧视频火焰特征,以锂电池燃烧过程中的第二次稳定阶段火焰的宽度为特征直径D。In this embodiment, the danger of the heat hazard caused by thermal abuse of the lithium battery can be characterized by the flame diameter D and the release rate of the heat caused by the thermal runaway of the lithium battery; the toxic gases HF, SO 2 and NO X can be characterized by the effective concentration percentage FEC of the toxic gases To quantitatively characterize; asphyxiating gases CO, CO 2 can be characterized by percent effective dose FED. In this embodiment, the flame diameter D is obtained through a camera during the thermal runaway combustion process of the lithium battery, and the combustion video of the lithium battery is obtained. According to the flame characteristics of the combustion video, the characteristic diameter is the width of the flame in the second stable stage of the lithium battery combustion process D.
综上,本发明基于热释放速率评估公式及有毒气体或窒息气体评价模型,评估锂电池热失控致燃的热危险性指数无量纲火焰热释放速率Q*、有毒气体危险性指数FEC或窒息气体危险性指数FED,建立不同荷电状态锂电池热失控致燃评价集V。采用熵值法确定热危害性、有毒气体刺激性和窒息气体危险性权重系数,构造电池危险度定量评估公式,实现了储能电池热失控致燃危险性的定量评估。To sum up, the present invention evaluates the thermal risk index dimensionless flame heat release rate Q * , the toxic gas risk index FEC or the asphyxiating gas of a lithium battery caused by thermal runaway based on the heat release rate evaluation formula and the toxic gas or asphyxiating gas evaluation model. The risk index FED is used to establish the evaluation set V of thermal runaway ignition of lithium batteries with different states of charge. The entropy method is used to determine the weight coefficients of thermal hazard, toxic gas irritant and asphyxiating gas hazard, and a quantitative evaluation formula for battery risk is constructed, which realizes the quantitative evaluation of the risk of thermal runaway of energy storage batteries.
本发明依次开展过充荷电状态和正常荷电状态锂电池热滥用致燃实验,获取所需锂电池致燃危险性定量评价参数平均值,根据锂电池热滥用致燃实验平台采集到的数据,以量化热滥用致燃相关参数,更加全面地评价锂电池在特定温度条件下的安全性。The invention sequentially carries out the thermal abuse ignition test of the lithium battery in the overcharged state of charge and the normal state of charge, obtains the average value of the required quantitative evaluation parameters of the ignition risk of the lithium battery, and collects the data according to the lithium battery thermal abuse ignition test platform. , to quantify the related parameters of thermal abuse and ignition, and to more comprehensively evaluate the safety of lithium batteries under specific temperature conditions.
本发明的锂电池致燃危险性定量评估,是对其热危害、有毒气体危害和窒息气体危害的综合定量评估,本发明中的锂电池热滥用致燃热危害危险性可通过火焰直径D、锂电池热失控致燃热释放速率表征;有毒气体HF、SO2、NOX可通过有毒气体有效浓度百分数FEC来定量表征;窒息性气体CO、CO2可通过有效剂量百分数FED来表征。本发明通过前述三类指数将锂电池致燃危险性量化为特定值,以全面评估锂电池致燃危险性。本发明解决了现有技术中存在的缺乏定量评估及危险性评估不全面的技术问题。The quantitative assessment of the flammability hazard of the lithium battery in the present invention is a comprehensive quantitative assessment of its thermal hazard, toxic gas hazard and suffocating gas hazard. Characterization of heat release rate due to thermal runaway of lithium battery; toxic gases HF, SO 2 , NO X can be quantitatively characterized by FEC of effective concentration percentage of toxic gases; asphyxiating gases CO and CO 2 can be characterized by FED of effective dose percentage. The present invention quantifies the flammability hazard of the lithium battery to a specific value through the aforementioned three types of indices, so as to comprehensively evaluate the flammability hazard of the lithium battery. The invention solves the technical problems of lack of quantitative assessment and incomplete risk assessment in the prior art.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The recorded technical solutions are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210502280.0A CN114859232B (en) | 2022-05-10 | 2022-05-10 | Quantitative assessment method and device for thermal runaway hazard of lithium batteries in different states of charge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210502280.0A CN114859232B (en) | 2022-05-10 | 2022-05-10 | Quantitative assessment method and device for thermal runaway hazard of lithium batteries in different states of charge |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114859232A true CN114859232A (en) | 2022-08-05 |
CN114859232B CN114859232B (en) | 2024-11-26 |
Family
ID=82637776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210502280.0A Active CN114859232B (en) | 2022-05-10 | 2022-05-10 | Quantitative assessment method and device for thermal runaway hazard of lithium batteries in different states of charge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114859232B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115963400A (en) * | 2023-03-17 | 2023-04-14 | 中国华能集团清洁能源技术研究院有限公司 | Quantitative calculation method and system for hydrogen after thermal runaway of lithium-ion battery |
CN116859269A (en) * | 2023-09-04 | 2023-10-10 | 中国汽车技术研究中心有限公司 | A comprehensive assessment method and system for power battery safety |
CN117214726A (en) * | 2023-11-02 | 2023-12-12 | 江苏天合储能有限公司 | State detection method and device, electronic equipment and computer readable storage medium |
CN118068234A (en) * | 2024-04-19 | 2024-05-24 | 内蒙古中电储能技术有限公司 | Wiring abnormity monitoring method and system based on battery compartment state analysis |
CN118362317A (en) * | 2024-04-29 | 2024-07-19 | 中国汽车工程研究院股份有限公司 | Electric vehicle thermal runaway and disaster hazard assessment method, system and test device |
CN118376938A (en) * | 2024-04-07 | 2024-07-23 | 武汉理工大学 | Lithium ion battery jet flow fire and heat radiation hazard evaluation method, device and storage medium |
FR3148301A1 (en) * | 2023-04-26 | 2024-11-01 | Psa Automobiles Sa | METHOD FOR CARRYING OUT THERMAL RUNAWAY TESTS ON AN ELECTRIC BATTERY |
CN119024196A (en) * | 2024-10-28 | 2024-11-26 | 深圳市云控新技术有限公司 | A lithium-ion battery fire detection method and system |
CN119475987A (en) * | 2024-10-29 | 2025-02-18 | 中国民用航空飞行学院 | Lithium-ion battery thermal safety assessment system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113344024A (en) * | 2021-04-22 | 2021-09-03 | 华中科技大学 | Lithium ion battery thermal runaway grading early warning method and early warning system |
US20220085436A1 (en) * | 2020-09-15 | 2022-03-17 | Amphenol Thermometrics, Inc. | Thermal runaway detection systems for batteries within enclosures and methods of use thereof |
-
2022
- 2022-05-10 CN CN202210502280.0A patent/CN114859232B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220085436A1 (en) * | 2020-09-15 | 2022-03-17 | Amphenol Thermometrics, Inc. | Thermal runaway detection systems for batteries within enclosures and methods of use thereof |
CN113344024A (en) * | 2021-04-22 | 2021-09-03 | 华中科技大学 | Lithium ion battery thermal runaway grading early warning method and early warning system |
Non-Patent Citations (1)
Title |
---|
孙杰;李吉刚;周添;卫寿平;解洪嘉;唐娜;党胜男;杨凯;李泓;邱新平;陈立泉;: "锂离子电池热失控泄漏物与毒性检测方法(草案)", 储能科学与技术, no. 02, 5 March 2020 (2020-03-05) * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115963400A (en) * | 2023-03-17 | 2023-04-14 | 中国华能集团清洁能源技术研究院有限公司 | Quantitative calculation method and system for hydrogen after thermal runaway of lithium-ion battery |
CN115963400B (en) * | 2023-03-17 | 2023-05-16 | 中国华能集团清洁能源技术研究院有限公司 | Quantitative calculation method and system for hydrogen after thermal runaway of lithium ion battery |
FR3148301A1 (en) * | 2023-04-26 | 2024-11-01 | Psa Automobiles Sa | METHOD FOR CARRYING OUT THERMAL RUNAWAY TESTS ON AN ELECTRIC BATTERY |
CN116859269A (en) * | 2023-09-04 | 2023-10-10 | 中国汽车技术研究中心有限公司 | A comprehensive assessment method and system for power battery safety |
CN116859269B (en) * | 2023-09-04 | 2023-11-28 | 中国汽车技术研究中心有限公司 | A comprehensive assessment method and system for power battery safety |
CN117214726A (en) * | 2023-11-02 | 2023-12-12 | 江苏天合储能有限公司 | State detection method and device, electronic equipment and computer readable storage medium |
CN117214726B (en) * | 2023-11-02 | 2024-01-26 | 江苏天合储能有限公司 | State detection method and device, electronic equipment and computer readable storage medium |
CN118376938B (en) * | 2024-04-07 | 2024-10-18 | 武汉理工大学 | Lithium ion battery jet flow fire and heat radiation hazard evaluation method, device and storage medium |
CN118376938A (en) * | 2024-04-07 | 2024-07-23 | 武汉理工大学 | Lithium ion battery jet flow fire and heat radiation hazard evaluation method, device and storage medium |
CN118068234A (en) * | 2024-04-19 | 2024-05-24 | 内蒙古中电储能技术有限公司 | Wiring abnormity monitoring method and system based on battery compartment state analysis |
CN118362317A (en) * | 2024-04-29 | 2024-07-19 | 中国汽车工程研究院股份有限公司 | Electric vehicle thermal runaway and disaster hazard assessment method, system and test device |
CN119024196A (en) * | 2024-10-28 | 2024-11-26 | 深圳市云控新技术有限公司 | A lithium-ion battery fire detection method and system |
CN119024196B (en) * | 2024-10-28 | 2025-02-07 | 深圳市云控新技术有限公司 | Fire detection method and system for lithium ion battery |
CN119475987A (en) * | 2024-10-29 | 2025-02-18 | 中国民用航空飞行学院 | Lithium-ion battery thermal safety assessment system and method |
Also Published As
Publication number | Publication date |
---|---|
CN114859232B (en) | 2024-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114859232B (en) | Quantitative assessment method and device for thermal runaway hazard of lithium batteries in different states of charge | |
Jia et al. | The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries | |
CN111736075A (en) | A method for thermal safety monitoring of lithium-ion batteries under dynamic pressure and temperature conditions | |
CN211528633U (en) | Integrated testing device for thermal runaway characteristic of energy storage battery | |
CN208109740U (en) | A kind of lithium ion battery combustion explosion risk experimental rig | |
CN110376247B (en) | Lithium ion battery combustion experiment table | |
CN109946634B (en) | Lithium ion battery thermal runaway environment simulation equipment and method | |
CN209894939U (en) | A lithium-ion battery or battery pack thermal runaway comprehensive detection system | |
CN104035048A (en) | Pyroelectric detection method and device for over-charged safety performance of lithium ion battery | |
CN108152756A (en) | A kind of battery pack thermal management system thermal runaway inhibits the test device of efficiency | |
Zou et al. | Venting composition and rate of large-format LiNi0. 8Co0. 1Mn0. 1O2 pouch power battery during thermal runaway | |
CN107677966A (en) | A kind of battery fire safety evaluating experimental system and experimental method using in-situ technique | |
CN217442606U (en) | Thermal abuse thermal runaway ignition experiment platform for lithium batteries with different charge states | |
CN111487538A (en) | Lithium ion battery or battery pack thermal runaway comprehensive detection system and method | |
Chen et al. | A large-scale experimental study on the thermal failure propagation behaviors of primary lithium batteries | |
Premnath et al. | Detailed characterization of particle emissions from battery fires | |
CN113791358A (en) | A multi-parameter lithium-ion battery safety evaluation device and method | |
Xu et al. | Thermal runaway and soot production of lithium-ion batteries: Implications for safety and environmental concerns | |
CN112034347A (en) | Lithium ion battery thermal runaway rapid monitoring method and system | |
Wang et al. | Multiparameter warning of lithium-ion battery overcharge-thermal runaway | |
CN114924193A (en) | A method of battery safety assessment | |
CN116046989A (en) | Lithium battery fire characteristic gas detection method and system based on array sensor | |
CN113552110A (en) | Dynamic early warning system and method for thermal runaway of lithium-ion battery based on Raman spectroscopy | |
CN110068763A (en) | A kind of battery thermal safety and fire extinguishing system comprehensive detection platform | |
CN212513338U (en) | A comprehensive experimental system for thermal runaway fire detection and early warning of lithium-ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |