[go: up one dir, main page]

CN114839662A - A Wide Range Gamma Dosimeter - Google Patents

A Wide Range Gamma Dosimeter Download PDF

Info

Publication number
CN114839662A
CN114839662A CN202210530812.1A CN202210530812A CN114839662A CN 114839662 A CN114839662 A CN 114839662A CN 202210530812 A CN202210530812 A CN 202210530812A CN 114839662 A CN114839662 A CN 114839662A
Authority
CN
China
Prior art keywords
gamma
module
range
wide
dosimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210530812.1A
Other languages
Chinese (zh)
Inventor
宋玉收
陈声强
陈久涛
许蕤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202210530812.1A priority Critical patent/CN114839662A/en
Publication of CN114839662A publication Critical patent/CN114839662A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/023Scintillation dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明提供一种宽量程伽马剂量仪,包括探测模块、用于对探测模块输出的电脉冲信号进行采集和分析处理的采集分析模块、用于人机交互和数据共享的数据集散模块。所述探测模块包含闪烁体探测器、读出电路,所述采集分析模块包含调理电路、AD转换器、FPGA(现场可编程逻辑门阵列),该宽量程伽马剂量仪通过使用FPGA配合AD转换器使得闪烁体探测器能够工作在单脉冲模式和电流模式,拓展了伽马剂量率测量量程,且在单脉冲模式下能够获得伽马能谱。

Figure 202210530812

The invention provides a wide-range gamma dosimeter, comprising a detection module, a collection and analysis module for collecting and analyzing the electrical pulse signal output by the detection module, and a data collecting and distributing module for human-computer interaction and data sharing. The detection module includes a scintillator detector and a readout circuit, and the acquisition and analysis module includes a conditioning circuit, an AD converter, and an FPGA (Field Programmable Logic Gate Array). The wide-range gamma dosimeter cooperates with AD conversion by using FPGA. The device enables the scintillator detector to work in single-pulse mode and current mode, expands the measurement range of gamma dose rate, and can obtain gamma energy spectrum in single-pulse mode.

Figure 202210530812

Description

一种宽量程伽马剂量仪A Wide Range Gamma Dosimeter

技术领域technical field

本发明属于电离辐射探测技术领域。具体涉及一种宽量程伽马剂量仪The invention belongs to the technical field of ionizing radiation detection. Specifically related to a wide-range gamma dosimeter

背景技术Background technique

伽马剂量率仪在辐射监测、涉核行业特殊工作场所、核医学、核安保等领域有广泛应用,可为相关工作人员提供实时伽马剂量率或累计剂量,也可在环境辐射突变时提供警示,为相关从业人员提供辐射安全保障。Gamma dose rate meters are widely used in radiation monitoring, special workplaces in the nuclear industry, nuclear medicine, nuclear security and other fields. Warning, to provide radiation safety guarantee for relevant practitioners.

现有的伽马剂量率仪使用的剂量转换方法主要有计数率转换法、G(E)函数法、电流法。其中计数率转换法应用在无机闪烁体时会因为在低能端较高的能量响应导致计数率转换所得的剂量率出现较大误差,且在高环境剂量率中会因为探测器脉冲信号堆积导致测量偏差增大;G(E)函数法使用全伽马能谱信息进行剂量率转换,转换准确性最好,但是在高环境剂量率中探测器脉冲信号发生严重堆积,无法获得准确伽马能谱从而导致该方法失效;以上两种方法的工作条件都是探测器处于单脉冲模式;电流法虽然能在高剂量率环境中配合探测器工作在电流模式但是在低剂量率场所中会因为探测灵敏度不足导致误差增加。The dose conversion methods used in the existing gamma dose rate meter mainly include count rate conversion method, G(E) function method, and current method. Among them, when the count rate conversion method is applied to inorganic scintillators, the dose rate obtained by the count rate conversion will have a large error due to the higher energy response at the low energy end, and in the high ambient dose rate, the measurement will be caused by the accumulation of detector pulse signals. The deviation increases; the G(E) function method uses the full gamma energy spectrum information for dose rate conversion, and the conversion accuracy is the best, but the detector pulse signal is seriously accumulated in the high environmental dose rate, so the accurate gamma energy spectrum cannot be obtained. As a result, this method fails; the working conditions of the above two methods are that the detector is in single-pulse mode; although the current method can cooperate with the detector to work in the current mode in a high dose rate environment, it will be due to the detection sensitivity in low dose rate places. Deficiencies lead to increased errors.

现有的各类伽马剂量测量仪在使用单一探测器的情况下往往因为只能工作在单脉冲模式或电流模式而使得剂量率量程覆盖较窄,特别是无机闪烁体探测器通常作为环境伽马剂量率检测的设备,在突发事件中可能因为剂量率量程无法覆盖而导致错误判断,在这种背景基础下,宽量程伽马剂量仪对伽马剂量率仪具有重要意义。Existing various gamma dosimeters often use a single detector because they can only work in single pulse mode or current mode, resulting in a narrow coverage of dose rate range, especially inorganic scintillator detectors are usually used as ambient gamma dosimeters. The equipment for measuring horse dose rate may lead to wrong judgment in emergencies because the dose rate range cannot be covered. Under this background, the wide-range gamma dosimeter is of great significance to the gamma dose rate meter.

申请人不知道上述领域中的先有技术解决方法,提供了一种宽量程伽马剂量仪,用于实现宽伽马剂量率范围的测量。Applicants are unaware of prior art solutions in the aforementioned field, providing a wide range gamma dosimeter for enabling measurements over a wide range of gamma dose rates.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术中上述缺陷或不足,提供一种宽量程伽马剂量仪,以期实现在单一探头模式下通过测量仪的控制使得闪烁体探测器能够在单脉冲模式和电流模式下工作从而拓宽伽马剂量率仪的量程。The purpose of the present invention is to overcome the above-mentioned defects or deficiencies in the prior art, and provide a wide-range gamma dosimeter, in order to realize the control of the measuring instrument in a single probe mode, so that the scintillator detector can be operated in a single pulse mode and a current mode. Work under the gamma dose rate meter to widen the range.

本发明的目的是这样实现的:由探测模块、采集分析模块、数据集散模块构成。各部分构成和功能实现如下:The purpose of the present invention is achieved as follows: it is composed of a detection module, a collection and analysis module, and a data collection and distribution module. The composition and functions of each part are as follows:

探测模块,包括闪烁体探测器、读出电路;所述闪烁体探测器由闪烁体和光电转换器件构成,所述闪烁体通过与入射伽马射线相互作用引起辐射致光效应产生光学光子;所述光电装换器件的受光面与闪烁体耦合,用于将光学光子转换为电脉冲信号;所述读出电路与闪烁体探测器的光电转换器件相连,用于将闪烁体探测器输出的电流脉冲信号转换为电压脉冲信号。The detection module includes a scintillator detector and a readout circuit; the scintillator detector is composed of a scintillator and a photoelectric conversion device, and the scintillator generates optical photons by interacting with incident gamma rays to cause a radiation-induced photon effect; The light-receiving surface of the optoelectronic replacement device is coupled with the scintillator to convert optical photons into electrical pulse signals; the readout circuit is connected to the photoelectric conversion device of the scintillator detector, and is used to convert the current output by the scintillator detector. The pulse signal is converted into a voltage pulse signal.

采集分析模块,包括调理电路、AD转换器、FPGA;所述调理电路与探测模块的读出电路相连,用于将读出电路输出的电压脉冲信号调理到AD转换器所适配的电压范围;所述AD转换器用于将调理电路输入AD转换器的模拟信号转换为数字信号;所述FPGA用于实时监测AD转换的核脉冲数字信号数据流并根据闪烁体探测器种类设置对应的脉冲积分时间窗口,FPGA对时间窗口内的电压信号积分并输出积分值。The acquisition and analysis module includes a conditioning circuit, an AD converter, and an FPGA; the conditioning circuit is connected to the readout circuit of the detection module, and is used for conditioning the voltage pulse signal output by the readout circuit to a voltage range adapted by the AD converter; The AD converter is used to convert the analog signal input by the conditioning circuit to the AD converter into a digital signal; the FPGA is used to monitor the nuclear pulse digital signal data stream of the AD conversion in real time and set the corresponding pulse integration time according to the type of scintillator detector. window, the FPGA integrates the voltage signal within the time window and outputs the integrated value.

数据集散模块,与采集分析模块相连,包含单片机、USB和无线通讯模组、外设;所述单片机用于对采集分析模块输出的核脉冲积分数据二次处理获得辐射场的伽马剂量率、伽马累计剂量、伽马能谱信息,并控制数据集散模块其余组件。The data collection and distribution module is connected with the acquisition and analysis module, and includes a single-chip microcomputer, a USB and wireless communication module, and peripherals; the single-chip microcomputer is used for secondary processing of the nuclear pulse integral data output by the acquisition and analysis module to obtain the gamma dose rate of the radiation field, Gamma cumulative dose, gamma energy spectrum information, and control other components of the data collection and distribution module.

作为优选,其中所述闪烁体是无机闪烁体。Preferably, the scintillator is an inorganic scintillator.

作为优选,其中所述光电转换器件是光电倍增管和硅光电倍增管的一种,该种光电转换器件的光谱响应波长范围与所述闪烁体发光波长范围重合。Preferably, the photoelectric conversion device is one of a photomultiplier tube and a silicon photomultiplier tube, and the spectral response wavelength range of the photoelectric conversion device coincides with the emission wavelength range of the scintillator.

作为优选,为了保证信号的电荷积分-能量相关性,其中所述的读出电路由电流型前置电路组成。Preferably, in order to ensure the charge integration-energy correlation of the signal, the readout circuit is composed of a current-type pre-circuit.

作为优选,其中所述调理电路由可调增益放大电路、单端转差分电路组成,为了实现对核脉冲信号快成分的采集,所述可调增益放大电路由高速运算放大器构成。Preferably, the conditioning circuit is composed of an adjustable gain amplifying circuit and a single-ended to differential circuit. In order to realize the acquisition of the fast component of the nuclear pulse signal, the adjustable gain amplifying circuit is composed of a high-speed operational amplifier.

作为优选,其中所述AD转换器为差分输入型。Preferably, the AD converter is of a differential input type.

作为优选,其中所述FPGA通过仪电子学噪声和信号基线的判断设置信号阈值,该阈值用于启动所述脉冲积分时间窗口。Preferably, the FPGA sets a signal threshold by judging the electronic noise and the signal baseline, and the threshold is used to start the pulse integration time window.

作为优选,其中所述单片机通过判断单位时间内FPGA输出积分值的数量来决定仪工作在单脉冲模式还是电流模式,在单脉冲模式下单片机进行剂量率转换同时进行伽马能谱绘制,在电流模式下仅进行剂量率装换。Preferably, the single-chip microcomputer determines whether the instrument works in single-pulse mode or current mode by judging the number of integral values output by the FPGA per unit time. In the single-pulse mode, the single-chip microcomputer performs dose rate conversion and gamma energy spectrum drawing. Only the dose rate change is performed in the mode.

作为优选,其中所述单片机可通过USB与上位机建立双向通讯并共享伽马剂量率、伽马累计剂量、伽马能谱信息。Preferably, the single-chip microcomputer can establish two-way communication with the host computer through USB and share the information of gamma dose rate, gamma cumulative dose, and gamma energy spectrum.

作为优选,其中所述单片机可通过无线通讯模组与具备相同无线通讯功能的设备建立双向通讯并共享伽马剂量率、伽马累计剂量、伽马能谱信息。Preferably, the single-chip microcomputer can establish two-way communication with a device having the same wireless communication function through a wireless communication module and share the gamma dose rate, gamma cumulative dose, and gamma energy spectrum information.

作为优选,其中所述无线通讯模组为蓝牙模组、ZigBee模组、WiFi模组中的任意一种。Preferably, the wireless communication module is any one of a Bluetooth module, a ZigBee module, and a WiFi module.

作为优选,其中所述外设包含:Preferably, wherein the peripheral includes:

控制按键,与所述单片机相连,用于控制宽量程伽马剂量仪的工作模式。The control button is connected with the single-chip microcomputer and is used for controlling the working mode of the wide-range gamma dosimeter.

显示屏,与所述单片机相连,用于显示伽马剂量率、伽马累计剂量、伽马能谱图。The display screen, connected with the single chip microcomputer, is used for displaying the gamma dose rate, the gamma cumulative dose and the gamma energy spectrogram.

报警器,与所述单片机相连,用于在伽马剂量率或伽马累计剂量超过预设阈值时发出警报。An alarm, connected with the single chip microcomputer, is used to issue an alarm when the gamma dose rate or the gamma cumulative dose exceeds a preset threshold.

作为优选,其中所述电源模块与探测模块、采集分析模块、数据集散模块相连,用于为所述探测模块、采集分析模块、数据集散模块供电。Preferably, the power supply module is connected to the detection module, the acquisition and analysis module, and the data collection and distribution module, and is used to supply power to the detection module, the collection and analysis module, and the data collection and distribution module.

与现有技术相比,本发明的有益效果是:本发明宽量程伽马剂量仪通过整合AD转换器与FPGA、单片机的功能配合各部分模块化的设计使得闪烁体探测器能够工作在单脉冲模式和电流模式,拓展了闪烁体探测器的伽马剂量率测量量程的同时能够根据实际工作环境调整各模块的相对安装位置,实用性强。Compared with the prior art, the beneficial effects of the present invention are: the wide-range gamma dosimeter of the present invention enables the scintillator detector to work in a single pulse by integrating the functions of the AD converter, the FPGA and the single-chip microcomputer with the modular design of each part. Mode and current mode, which expand the gamma dose rate measurement range of the scintillator detector, and can adjust the relative installation position of each module according to the actual working environment, which is highly practical.

附图说明Description of drawings

图1是本发明的一种宽量程伽马剂量仪的结构框图;Fig. 1 is the structural block diagram of a kind of wide-range gamma dosimeter of the present invention;

图2是本发明探测模块的结构示意图Fig. 2 is the structural schematic diagram of the detection module of the present invention

图3是本发明的一种结构示意图Fig. 3 is a kind of structural schematic diagram of the present invention

附图标记:1-探测模块,2-采集分析模块,3-数据集散模块,4-电源模块,5-闪烁体探测器,6-读出电路,7-调理电路,8-AD装换器,9-FPGA,10-单片机,11-USB,12-无线通讯模组,13-外设,14-闪烁体,15-光电装换器件,16-控制按键,17-显示屏,18-报警器,19-光学胶,20-光学反射层,21-排针,22-不锈钢中空管道,23-主机箱,24-铝制圆柱盒,25-同轴电缆。Reference numerals: 1-detection module, 2-collection and analysis module, 3-data collection and distribution module, 4-power supply module, 5-scintillation detector, 6-readout circuit, 7-conditioning circuit, 8-AD changer , 9-FPGA, 10-MCU, 11-USB, 12-Wireless communication module, 13-Peripherals, 14-Scintillator, 15-Photoelectric replacement device, 16-Control buttons, 17-Display screen, 18-Alarm device, 19-optical glue, 20-optical reflection layer, 21-pin header, 22-stainless steel hollow pipe, 23-main box, 24-aluminum cylindrical box, 25-coaxial cable.

具体实施方式Detailed ways

下面结合附图与具体实施方式对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

图1示出了本发明提供的一种优选的实施方式的一种宽量程伽马剂量仪的系统结构框图,包括探测模块1、采集分析模块2、无线通讯模块3、电源模块4。FIG. 1 shows a system structure block diagram of a wide-range gamma dosimeter according to a preferred embodiment of the present invention, including a detection module 1 , a collection and analysis module 2 , a wireless communication module 3 , and a power supply module 4 .

参考图2,所述探测模块1包含闪烁体探测器5、读出电路6,所述闪烁体探测器5为一封闭的整体,其内部包含闪烁体14和光电装换器件15,两者端面通过光学胶19相连;在探测模块内部间隙设置有光学反射层20;所述读出电路6为电流型前置电路,封装在一块PCB上,与闪烁体探测器5的信号输出端通过排针21相连;Referring to FIG. 2 , the detection module 1 includes a scintillator detector 5 and a readout circuit 6. The scintillator detector 5 is a closed whole, and its interior includes a scintillator 14 and a photoelectric replacement device 15. Connected by optical glue 19; an optical reflection layer 20 is arranged in the inner gap of the detection module; the readout circuit 6 is a current-type pre-circuit, packaged on a PCB, and connected to the signal output end of the scintillator detector 5 through pin headers 21 connected;

其中所述采集分析模块2连接至探测模块1,所述采集分析模块2封装在一块PCB上,其中包含调理电路7、AD转换器8、FPGA 9;The acquisition and analysis module 2 is connected to the detection module 1, and the acquisition and analysis module 2 is packaged on a PCB, which includes a conditioning circuit 7, an AD converter 8, and an FPGA 9;

其中所述数据集散模块3包含单片机10、USB 11、无线通讯模组12、外设13;所述单片机10连接至采集分析模块2的FPGA 9;所述外设包含控制按键16、显示屏17、报警器18;The data collection and distribution module 3 includes a single-chip microcomputer 10, a USB 11, a wireless communication module 12, and a peripheral device 13; the single-chip microcomputer 10 is connected to the FPGA 9 of the acquisition and analysis module 2; the peripheral device includes a control button 16, a display screen 17 , Alarm 18;

其中所述电源模块4连接至探测模块1、采集分析模块2与数据集散模块,用于为各个模块供电。The power supply module 4 is connected to the detection module 1 , the acquisition and analysis module 2 and the data collection and distribution module, and is used to supply power to each module.

在本实施方案中,闪烁体14受伽马射线照射后产生的光学光子在光学反射层和光学胶的引导下进入光电转换器件15件产生电流脉冲信号,该电流脉冲信号经过读出电路6电流型前置电路转换为电压脉冲信号,该电压脉冲信号的大小与入射伽马射线的能量Eγ和该入射伽马射线在闪烁体14中沉积的能量Edep正相关,又Edep与闪烁体14的吸收剂量Ds正相关,而闪烁体14的吸收剂量Ds与空气吸收剂量Da可以由剂量转换公式表示:In this embodiment, the optical photons generated after the scintillator 14 is irradiated by gamma rays enter the photoelectric conversion device 15 under the guidance of the optical reflection layer and the optical glue to generate a current pulse signal, and the current pulse signal passes through the readout circuit 6. The voltage pulse signal is converted into a voltage pulse signal by the type pre-circuit circuit, and the magnitude of the voltage pulse signal is positively related to the energy E γ of the incident gamma ray and the energy E dep deposited in the scintillator 14 by the incident gamma ray, and E dep is directly related to the scintillator. The absorbed dose D s of 14 is positively correlated, and the absorbed dose D s of scintillator 14 and air absorbed dose Da can be expressed by the dose conversion formula:

Ds/Da=(μen/ρ)s/(μen/ρ)a D s /D a =(μ en /ρ) s /(μ en /ρ) a

式中,(μen/ρ)s为闪烁体的质量能量吸收系数,(μen/ρ)a为空气的质量能量吸收系数。根据上述公式,空气吸收剂量Da与闪烁体14的吸收剂量Ds正相关。因此,对单个电压脉冲信号进行积分就能获得与该电压脉冲信号相关的入射伽马射线能量相关信息,对单位时间内所有电压脉冲信号积分就能获得单位时间内的空气吸收剂量相关信息,上述信息经过标定就能获得入射伽马射线的能量与空气吸收剂量。上述电压脉冲信号进入调理电路7,由调理电路7中的可调增益放大电路调整到AD转换器8所适配的电压范围再由调理电路7中的单端转差分电路转换为差分信号以适配AD转换器8的输入模式,AD转换器8将差分电压脉冲信号数字化后传递给FPGA 9,FPGA 9将输入的数据流与预先设置的阈值逐一对比,当发现有信号大于阈值后就会向后记录一个时间窗口并对该时间窗口内的信号累加获得积分值,并将记录的积分值逐一传递给单片机10,单片机10随即对信号积分值进行记录并根据单位时间内信号积分值的个数进行堆积程度判断,当堆积程度低于单片机10预设值时,闪烁体探测器5工作在单脉冲模式,单片机10持续对信号积分值进行统计形成伽马能谱并存储,同时单片机10对单位时间内的所有信号积分值进行累加获得总信号积分值,当堆积程度高于单片机10预设值时,闪烁体探测器5工作在电流模式,单片机10停止统计积分值和伽马能谱但是继续对单位时间内的所有信号积分值进行累加获得总信号积分值,单片机10进一步将总信号积分值带入标定拟合公式求出伽马剂量率。In the formula, (μ en /ρ) s is the mass energy absorption coefficient of the scintillator, and (μ en /ρ) a is the mass energy absorption coefficient of the air. According to the above formula, the absorbed dose D a of the air is positively correlated with the absorbed dose D s of the scintillator 14 . Therefore, the information related to incident gamma ray energy related to the voltage pulse signal can be obtained by integrating a single voltage pulse signal, and the information related to the air absorbed dose per unit time can be obtained by integrating all the voltage pulse signals per unit time. The information can be calibrated to obtain the energy and air absorbed dose of the incident gamma rays. The above-mentioned voltage pulse signal enters the conditioning circuit 7, and is adjusted to the voltage range adapted by the AD converter 8 by the adjustable gain amplifier circuit in the conditioning circuit 7, and then converted into a differential signal by the single-ended to differential circuit in the conditioning circuit 7 to be suitable. With the input mode of the AD converter 8, the AD converter 8 digitizes the differential voltage pulse signal and transmits it to the FPGA 9, and the FPGA 9 compares the input data stream with the preset threshold one by one. Then record a time window and accumulate the signals in the time window to obtain the integral value, and transmit the recorded integral value to the single-chip microcomputer 10 one by one. The accumulation degree is judged. When the accumulation degree is lower than the preset value of the single-chip microcomputer 10, the scintillator detector 5 works in the single-pulse mode. All signal integral values in the time are accumulated to obtain the total signal integral value. When the accumulation degree is higher than the preset value of the single-chip microcomputer 10, the scintillator detector 5 works in the current mode, and the single-chip microcomputer 10 stops counting the integral value and the gamma energy spectrum but continues The total signal integral value is obtained by accumulating all signal integral values in a unit time, and the single chip 10 further brings the total signal integral value into the calibration fitting formula to obtain the gamma dose rate.

在本实施方式中,通过设置控制按键16可以控制显示屏17的显示内容,上述显示内容包括伽马剂量率、伽马累计剂量、伽马能谱,进一步地,用户可以通过按键清零伽马累计剂量和设置报警值,当伽马剂量率或伽马累计剂量超过设置的报警值时,报警器18就会发出警报。In this embodiment, the display content of the display screen 17 can be controlled by setting the control button 16, and the above-mentioned display content includes the gamma dose rate, the gamma cumulative dose, and the gamma energy spectrum. Further, the user can reset the gamma by pressing the button. Accumulated dose and set alarm value, when the gamma dose rate or the gamma cumulative dose exceeds the set alarm value, the alarm 18 will give an alarm.

在本实施方式中,通过设置USB 11,宽量程伽马剂量仪能够与上位机通过有线方式建立双向通讯并共享伽马剂量率、伽马累计剂量和伽马能谱信息;通过设置无线通讯模组12,宽量程伽马剂量仪能够与具备相同无线通讯功能的设备建立双向通讯并共享伽马剂量率、伽马累计剂量和伽马能谱信息。In this embodiment, by setting the USB 11, the wide-range gamma dosimeter can establish two-way communication with the host computer in a wired manner and share the gamma dose rate, gamma cumulative dose and gamma energy spectrum information; by setting the wireless communication mode Group 12, the wide-range gamma dosimeter can establish two-way communication with devices with the same wireless communication function and share gamma dose rate, gamma cumulative dose and gamma energy spectrum information.

在一些优选的方式中,所述闪烁体14位BGO闪烁晶体,尺寸为直径25.4mm,长25.4mm的圆柱体,所述光电转换器件为直径为25.4mm,长为50mm的光电倍增管。In some preferred manners, the scintillator is a 14-bit BGO scintillation crystal, a cylinder with a diameter of 25.4 mm and a length of 25.4 mm, and the photoelectric conversion device is a photomultiplier tube with a diameter of 25.4 mm and a length of 50 mm.

在一些优选方式中,所述AD转换器为12位、采样率250Msps的高速ADC。In some preferred manners, the AD converter is a 12-bit high-speed ADC with a sampling rate of 250Msps.

在一些优选方式中,宽量程伽马剂量仪的结构如图3所示,采集分析模块2和数据集散模块3安装在主机箱23中,探测模块1安装在铝制圆柱盒24中,铝制圆柱盒24与主机箱23之间通过1m长的不锈钢中空管道22连接,探测模块1的读出电路与采集分析模块2的调理电路7通过穿过不锈钢中空管道22的同轴电缆25相连。In some preferred manners, the structure of the wide-range gamma dosimeter is shown in FIG. 3 , the acquisition and analysis module 2 and the data collection and distribution module 3 are installed in the main box 23 , the detection module 1 is installed in an aluminum cylindrical box 24 , and the aluminum The cylindrical box 24 and the main box 23 are connected by a 1 m long stainless steel hollow pipe 22 .

在一些优选方式中,所述电源模块4包含AC-DC电路和可充电锂电池。In some preferred manners, the power module 4 includes an AC-DC circuit and a rechargeable lithium battery.

综上,本发明涉及一种宽量程伽马剂量仪,包括探测模块、用于对探测模块输出的电脉冲信号进行采集和分析处理的采集分析模块、用于人机交互和数据共享的数据集散模块。所述探测模块包含闪烁体探测器、读出电路,所述采集分析模块包含调理电路、AD转换器、FPGA(现场可编程逻辑门阵列),该宽量程伽马剂量仪通过使用FPGA配合AD转换器使得闪烁体探测器能够工作在单脉冲模式和电流模式,拓展了伽马剂量率测量量程,且在单脉冲模式下能够获得伽马能谱。In summary, the present invention relates to a wide-range gamma dosimeter, including a detection module, a collection and analysis module for collecting and analyzing the electrical pulse signals output by the detection module, and a data collection and distribution module for human-computer interaction and data sharing. module. The detection module includes a scintillator detector and a readout circuit, the acquisition and analysis module includes a conditioning circuit, an AD converter, and an FPGA (Field Programmable Logic Gate Array). The device enables the scintillator detector to work in single-pulse mode and current mode, expands the measurement range of gamma dose rate, and can obtain gamma energy spectrum in single-pulse mode.

Claims (10)

1. A wide range gamma dosimeter characterized in that: the power supply module is connected with the detection module, the acquisition and analysis module and the data distribution module and supplies power to the detection module, the acquisition and analysis module and the data distribution module; the detection module comprises a scintillator detector and a reading circuit, wherein the reading circuit is connected with the scintillator detector and is used for converting a current pulse signal output by the scintillator detector into a voltage pulse signal; the acquisition and analysis module comprises a conditioning circuit, an AD converter and an FPGA, wherein the conditioning circuit is connected with a reading circuit of the detection module and is used for conditioning a voltage pulse signal output by the reading circuit to a voltage range adapted to the AD converter; the AD converter is used for converting the analog signal output by the conditioning circuit into a digital signal; the FPGA is used for monitoring digital signals of the AD converter, setting an integration time window, integrating voltage signals in the integration time window and outputting an integration value; the data collecting and distributing module is connected with the collecting and analyzing module and comprises a single chip microcomputer, a USB (universal serial bus), a wireless communication module and a peripheral, the single chip microcomputer determines whether the measuring instrument works in a single-pulse mode or a current mode by judging the number of the integrated values output by the FPGA in unit time, the single chip microcomputer performs dose rate conversion and simultaneously performs gamma energy spectrum drawing in the single-pulse mode, and only performs dose rate conversion in the current mode.
2. The wide-range gamma dosimeter of claim 1, wherein: the scintillator is an inorganic scintillator.
3. The wide-range gamma dosimeter of claim 1, wherein: the photoelectric conversion device is one of a photomultiplier tube and a silicon photomultiplier tube, and the spectral response wavelength range of the photoelectric conversion device coincides with the emission wavelength range of the scintillator.
4. The wide-range gamma dosimeter of claim 1, wherein: the reading circuit is composed of a current type front-end circuit.
5. The wide-range gamma dosimeter of claim 1, wherein: the conditioning circuit consists of an adjustable gain amplifying circuit and a single-end to differential circuit, and the adjustable gain amplifying circuit consists of a high-speed operational amplifier in order to realize the acquisition of the fast component of the nuclear pulse signal.
6. The wide-range gamma dosimeter of claim 1, wherein: the AD converter is of a differential input type.
7. The wide-range gamma dosimeter of claim 1, wherein: and the FPGA sets a signal threshold value through judging electronic noise and a signal baseline, and the threshold value is used for starting the pulse integration time window.
8. The wide-range gamma dosimeter of claim 1, wherein: the single chip microcomputer determines whether the instrument works in a single pulse mode or a current mode by judging the number of the integrated values output by the FPGA in unit time, the single chip microcomputer performs dose rate conversion and simultaneously performs gamma energy spectrum drawing in the single pulse mode, and only performs dose rate conversion in the current mode; the single chip microcomputer establishes two-way communication with an upper computer through a USB and shares gamma dose rate, gamma accumulated dose and gamma energy spectrum information; the single chip microcomputer can establish two-way communication with equipment with the same wireless communication function through the wireless communication module and share gamma dose rate, gamma accumulated dose and gamma energy spectrum information.
9. The wide-range gamma dosimeter of claim 1, wherein: the wireless communication module is any one of a Bluetooth module, a ZigBee module and a WiFi module.
10. The wide-range gamma dosimeter of claim 1, wherein: the peripheral comprises a control key, a display screen and an alarm; the control key is connected with the single chip microcomputer and used for controlling the working mode of the wide-range gamma dosimeter; the display screen is connected with the singlechip and is used for displaying the gamma dose rate, the gamma accumulated dose and the gamma energy spectrogram; the alarm is connected with the single chip microcomputer and used for giving an alarm when the gamma dose rate or the gamma accumulated dose exceeds a preset threshold value.
CN202210530812.1A 2022-05-16 2022-05-16 A Wide Range Gamma Dosimeter Pending CN114839662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210530812.1A CN114839662A (en) 2022-05-16 2022-05-16 A Wide Range Gamma Dosimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210530812.1A CN114839662A (en) 2022-05-16 2022-05-16 A Wide Range Gamma Dosimeter

Publications (1)

Publication Number Publication Date
CN114839662A true CN114839662A (en) 2022-08-02

Family

ID=82569754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210530812.1A Pending CN114839662A (en) 2022-05-16 2022-05-16 A Wide Range Gamma Dosimeter

Country Status (1)

Country Link
CN (1) CN114839662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406262A (en) * 2023-10-26 2024-01-16 山西中辐核仪器有限责任公司 Regional environment gamma radiation monitor for large radiation simulation device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098790A (en) * 1994-06-10 1995-02-15 清华大学 Miniature r-ray dosage instrument
CN101258421A (en) * 2005-08-25 2008-09-03 Rae系统股份有限公司 Combined radiation dosimeter and rate meter
JP2014211380A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Dose rate measurement device
CN105953847A (en) * 2015-12-24 2016-09-21 天津市迅尔电子信息技术有限公司 Ultra-wide range vortex street signal measuring method
CN106707009A (en) * 2016-12-30 2017-05-24 南京理工大学 Wide-range high-precision current statistics circuit
CN109471154A (en) * 2018-11-09 2019-03-15 中国核动力研究设计院 A kind of small-sized GM counting tube wide-range measuring instrument
CN109669206A (en) * 2019-03-03 2019-04-23 南昌华亮光电有限责任公司 Circulating type liquid scintillator intelligence energy disperse spectroscopy system and its signal processing method
CN109975855A (en) * 2019-04-02 2019-07-05 东华理工大学 A kind of wide-range intelligence X- gamma dose rate instrument device based on Bluetooth technology
CN212160097U (en) * 2019-11-12 2020-12-15 中核控制系统工程有限公司 Wide-range gamma dose rate monitor
CN112882082A (en) * 2021-01-12 2021-06-01 中国人民解放军海军工程大学 Neutron-gamma ambient dose equivalent rate instrument based on pulse shape discrimination
CN112987070A (en) * 2019-12-18 2021-06-18 广州兰泰胜辐射防护科技有限公司 Detection signal processing method, device and circuit
CN113009542A (en) * 2019-12-18 2021-06-22 广州兰泰胜辐射防护科技有限公司 Radiation detection device and chip
CN214097799U (en) * 2020-10-30 2021-08-31 江西省核工业地质调查院(江西省核工业地质局二六六大队) Unmanned aerial vehicle radiation environment monitoring system
CN113848580A (en) * 2021-09-26 2021-12-28 中国科学院高能物理研究所 An X/γ-ray radiation quantity detection system and detection method
CN114488251A (en) * 2021-12-28 2022-05-13 中国原子能科学研究院 A wide-range gamma radiation dose measurement system and method
CN114859393A (en) * 2022-04-26 2022-08-05 中国科学院近代物理研究所 Radiotherapy dose monitoring device with self-recovery function

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098790A (en) * 1994-06-10 1995-02-15 清华大学 Miniature r-ray dosage instrument
CN101258421A (en) * 2005-08-25 2008-09-03 Rae系统股份有限公司 Combined radiation dosimeter and rate meter
JP2014211380A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Dose rate measurement device
CN105953847A (en) * 2015-12-24 2016-09-21 天津市迅尔电子信息技术有限公司 Ultra-wide range vortex street signal measuring method
CN106707009A (en) * 2016-12-30 2017-05-24 南京理工大学 Wide-range high-precision current statistics circuit
CN109471154A (en) * 2018-11-09 2019-03-15 中国核动力研究设计院 A kind of small-sized GM counting tube wide-range measuring instrument
CN109669206A (en) * 2019-03-03 2019-04-23 南昌华亮光电有限责任公司 Circulating type liquid scintillator intelligence energy disperse spectroscopy system and its signal processing method
CN109975855A (en) * 2019-04-02 2019-07-05 东华理工大学 A kind of wide-range intelligence X- gamma dose rate instrument device based on Bluetooth technology
CN212160097U (en) * 2019-11-12 2020-12-15 中核控制系统工程有限公司 Wide-range gamma dose rate monitor
CN112987070A (en) * 2019-12-18 2021-06-18 广州兰泰胜辐射防护科技有限公司 Detection signal processing method, device and circuit
CN113009542A (en) * 2019-12-18 2021-06-22 广州兰泰胜辐射防护科技有限公司 Radiation detection device and chip
CN214097799U (en) * 2020-10-30 2021-08-31 江西省核工业地质调查院(江西省核工业地质局二六六大队) Unmanned aerial vehicle radiation environment monitoring system
CN112882082A (en) * 2021-01-12 2021-06-01 中国人民解放军海军工程大学 Neutron-gamma ambient dose equivalent rate instrument based on pulse shape discrimination
CN113848580A (en) * 2021-09-26 2021-12-28 中国科学院高能物理研究所 An X/γ-ray radiation quantity detection system and detection method
CN114488251A (en) * 2021-12-28 2022-05-13 中国原子能科学研究院 A wide-range gamma radiation dose measurement system and method
CN114859393A (en) * 2022-04-26 2022-08-05 中国科学院近代物理研究所 Radiotherapy dose monitoring device with self-recovery function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨立涛;李东仓;杨磊;孟祥厅;杨洋;: "基于FPGA与MC8051 IP核的χ-γ剂量仪设计", 核技术, no. 08, 10 August 2010 (2010-08-10) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117406262A (en) * 2023-10-26 2024-01-16 山西中辐核仪器有限责任公司 Regional environment gamma radiation monitor for large radiation simulation device
CN117406262B (en) * 2023-10-26 2024-07-23 山西中辐核仪器有限责任公司 Regional environment gamma radiation monitor for large radiation simulation device

Similar Documents

Publication Publication Date Title
CN105068108B (en) It is a kind of based on the multi-functional neutron and gamma detector singly popped one's head in
CN201421503Y (en) Handhold neutron-gamma radiation detector
CN103605148B (en) A kind of gamma spectrometry method under high count rate
CN112882082B (en) Measurement Method of Neutron-γ Surrounding Dose Equivalent Rate Meter Based on Pulse Shape Discrimination
CN104360376A (en) Gamma camera having function of identifying radioactive source, namely nuclide, and nuclide identification method
US20100264319A1 (en) Intelligent Sensor Platform
CN110824543A (en) Portable Single Ball Neutron Spectrometer
CN106997058B (en) A scintillator performance testing device and its consistency correction method
CN112213763B (en) A gamma dose monitoring device based on long-distance wireless communication
KR101808577B1 (en) Neutrons, gamma rays, x-ray radiation detection and integrated control system for the detection
CN113109861A (en) Radiation detection device and method thereof
CN102590848B (en) Portable lung counting device
CN204086558U (en) A kind of dosemeter for measuring diagnostic X-ray apparatus quality
CN114839662A (en) A Wide Range Gamma Dosimeter
CN201021941Y (en) Single Ion Beam Remote Counting Detector
CN201233445Y (en) Nuclear radiation detector of micro photoelectric diode
KR100368010B1 (en) Remote Controllable Environmental Radiation Monitor
CN214586023U (en) A Gamma Dose Monitoring Device Based on Remote Wireless Communication
CN212515056U (en) Nuclear emergency multifunctional portable radiation monitoring system
CN105676257B (en) Radioactive activity detection device and its detection method in the mobile solid of miniaturization, liquid substance
CN204705719U (en) A kind of portable radioactive contamination meter
CN114740520B (en) Radioactive inert gas activity measuring device and method
JP2001194460A (en) Radiation monitor
CN113484895B (en) Alpha surface pollution detector and detection method for high radon background
CN211653159U (en) Radiation detection device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination