CN114790459B - Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants - Google Patents
Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants Download PDFInfo
- Publication number
- CN114790459B CN114790459B CN202210466660.3A CN202210466660A CN114790459B CN 114790459 B CN114790459 B CN 114790459B CN 202210466660 A CN202210466660 A CN 202210466660A CN 114790459 B CN114790459 B CN 114790459B
- Authority
- CN
- China
- Prior art keywords
- gene
- zmpra1c1
- zmpra1
- corn
- heat stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明提供了玉米ZmPRA1C1基因在提高植物热胁迫抗性中的应用。本发明从玉米中分离和克隆到基因ZmPRA1C1,将ZmPRA1C1的CDS序列连接到Ubi启动子驱动的表达载体pCAMBIA3300上,通过基因工程技术获得了玉米ZmPRA1C1基因的过量表达载体,并由此获得了玉米的过量表达株系,经过筛选后最终获得玉米ZmPRA1C1基因过量表达纯合株系。实验结果表明该基因可以使模式植物玉米具有很好的热胁迫抗性,具体表现在不仅能够增加热胁迫下的幼苗地上部分鲜重,而且能够降低玉米细胞受损伤程度。本发明通过实验确认了玉米ZmPRA1C1基因在提高玉米耐热性中具有潜在的应用价值,并为利用该基因培育耐热玉米品种奠定良好的理论和应用基础。
The invention provides the application of the corn ZmPRA1C1 gene in improving plant heat stress resistance. The present invention isolates and clones the gene ZmPRA1C1 from corn, connects the CDS sequence of ZmPRA1C1 to the expression vector pCAMBIA3300 driven by the Ubi promoter, obtains the overexpression vector of the ZmPRA1C1 gene of corn through genetic engineering technology, and thus obtains the The overexpression lines were screened to finally obtain the maize ZmPRA1C1 gene overexpression homozygous lines. The experimental results show that the gene can make the model plant maize have good heat stress resistance, specifically in that it can not only increase the fresh weight of the aboveground part of the seedlings under heat stress, but also reduce the damage degree of maize cells. The invention confirms the potential application value of the corn ZmPRA1C1 gene in improving the heat tolerance of the corn through experiments, and lays a good theoretical and application foundation for using the gene to breed heat-resistant corn varieties.
Description
技术领域technical field
本发明属于植物基因工程技术领域,具体涉及玉米ZmPRA1C1基因在提高植物热胁迫抗性中的应用。The invention belongs to the technical field of plant genetic engineering, and in particular relates to the application of corn ZmPRA1C1 gene in improving plant heat stress resistance.
背景技术Background technique
温度是影响地球生命的关键物理参数之一。因此,几乎所有的生物体都进化出了信号通路来感知环境温度的轻微变化,并调整其代谢和细胞功能,以防止与热相关的损伤。热应激会对植物生长、发育、生殖和产量的所有方面产生不利影响。由于植物是固着在土壤中的有机体,无法逃逸热量,它们主要通过热驯化手段改变体内的新陈代谢以防止热量造成的损害,如果体内的热量超过植物的承受水平,植物通过激活特定细胞或组织中的程序性细胞死亡,导致叶片脱落、花朵凋谢、果实减少,甚至整个植物的死亡。在1964年至2007年期间,干旱和极端高温使全球谷物产量分别下降了10.1%和9.1%,其中由极端干旱天气共造成约18.2亿美元损失(约等于2013年全球玉米和小麦的产量),而由极端高温灾害共造成约11.9亿美元损失。Temperature is one of the key physical parameters affecting life on Earth. Thus, almost all organisms have evolved signaling pathways to sense slight changes in ambient temperature and adjust their metabolism and cellular functions to prevent heat-related damage. Heat stress can adversely affect all aspects of plant growth, development, reproduction and yield. Since plants are organisms fixed in the soil and cannot escape heat, they mainly change the metabolism in the body through heat acclimation to prevent damage caused by heat. If the heat in the body exceeds the tolerance level of the plant, the plant activates specific cells or tissues Programmed cell death, leading to leaf loss, flower wilting, fruit reduction, and even the death of the entire plant. During the period from 1964 to 2007, drought and extreme high temperature reduced the global grain production by 10.1% and 9.1% respectively, among which the extreme drought weather caused a total loss of about 1.82 billion US dollars (approximately equal to the global corn and wheat production in 2013), The extreme high temperature disaster caused a total of about 1.19 billion US dollars in losses.
由于PRA1家族数量较多,大多数的植物PRA1的确切功能没有被阐述,一般来说PRA1功能主要通过与下游Rab蛋白互作来发挥。在水稻中,作者发现了植物Yip同源基因OsPRA1,它是一个定位于液泡前体的完整膜蛋白,它具有典型的Yip/PRA1蛋白家族的分子特性,具有两个疏水结构域,能够介导膜融合。能够与下游OsRab7互作的,在液泡运输过程中通过液泡前体将OsRab7靶向进入液泡膜中发挥重要作用,对植物细胞的液泡运输至关重要。此外,OsPRA1也可以与OsVamp3蛋白互作,可能参与了囊泡融合过程,但作者并没有对这一现象进行更加深入的研究。在拟南芥中,Lee等研究了AtPRA1.B6对靶向到各种内膜系统蛋白质的顺行转运的影响。超表达AtPRA1导致了coat蛋白复合物II囊泡介导不同蛋白的顺行转运均产生不同程度的抑制,这些蛋白包括液泡蛋白、分泌蛋白、质膜蛋白,而高尔基定位蛋白的转运不受影响。另外作者发现AtPRA1.B6介导的顺行转运抑制发生在内质网,该蛋白的表达水平受26S蛋白酶体介导的蛋白水解影响。AtPRA1.B6是内质网内由囊泡介导的外套蛋白复合物II的负调控蛋白。与以上研究类似,PRA1.F4主要在高尔基体蛋白转运中发挥功能,作者首先研究了该基因突变体超表达的表型,突变体表现为植株发育矮小,根短,对盐胁迫敏感;超表达次生根及根毛数量高于野生型,同样表现出盐敏感的表型。另外,该基因的突变体在液泡运输过程中存在缺陷而超表达则抑制了高尔基体中一系列蛋白的向外转运,这些蛋白包括液泡蛋白、质膜蛋白、反式高尔基体蛋白等,但也不是所有类型的高尔基体向外转运蛋白都受到抑制,例如分泌蛋白。基于以上,作者认为该基因对高尔基体的功能是至关重要的。Due to the large number of PRA1 families, the exact function of most plant PRA1 has not been elucidated. Generally speaking, the function of PRA1 is mainly exerted by interacting with downstream Rab proteins. In rice, the authors discovered the plant Yip homologue OsPRA1, which is an integral membrane protein localized in the vacuolar precursor, which has the molecular characteristics of the typical Yip/PRA1 protein family, has two hydrophobic domains, and can mediate Membrane fusion. The ability to interact with downstream OsRab7 plays an important role in targeting OsRab7 into the tonoplast membrane through vacuolar precursors during vacuolar trafficking, which is critical for vacuolar trafficking in plant cells. In addition, OsPRA1 can also interact with OsVamp3 protein, which may be involved in the process of vesicle fusion, but the author did not conduct a more in-depth study on this phenomenon. In Arabidopsis, Lee et al. studied the effect of AtPRA1.B6 on the anterograde transport of proteins targeted to various endomembrane systems. Overexpression of AtPRA1 resulted in varying degrees of inhibition of the anterograde transport of different proteins mediated by coat protein complex II vesicles, including vacuolar proteins, secretory proteins, and plasma membrane proteins, while the transport of Golgi-localized proteins was not affected. In addition, the authors found that AtPRA1.B6-mediated inhibition of anterograde transport occurs in the endoplasmic reticulum, and the expression level of this protein is affected by 26S proteasome-mediated proteolysis. AtPRA1.B6 is a negative regulator of vesicle-mediated coat protein complex II in the endoplasmic reticulum. Similar to the above studies, PRA1.F4 mainly functions in Golgi protein transport. The author first studied the phenotype of overexpressed mutants of this gene. The mutants showed short plant development, short roots, and sensitivity to salt stress; overexpressed The number of secondary roots and root hairs was higher than that of the wild type, which also showed a salt-sensitive phenotype. In addition, the mutants of this gene are defective in vacuolar transport, while overexpression inhibits the outward transport of a series of proteins in the Golgi apparatus, including vacuolar proteins, plasma membrane proteins, trans-Golgi proteins, etc., but also Not all types of Golgi export proteins are inhibited, such as secreted proteins. Based on the above, the authors believe that this gene is crucial for the function of the Golgi apparatus.
除了拟南芥PRA1功能的研究,在番茄中,PRA1A与LeEIX2互作,LeEIX2是番茄中的一个模式识别受体,能够激活微生物/病原体相关分子模式(MAMP/PAMP),触发针对病原体进展的免疫反应。SlPRA1A的超表达能够明显降低LeEIX2内体定位,以及LeEIX2蛋白水平。从而降低了对EIX的先天免疫反应。抑制液泡功能可抑制SlPRA1A介导的LeEIX2蛋白水平降低,SlPRA1A能够将LeEIX2转运至液泡进行降解。In addition to studies of Arabidopsis PRA1 function, in tomato, PRA1A interacts with LeEIX2, a pattern recognition receptor in tomato that activates microbe/pathogen-associated molecular patterns (MAMP/PAMP) to trigger immunity against pathogen progression reaction. Overexpression of SlPRA1A can significantly reduce LeEIX2 endosomal localization and LeEIX2 protein level. Thereby reducing the innate immune response to EIX. Inhibition of vacuole function can inhibit the reduction of LeEIX2 protein level mediated by SlPRA1A, and SlPRA1A can transport LeEIX2 to the vacuole for degradation.
发明内容Contents of the invention
针对上述现有技术的情况,本发明的目的在于提供玉米ZmPRA1C1基因在提高植物热胁迫抗性中的应用,本发明从玉米中分离和克隆到一个Prenylated Rab Acceptor 1(PRA1)家族基因,并将其命名为ZmPRA1C1,并通过该基因获得ZmPRA1C1基因过量表达载体,进而获得了ZmPRA1C1基因过量表达纯合株系,该过量表达纯合株系具有很好的热胁迫抗性。For the situation of above-mentioned prior art, the object of the present invention is to provide the application of corn ZmPRA1C1 gene in improving plant heat stress resistance, the present invention is isolated and cloned into a Prenylated Rab Acceptor 1 (PRA1) family gene from corn, and will It is named ZmPRA1C1, and the ZmPRA1C1 gene overexpression vector is obtained through this gene, and then a ZmPRA1C1 gene overexpression homozygous strain is obtained, and the overexpression homozygous strain has good heat stress resistance.
为实现上述发明目的,本发明采用以下技术方案予以实现:In order to achieve the above-mentioned purpose of the invention, the present invention adopts the following technical solutions to achieve:
本发明提供了一种提高玉米耐热性的基因ZmPRA1C1,其特征在于:其核苷酸序列如SEQ ID No:1所示,CDS序列如SEQ ID NO:2所示,其编码的蛋白质的氨基酸序列如序列SEQ ID NO:3所示。扩增所述ZmPRA1C1基因的引物序列为:The invention provides a gene ZmPRA1C1 for improving the heat tolerance of corn, characterized in that: its nucleotide sequence is shown in SEQ ID No: 1, its CDS sequence is shown in SEQ ID NO: 2, and the amino acid of the protein encoded by it is The sequence is shown in the sequence SEQ ID NO:3. The primer sequences for amplifying the ZmPRA1C1 gene are:
上游引物5’-GGATCCATGTCCAAGTACGGCACCATTC-3’;Upstream primer 5'-GGATCCATGTCCAAGTACGGCACCATTC-3';
下游引物5’-GAGCTCTCAGTGCGACGGCTGCTG-3’。Downstream primer 5'-GAGCTCTCAGTGCGACGGCTGCTG-3'.
本发明还提供了所述的ZmPRA1C1基因在调控植物苗期耐热性表型中的应用。The present invention also provides the application of the ZmPRA1C1 gene in regulating the heat resistance phenotype of plant seedlings.
含有所述玉米ZmPRA1C1基因的植物过量表达纯合株系在热胁迫下植株萎蔫程度明显低于野生型株系。Plant overexpression homozygous lines containing the maize ZmPRA1C1 gene have significantly lower plant wilting degree under heat stress than wild-type lines.
进一步的,含有所述玉米ZmPRA1C1基因的植物过量表达纯合株系在热胁迫下的离子渗漏率率明显低于野生型株系。Further, the ion leakage rate of the overexpression homozygous line of the plant containing the maize ZmPRA1C1 gene is significantly lower than that of the wild type line under heat stress.
进一步的,含有所述玉米ZmPRA1C1基因的植物过量表达纯合株系在热胁迫下的地上部分鲜重明显高于野生型株系。Further, the overexpression homozygous lines containing the maize ZmPRA1C1 gene have significantly higher shoot fresh weight under heat stress than wild-type lines.
进一步的,所述过量表达载体包括pCAMBIA3300-ZmPRA1C1,其通过重组质粒经双酶切后,将所述玉米ZmPRA1C1基因连接到载体质粒中Ubi启动子后获得。Further, the overexpression vector includes pCAMBIA3300-ZmPRA1C1, which is obtained by connecting the corn ZmPRA1C1 gene to the Ubi promoter in the vector plasmid after double digestion of the recombinant plasmid.
进一步的,所述重组质粒包括pMD19-T-ZmPRA1C1,其通过扩增所述玉米ZmPRA1C1基因的产物经回收、纯化后克隆到克隆载体上获得。Further, the recombinant plasmid includes pMD19-T-ZmPRA1C1, which is obtained by amplifying the product of the maize ZmPRA1C1 gene, recovering, purifying and cloning it into a cloning vector.
与现有技术相比,本发明的优点和技术效果是:本发明通过基因工程技术将ZmPRA1C1基因进行过量表达,然后获得过量表达载体,将该载体转化进株系中,经过筛选得到ZmPRA1C1基因过量表达纯合株系,进而明显的提高了植物热胁迫抗性的能力。ZmPRA1C1基因过量表达不仅提高了热胁迫下植物地上部分鲜重,还降低了植物热胁迫下的离子渗漏率,降低了植物的萎蔫程度,降低了植物的热损伤程度,更有利于植物在高温环境下的生长发育。本发明通过实验首次确认了玉米ZmPRA1C1基因可以提高植物的热胁迫性,并鉴于ZmPRA1C1基因在热胁迫中的应用,可以认为该基因对提高植物热胁迫性具有潜在的应用价值,同时本发明也为利用ZmPRA1C1基因培育耐高温的农作物品种奠定良好的理论和应用基础。Compared with the prior art, the advantages and technical effects of the present invention are: the present invention overexpresses the ZmPRA1C1 gene through genetic engineering technology, then obtains the overexpression vector, transforms the vector into strains, and obtains the ZmPRA1C1 gene overexpression through screening. The expression of homozygous lines can significantly improve the ability of plants to resist heat stress. Overexpression of the ZmPRA1C1 gene not only increases the fresh weight of the aboveground parts of plants under heat stress, but also reduces the ion leakage rate of plants under heat stress, reduces the degree of wilting of plants, and reduces the degree of heat damage of plants, which is more conducive to the growth of plants under high temperature. growth and development in the environment. The present invention confirms for the first time through experiments that the corn ZmPRA1C1 gene can improve the heat stress of plants, and in view of the application of the ZmPRA1C1 gene in heat stress, it can be considered that the gene has potential application value for improving the heat stress of plants, and the present invention also provides The use of ZmPRA1C1 gene to breed high temperature resistant crop varieties has laid a good theoretical and application foundation.
附图说明Description of drawings
图1A是构建的表达载体的示意图以及酶切位点。其中,表达载体为pCAMBIA3300,启动子为Ubi,目的基因ZmPRA1C1两端的酶切位点分别为BamHΙ和SacΙ。Figure 1A is a schematic diagram of the constructed expression vector and restriction sites. Wherein, the expression vector is pCAMBIA3300, the promoter is Ubi, and the restriction sites at both ends of the target gene ZmPRA1C1 are BamHI and SacI, respectively.
图1B是转基因株系阳性苗的鉴定;1号泳道为野生型B104,其余泳道为转基因株系。Fig. 1B is the identification of positive seedlings of transgenic lines; No. 1 swimming lane is wild-type B104, and the other swimming lanes are transgenic lines.
图2A是RT-qPCR检测B104与Ubi::ZmPRA1C1转基因株系中ZmPRA1C1基因的转录水平。Fig. 2A is the transcription level of ZmPRA1C1 gene in B104 and Ubi::ZmPRA1C1 transgenic lines detected by RT-qPCR.
图2B是western blot检测B104与Ubi::ZmPRA1C1转基因株系中ZmPRA1C1蛋白水平。Fig. 2B is western blot detection of ZmPRA1C1 protein levels in B104 and Ubi::ZmPRA1C1 transgenic lines.
图3A为转基因株系Ubi::ZmPRA1C1与野生型B104在基质中生长2周后,在正常条件下和热胁迫处理之后的表型图。Fig. 3A is a graph showing the phenotypes of the transgenic line Ubi::ZmPRA1C1 and wild-type B104 grown in the substrate for 2 weeks under normal conditions and after heat stress treatment.
图3B为转基因株系Ubi::ZmPRA1C1与野生型B104在基质中生长2周后,在正常条件下和热胁迫处理之后地上部分鲜重的数据统计,且发现具有显著性差异。Fig. 3B is the data statistics of the fresh weight of the above-ground parts of the transgenic line Ubi::ZmPRA1C1 and the wild-type B104 grown in the substrate for 2 weeks under normal conditions and after heat stress treatment, and a significant difference was found.
图3C为转基因株系Ubi::ZmPRA1C1与野生型B104在基质中生长2周后,在正常条件下和热胁迫处理之后离子渗漏率的数据统计,且发现具有显著性差异。Figure 3C shows the statistics of the ion leakage rates of the transgenic line Ubi::ZmPRA1C1 and wild-type B104 grown in the matrix for 2 weeks under normal conditions and after heat stress treatment, and a significant difference was found.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明的技术方案做进一步详细的说明。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件;未详细注明的试剂或材料,均为市售产品。本发明将上述表达载体导入到模式植物玉米细胞中,导入方法都是本领域人员熟知的,这些方法包括但不仅限于:农杆菌介导的转化法、基因枪法、电激法、子房注射法等。除此之外,本发明所采用的均为本领域现有技术。The technical solutions of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The experimental methods not specified in the following examples are generally in accordance with conventional conditions, or in accordance with the conditions suggested by the manufacturer; the reagents or materials not specified in detail are all commercially available products. In the present invention, the above-mentioned expression vector is introduced into the model plant maize cells, and the introduction methods are well known to those skilled in the art, and these methods include but are not limited to: Agrobacterium-mediated transformation method, gene gun method, electric shock method, ovary injection method wait. In addition, what the present invention adopts is the prior art in this field.
本发明首先从玉米中获取了总RNA,反转录获得cDNA第一链,之后利用其作为模板,用ZmPRA1C1对应的特异性引物对获得的cDNA进行高保真酶扩增。In the present invention, the total RNA is first obtained from corn, and the first strand of cDNA is obtained by reverse transcription, and then used as a template, and the obtained cDNA is subjected to high-fidelity enzyme amplification with specific primers corresponding to ZmPRA1C1.
玉米RNA的提取和纯化可直接采用现有工艺,也可采用本发明中所记载的工艺;cDNA第一链的合成的也是相同的情况,也可以采用现有的工艺或者试剂盒,但是上述两者均优选采用本发明所记载的具体工艺。The extraction and purification of corn RNA can directly adopt existing technology, also can adopt the technology described in the present invention; The synthesis of cDNA first strand is also the same situation, also can adopt existing technology or kit, but above-mentioned two All preferably adopt the specific technique described in the present invention.
实施例1:转基因株系的获得Embodiment 1: Obtaining of transgenic strains
(一)玉米ZmPRA1C1基因的序列分析、克隆与载体构建(1) Sequence analysis, cloning and vector construction of maize ZmPRA1C1 gene
本发明利用玉米基因组数据库网站(https://www.maizegdb.org)找到基因ZmPRA1C1,该基因组序列全长为3529bp(序列如SEQ ID NO.1所示),而CDS序列为582bp(序列如SEQ ID NO.2所示),该基因编码的蛋白质大小为193个氨基酸(序列如SEQ ID NO.3所示)。The present invention utilizes the corn genome database website (https://www.maizegdb.org) to find the gene ZmPRA1C1, the genome sequence is 3529bp in full length (sequence shown in SEQ ID NO.1), and the CDS sequence is 582bp (sequence shown in SEQ ID NO.1). shown in ID NO.2), the protein encoded by the gene has a size of 193 amino acids (sequence shown in SEQ ID NO.3).
根据找到的玉米ZmPRA1C1基因的CDS序列设计引物,进行克隆,克隆方法如下:According to the CDS sequence of the found maize ZmPRA1C1 gene, primers were designed and cloned. The cloning method was as follows:
1.RNA的提取:使用康为世纪公司的全能型植物RNA提取试剂盒(货号CW2598)提取玉米的总RNA。1. Extraction of RNA: The total RNA of corn was extracted using the All-Purpose Plant RNA Extraction Kit (Cat. No. CW2598) of Kangwei Century Company.
(1)取0.1-0.2g玉米组织在液氮中研磨成粉末,加入500μL的Buffer RLS,立即涡旋震荡混匀;(1) Take 0.1-0.2 g of corn tissue and grind it into powder in liquid nitrogen, add 500 μL of Buffer RLS, and immediately vortex to mix;
(2)4℃,12000rpm离心2min;(2) Centrifuge at 12000rpm for 2min at 4°C;
(3)取上清液置于过滤柱中(Spin Columns FS),4℃,12000rpm离心1min,吸取上清并转移至新的离心管中;(3) Take the supernatant and put it in a filter column (Spin Columns FS), centrifuge at 12000rpm at 4°C for 1min, absorb the supernatant and transfer it to a new centrifuge tube;
(4)加入250μL的无水乙醇,混匀,将得到的溶液转移到吸附柱(Spin Columns RM)中,4℃,12000rpm离心1min,弃废液;(4) Add 250 μL of absolute ethanol, mix well, transfer the obtained solution to an adsorption column (Spin Columns RM), centrifuge at 12,000 rpm for 1 min at 4°C, and discard the waste liquid;
(5)向吸附柱中加入350μL的Buffer RW1,4℃,12000rpm离心1min,弃废液;(5) Add 350 μL of Buffer RW1 to the adsorption column, centrifuge at 12,000 rpm for 1 min at 4°C, and discard the waste liquid;
(6)配制DNase I溶液:取52μL RNase-Free Water,加入8μL 10×ReactionBuffer和20μL DNase I,混匀,配制成80μL的DNaseI溶液;(6) Prepare DNase I solution: Take 52 μL RNase-Free Water, add 8 μL 10×ReactionBuffer and 20 μL DNase I, mix well, and prepare 80 μL DNaseI solution;
(7)向吸附柱中加入80μL DNase I溶液,20-30℃静置15min;(7) Add 80 μL DNase I solution to the adsorption column, and let stand at 20-30°C for 15 minutes;
(8)向吸附柱中加入350μL Buffer RW1,4℃12,000rpm离心1min,弃废液;(8) Add 350 μL Buffer RW1 to the adsorption column, centrifuge at 12,000 rpm at 4°C for 1 min, and discard the waste liquid;
(9)向吸附柱中加入500μL Buffer RW2,4℃12,000rpm离心1min,弃废液;(9) Add 500 μL Buffer RW2 to the adsorption column, centrifuge at 12,000 rpm at 4°C for 1 min, and discard the waste liquid;
(10)重复步骤(9);(10) Repeat step (9);
(11)4℃12,000rpm离心2min;(11) Centrifuge at 12,000 rpm for 2 minutes at 4°C;
(12)将吸附柱装入新的RNase-Free离心管中,向吸附膜的中间滴加30μL RNase-Free Water,室温放置1min,12000rpm离心1min,将得到的RNA溶液保存在-80℃冰箱中。(12) Put the adsorption column into a new RNase-Free centrifuge tube, add 30 μL RNase-Free Water dropwise to the middle of the adsorption membrane, leave it at room temperature for 1 min, centrifuge at 12,000 rpm for 1 min, and store the obtained RNA solution in a -80°C refrigerator .
2.反转录cDNA第一链的合成:将提取的RNA溶解后测定RNA浓度,然后使用TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix反转录试剂盒进行反转录。2. Synthesis of the first strand of reverse-transcribed cDNA: The extracted RNA was dissolved and the RNA concentration was measured, and then reverse-transcribed using the TransScript One-Step gDNA Removal and cDNA Synthesis SuperMix Reverse Transcription Kit.
取5μg总RNA,加入2×反应缓冲液10μL,引物oligo dT(0.5μg/μL)1μL,反转录酶1μL,去基因组酶1μL,补水到20μL,在42℃孵育30分钟,85℃酶失活5分钟。Take 5 μg of total RNA, add 10 μL of 2× reaction buffer, 1 μL of primer oligo dT (0.5 μg/μL), 1 μL of reverse transcriptase, 1 μL of degenomic enzyme, replenish water to 20 μL, incubate at 42°C for 30 minutes, and the enzyme will disappear at 85°C Live for 5 minutes.
3.ZmPRA1C1基因的克隆:3. Cloning of ZmPRA1C1 gene:
ZmPRA1C1基因引物序列:ZmPRA1C1 gene primer sequence:
上游引物5’-GGATCCATGTCCAAGTACGGCACCATTC-3’;(SEQ ID NO.4);Upstream primer 5'- GGATCC ATGTCCAAGTACGGCACCATTC-3'; (SEQ ID NO.4);
下游引物5’-GAGCTCTCAGTGCGACGGCTGCTG-3’;(SEQ ID NO.5);Downstream primer 5'- GAGCTC TCAGTGCGACGGCTGCTG-3'; (SEQ ID NO.5);
其中下划线处为酶切位点,上游引物的酶切位点为BamHΙ,下游引物的酶切位点为SacI。Wherein, the underlined place is the restriction site, the restriction site of the upstream primer is BamHI, and the restriction site of the downstream primer is SacI.
使用Phanta Max Super-Fidelity DNA Polymerase高保真酶(挪威赞公司,货号P505)进行扩增,反应体系为:2×Phanta Max Buffer 25μL,脱氧核糖核酸(dNTP)1μL,上游引物2μL,下游引物2μL,Phanta Max Super-Fidelity DNA Polymerase高保真酶1μL,cDNA模板1μL,水补齐到50μL。Use Phanta Max Super-Fidelity DNA Polymerase high-fidelity enzyme (Norwegian Zan Company, product number P505) for amplification. The reaction system is: 2×Phanta Max Buffer 25 μL, deoxyribonucleic acid (dNTP) 1 μL, upstream primer 2 μL, downstream primer 2 μL, Add 1 μL of Phanta Max Super-Fidelity DNA Polymerase, 1 μL of cDNA template, and make up to 50 μL with water.
PCR反应条件为:95℃预变性3分钟;The PCR reaction conditions are: pre-denaturation at 95°C for 3 minutes;
95℃变性15秒,53℃退火15秒,72℃延伸30秒,共37个循环;Denaturation at 95°C for 15 seconds, annealing at 53°C for 15 seconds, extension at 72°C for 30 seconds, a total of 37 cycles;
72℃后延伸5分钟;Extend at 72°C for 5 minutes;
16℃保温。Keep warm at 16°C.
反应结束后,进行琼脂糖凝胶电泳,检测到目的条带后,切胶并进行胶回收,胶回收方法根据BioTeke公司的快捷型琼脂糖凝胶DNA回收试剂盒(货号DP1722)进行。After the reaction, agarose gel electrophoresis was performed. After the target band was detected, the gel was cut and recovered. The gel recovery method was performed according to BioTeke's Quick Agarose Gel DNA Recovery Kit (Cat. No. DP1722).
高保真酶扩增的产物末端为平末端,需要添加polyA后才能进行T-A克隆,反应体系如下:10×反应缓冲液1.5μL,脱氧核糖核酸(dNTP)1.2μL,Taq酶0.15μL,胶回收产物补齐15μL。之后再72℃反应30分钟。The end of the high-fidelity enzyme amplification product is blunt-ended, and polyA needs to be added before T-A cloning. The reaction system is as follows: 1.5 μL of 10× reaction buffer, 1.2 μL of deoxyribonucleic acid (dNTP), 0.15 μL of Taq enzyme, and gel recovery product Make up 15 μL. Then react at 72°C for 30 minutes.
4.取上述4μL加尾产物与pMD19-T克隆载体进行连接,操作步骤按照TaKaRa公司的产品pMD19-T说明书进行,然后连接产物使用热激法转化大肠杆菌TOP10菌株,在含有氨苄霉素的LB平板上生长过夜。挑取白色单个菌落在LB平板上划线,进行菌落PCR,反应体系如上,选取阳性菌落在LB液体培养基中过夜。4. Take the above 4 μL tailed product and connect it to the pMD19-T cloning vector. The operation steps are carried out according to the product pMD19-T manual of TaKaRa Company, and then the ligated product is transformed into E. coli TOP10 strain by heat shock method, and the LB Grow overnight on plates. Pick a single white colony and streak it on the LB plate for colony PCR. The reaction system is as above, and select the positive colony in the LB liquid medium overnight.
5.质粒DNA的提取:使用康为世纪高纯度质粒小提取试剂盒(CW0500A)提取质粒DNA。5. Plasmid DNA extraction: Plasmid DNA was extracted using Kangwei Century High Purity Plasmid Small Extraction Kit (CW0500A).
6.序列测定:该工作在生工生物工程(上海)股份有限公司进行。6. Sequence determination: This work was carried out at Sangon Bioengineering (Shanghai) Co., Ltd.
7.表达载体的构建:用BamHΙ和SacI酶切测序正确的带有ZmPRA1C1基因的质粒和带有Ubi启动子的pCAMBIA3300空载体(图1A),37℃酶切一个小时之后,进行琼脂糖凝胶电泳,切除正确的条带进行胶回收,将胶回收产物用Thermo Fisher Scientific公司的T4DNA连接酶连接,连接产物转化TOP10菌株,在含有卡那的LB平板上生长过夜。挑取白色单个菌落在LB平板上划线,进行菌落PCR,选取阳性菌落在LB液体培养基中过夜。质粒DNA的提取:使用康为世纪高纯度质粒小提取试剂盒提取质粒DNA,酶切鉴定。构建得到Ubi::ZmPRA1C1的过表达载体。7. Construction of the expression vector: use BamHI and SacI enzyme digestion and sequencing to correct the plasmid with the ZmPRA1C1 gene and the pCAMBIA3300 empty vector with the Ubi promoter (Fig. 1A), after digestion at 37°C for one hour, carry out agarose gel After electrophoresis, the correct band was excised for gel recovery, and the gel recovery product was ligated with T4 DNA ligase from Thermo Fisher Scientific, and the ligation product was transformed into TOP10 strain, and grown overnight on an LB plate containing kana. Pick a single white colony and streak it on the LB plate, carry out colony PCR, and select the positive colony in LB liquid medium overnight. Plasmid DNA extraction: use Kangwei Century High Purity Plasmid Small Extraction Kit to extract plasmid DNA and identify it by enzyme digestion. The overexpression vector of Ubi::ZmPRA1C1 was constructed.
8.取2.5μL质粒转化农杆菌EHA105。8. Take 2.5 μL of the plasmid to transform Agrobacterium EHA105.
(二):过表达ZmPRA1C1转基因玉米阳性苗的获得与筛选(2): Obtaining and screening positive seedlings of transgenic maize overexpressing ZmPRA1C1
1.过表达ZmPRA1C1转基因玉米阳性苗的获得1. Obtaining positive seedlings of transgenic maize overexpressing ZmPRA1C1
携带Ubi::ZmPRA1C1的过表达载体的EHA105农杆菌转化玉米组织委托博美兴奥生物技术公司进行。The EHA105 Agrobacterium carrying the Ubi::ZmPRA1C1 overexpression vector was used to transform maize tissue by Bomeixingao Biotechnology Company.
2.转基因阳性苗的筛选2. Screening of transgenic positive seedlings
(1)单株收到侵染后的玉米的种子为T0代。(1) The maize seed after a single plant receives infection is the T0 generation.
(2)选取20粒T0代种子在基质上培养,提取转基因株系的基因组,用PCR检测转基因株系,挑选阳性苗种在大田中,单株收到的种子为T1代。(2) Select 20 seeds of the T0 generation to cultivate on the substrate, extract the genome of the transgenic line, detect the transgenic line by PCR, select positive seedlings in the field, and the seed received by a single plant is the T1 generation.
(3)每个T1代果穗中选取20粒种子在在基质上培养,提取转基因株系的基因组,用PCR检测转基因株系,挑选阳性苗种在大田中,单株收到的种子为T2代。(3) Select 20 seeds in each T1 generation fruit ear to cultivate on the substrate, extract the genome of the transgenic strain, detect the transgenic strain with PCR, select positive seedlings in the field, and the seed received by a single plant is the T2 generation .
(4)每个T2代果穗中选取20粒种子在在基质上培养,提取转基因株系的基因组,用PCR检测转基因株系,结果全部是阳性株系的上一代T2株系即为纯合的转基因株系的种子,结果如图1B所示。以下所有实验均选用纯合的转基因株系的种子。(4) Select 20 seeds in each T2 generation fruit ear to cultivate on the substrate, extract the genome of the transgenic strain, and detect the transgenic strain with PCR, and the T2 strains of the previous generation that are all positive strains are homozygous. Seeds of transgenic lines, the results are shown in Figure 1B. Seeds of homozygous transgenic lines were used in all the following experiments.
实施例2:转基因株系中ZmPRA1C1表达量的鉴定Example 2: Identification of ZmPRA1C1 expression in transgenic lines
依据qRT-PCR引物设计要求,使用Beacon Designer 7和Primer Premier 5.0等软件设计基因特异引物。选择SYBR Green Design选项,建立文件,输入序列,运行BLASTsearch sequence和Template structure search工具后,运行Primer search工具,选择最优引物序列(先保证引物特异性再考虑避开模板结构影响)。引物在上海生工生物工程服务有限公司合成,采用PAGE纯化,引物序列如下:According to the design requirements of qRT-PCR primers, gene-specific primers were designed using software such as Beacon Designer 7 and Primer Premier 5.0. Select the SYBR Green Design option, create a file, input the sequence, run the BLASTsearch sequence and Template structure search tools, and run the Primer search tool to select the optimal primer sequence (first ensure the specificity of the primers and then consider avoiding the influence of the template structure). The primers were synthesized at Shanghai Sangon Bioengineering Service Co., Ltd. and purified by PAGE. The primer sequences are as follows:
qRT-ZmPRA1C1-F:CCCCGTCTCCCTCATCGTAT;(SEQ ID NO.6)qRT-ZmPRA1C1-F: CCCCGTCTCCCCTCATCGTAT; (SEQ ID NO. 6)
qRT-ZmPRA1C1-R:GTGAGGAGGAGCAGGACGA;(SEQ ID NO.7)qRT-ZmPRA1C1-R:GTGAGGAGGAGCAGGACGA; (SEQ ID NO.7)
应用qRT-PCR专用96孔板(Axygen,美国)和高透光率封口膜(Axygen,美国),荧光定量PCR仪Icycler real-time PCR system(Bio-Rad,美国)进行qRT-PCR分析,每个样品3次重复。反转录产物为模板,反应体系参照SYBR Green Realtime PCR Master Mix(QPK-201)说明书,反应条件如下:Application qRT-PCR special 96-well plate (Axygen, the United States) and high light transmittance sealing film (Axygen, the United States), fluorescent quantitative PCR instrument Icycler real-time PCR system (Bio-Rad, the United States) for qRT-PCR analysis, each Each sample was repeated 3 times. The reverse transcription product is used as a template, and the reaction system refers to the instructions of SYBR Green Realtime PCR Master Mix (QPK-201). The reaction conditions are as follows:
(1)95.0℃60s;(2)95.0℃10s;(3)58.0±5.0℃10s;(4)72.0℃15s;(5)PlateRead;(6)Incubate at 65℃for 20s;(7)Melting curve from 65℃to 95℃,read every0.5℃,hold1s;(8)End;其中(2)(3)(4)50-60cycles。(1) 95.0°C for 60s; (2) 95.0°C for 10s; (3) 58.0±5.0°C for 10s; (4) 72.0°C for 15s; (5) PlateRead; (6) Incubate at 65°C for 20s; (7) Melting curve From 65°C to 95°C, read every 0.5°C, hold 1s; (8) End; where (2) (3) (4) 50-60cycles.
将多个样品混合,进行第一次扩增,检测引物是否可用,根据融解曲线验证引物扩增的特异性,单一峰即认为特异扩增,如有双峰,适当调整退火温度及引物用量,若仍然不能特异扩增,重新设计引物。使用混合模板按10倍浓度依次稀释,共稀释4次,用5个浓度的样品构建相对标准曲线,验证所有引物的扩增效率,以及目的序列在此浓度范围内是否具有线性扩增的关系。Mix multiple samples for the first amplification, check whether the primers are available, and verify the specificity of primer amplification according to the melting curve. A single peak is considered specific amplification. If there are double peaks, adjust the annealing temperature and the amount of primers appropriately. If still unable to amplify specifically, redesign primers. Use the mixed template to dilute sequentially at 10-fold concentration, co-dilute 4 times, and use 5 concentrations of samples to construct a relative standard curve to verify the amplification efficiency of all primers and whether the target sequence has a linear amplification relationship within this concentration range.
以tubulin为内参,调整各模板浓度使内参Ct值之差小于2。每个基因扩增均有内参同时扩增,默认条件下读取Ct值,每个样品作三次重复,数据分析采用双标准曲线法,计算平均表达量和相对偏差,用Excel作图。同时利用2-ΔΔCt大致计算与内参的相对表达量,确定基因的表达丰度。相对表达量计算fold change=2–△△CT,此处△△CT=(CT-gen–CT-tubulin)处理–(CT-gene–CT-tubulin)对照。结果显示(图2A),ZmPRA1C1基因在过量表达的纯合体株系OE-1与OE-2中呈现较高水平的表达。Using tubulin as an internal reference, adjust the concentration of each template so that the difference between the internal reference Ct values is less than 2. Each gene was amplified with an internal reference at the same time. Under the default conditions, the Ct value was read, and each sample was repeated three times. The data analysis was performed using the double standard curve method. The average expression level and relative deviation were calculated and plotted with Excel. At the same time, 2 -ΔΔCt was used to roughly calculate the relative expression level with the internal reference to determine the expression abundance of the gene. Relative expression was calculated as fold change=2- △△CT , where △△CT=(C T-gen - C T-tubulin ) treatment- (C T-gene - C T-tubulin ) control . The results showed ( FIG. 2A ), that the ZmPRA1C1 gene was expressed at a higher level in the overexpressed homozygous lines OE-1 and OE-2.
除此之外,该研究还利用了anti-ZmPRA1C1抗体通过western blot实验检测了B104、OE-1、OE-2株系中ZmPRA1C1的表达量,结果如图2B显示,在蛋白水平上,两个超表达株系中ZmPRA1C1的蛋白量均明显高于对照B104,综上所示,ZmPRA1C1基因在过量表达的纯合体株系OE-1与OE-2中呈现较高水平的表达,因此选取该株系进行后续的研究。In addition, this study also used the anti-ZmPRA1C1 antibody to detect the expression of ZmPRA1C1 in B104, OE-1, and OE-2 strains by western blot experiments. The results are shown in Figure 2B. At the protein level, the two The protein content of ZmPRA1C1 in the overexpression lines was significantly higher than that of the control B104. In summary, the ZmPRA1C1 gene showed a higher level of expression in the overexpression homozygous lines OE-1 and OE-2, so this strain was selected Department of follow-up research.
实施例3:玉米ZmPRA1C1基因对幼苗热胁迫下表型的影响Example 3: The effect of the maize ZmPRA1C1 gene on the phenotype of seedlings under heat stress
(一):过表达ZmPRA1C1转基因玉米的培养(1): Cultivation of overexpressed ZmPRA1C1 transgenic maize
玉米种子用70%乙醇消毒5分钟,然后用15%的次氯酸钠消毒5分钟,最后用无菌ddH2O冲洗5-7次,将消毒的无菌种子种植在基质中,放置于25℃的长日照培养箱生长14天。长日照条件为16h光照/8h黑暗,25℃。Corn seeds were sterilized with 70% ethanol for 5 minutes, then sterilized with 15% sodium hypochlorite for 5 minutes, and finally rinsed with sterile ddH 2 O for 5-7 times, and the sterilized aseptic seeds were planted in the substrate and placed in a long-term room at 25°C. Grow in a sunlight incubator for 14 days. The long-day conditions were 16h light/8h dark at 25°C.
(二):过表达ZmPRA1C1转基因株系热胁迫下表型观察(2): Phenotype observation of ZmPRA1C1 transgenic lines under heat stress
挑选(一)中长势一致的B104野生型、OE-1、OE-2玉米幼苗各30株,同时在热培养箱中进行45℃,5.5小时的热胁迫处理,观察处理前后幼苗生长状态并拍照,结果如图3A所示,在正常条件下,三者的表型没有明显差异,在热胁迫处理之后,B104玉米幼苗已经出现了明显的萎蔫状态,相较于B104,两个过表达ZmPRA1C1转基因株系生长状态较为良好,萎蔫程度低。Select 30 B104 wild-type, OE-1, and OE-2 corn seedlings with the same growth in (1), and carry out heat stress treatment at 45°C for 5.5 hours in a heat incubator at the same time, observe the growth status of the seedlings before and after the treatment, and take pictures , the results are shown in Figure 3A. Under normal conditions, the phenotypes of the three have no significant difference. After heat stress treatment, B104 maize seedlings have already appeared in a state of wilting. Compared with B104, two overexpressed ZmPRA1C1 transgenes The growth status of the strains was relatively good, and the degree of wilting was low.
(三):过表达ZmPRA1C1转基因株系热胁迫下地上部分鲜重统计(3): Fresh weight statistics of aerial parts of overexpressed ZmPRA1C1 transgenic lines under heat stress
挑选(一)中长势一致的B104野生型、OE-1、OE-2玉米幼苗各30株,同时在热培养箱中进行45℃,5.5小时的热胁迫处理,统计热胁迫处理前后的地上部分鲜重,结果如图3B所示,在正常条件下,三者的地上部分鲜重没有明显差异,均在1g左右,在热胁迫处理之后,B104玉米幼苗的地上部分鲜重降低50%左右,说明植株生物量减少严重。相较于B104,两个过表达ZmPRA1C1转基因株系的地上部分鲜重依然保持未处理的80%左右,生物量降低程度较轻。Select 30 B104 wild-type, OE-1, and OE-2 corn seedlings with the same growth in (1), and carry out heat stress treatment at 45°C for 5.5 hours in a heat incubator at the same time, and count the aerial parts before and after heat stress treatment Fresh weight, the results are shown in Figure 3B. Under normal conditions, there was no significant difference in the fresh weight of the aerial parts of the three, all about 1g. After the heat stress treatment, the fresh weight of the aerial parts of B104 corn seedlings decreased by about 50%. It shows that the plant biomass is seriously reduced. Compared with B104, the fresh weight of above-ground parts of the two overexpressed ZmPRA1C1 transgenic lines remained about 80% of that of the untreated lines, and the biomass decreased to a lesser degree.
(四):过表达ZmPRA1C1转基因株系热胁迫下离子渗漏率统计(4): Statistics on ion leakage rate of transgenic lines overexpressing ZmPRA1C1 under heat stress
挑选(一)中长势一致的B104野生型、OE-1、OE-2玉米幼苗各30株,同时在热培养箱中进行45℃,5.5小时的热胁迫处理,统计热胁迫处理前后的幼苗离子渗漏率,结果如图3C所示,在正常条件下,三者的离子渗漏率没有明显差异,均在8%左右,在热胁迫处理之后,B104玉米幼苗的离子渗漏率明显升高到20%左右,说明细胞受到明显的热胁迫损伤。相较于B104,两个过表达ZmPRA1C1转基因株系的离子渗漏率明显升高到14%左右,受损伤程度明显低于B104。Select 30 B104 wild-type, OE-1, and OE-2 corn seedlings with the same growth in (1), and carry out heat stress treatment at 45°C for 5.5 hours in a heat incubator at the same time, and count the seedling ions before and after heat stress treatment. Leakage rate, the results are shown in Figure 3C. Under normal conditions, there is no significant difference in the ion leakage rate among the three, which are all about 8%. After the heat stress treatment, the ion leakage rate of B104 corn seedlings increased significantly When it reaches about 20%, it means that the cells are obviously damaged by heat stress. Compared with B104, the ion leakage rate of the two overexpressed ZmPRA1C1 transgenic lines was significantly increased to about 14%, and the degree of damage was significantly lower than that of B104.
以上所有证据说明ZmPRA1C1基因可以明显提高植物幼苗的热胁迫抗性,缓解幼苗遭受的热胁迫挑战。All the evidence above shows that the ZmPRA1C1 gene can significantly improve the heat stress resistance of plant seedlings, and alleviate the heat stress challenge suffered by the seedlings.
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art can still understand the foregoing embodiments. Modifications are made to the technical solutions described, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions claimed in the present invention.
序列表sequence listing
<110> 山东农业大学<110> Shandong Agricultural University
<120> 玉米ZmPRA1C1基因在提高植物热胁迫抗性中的应用<120> Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants
<160> 3<160> 3
<170> SIPOSequenceListing 1.0<170> SIP Sequence Listing 1.0
<210> 1<210> 1
<211> 3529<211> 3529
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)
<400> 1<400> 1
gtgcgccggt tgccatccat cagtgtggac tgtcgaaccg ggggatgggt tgggacgttg 60gtgcgccggt tgccatccat cagtgtggac tgtcgaaccg ggggatgggt tgggacgttg 60
ggtcctggtc cacgtgacca cgtctagcag tagcagacta gcaggctctc gaaactcacg 120ggtcctggtc cacgtgacca cgtctagcag tagcagacta gcaggctctc gaaactcacg 120
ttcccgtgtc gctcaactgg cacaggactg gacccgtccc gtacggcatc gcaccccgca 180ttcccgtgtc gctcaactgg cacaggactg gacccgtccc gtacggcatc gcaccccgca 180
gccgcaggcc gcatcttcct cgcgtgctct gccctctgtg cctgcccatc cgttgatccc 240gccgcaggcc gcatcttcct cgcgtgctct gccctctgtg cctgcccatc cgttgatccc 240
atcggcttcc ccttcctctt ccccgatccc cttcctcccc cgatcccatc caattccact 300atcggcttcc ccttcctctt ccccgatccc cttcctcccc cgatcccatc caattccact 300
tccacaccgc gggcctcgcc gccgacgccg acgccgccgg ccatgtccaa gtacggcacc 360tccacaccgc gggcctcgcc gccgacgccg acgccgccgg ccatgtccaa gtacggcacc 360
attcccacct cctcctccgc gggcggaggg cccgtgcccc tcggcggcgc ctccccgctc 420attcccacct cctcctccgc gggcggaggg cccgtgcccc tcggcggcgc ctccccgctc 420
gatttcatct cccgcgccaa ggctcggggc gcctcggcgc tggcgacgcg ccggccctgg 480gatttcatct cccgcgccaa ggctcggggc gcctcggcgc tggcgacgcg ccggccctgg 480
cgcgagctcg tggacgtcca cgccgtcggc ctgcccccga gcctcggcga cgcgtacctc 540cgcgagctcg tggacgtcca cgccgtcggc ctgcccccga gcctcggcga cgcgtacctc 540
cgcgtgcgcg ccaacctcgc ccacttcgcc atgaactatg ccatcgtcgt cctcgtcgtc 600cgcgtgcgcg ccaacctcgc ccacttcgcc atgaactatg ccatcgtcgt cctcgtcgtc 600
gtcttcctct ccctcctctg gcaccccgtc tccctcatcg tattcctcgt ctgcatgctt 660gtcttcctct ccctcctctg gcaccccgtc tccctcatcg tattcctcgt ctgcatgctt 660
gcctggctcg tcctctactt cctccgcgac gagcccctcg tcctcttcgg ccgcgtcgtc 720gcctggctcg tcctctactt cctccgcgac gagcccctcg tcctcttcgg ccgcgtcgtc 720
gccgacggct acgtcctcgc cgtgctcgcc gtcgtcacgc tcgtcctgct cctcctcacc 780gccgacggct acgtcctcgc cgtgctcgcc gtcgtcacgc tcgtcctgct cctcctcacc 780
gacgccaccg ccaacatcct ctcctcgctg ctcatcggcc tcgtgctcgt cctcgtccac 840gacgccaccg ccaacatcct ctcctcgctg ctcatcggcc tcgtgctcgt cctcgtccac 840
gccgcgctgc acaaggcgga ggacaacgcc gccgacgagg ctgaccgctg gtacgcgccg 900gccgcgctgc acaaggcgga ggacaacgcc gccgacgagg ctgaccgctg gtacgcgccg 900
gtgtcacagc agccgtcgca ctgaggtgtg atatcctccc tgcccctgcc ccgttctcct 960gtgtcacagc agccgtcgca ctgaggtgtg atatcctccc tgcccctgcc ccgttctcct 960
tatgatgatt gtgtcaccgt tggtgctgct gcttgctcct gtatgatttg ctaatgtgtt 1020tatgatgatt gtgtcaccgt tggtgctgct gcttgctcct gtatgatttg ctaatgtgtt 1020
cctttcaatt gtcatgctgt tgcagcgttg ttagttgtaa tttgttcttg tgcacgagca 1080cctttcaatt gtcatgctgt tgcagcgttg ttagttgtaa tttgttcttg tgcacgagca 1080
caaatgttca cagatagtca tatactgctt tgctatgaac gatttagtct tggcttctct 1140caaatgttca cagatagtca tatactgctt tgctatgaac gatttagtct tggcttctct 1140
actgtctact ctttccgcga attttagtta tcttgtagct atcgacagac tagagcagct 1200actgtctact ctttccgcga attttagtta tcttgtagct atcgacagac tagagcagct 1200
gtttgtgcaa ttggagctcc tatttgtaca ttcttgtgac tcatgtgcag ctgtgctgat 1260gtttgtgcaa ttggagctcc tatttgtaca ttcttgtgac tcatgtgcag ctgtgctgat 1260
tttaagagga ataatatata gctgtgctga ttttaatcag ctccttgaag gaaaaaatgc 1320tttaagagga ataatatata gctgtgctga ttttaatcag ctccttgaag gaaaaaatgc 1320
catggtcata cactcataca gatcgcctcg ccgtcaaggc tttcctatgc tatatcgcca 1380catggtcata cactcataca gatcgcctcg ccgtcaaggc tttcctatgc tatatcgcca 1380
gtcgctatcg ttccttcgcc cattgtagtc tacgatttcc ccgaagtgat gattgataag 1440gtcgctatcg ttccttcgcc cattgtagtc tacgatttcc ccgaagtgat gattgataag 1440
tagctccctt tcgaacatag attgagacat cttgtatttc tatctgccga gtttgtcaac 1500tagctccctt tcgaacatag attgagacat cttgtatttc tatctgccga gtttgtcaac 1500
actttgtaaa gaaaaatctg aagaaaccta agtatcttcg caacaagtta gaaatgtgaa 1560actttgtaaa gaaaaatctg aagaaaccta agtatcttcg caacaagtta gaaatgtgaa 1560
aattgagaat atgcggagac acagtgcgat tccaagcact tgtcatcttc ttcttaacct 1620aattgagaat atgcggagaac acagtgcgat tccaagcact tgtcatcttc ttcttaacct 1620
tatctaacca tacacattca agaacagttc tagcaatcat gtcatccatt tcagatccat 1680tatctaacca tacacattca agaacagttc tagcaatcat gtcatccat tcagatccat 1680
ctataatatt tcgcctgcct ctcccctctt ttttgccaat tttattctgc ttcccttaaa 1740ctataatatt tcgcctgcct ctcccctctt ttttgccaat tttattctgc ttcccttaaa 1740
ggtcatttca agtgtcagcc aaatgggtat ggacgtgggg cagctgtttt gcgattgttt 1800ggtcatttca agtgtcagcc aaatgggtat ggacgtgggg cagctgtttt gcgattgttt 1800
atattttaat tgataaacct ggaccgatag ggtgtgctaa ttttattgag agtcaatagt 1860atattttaat tgataaacct ggaccgatag ggtgtgctaa ttttattgag agtcaatagt 1860
ttgggaagga gttggggaca acttccctgg cacgaggaag gtacagctaa cctgtcaggg 1920ttgggaagga gttggggaca acttccctgg cacgaggaag gtacagctaa cctgtcaggg 1920
ctagtttagg agccagaaaa tcggaggaga ttgaaggagc taaaccccct tcgatcccct 1980ctagtttagg agccagaaaa tcggaggaga ttgaaggagc taaaccccct tcgatcccct 1980
ccggttttct ggctgccaaa ctagccctca ctgaattgaa ccagctaccg tttgttgggc 2040ccggttttct ggctgccaaa ctagccctca ctgaattgaa ccagctaccg tttgttgggc 2040
agaatcctga cgtgcagcct aggtgaacaa accttcaaaa ctagaatata taagatcatc 2100agaatcctga cgtgcagcct aggtgaacaa accttcaaaa ctagaatata taagatcatc 2100
cggtctagtt ttcatgaggt ctgatgcgct gacttgtttg cagaagtatt tctgttccga 2160cggtctagtt ttcatgaggt ctgatgcgct gacttgtttg cagaagtatt tctgttccga 2160
tttcgttttc ctgttaccta gttgtcattt tatttctggg cttattaacc agatcttttt 2220tttcgttttc ctgttaccta gttgtcattt tatttctggg cttattaacc agatcttttt 2220
gtcatgatga taaacgtgca ttttgtaatc caagtccatt cgttcacttc ccaggagcca 2280gtcatgatga taaacgtgca ttttgtaatc caagtccatt cgttcacttc ccaggagcca 2280
taatttatga aacttaataa ttacattttg tcatgatttt ccctattttg atgggccatt 2340taatttatga aacttaataa ttacattttg tcatgatttt ccctattttg atgggccatt 2340
gcattcttac gttttctgtt catatacatt ctggacttgc tttgagtctt tgacatcaat 2400gcattcttac gttttctgtt catatacatt ctggacttgc tttgagtctt tgacatcaat 2400
catggtcatg gtgccattta ttctcattct ctttttgctg cagtctgcag atatttctgt 2460catggtcatg gtgccattatta ttctcattct ctttttgctg cagtctgcag atatttctgt 2460
gttatggtaa ttgccggagg aaatgcatct gttcaaccct tgcctaaatt tatgttgagg 2520gttatggtaa ttgccggagg aaatgcatct gttcaaccct tgcctaaatt tatgttgagg 2520
gcgaaagtag tctgactgtt aacatgatat ttatctacag acttttctaa ctgtgccata 2580gcgaaagtag tctgactgtt aacatgatat ttatctacag acttttctaa ctgtgccata 2580
catgtcttct ttgttgaata ctgacaaccc aggaatgaaa tgtcaataat ctcattcctg 2640catgtcttct ttgttgaata ctgacaaccc aggaatgaaa tgtcaataat ctcattcctg 2640
catccagaga tttcacttat cgagtttcat tgacctgctc ataatactat tatgtaatgg 2700catccagaga tttcacttat cgagtttcat tgacctgctc ataatactat tatgtaatgg 2700
atcacgtgag ctgtgtttgt gtttgatcga tcgcttatca aagattctgc tgctttttta 2760atcacgtgag ctgtgtttgt gtttgatcga tcgcttatca aagattctgc tgctttttta 2760
attcatgacc cccccccccc ccccccccaa ataatgggtt tagacattca tgttgagcac 2820attcatgacc cccccccccc ccccccccaa ataatgggtt tagacattca tgttgagcac 2820
atcattcaca cttgaatctt ccaaagaggg atacaatgga ctgatatgga cacagattct 2880atcattcaca cttgaatctt ccaaagaggg atacaatgga ctgatatgga cacagattct 2880
ccacttgttc ttctcatgtt ggtaaattca attatgagac aaataaatca aagtcaatta 2940ccacttgttc ttctcatgtt ggtaaattca attatgagac aaataaatca aagtcaatta 2940
tgagaaaaaa atagcacaag tggctgggag cttcaaaatt ggaatacgca atggcctgca 3000tgagaaaaaa atagcacaag tggctgggag cttcaaaatt ggaatacgca atggcctgca 3000
gttctaatca atctgctagt atctcttttt ctgttttctc gctaagttta atactcagca 3060gttctaatca atctgctagt atctcttttt ctgttttctc gctaagttta atactcagca 3060
aaccaatttt gattttgaag actgagaaaa atgctatgcg tgtcttgcag gatctgaatg 3120aaccaatttt gattttgaag actgagaaaa atgctatgcg tgtcttgcag gatctgaatg 3120
tggccgttct gcgccttggc tgtgatccta ttctgtactc cctgtttccg agttcctcca 3180tggccgttct gcgccttggc tgtgatccta ttctgtactc cctgtttccg agttcctcca 3180
gctgcgcgag ctgggccatc cccatctcat ctgcgatgaa aaacctgtcc ctgttggttg 3240gctgcgcgag ctgggccatc cccatctcat ctgcgatgaa aaacctgtcc ctgttggttg 3240
tgattcacct gctgccggtt ccatgggaag ttttggatcc agcgacgacg cagggctgtt 3300tgattcacct gctgccggtt ccatgggaag ttttggatcc agcgacgacg cagggctgtt 3300
aaacttgttc tccacgccca tttctgtggt acgtttaaag cgtctcgttc acgtgtatca 3360aaacttgttc tccacgccca tttctgtggt acgtttaaag cgtctcgttc acgtgtatca 3360
aatccggact gaagtctagt gtacattttg agttggagaa atgtgatgcc agggacctgc 3420aatccggact gaagtctagt gtacattttg agttggagaa atgtgatgcc agggacctgc 3420
gttcagattt tatcgacgcc atgcatgtag gcaagggatg ctgatatttc agacatggtt 3480gttcagattt tatcgacgcc atgcatgtag gcaagggatg ctgatatttc agacatggtt 3480
ttattctacg tggtgtctgg gagcctggga agaaatctcg ttttgcttg 3529ttattctacg tggtgtctgg gagcctggga agaaatctcg ttttgcttg 3529
<210> 2<210> 2
<211> 582<211> 582
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
atgtccaagt acggcaccat tcccacctcc tcctccgcgg gcggagggcc cgtgcccctc 60atgtccaagt acggcaccat tcccacctcc tcctccgcgg gcggagggcc cgtgcccctc 60
ggcggcgcct ccccgctcga tttcatctcc cgcgccaagg ctcggggcgc ctcggcgctg 120ggcggcgcct ccccgctcga tttcatctcc cgcgccaagg ctcggggcgc ctcggcgctg 120
gcgacgcgcc ggccctggcg cgagctcgtg gacgtccacg ccgtcggcct gcccccgagc 180gcgacgcgcc ggccctggcg cgagctcgtg gacgtccacg ccgtcggcct gcccccgagc 180
ctcggcgacg cgtacctccg cgtgcgcgcc aacctcgccc acttcgccat gaactatgcc 240ctcggcgacg cgtacctccg cgtgcgcgcc aacctcgccc acttcgccat gaactatgcc 240
atcgtcgtcc tcgtcgtcgt cttcctctcc ctcctctggc accccgtctc cctcatcgta 300atcgtcgtcc tcgtcgtcgt cttcctctcc ctcctctggc accccgtctc cctcatcgta 300
ttcctcgtct gcatgcttgc ctggctcgtc ctctacttcc tccgcgacga gcccctcgtc 360ttcctcgtct gcatgcttgc ctggctcgtc ctctacttcc tccgcgacga gcccctcgtc 360
ctcttcggcc gcgtcgtcgc cgacggctac gtcctcgccg tgctcgccgt cgtcacgctc 420ctcttcggcc gcgtcgtcgc cgacggctac gtcctcgccg tgctcgccgt cgtcacgctc 420
gtcctgctcc tcctcaccga cgccaccgcc aacatcctct cctcgctgct catcggcctc 480gtcctgctcc tcctcaccga cgccaccgcc aacatcctct cctcgctgct catcggcctc 480
gtgctcgtcc tcgtccacgc cgcgctgcac aaggcggagg acaacgccgc cgacgaggct 540gtgctcgtcc tcgtccacgc cgcgctgcac aaggcggagg acaacgccgc cgacgaggct 540
gaccgctggt acgcgccggt gtcacagcag ccgtcgcact ga 582gaccgctggt acgcgccggt gtcacagcag ccgtcgcact ga 582
<210> 3<210> 3
<211> 193<211> 193
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
Met Ser Lys Tyr Gly Thr Ile Pro Thr Ser Ser Ser Ala Gly Gly GlyMet Ser Lys Tyr Gly Thr Ile Pro Thr Ser Ser Ser Ser Ala Gly Gly Gly
1 5 10 151 5 10 15
Pro Val Pro Leu Gly Gly Ala Ser Pro Leu Asp Phe Ile Ser Arg AlaPro Val Pro Leu Gly Gly Ala Ser Pro Leu Asp Phe Ile Ser Arg Ala
20 25 30 20 25 30
Lys Ala Arg Gly Ala Ser Ala Leu Ala Thr Arg Arg Pro Trp Arg GluLys Ala Arg Gly Ala Ser Ala Leu Ala Thr Arg Arg Pro Trp Arg Glu
35 40 45 35 40 45
Leu Val Asp Val His Ala Val Gly Leu Pro Pro Ser Leu Gly Asp AlaLeu Val Asp Val His Ala Val Gly Leu Pro Pro Ser Leu Gly Asp Ala
50 55 60 50 55 60
Tyr Leu Arg Val Arg Ala Asn Leu Ala His Phe Ala Met Asn Tyr AlaTyr Leu Arg Val Arg Ala Asn Leu Ala His Phe Ala Met Asn Tyr Ala
65 70 75 8065 70 75 80
Ile Val Val Leu Val Val Val Phe Leu Ser Leu Leu Trp His Pro ValIle Val Val Leu Val Val Val Phe Leu Ser Leu Leu Trp His Pro Val
85 90 95 85 90 95
Ser Leu Ile Val Phe Leu Val Cys Met Leu Ala Trp Leu Val Leu TyrSer Leu Ile Val Phe Leu Val Cys Met Leu Ala Trp Leu Val Leu Tyr
100 105 110 100 105 110
Phe Leu Arg Asp Glu Pro Leu Val Leu Phe Gly Arg Val Val Ala AspPhe Leu Arg Asp Glu Pro Leu Val Leu Phe Gly Arg Val Val Ala Asp
115 120 125 115 120 125
Gly Tyr Val Leu Ala Val Leu Ala Val Val Thr Leu Val Leu Leu LeuGly Tyr Val Leu Ala Val Leu Ala Val Val Thr Leu Val Leu Leu Leu
130 135 140 130 135 140
Leu Thr Asp Ala Thr Ala Asn Ile Leu Ser Ser Leu Leu Ile Gly LeuLeu Thr Asp Ala Thr Ala Asn Ile Leu Ser Ser Leu Leu Ile Gly Leu
145 150 155 160145 150 155 160
Val Leu Val Leu Val His Ala Ala Leu His Lys Ala Glu Asp Asn AlaVal Leu Val Leu Val His Ala Ala Leu His Lys Ala Glu Asp Asn Ala
165 170 175 165 170 175
Ala Asp Glu Ala Asp Arg Trp Tyr Ala Pro Val Ser Gln Gln Pro SerAla Asp Glu Ala Asp Arg Trp Tyr Ala Pro Val Ser Gln Gln Pro Ser
180 185 190 180 185 190
HisHis
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210466660.3A CN114790459B (en) | 2022-04-29 | 2022-04-29 | Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210466660.3A CN114790459B (en) | 2022-04-29 | 2022-04-29 | Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114790459A CN114790459A (en) | 2022-07-26 |
CN114790459B true CN114790459B (en) | 2023-07-18 |
Family
ID=82462433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210466660.3A Active CN114790459B (en) | 2022-04-29 | 2022-04-29 | Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114790459B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115992149B (en) * | 2022-11-17 | 2024-04-23 | 西北农林科技大学 | Application of corn ZmRAFS gene in improving waterlogging tolerance of plants |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113024644A (en) * | 2019-12-25 | 2021-06-25 | 中国农业大学 | Application of ZmICE1 protein and coding gene thereof in regulation and control of low-temperature stress tolerance of corn |
CN113121660A (en) * | 2019-12-30 | 2021-07-16 | 中国农业大学 | Application of corn MYB39 protein and coding gene thereof in regulation and control of low-temperature stress tolerance of corn |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX381662B (en) * | 2009-06-10 | 2025-03-13 | Evogene Ltd | ISOLATED POLYNUCLEOTIDES AND POLYPEPTIDES, AND METHODS OF USING THEM TO IMPROVE NITROGEN USE EFFICIENCY, YIELD, GROWTH RATE, VIGOR, BIOMASS, OIL CONTENT, AND/OR ABIOTIC STRESS TOLERANCE. |
-
2022
- 2022-04-29 CN CN202210466660.3A patent/CN114790459B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113024644A (en) * | 2019-12-25 | 2021-06-25 | 中国农业大学 | Application of ZmICE1 protein and coding gene thereof in regulation and control of low-temperature stress tolerance of corn |
CN113121660A (en) * | 2019-12-30 | 2021-07-16 | 中国农业大学 | Application of corn MYB39 protein and coding gene thereof in regulation and control of low-temperature stress tolerance of corn |
Also Published As
Publication number | Publication date |
---|---|
CN114790459A (en) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1625199B1 (en) | Methods of increasing abiotic stress tolerance and/or biomass in plants and plants generated thereby | |
CN103695439B (en) | Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof | |
CN114276429B (en) | Breeding method of TaLRK-R transgenic wheat with resistance to sheath blight and stem rot and related biological materials | |
CN111944030A (en) | Wheat stress resistance regulatory protein TaCOR58 and coding gene and application thereof | |
CN107022551A (en) | One kind regulates and controls big arabidopsis seedling stage trophosome, early blossoming and the increased corn gene ZmGRAS37 of grain weight and its application | |
CN113512558B (en) | A method for improving tomato resistance to bacterial wilt | |
CN112779271A (en) | Rice gene OsFd2 and application thereof in rice blast resistance | |
CN102250226A (en) | Paddy rice output related protein, and coding gene and application thereof | |
CN114790459B (en) | Application of Maize ZmPRA1C1 Gene in Improving Heat Stress Resistance of Plants | |
CN103014035B (en) | Tumorous stem mustard stress-resistant gene, plant expression vector, construction method and application thereof | |
CN102464708B (en) | Protein related to plant stress resistance and coding gene thereof as well as application thereof | |
CN113372423A (en) | Application of wild soybean Bet _ v _1 family gene GsMLP328 | |
CN101659699A (en) | Plant stress resistance-related protein GmSIK2 and coding gene and application thereof | |
CN103012570B (en) | Plant stress resistance related protein PpLEA3-21 and its coding gene and application | |
WO2022213453A1 (en) | Use of aluminum ion receptor alr1 gene or protein for regulating aluminum resistance of plant | |
CN112195187B (en) | Rice tillering angle regulation gene and protein coded by same and application of gene | |
CN111217898B (en) | Application of protein OsZZW1 in regulating drought resistance of rice | |
CN114591409A (en) | Application of TaDTG6 protein in improving plant drought resistance | |
CN102659936B (en) | Plant-stress-tolerance related protein, its encoding gene and application | |
CN107022550A (en) | Oat photoperiod related gene OPpdi molecular cloning and its functional verification | |
CN104818286A (en) | Clone of corn phosphatidylinositol transportprotein gene ZmSEC14p and application thereof | |
CN114015666B (en) | Application of OsPARP3 gene in regulation and control of plant drought tolerance | |
CN112048513B (en) | Rice gene OsTGA5 and its application in rice blast resistance | |
CN118979046A (en) | Application of phosphatidylcholine transporter OsPCTP in regulating resistance to rice bacterial blight | |
CN118516407A (en) | Application of ZmNF-YC14 gene and over-expression vector in drought stress resistance of corn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |