[go: up one dir, main page]

CN103695439B - Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof - Google Patents

Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof Download PDF

Info

Publication number
CN103695439B
CN103695439B CN201310724243.5A CN201310724243A CN103695439B CN 103695439 B CN103695439 B CN 103695439B CN 201310724243 A CN201310724243 A CN 201310724243A CN 103695439 B CN103695439 B CN 103695439B
Authority
CN
China
Prior art keywords
fcwrky70
gene
kumquat
transgenic
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310724243.5A
Other languages
Chinese (zh)
Other versions
CN103695439A (en
Inventor
刘继红
龚小庆
张静燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201310724243.5A priority Critical patent/CN103695439B/en
Publication of CN103695439A publication Critical patent/CN103695439A/en
Application granted granted Critical
Publication of CN103695439B publication Critical patent/CN103695439B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了金柑FcWRKY70基因及其在提高植物耐旱中的应用,申请人从金柑(Fortunella.crassifolia)中分离、克隆得到一个多重逆境诱导表达的WRKY转录因子FcWRKY70,其序列为SEQ ID NO.1所示,编码的蛋白质为SEQ ID NO.2所示。申请人将该基因分别导入到烟草、柠檬及金柑中,获得的超表达转基因植株对干旱胁迫的耐受性明显提高,干涉转基因植株对干旱胁迫的耐受性明显被削弱。本发明为植物抗非生物逆境分子设计育种提供了新的基因资源,为实施绿色农业、节水农业提供新的遗传资源,该遗传资源的开发利用有利于降低农业生产成本,促进农业产业高效发展。The present invention provides kumquat FcWRKY70 gene and its application in improving plant drought tolerance. The applicant isolated and cloned a multiple stress-induced WRKY transcription factor FcWRKY70 from kumquat (Fortunella. crassifolia), and its sequence is SEQ ID NO. 1, the encoded protein is shown in SEQ ID NO.2. The applicant introduced the gene into tobacco, lemon and kumquat respectively, and the obtained overexpression transgenic plants had significantly improved tolerance to drought stress, and the tolerance of the interference transgenic plants to drought stress had been significantly weakened. The present invention provides new genetic resources for plant anti-abiotic stress molecular design and breeding, and provides new genetic resources for the implementation of green agriculture and water-saving agriculture. The development and utilization of the genetic resources is conducive to reducing agricultural production costs and promoting the efficient development of agricultural industries .

Description

金柑FcWRKY70基因及其在提高植物耐旱中的应用Kumquat FcWRKY70 Gene and Its Application in Improving Plant Drought Tolerance

技术领域technical field

本专利属于植物基因工程领域。具体涉及从金柑(Fortunella.crassifolia)中分离、克隆得到一个多重逆境诱导表达的WRKY转录因子FcWRKY70,然后将该基因分别导入到烟草、柠檬及金柑中,获得的超表达转基因植株对干旱胁迫的耐受性明显提高,干涉转基因植株对干旱胁迫的耐受性明显被削弱。This patent belongs to the field of plant genetic engineering. It specifically involves the isolation and cloning of a multiple stress-induced WRKY transcription factor FcWRKY70 from kumquat (Fortunella. The tolerance to drought stress was significantly improved, and the tolerance of the intervention transgenic plants to drought stress was significantly weakened.

背景技术Background technique

植物在生长过程中,经常会受到各种不同不良环境的胁迫影响,像干旱,盐,冷害,高温,营养贫乏和病虫害,严重影响其生长发育(Gong and Liu 2013)。值得注意的是,每年全球因为干旱造成农作物减产约为20%(Wang et al 2003)。During the growth process, plants are often affected by various adverse environmental stresses, such as drought, salt, cold damage, high temperature, nutrient deficiency, and pests and diseases, which seriously affect their growth and development (Gong and Liu 2013). It is worth noting that global crop yields are reduced by approximately 20% each year due to drought (Wang et al 2003).

为适应各种环境胁迫,植物在生理及生化过程中形成了一系列的改变(Krasensky andJonak,2012)。例如,改变代谢过程以积累一系列代谢物维持细胞彭压,抵御逆境影响(Nishizawa et al.,2008;Verbruggen and Hermans 2008;Livingston et al.,2009;Shi et al.,2010;Fu et al.,2011a,b)。此外,大量基因的转录水平发生改变,被逆境诱导表达抑或被抑制转录(Seki et al.,2003)。一部分逆境响应基因通过编码功能蛋白,促进植物细胞积累有益代谢物,保护细胞免受伤害(Chen and Murata 2011;Wang et al.,2011)。另一分部分基因行使转录调节的功能,修饰靶基因的表达,例如转录因子,蛋白激酶,磷酸化酶(Su et al.,2010;Mao etal.,2011;Seo et al.,2012;Cui et al.,2012)To adapt to various environmental stresses, plants undergo a series of changes in physiological and biochemical processes (Krasensky and Jonak, 2012). For example, changing the metabolic process to accumulate a series of metabolites maintains cellular stress and resists stress (Nishizawa et al., 2008; Verbruggen and Hermans 2008; Livingston et al., 2009; Shi et al., 2010; Fu et al. , 2011a,b). In addition, a large number of genes have altered transcription levels, either being stress-induced or transcriptionally repressed (Seki et al., 2003). Some stress response genes encode functional proteins that promote the accumulation of beneficial metabolites in plant cells and protect cells from damage (Chen and Murata 2011; Wang et al., 2011). Another part of genes perform the function of transcriptional regulation, modifying the expression of target genes, such as transcription factors, protein kinases, phosphorylases (Su et al., 2010; Mao et al., 2011; Seo et al., 2012; Cui et al. al.,2012)

转录因子在逆境响应基因的转录重组表达过程中起着不可或缺的作用(Singh et al.,2002)。植物基因组包含有大量的转录因子,这其中WRKY蛋白被认为是植物特有的由数量巨大的成员组成的一个大的基因家族(Eulgem et al.,2000)。生物信息学分析显示,在已公布基因组序列的一些物种中均存在非常丰富的WRKY蛋白,其中拟南芥中74个,水稻中109个,番木瓜中66个,杨树中104个,高梁中68个(Eulgem and Somssich 2007;Rosset al.,2007;Pandey and Somssich 2009)。自从在甘薯中发现第一个WRKY蛋白以来,研究者们在植物中鉴定出越来越多的WRKY蛋白。Transcription factors play an integral role in the transcriptional recombination of stress-responsive genes (Singh et al., 2002). Plant genome contains a large number of transcription factors, among which WRKY protein is considered to be a large gene family composed of a huge number of members unique to plants (Eulgem et al., 2000). Bioinformatics analysis shows that there are very abundant WRKY proteins in some species whose genome sequences have been published, including 74 in Arabidopsis, 109 in rice, 66 in papaya, 104 in poplar, and 68 in sorghum (Eulgem and Somssich 2007; Ross et al., 2007; Pandey and Somssich 2009). Since the first WRKY protein was discovered in sweet potato, researchers have identified more and more WRKY proteins in plants.

至今为止,已有大量的研究表明WRKY蛋白在不同生理生化过程中起着关键作用,像信号传导,代谢,木质化等(Ren et al.,2008;Guillaumie et al.,2010;Mao et al.,2011;Yu et al.,2013)。此外,越来越多的证据表明WRKY转录因子参与了植物对生物及非生物逆境的响应过程(Liu et al.,2013)。例如,拟南芥Ⅱ族a亚族的三个成员,AtWRYK18、AtWRKY40和AtWRKY60,在结构上与功能上形成冗余、拮抗而又互不相同的复杂作用模式,应对不同的真菌及细菌病害(Xu et al.,2006;Shen et al.,2007;Pandey et al.,2010)。AtWRKY6和AtWRKY42可调节PHOSPHATE1(PHO1)的表达,提高转基因拟南芥对低磷胁迫的耐受性(Chen et al.,2009)。2个Ⅲ族WRKY转录因子,WRKY70和WRKY54,在拟南芥中协同负调控气孔开闭,调节渗透胁迫(Li et al.,2013)。水稻中也有关于一对WRKY转录因子的等位基因在白叶枯病、细菌性条斑病以及干旱、盐等逆境下作用截然相反的研究报道(Tao etal.,2009;Tao et al.,2011)。鉴于WRKY转录因子在植物逆境胁迫过程所起的重要作用,该类基因可作为有效的基因资源,通过转基因模式创造出抗性增强的转基因植物。目前为止,已有大量研究表明,过量表达类似基因能够显著增强植物的抗逆性(Fu at al.,2011b;Hao etal.,2011;Su et al.,2010)。So far, a large number of studies have shown that WRKY proteins play key roles in different physiological and biochemical processes, such as signal transduction, metabolism, lignification, etc. (Ren et al., 2008; Guillaumie et al., 2010; Mao et al. , 2011; Yu et al., 2013). In addition, increasing evidence indicates that WRKY transcription factors are involved in plant responses to biotic and abiotic stresses (Liu et al., 2013). For example, the three members of Arabidopsis family II a subfamily, AtWRYK18, AtWRKY40 and AtWRKY60, form redundant, antagonistic and different complex modes of action in terms of structure and function, and respond to different fungal and bacterial diseases ( Xu et al., 2006; Shen et al., 2007; Pandey et al., 2010). AtWRKY6 and AtWRKY42 can regulate the expression of PHOSPHATE1 (PHO1) and improve the tolerance of transgenic Arabidopsis to low phosphorus stress (Chen et al., 2009). Two family III WRKY transcription factors, WRKY70 and WRKY54, cooperatively negatively regulate stomatal opening and closing in Arabidopsis to regulate osmotic stress (Li et al., 2013). In rice, there are also research reports on a pair of alleles of WRKY transcription factors that have opposite effects in bacterial blight, bacterial streak disease, drought, and salt stress (Tao et al., 2009; Tao et al., 2011 ). In view of the important role of WRKY transcription factors in the process of plant adversity stress, this type of gene can be used as an effective gene resource to create transgenic plants with enhanced resistance through transgenic models. So far, a large number of studies have shown that overexpression of similar genes can significantly enhance the stress resistance of plants (Fu at al., 2011b; Hao et al., 2011; Su et al., 2010).

在之前的研究中,我们发掘到一个多重逆境响应的EST,通过RACE技术扩增得到全长,发现该基因具有一个WRKY结构域,是一个潜在的WRKY转录因子。生物信息学分析表明该基因隶属于Ⅲ族WRKY转录因子,与拟南芥的WRKY70最相似,因此我们将其命名为FcWRKY70。其是一个未知的新基因,编码一个小分子多肽产物,不含任何已知的保守结构域。研究发现溃疡病菌,外源添加SA及ABA可明显诱导FcWRKY70的表达,此外干旱及盐处理也可明显诱导其表达,是抗性育种中一个非常优良的基因资源。In previous studies, we discovered a multiple stress-responsive EST, amplified the full length by RACE technology, and found that the gene has a WRKY domain and is a potential WRKY transcription factor. Bioinformatics analysis showed that this gene belongs to family III WRKY transcription factors and is most similar to Arabidopsis WRKY70, so we named it FcWRKY70. It is an unknown new gene, encoding a small molecule polypeptide product without any known conserved domain. Studies have found that the expression of FcWRKY70 can be significantly induced by exogenous addition of SA and ABA in canker sores, and it can also be induced by drought and salt treatment, which is a very good gene resource for resistance breeding.

发明内容Contents of the invention

本发明目的是从金柑(Fortunella.crassifolia)中分离、克隆出一个受多重逆境诱导表达的WRKY转录因子,FcWRKY70,其核苷酸序列如SEQ ID NO:1所示,其编码的氨基酸序列如SEQ ID NO:2所示。The object of the present invention is to isolate and clone a WRKY transcription factor induced by multiple adversities, FcWRKY70, whose nucleotide sequence is shown in SEQ ID NO: 1, and its encoded amino acid sequence is shown in SEQ ID NO: ID NO: 2.

本发明的另一个目的在于提供了一种金柑FcWRKY70基因在提高植物抗干旱胁迫中的应用,通过农杆菌介导的遗传转化将其导入烟草、柠檬和金柑中,鉴定其在脱水及干旱胁迫下的功能,为植物抗逆分子设计育种提供新的基因资源,为实施绿色农业、节水农业提供新的遗传资源,该遗传资源的开发利用有利于降低农业生产成本和实现环境友好。Another object of the present invention is to provide an application of the Kumquat FcWRKY70 gene in improving plant resistance to drought stress. It is introduced into tobacco, lemon and Kumquat through Agrobacterium-mediated genetic transformation, and its performance under dehydration and drought stress is identified. It provides new genetic resources for the design and breeding of plant stress-resistant molecules, and provides new genetic resources for the implementation of green agriculture and water-saving agriculture. The development and utilization of this genetic resource is conducive to reducing agricultural production costs and achieving environmental friendliness.

为了达到上述目的,本发明采用以下技术措施:In order to achieve the above object, the present invention adopts the following technical measures:

金柑野生型cDNA为模板,以下述引物进行扩增:Kumquat wild-type cDNA was used as a template and amplified with the following primers:

正向引物:5’-CATGCCATGGATCATAATGAAAATGGAGGCCGGTC-3’;Forward primer: 5'-CATGCCATGGATCATAATGAAAATGGAGGCCGGTC-3';

反向引物:5’-GGGTCACCAGTTGCAAAGGACTAGCGGTAGCAG-3’。Reverse primer: 5'-GGGTCACCAGTTGCAAAGGACTAGCGGTAGCAG-3'.

得到一个新金柑基因FcWRKY70,其核苷酸序列如SEQ ID NO:1所示,FcWRKY70全长1196bp,其中83-1069bp处为该基因的编码区;其编码的氨基酸序列如SEQ ID NO:2所示,它包含987bp的开放阅读框,编码328个氨基酸,等电点为5.89,预测的分子量为36.78kD。Obtain a new kumquat gene FcWRKY70, its nucleotide sequence is as shown in SEQ ID NO: 1, the full length of FcWRKY70 is 1196bp, wherein 83-1069bp is the coding region of the gene; its encoded amino acid sequence is as shown in SEQ ID NO: 2 According to the results, it contains an open reading frame of 987bp, encodes 328 amino acids, has an isoelectric point of 5.89, and a predicted molecular weight of 36.78kD.

利用农杆菌介导的遗传转化方法转化烟草和柠檬,获得的转基因植株经生物学功能验证,表明本发明所克隆的FcWRKY70基因具有提高耐脱水及干旱胁迫的功能。在本发明的实施例部分,我们阐述了金柑FcWRKY70的分离、功能验证和应用。The genetic transformation method mediated by Agrobacterium is used to transform tobacco and lemon, and the obtained transgenic plants are verified by biological function, which shows that the cloned FcWRKY70 gene of the present invention has the function of improving resistance to dehydration and drought stress. In the Example section of the present invention, we describe the isolation, functional verification and application of Kumquat FcWRKY70.

与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:

干旱、低温、盐碱化等逆境均会伴随着严重的植物脱水过程,形成生理干旱,影响植物正常生长发育及作物的地理分布。传统农业对水资源的依赖性较大,特别是高温季节,制约了农业产业的发展。依托本发明能有效改善植物的耐旱能力,使其适应干旱环境。一旦获得有效转基因材料,生产上可有效降低浇灌用水的消耗,节约资源,降低生产成本。另一方面,本发明可根据实际生产需求用于改善砧木材料或是其它,应用广泛,易于被接受认可。Drought, low temperature, salinization and other adversities will be accompanied by severe plant dehydration process, forming physiological drought, affecting the normal growth and development of plants and the geographical distribution of crops. Traditional agriculture relies heavily on water resources, especially in high temperature seasons, which restricts the development of the agricultural industry. Relying on the invention, the drought tolerance ability of the plants can be effectively improved, so that they can adapt to the drought environment. Once effective genetically modified materials are obtained, the consumption of irrigation water can be effectively reduced in production, resources can be saved, and production costs can be reduced. On the other hand, the present invention can be used to improve rootstock materials or others according to actual production requirements, and has wide application and is easy to be accepted and approved.

通过农杆菌介导的遗传转化将该基因导到植株中,鉴定其在不同逆境条件下的功能,为植物抗逆分子设计育种提供新的基因资源,为实施绿色农业、节水农业提供新的遗传资源。Introduce the gene into plants through Agrobacterium-mediated genetic transformation, identify its function under different stress conditions, provide new genetic resources for plant stress-resistant molecule design and breeding, and provide new opportunities for implementing green agriculture and water-saving agriculture genetic resources.

附图说明Description of drawings

图1为本发明的技术流程图。Fig. 1 is a technical flow chart of the present invention.

图2为本发明的FcWRKY70基因在不同胁迫处理下的表达示意图。Fig. 2 is a schematic diagram of the expression of the FcWRKY70 gene of the present invention under different stress treatments.

图3为本发明的FcWRKY70基因亚细胞定位荧光示意图。Fig. 3 is a schematic diagram showing the subcellular localization fluorescence of the FcWRKY70 gene of the present invention.

其中图3中A-B为GFP基因(对照)在明场、暗场下的成像;图3中C-E为FcWRKY70基因在明场(C)、暗场DAPI染色(D)、及暗场GFP(E)下的成像。Among them, A-B in Figure 3 is the imaging of GFP gene (control) in bright field and dark field; C-E in Figure 3 is the imaging of FcWRKY70 gene in bright field (C), dark field DAPI staining (D), and dark field GFP (E) image below.

图4为本发明的FcWRKY70基因转录激活鉴定示意图。Fig. 4 is a schematic diagram of identification of transcriptional activation of FcWRKY70 gene of the present invention.

图5为本发明的FcWRKY70基因载体构建示意图图。Fig. 5 is a schematic diagram of the construction of the FcWRKY70 gene vector of the present invention.

图5中A是超表达载体构建示意图;图5中B是干涉载体构建示意图。A in Fig. 5 is a schematic diagram of constructing an overexpression vector; B in Fig. 5 is a schematic diagram of constructing an interference vector.

图6为本发明的FcWRKY70基因转化柠檬及再生过程示意图。Fig. 6 is a schematic diagram of transformation of lemon with FcWRKY70 gene of the present invention and regeneration process.

图6中A为共培养的茎段,图6中B为筛选培养的茎段;图6中C为抗性芽在伸长培养基上伸长及扩繁,图6中D为抗性芽进行生根培养。烟草及金柑转化过程与之类似。A in Figure 6 is the co-cultured stem section, B in Figure 6 is the stem section of the screening culture; C in Figure 6 is the elongation and propagation of resistant buds on the elongation medium, and D in Figure 6 is the resistant buds Carry out rooting culture. The transformation process of tobacco and kumquat is similar.

图7为本发明的FcWRKY70基因转基因材料PCR鉴定示意图。Fig. 7 is a schematic diagram of PCR identification of the FcWRKY70 gene transgenic material of the present invention.

图7中A是FcWRKY70转化烟草后得到的再生植株PCR鉴定图(上为FcWRKY70特异引物PCR扩增图,下为HPTII基因特异引物PCR扩增图);A in Fig. 7 is the PCR identification map of the regenerated plant obtained after FcWRKY70 transformed tobacco (the top is the PCR amplification map of the FcWRKY70 specific primer, and the bottom is the PCR amplification map of the HPTII gene specific primer);

图7中B是FcWRKY70转化柠檬后得到的再生植株PCR鉴定图(上为FcWRKY70特异引物PCR扩增图,下为HPTII基因特异引物PCR扩增图);B in Fig. 7 is the PCR identification diagram of the regenerated plant obtained after FcWRKY70 transforms lemon (upper is the PCR amplification diagram of FcWRKY70-specific primers, and the lower is the PCR amplification diagram of HPTII gene-specific primers);

图7中C是FcWRKY70转化金柑后得到的再生植株PCR鉴定图(上为35S正向引物和FcWRKY70特异引物PCR扩增图,下为NPTII基因特异引物PCR扩增图);C in Fig. 7 is the PCR identification diagram of the regenerated plant obtained after FcWRKY70 transformation of kumquat (upper is the PCR amplification diagram of 35S forward primer and FcWRKY70 specific primer, and the lower is the PCR amplification diagram of NPTII gene specific primer);

图7中D为目的基因在烟草转基因系中表达量分析,图7E为目的基因在柠檬转基因系中表达量分析,7F为目的基因在金柑转基因系中表达量分析;D in Fig. 7 is the expression level analysis of the target gene in the tobacco transgenic line, Fig. 7E is the expression level analysis of the target gene in the lemon transgenic line, and 7F is the expression level analysis of the target gene in the kumquat transgenic line;

图8为本发明FcWRKY70转基因烟草苗(1#,4#)与野生型抗旱性比较示意图。Fig. 8 is a schematic diagram showing the drought resistance comparison between the FcWRKY70 transgenic tobacco seedlings (1#, 4#) of the present invention and the wild type.

图8中A是转基因烟草离体苗自然脱水60分钟前后各系材料表型比较及trypan blue染色差异比较;A in Fig. 8 is a comparison of the phenotype of the transgenic tobacco isolated seedlings before and after natural dehydration for 60 minutes and the difference of trypan blue staining;

图8中B为各系离体苗自然脱水60分钟过程中相对失水率比较;Among Fig. 8, B is the comparison of the relative water loss rate in the process of natural dehydration of each line of in vitro seedlings for 60 minutes;

图8中C为盆栽材料控水前后表型比较;C in Fig. 8 is the phenotype comparison before and after water control of the potting material;

图8D为控水后各系材料土壤相对含水量比较;图8E为控水后取样各系材料测得的MDA值。Figure 8D is a comparison of the relative soil water content of various materials after water control; Figure 8E is the MDA value measured by sampling materials of each series after water control.

图9为本发明FcWRKY70转基因柠檬苗(28#,43#)与野生型肮脱水能力比较示意图。Fig. 9 is a schematic diagram showing the dehydration ability comparison between the FcWRKY70 transgenic lemon seedlings (28#, 43#) of the present invention and the wild type.

图9中A是FcWRKY70转基因材料与野生型自然脱水6个小时过程中的相对失水率的比较;A in Figure 9 is a comparison of the relative water loss rate between the FcWRKY70 transgenic material and the wild type during natural dehydration for 6 hours;

图9中B为脱水后各系材料NBT染色差异比较;图9C为脱水后各系材料DAB染色差异比较。Figure 9B is a comparison of the differences in NBT dyeing of various materials after dehydration; Figure 9C is a comparison of the differences in DAB dyeing of various materials after dehydration.

图10为FcWRKY70转基因金柑苗(20#,22#)与野生型肮脱水能力比较示意图。Fig. 10 is a schematic diagram showing the comparison of the dehydration ability of FcWRKY70 transgenic kumquat seedlings (20#, 22#) and the wild type.

具体实施方式Detailed ways

以下结合具体实施对本发明做出详细的描述。根据以下的描述和这些实施,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。The present invention will be described in detail below in combination with specific implementations. From the following descriptions and these implementations, those skilled in the art can ascertain the essential characteristics of the present invention, and without departing from the spirit and scope of the present invention, various changes and modifications can be made to the present invention, so that it can be applied to various Use and Condition.

实施例1:Example 1:

FcWRKY70基因分离克隆及表达分析Isolation, Cloning and Expression Analysis of FcWRKY70 Gene

在之前的研究中,我们以芯片探针Cit.7937.1.S1_at序列比对柑橘EST数据库HarvEST(http://harvest.ucr.edu),得到了一条目标EST序列。为得到其全长序列信息,我们采用了RACE技术。根据已知的片段信息,分别设计3’Race及5’Race引物,如下:In the previous study, we compared the citrus EST database HarvEST (http://harvest.ucr.edu) with the chip probe Cit.7937.1.S1_at sequence, and obtained a target EST sequence. In order to obtain its full-length sequence information, we adopted RACE technology. According to the known fragment information, design 3'Race and 5'Race primers respectively, as follows:

3’Race outer primer-GS:5’AGTGCCCACATCACCGAAAA 3’3'Race outer primer-GS:5'AGTGCCCACATCACCGAAAA 3'

3’Race inner primer-GS:5’TGGGGATGTGATTTCTGGAGT 3’3'Race inner primer-GS:5'TGGGGATGTGATTTCTGGAGT 3'

5’Race primer-GS:5’AAATCTTTTTCGGTGATGTGGGCA 3’5'Race primer-GS:5'AAATCTTTTTCGGTGATGTGGGCA 3'

首先使用RNAiso Plus试剂盒抽提金柑叶片中的总RNA(试剂盒购自TAKARA公司,操作方法按照说明书)。而后取1μg总RNA样品,加3’Race反应接头,以3’Full RACE CoreSet Ver.2.0Kit试剂盒,合成第一链cDNA(试剂盒购自TAKARA公司,第一链cDNA合成参见试剂盒说明手册)。所得的第一链cDNA用于巢式PCR反应扩增目的基因的3’末端序列。Outer PCR 50μl的反应体系中各组分如下:First, the total RNA in kumquat leaves was extracted using the RNAiso Plus kit (the kit was purchased from TAKARA Company, and the operation method was in accordance with the instructions). Then take 1 μg of total RNA sample, add 3'Race reaction adapter, and use 3'Full RACE CoreSet Ver.2.0Kit kit to synthesize the first-strand cDNA (the kit was purchased from TAKARA company, see the kit instruction manual for the synthesis of the first-strand cDNA ). The obtained first-strand cDNA was used for nested PCR reaction to amplify the 3' end sequence of the target gene. The components in the Outer PCR 50μl reaction system are as follows:

PCR反应在Bio-Rad AlphaTM Unit Block Assembly For DNASystems扩增仪上按以下程序完成:95℃预变性3分钟;95℃变性30秒、55℃退火30秒、72℃延伸120秒(共20个循环);循环完成后72℃延伸10分钟。Outer PCR扩增结束后产物于-20℃保存,用于Inner PCR扩增。PCR reaction in Bio-Rad Alpha TM Unit Block Assembly For DNA The following procedures were completed on the Systems thermal cycler: pre-denaturation at 95°C for 3 minutes; denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, extension at 72°C for 120 seconds (20 cycles in total); extension at 72°C for 10 minutes after the cycle was completed. After the Outer PCR amplification, the product was stored at -20°C for Inner PCR amplification.

Inner PCR 50μl的反应体系中各组分如下:The components in the Inner PCR 50μl reaction system are as follows:

PCR反应在Bio-Rad AlphaTM Unit Block Assembly For DNASystems扩增仪上按以下程序完成:95℃预变性3分钟;95℃变性30秒、55℃退火30秒、72℃延伸120秒(共30个循环);循环完成后72℃延伸10分钟。经两次PCR反应后得到一条PCR条带产物,经1.2%的琼脂糖凝胶电泳后,用Axygen DNA Gel Extraction Kit凝胶回收试剂盒(购自Axygen公司)回收目的带(具体步骤参照使用说明)。回收纯化的DNA溶液与pMD18-T载体(购自TAKARA公司)进行连接反应(按说明书操作),连接反应总体积是10μl,包括5μl的SolutionⅠ(载体试剂盒中所有),4.5μl纯化的PCR产物和0.5μl T载体,16℃连接过夜。而后以全部的连接产物,热激法转化大肠杆菌DH5α感受态,并在含有100mg/L氨苄霉素的LB固体平板中筛选阳性克隆,挑取4-6个克隆测序。PCR reaction in Bio-Rad Alpha TM Unit Block Assembly For DNA The following procedures were completed on the Systems thermal cycler: pre-denaturation at 95°C for 3 minutes; denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 120 seconds (30 cycles in total); and extension at 72°C for 10 minutes after the cycle was completed. Obtain a PCR band product after two PCR reactions, after 1.2% agarose gel electrophoresis, use Axygen DNA Gel Extraction Kit gel recovery kit (purchased from Axygen Company) to recover the target band (specific steps refer to the instructions for use) ). Recover the purified DNA solution and pMD18-T carrier (purchased from TAKARA company) for ligation reaction (operated according to the instructions), the total volume of the ligation reaction is 10 μl, including 5 μl of Solution Ⅰ (all in the vector kit), and 4.5 μl of purified PCR product And 0.5μl T vector, 16 ℃ overnight. Then transform Escherichia coli DH5α competent by heat shock method with all the ligation products, screen positive clones on LB solid plate containing 100 mg/L ampicillin, pick 4-6 clones and sequence them.

5’Race反应所用试剂盒为SMARTerTM RACE cDNA Amplification Kit(购自Clontech公司)。3μg总RNA样品被用作合成第一链cDNA,具体方法参见试剂盒说明书。所得的第一链cDNA用于Touchdown PCR反应,扩增目的基因的5’cDNA末端。该PCR反应采用Advantage 2Polymerase Mix(购自Clontech公司)进行扩增,各组分添加参见说明书。PCR反应在Bio-Rad AlphaTM Unit Block Assembly For DNASystems扩增仪上按以下程序完成:94℃变性30秒,72℃延伸3分钟(共5个循环);94℃变性30秒、70℃退火30秒、72℃延伸3分钟(共5个循环);94℃变性30秒、68℃退火30秒、72℃延伸3分钟(共25个循环);循环完成后72℃延伸10分钟。后续实验同3’Race,即所得的PCR产物经电泳回收后连接至T载体,并转化大肠杆菌DH5α感受态,最后挑取4-6个阳性克隆测序。The kit used for the 5'Race reaction was SMARTer TM RACE cDNA Amplification Kit (purchased from Clontech). 3 μg of total RNA sample was used to synthesize the first-strand cDNA. For details, please refer to the kit instructions. The resulting first-strand cDNA was used in a Touchdown PCR reaction to amplify the 5' cDNA end of the target gene. The PCR reaction was amplified using Advantage 2 Polymerase Mix (purchased from Clontech Company), and the addition of each component was referred to the instructions. PCR reaction in Bio-Rad Alpha TM Unit Block Assembly For DNA The following procedures were completed on the Systems thermal cycler: denaturation at 94°C for 30 seconds, extension at 72°C for 3 minutes (5 cycles in total); denaturation at 94°C for 30 seconds, annealing at 70°C for 30 seconds, and extension at 72°C for 3 minutes (5 cycles in total). ); denaturation at 94°C for 30 seconds, annealing at 68°C for 30 seconds, and extension at 72°C for 3 minutes (25 cycles in total); after the cycle was completed, extend at 72°C for 10 minutes. Subsequent experiments were the same as 3'Race, that is, the obtained PCR products were recovered by electrophoresis and connected to T vectors, and transformed into competent Escherichia coli DH5α, and finally 4-6 positive clones were picked and sequenced.

为分析FcWRKY70基因是否能响应不同的环境刺激,采用实时定量PCR分析该基因在不同逆境处理下的表达。结果表明,柑橘溃疡病菌Xcc,ABA,SA,脱水,盐均能诱导该基因表达,而低温对其表达没有明显诱导现象(见图2),表明它是一个多重逆境应答基因,能同时响应生物逆境及非生物逆境胁迫。In order to analyze whether the FcWRKY70 gene can respond to different environmental stimuli, real-time quantitative PCR was used to analyze the expression of the gene under different stress treatments. The results showed that Xcc, ABA, SA, dehydration, and salt of X. citrus could all induce the expression of this gene, while low temperature had no obvious induction on its expression (see Figure 2), indicating that it is a multiple stress response gene that can simultaneously respond to biological Adversity and abiotic stress.

实施例2:Example 2:

FcWRKY70基因亚细胞定位Subcellular localization of FcWRKY70 gene

在线定位预测指出FcWRKY70定位于细胞核,本研究利用烟草表皮来研究FcWRKY70基因的亚细胞定位。在这里我们选用了pCAMBIA1302载体构建FcWRKY70基因的定位载体。利用RT-PCR扩增出FcWRKY70基因整个ORF(阅读框),并在其扩增引物两端分别加上Nco I单酶切位点。同时用Nco I单酶切PCR回收产物与pCAMBIA1302载体,之后分别进行酶切产物的回收,基因片段及载体片段重组连接,从而得到pCAMBIA1302-FcWRKY70-GFP重组质粒。重组质料与对照质粒(pCAMBIA1302)随后分别转入农杆菌GV3101。Online localization prediction indicated that FcWRKY70 is localized in the nucleus. In this study, tobacco epidermis was used to study the subcellular localization of FcWRKY70 gene. Here we choose pCAMBIA1302 vector to construct the positioning vector of FcWRKY70 gene. The entire ORF (reading frame) of the FcWRKY70 gene was amplified by RT-PCR, and Nco I single enzyme cutting sites were added to both ends of the amplification primers. At the same time, Nco I was used to single-enzyme digest the product recovered from PCR and the pCAMBIA1302 vector, and then the digested product was recovered separately, and the gene fragment and the vector fragment were recombined and connected to obtain the pCAMBIA1302-FcWRKY70-GFP recombinant plasmid. The recombinant material and control plasmid (pCAMBIA1302) were then transformed into Agrobacterium GV3101 respectively.

农杆菌侵染烟草表皮按如下方法进行:Agrobacterium infection of tobacco epidermis is carried out as follows:

1.菌体活化:分别沾取少量含重组质粒及对照质粒的农杆菌GV3101菌液,划线于Km/LB平板上,28℃培养1-2d,活化菌体。1. Bacterial cell activation: dip a small amount of Agrobacterium GV3101 bacterial liquid containing the recombinant plasmid and the control plasmid, streak on the Km/LB plate, and incubate at 28°C for 1-2 days to activate the bacterial cells.

2.从划线的平板上挑取单克隆,接种于50ml Km/LB液体培养基中,28℃,250rpm培养,至OD600=0.4-0.6之间,此时菌体生长处于对数期,活性高。2. Pick a single clone from the streaked plate, inoculate it in 50ml Km/LB liquid medium, culture at 28°C, 250rpm, until OD600=0.4-0.6, at this time, the growth of the bacteria is in the logarithmic phase, and the activity high.

3.将菌液转入50ml离心管中,4000rpm离心10min,收集菌体至管底。3. Transfer the bacterial liquid into a 50ml centrifuge tube, centrifuge at 4000rpm for 10min, and collect the bacterial cells to the bottom of the tube.

4.去上清,以10mM MES(pH 5.6,10mM MgCl2,150μM AS(acetosyringone))缓冲液悬浮菌体,使其OD600=1.0,备用。4. Remove the supernatant, suspend the cells with 10 mM MES (pH 5.6, 10 mM MgCl 2 , 150 μM AS (acetosyringone)) buffer to make OD600 = 1.0, and set aside.

5.超净台中,取40-60d的无菌烟草苗(野生型,Nicotiana nudicaulis)为材料,夹取大小适中的叶片于无菌培养皿中,以去针头的一次性注射器将重悬好的菌液注入烟草叶片中(正反面均可,叶背面因气孔较多,比较易注射菌液)。5. In the ultra-clean bench, take 40-60d sterile tobacco seedlings (wild type, Nicotiana nudicaulis) as the material, clamp the moderately sized leaves into a sterile petri dish, and resuspend them with a disposable syringe that removes the needle. The bacterial liquid is injected into the tobacco leaves (both sides are acceptable, and the back of the leaf has more stomata, so it is easier to inject the bacterial liquid).

6.以无菌滤纸吸去叶片上的多余菌液,将叶片以背面朝下的方式铺在预先垫好滤纸的MS培养基上,28℃暗培养。6. Use sterile filter paper to suck off the excess bacterial solution on the leaves, spread the leaves on the MS medium pre-matched with filter paper with the back side down, and cultivate in the dark at 28°C.

48小时之后,用NIKON ECLIPSE 90i型显微镜观察荧光定位情况。结果表明,对照载体转化时整个细胞中均有荧光(图3,右上),而重组载体转化的细胞中荧光只能在核中检测到(图3,右下),说明FcWRKY70是一个核定位的蛋白。After 48 hours, observe the localization of fluorescence with a NIKON ECLIPSE 90i microscope. The results showed that there was fluorescence in the whole cell when the control vector was transformed (Figure 3, upper right), while the fluorescence in cells transformed with the recombinant vector could only be detected in the nucleus (Figure 3, lower right), indicating that FcWRKY70 is a nuclear localized protein.

FcWRKY70基因转录激活分析Analysis of transcriptional activation of FcWRKY70 gene

转录激活活性是转录因子的一个基本特征,在这里我们采用了pGBKT7载体进行重组构建,验证FcWRKY70是否具有转录激活活性。设计带有BamH I和Pst I酶切位点的引物扩增得到FcWRKY70基因全长ORF,产物经BamH I和Pst I双酶切后,亚克隆至同样经过BamH I和Pst I双酶切的pGBKT7载体上,得到融合表达载体pGBKT7-FcWRKY70。经测序确认序列无误后将融合表达载体及空载体(pGBKT7)分别转化酵母菌株AH109,然后在不同的缺失培养基上进行培养。结果表明,空载体转化的酵母细胞只能在缺失培养基SD/-Trp上生长,而融合载体转化的阳性酵母细胞却能在SD/-Trp/-ade及SD/-Trp/-ade/-His等缺失培养基中生长,(图4),说明FcWRKY70具有转录激活活性,是一个典型的转录因子。Transcription activation activity is a basic feature of transcription factors. Here we use the pGBKT7 vector for recombinant construction to verify whether FcWRKY70 has transcription activation activity. Primers with BamH I and Pst I restriction sites were designed to amplify the full-length ORF of the FcWRKY70 gene, and the product was double-digested by BamH I and Pst I, and then subcloned into pGBKT7 that was also digested by BamH I and Pst I On the vector, the fusion expression vector pGBKT7-FcWRKY70 was obtained. After the sequence was confirmed to be correct, the fusion expression vector and the empty vector (pGBKT7) were respectively transformed into yeast strain AH109, and then cultured on different deletion media. The results showed that the yeast cells transformed with the empty vector could only grow on the deletion medium SD/-Trp, while the positive yeast cells transformed with the fusion vector could grow on SD/-Trp/-ade and SD/-Trp/-ade/- Growth in the deletion medium such as His, (Fig. 4), shows that FcWRKY70 has transcription activation activity and is a typical transcription factor.

实施例3:Embodiment 3:

植物转化超表达载体构建Plant Transformation Overexpression Vector Construction

根据pCAMBIA1301载体的多克隆位点和FcWRKY70基因的编码区序列上的酶切位点分析,选择Nco I和BstE II作为内切酶。首先以金柑野生型cDNA为模板扩增得到FcWRKY70的全长,PCR产物及pCAMBIA1301载体分别用Nco I和BstE II进行双酶切消化并重新连接成目的载体。According to the analysis of the multiple cloning site of pCAMBIA1301 vector and the restriction site on the coding region sequence of FcWRKY70 gene, Nco I and BstE II were selected as endonucleases. Firstly, the full-length of FcWRKY70 was obtained by amplifying the wild-type cDNA of Kumquat as a template, and the PCR product and the pCAMBIA1301 vector were digested with Nco I and BstE II respectively and reconnected into the target vector.

PCR产物双酶切体系总体积为20μl,其中含有PCR回收产物16μl、10×K缓冲液(购自Takara)2μl、Nco I和BstE II各1μl。pCAMBIA1301载体双酶切体系总体积为40μl,其中含有pCAMBIA1301质粒8μl、10×K缓冲液(购自Takara)4μl、Nco I和BstE II各1μl,双蒸水24μl。37℃酶切过夜后分别纯化回收。连接反应体系中包含10×T4连接缓冲液1μl,T4DNA连接酶1μl,FcWRKY70基因与载体pCAMBIA1301分别为3μl和1μl,并用双蒸水补齐至10μl,16℃连接过夜。之后以全部的连接产物转化大肠杆菌DH5α感受态细胞,并在含有100mg/L卡那霉素的LB固体平板中筛选,经PCR检测的阳性单克隆送测序,序列无误的单克隆提取重组质粒,应用冻融法(参照萨姆布鲁克,黄培堂译,《分子克隆实验指南》第三版,科学出版社,2002年)将重组质粒转入根癌农杆菌GV3101中并保存。The total volume of the PCR product double enzyme digestion system was 20 μl, which contained 16 μl of recovered PCR products, 2 μl of 10×K buffer (purchased from Takara), and 1 μl each of Nco I and BstE II. The total volume of the pCAMBIA1301 vector double enzyme digestion system was 40 μl, which contained 8 μl of pCAMBIA1301 plasmid, 4 μl of 10×K buffer (purchased from Takara), 1 μl each of Nco I and BstE II, and 24 μl of double distilled water. After enzyme digestion at 37°C overnight, they were purified and recovered separately. The ligation reaction system contained 1 μl of 10×T4 ligation buffer, 1 μl of T4 DNA ligase, 3 μl and 1 μl of FcWRKY70 gene and vector pCAMBIA1301, respectively, and made up to 10 μl with double distilled water, and ligated overnight at 16°C. Then transform Escherichia coli DH5α competent cells with all the ligation products, and screen on LB solid plates containing 100mg/L kanamycin, and send the positive monoclonals detected by PCR for sequencing, and extract the recombinant plasmids from monoclonals with correct sequences. The recombinant plasmid was transformed into Agrobacterium tumefaciens GV3101 by freeze-thaw method (refer to Sam Brook, translated by Huang Peitang, "Molecular Cloning Experiment Guide" third edition, Science Press, 2002) and preserved.

植物转化干涉载体构建Plant transformation intervention vector construction

为了得到干涉转基因植株,采取了pHellsgate2干涉载体进行重组构建。首先在FcWRKY70的5’端选取300bp左右的片段设计引物,并在特异引物前加入attB位点通用引物,作为目标片段扩增引物。以金柑野生型cDNA为模板扩增得到目标片段,PCR产物经回收后,经BP反应重组连接至pHellsgate2载体,构建成目的载体。In order to obtain the interfering transgenic plants, the pHellsgate2 interfering vector was used for recombination construction. First, a fragment of about 300 bp was selected at the 5' end of FcWRKY70 to design primers, and a general primer at the attB site was added before the specific primer as a primer for amplification of the target fragment. The target fragment was amplified by using the wild-type cDNA of kumquat as a template, and the PCR product was recovered and then recombined and connected to the pHellsgate2 vector by BP reaction to construct the target vector.

通用引物序列如下:The general primer sequences are as follows:

attB1:5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3'attB1: 5'-GGGGACAAGTTTGTACAAAAAAAGCAGGCT-3'

attB2:5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'attB2: 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'

BP反应所用试剂盒为BP ClonaseTM II Enzyme Mix(购自Invitrogen公司)。反应体系为6μl,其中纯化后的PCR产物100ng和带有attP位点的pHellsgate2质粒100ng,加入1μl B/P Clonase,添加TE buffer(pH 8.0)至6μl,25℃反应过夜。取所有的反应物热击法转化大肠杆菌DH5α感受态,涂于含有壮观霉素(Spec)100mg/L的LB固体平板筛选阳性克隆。以35S启动子序列引物与反向特异引物为扩增引物对阳性克隆进行PCR检测分析,PCR检测正确的阳性克隆进一步用XbaI和XhoI分别进行单酶切验证,如果两组单酶切片段大小一致并且比目标片段大200bp左右,则该阳性克隆中目标片段为正确连接。正确连接的阳性单克隆送测序,序列无误的单克隆提取重组质粒,应用冻融法(参照萨姆布鲁克,黄培堂译,《分子克隆实验指南》第三版,科学出版社,2002年)将重组质粒转入根癌农杆菌GV3101中并保存。The kit used for BP reaction is BP Clonase II Enzyme Mix (purchased from Invitrogen). The reaction system was 6 μl, in which 100 ng of purified PCR product and 100 ng of pHellsgate2 plasmid with attP site were added, 1 μl of B/P Clonase was added, TE buffer (pH 8.0) was added to 6 μl, and the reaction was carried out overnight at 25°C. All the reactants were transformed into competent Escherichia coli DH5α by heat shock method, and applied to LB solid plates containing spectinomycin (Spec) 100 mg/L to screen positive clones. Use the 35S promoter sequence primer and the reverse specific primer as amplification primers to perform PCR detection and analysis on the positive clones. The positive clones detected by PCR are further verified by single enzyme digestion with XbaI and XhoI respectively. If the two groups of single enzyme digestion fragments are of the same size And it is about 200bp larger than the target fragment, then the target fragment in the positive clone is correctly connected. Correctly connected positive monoclonals were sent for sequencing, and single clones with correct sequences were extracted from recombinant plasmids, and the recombinant plasmids were extracted by freezing and thawing (referring to Sam Brook, translated by Huang Peitang, "Molecular Cloning Experiment Guide" third edition, Science Press, 2002). The plasmid was transformed into Agrobacterium tumefaciens GV3101 and preserved.

实施例4:Embodiment 4:

烟草遗传转化tobacco genetic transformation

根癌农杆菌介导的烟草遗传转化步骤如下:The genetic transformation steps of tobacco mediated by Agrobacterium tumefaciens are as follows:

1.根癌农杆菌培养:取超低温冰箱中保存的根癌农杆菌(含超表达载体)菌液,在添加了100mg/L卡那霉素的LB平板上划线活化,刮取划线菌斑,加入液体MS基本培养基中,28℃180rpm振荡培养,待菌液浓度达到OD600=0.4-0.6时作浸染。1. Cultivation of Agrobacterium tumefaciens: Take the Agrobacterium tumefaciens (including overexpression vector) bacterial liquid preserved in the ultra-low temperature refrigerator, streak and activate it on the LB plate added with 100mg/L kanamycin, scrape the streaked bacteria Spots were added to liquid MS basic medium, cultured with shaking at 180 rpm at 28°C, and dipped when the concentration of the bacterial solution reached OD 600 =0.4-0.6.

2.浸染:取无菌野生型烟草材料,取其叶片切成0.5cm×0.5cm大小,放入培养好的根癌农杆菌菌液中,侵染8-10分钟,期间不断振荡。2. Dip dyeing: Take sterile wild-type tobacco material, cut its leaves into 0.5cm×0.5cm size, put them into the cultured Agrobacterium tumefaciens bacteria liquid, infect for 8-10 minutes, and shake continuously during this period.

3.共培养:取浸染后的烟草叶片,以无菌滤纸吸干叶片上多余的菌液,叶背面向下铺陈于含有0.3g/L NAA和2.25g/L 6-BA的MS基本培养基上,25℃暗培养3天。3. Co-cultivation: Take the tobacco leaves after dipping, blot the excess bacterial liquid on the leaves with sterile filter paper, spread the back of the leaves downward on the MS basic medium containing 0.3g/L NAA and 2.25g/L 6-BA Incubate in the dark at 25°C for 3 days.

4.筛选培养:经共培养3天后的烟草叶片,用含有400mg/L头孢霉素的水溶液洗一遍,然后无菌水冲洗3-5次,再转移至含有2.5mg/L潮霉素+400mg/L头孢霉素+2.25mg/L6-BA+0.3mg/L NAA的MS基本培养基中进行培养。4. Screening culture: After 3 days of co-culture, the tobacco leaves were washed once with an aqueous solution containing 400mg/L cephalosporin, then rinsed with sterile water for 3-5 times, and then transferred to a medium containing 2.5mg/L hygromycin+400mg /L cephalosporin+2.25mg/L6-BA+0.3mg/L NAA MS basic medium for culture.

5.生根培养:当不定芽长至2-3cm左右,转入添加2.5mg/L潮霉素(或不加)和400mg/L头孢霉素+0.3mg/L NAA的MS培养基中诱导根生成。5. Rooting culture: when the adventitious buds grow to about 2-3cm, transfer them to MS medium supplemented with 2.5mg/L hygromycin (or not) and 400mg/L cephalosporin+0.3mg/L NAA to induce roots generate.

6.烟草苗转入土培:待生根后的转化苗长满培养瓶,由生根培养基中取出,用自来水洗净转化苗上的培养基,并栽植于灭菌的营养土中。6. Tobacco seedlings are transferred to soil culture: the transformed seedlings after rooting are full of culture bottles, taken out from the rooting medium, the medium on the transformed seedlings is washed with tap water, and planted in sterilized nutrient soil.

烟草转化苗所用培养基见表1。See Table 1 for the medium used for tobacco transformed seedlings.

表1烟草转化苗所用培养基配方Table 1 The formula of medium used for tobacco transformed seedlings

7.阳性转基因烟草初步确定7. Preliminary identification of positive transgenic tobacco

按照上述方法得到转FcWRKY70烟草抗性芽,提取DNA并得用PCR方法鉴定阳性转基因材料。具体方法如下:设计引物HPTII和基因特异引物PCR扩增鉴定阳性苗(表1)。PCR鉴定为转基因的植株移栽后收获种子(T1代种子),4℃春化处理3天,取少许种子于1.5ml的离心管中,70%酒精浸泡种子30秒,接着用灭菌双蒸水洗一次,再加入1ml 2.5%NaClO表面消毒7分钟,充分振荡,弃去NaClO后用灭菌双蒸水洗3次,最后用1ml 0.1%琼脂糖悬浮灭菌的种子,并铺陈于添加2.5mg/L潮霉素(Hyg)MS基本培养基上,结果表明本发明获得的抗性苗在抗性培养基上能正常生长,为绿色,而非抗性苗则黄化死去。阳性转基因材料用于抗性功能鉴定。The FcWRKY70-transformed tobacco-resistant shoots were obtained according to the above-mentioned method, and DNA was extracted to identify positive transgenic materials by PCR method. The specific method is as follows: design primer HPTII and gene-specific primer PCR amplification to identify positive seedlings (Table 1). Harvest the seeds (T1 generation seeds) after transplanting the plants identified as transgenic by PCR, vernalize them at 4°C for 3 days, take a few seeds in a 1.5ml centrifuge tube, soak the seeds in 70% alcohol for 30 seconds, and then use sterilized double steamed Wash once with water, then add 1ml 2.5% NaClO to disinfect the surface for 7 minutes, shake fully, discard NaClO, wash 3 times with sterilized double distilled water, and finally suspend the sterilized seeds with 1ml 0.1% agarose, and lay them out on the surface added with 2.5mg/ On the L hygromycin (Hyg) MS basic medium, the results show that the resistant seedlings obtained by the present invention can grow normally on the resistant medium and are green, while the non-resistant seedlings turn yellow and die. Positive transgenic materials were used for resistance function identification.

实施例5:Example 5:

柠檬及金柑遗传转化Genetic transformation of lemons and kumquats

1、取柠檬及金柑种子,用1M的NaOH浸泡20分钟后以清水洗净,而后在超净工作台上用2%的NaClO浸泡灭菌15-20min,无菌水洗涤3次,经过表面灭菌的种子在无菌条件下剥去种皮,播种于MT固体培养基上,暗培养3-4周再光照培养1周用于转化。1. Take lemon and kumquat seeds, soak them in 1M NaOH for 20 minutes, wash them with clean water, then sterilize them by soaking them in 2% NaClO for 15-20 minutes on an ultra-clean workbench, wash them three times with sterile water, and then sterilize them on the surface. The seeds of the bacteria were peeled off the seed coat under sterile conditions, sowed on MT solid medium, cultured in the dark for 3-4 weeks and then cultured in the light for 1 week for transformation.

2、取含重组载体的农杆菌(超表达载体菌转化柠檬,干涉载体菌转化金柑)菌液划线于含有100mg/L抗生素(超表达载体为卡那霉素,干涉载体为壮观霉素)的固体LB培养基上,28℃暗培养两天;挑取单菌落再次划线于新的平板上,28℃暗培养2-3天;用手术刀刮下长好的菌体,接种于不含抗生素的液体MT培养基中,28℃200rpm振荡培养至OD600=0.6-0.8,添加AS(乙酰丁香酮)至终浓度为100μM(20mg/L),待用。2. Take the Agrobacterium containing the recombinant vector (the overexpression vector is transformed into lemon, the interference vector is transformed into kumquat) and the bacteria solution is streaked on the antibiotic containing 100 mg/L (the overexpression vector is kanamycin, and the interference vector is spectinomycin). On the solid LB medium, cultivate in the dark at 28°C for two days; pick a single colony and streak it on a new plate again, and culture in the dark at 28°C for 2-3 days; scrape off the grown bacteria with a scalpel, and inoculate on different In liquid MT medium containing antibiotics, shake culture at 28°C at 200 rpm to OD 600 =0.6-0.8, add AS (acetosyringone) to a final concentration of 100 μM (20 mg/L), and set aside.

3、取无菌实生苗上胚轴,于超净工作台中斜切成1-1.5cm长茎段,切好的茎段暂时放于灭菌的空三角瓶中(加少量水保湿),待农杆菌菌液培养完成后用于转化。3. Take the epicotyls of sterile seedlings, and cut them obliquely into 1-1.5cm long stems in an ultra-clean workbench, and temporarily put the cut stems in a sterilized empty triangular flask (add a small amount of water to moisturize), and wait until After the Agrobacterium culture was completed, it was used for transformation.

4、将切好的外植体浸泡在制备好的农杆菌菌液(含超表达载体的农杆菌菌转化柠檬,含干涉载体的农杆菌转化金柑)中侵染20min,其间不断摇动几次。侵染完后用无菌吸水纸吸干多余的菌液,将外植体铺陈于共培养基上,25℃暗培养3天。4. Soak the cut explants in the prepared Agrobacterium bacterium solution (Agrobacterium transforming lemon containing overexpression vector, transforming kumquat containing Agrobacterium interfering vector) and infect for 20 minutes, during which it is constantly shaken several times. After the infection, the excess bacterial solution was blotted with sterile absorbent paper, the explants were spread on the co-culture medium, and cultured in the dark at 25°C for 3 days.

5、共培养3天后,以无菌水洗外植体3-5次,而后用无菌吸水纸吸干表面水份,转到添加2.5mg/L潮霉素及400mg/L头孢霉素的筛选培养基上,25℃暗培养4周后再转到光照条件下培养。当抗性芽>0.5cm时,切下抗性芽转到生芽培养基上促其分化。当抗性芽>1.5cm长时,将其转入生根培养基中诱导生根,柠檬及金柑转化过程见图6。5. After 3 days of co-cultivation, wash the explants 3-5 times with sterile water, then blot the surface moisture with sterile absorbent paper, and transfer to the screening with 2.5mg/L hygromycin and 400mg/L cephalosporin On the culture medium, cultured in the dark at 25°C for 4 weeks and then transferred to the light condition. When the resistant buds are >0.5cm, cut off the resistant buds and transfer them to the budding medium to promote their differentiation. When the resistant bud > 1.5cm long, it is transferred to the rooting medium to induce rooting. The transformation process of lemon and kumquat is shown in Figure 6.

常用培养基配方:Common media formulations:

LB固体培养基:蛋白胨10g/L+酵母提取物5g/L+NaCl 10g/L+琼脂15g/LLB solid medium: peptone 10g/L+yeast extract 5g/L+NaCl 10g/L+agar 15g/L

柠檬及金柑共培养培养基:MT+1.0mg/L BA+20mg/L ASLemon and kumquat co-culture medium: MT+1.0mg/L BA+20mg/L AS

柠檬筛选培养基:MT+1.0mg/L BA+400mg/L Cef+4mg/L HygLemon screening medium: MT+1.0mg/L BA+400mg/L Cef+4mg/L Hyg

柠檬生芽培养基:MT+1.0mg/L BALemon sprouting medium: MT+1.0mg/L BA

金柑筛选培养基:MT+2.0mg/L BA,1.0mg/L NAA+1.0mg/L KT+400mg/L Cef+25mg/L Km)Kumquat selection medium: MT+2.0mg/L BA, 1.0mg/L NAA+1.0mg/L KT+400mg/L Cef+25mg/L Km)

柠檬及金柑生根培养基:1/2MT+0.5mg/L NAA+0.1mg/L IBA+0.5g/L活性炭Lemon and kumquat rooting medium: 1/2MT+0.5mg/L NAA+0.1mg/L IBA+0.5g/L activated carbon

转化过程中各培养基均添加琼脂7.5g/L+蔗糖35g/L,pH调至5.8。During the transformation process, 7.5 g/L agar + 35 g/L sucrose were added to each medium, and the pH was adjusted to 5.8.

实施例6:Embodiment 6:

转基因植株分子及生理鉴定Molecular and physiological identification of transgenic plants

1烟草,柠檬及金柑叶片DNA提取1 DNA extraction from leaves of tobacco, lemon and kumquat

取适量的叶片放入1.5ml离心管中,加液氮,充分研磨;然后加入1ml 65℃预热的十六烷基三乙基溴化铵(简称CTAB)DNA提取缓冲液(配方:100mM Tris-HCl,pH 8.0,1.5M NaCl,2mM EDTA,pH 8.0,1%PVP(聚乙烯吡咯烷酮),2%CTAB,2%巯基乙醇),65℃温浴60-90分钟(其间每15分钟取出离心管上下轻轻颠倒混匀);12000rpm离心10分钟;取600μl上清,加入等体积氯仿,颠倒混匀10分钟;12000rpm离心15分钟;取上清400μl,加入2倍体积预冷无水乙醇,1/10体积3M NaAc(醋酸钠),混匀,-20℃放置30分钟,12000rpm离心20分钟;弃上清,用l ml 75%的乙醇,洗沉淀3次,加适量1×TE溶液溶解。Put an appropriate amount of leaves into a 1.5ml centrifuge tube, add liquid nitrogen, and grind thoroughly; then add 1ml cetyltriethylammonium bromide (abbreviated as CTAB) DNA extraction buffer (recipe: 100mM Tris -HCl, pH 8.0, 1.5M NaCl, 2mM EDTA, pH 8.0, 1% PVP (polyvinylpyrrolidone), 2% CTAB, 2% mercaptoethanol), incubate at 65°C for 60-90 minutes (take out the centrifuge tube every 15 minutes) Gently upside down and mix); 12000rpm centrifuge for 10 minutes; take 600μl supernatant, add an equal volume of chloroform, mix upside down for 10 minutes; /10 volume of 3M NaAc (sodium acetate), mix well, place at -20°C for 30 minutes, centrifuge at 12000rpm for 20 minutes; discard the supernatant, wash the precipitate 3 times with 1 ml of 75% ethanol, and add an appropriate amount of 1×TE solution to dissolve.

2阳性转基因植株PCR检测2 PCR detection of positive transgenic plants

采用引物Hyg及NPT II和基因特异引物进行PCR扩增。引物序列、反应程序及体系分别见表1、表2和表3。首先采用Hyg引物对烟草再生植株进行PCR鉴定,17个转基因株系能扩增出Hyg基因的片段,利用基因特异引物进行PCR,其中14个转基因株系能扩增出预期大小的片段(图7A),表明它们为阳性转基因株系。图7B所示为部分柠檬抗性苗的PCR鉴定。发现10个抗性苗材料能扩增出Hyg基因的片段,利用基因特异引物对它们进行PCR扩增,其中7个系能同时扩增出预期大小的片段(图7B),表明它们均是转基因植株。图7C所示为部分金柑抗性苗的PCR鉴定,共有15个抗性苗材料能扩增出NPT II基因的片段,利用35S正向引物及基因特异反向引物进行扩增时,其中4个系能扩增出预期大小的片段,表明它们为阳性转基因株系。PCR amplification was performed using primers Hyg and NPT II and gene-specific primers. The primer sequences, reaction procedures and systems are shown in Table 1, Table 2 and Table 3, respectively. Firstly, Hyg primers were used to identify the regenerated tobacco plants by PCR. 17 transgenic lines could amplify the Hyg gene fragments. Using gene-specific primers for PCR, 14 transgenic lines could amplify fragments of the expected size (Fig. 7A ), indicating that they are positive transgenic lines. Figure 7B shows the PCR identification of some lemon-resistant seedlings. It was found that 10 resistant seedling materials could amplify the Hyg gene fragments, and they were amplified by PCR with gene-specific primers, among which 7 lines could simultaneously amplify fragments of the expected size (Figure 7B), indicating that they were all transgenic plants. Figure 7C shows the PCR identification of some kumquat resistant seedlings. A total of 15 resistant seedling materials can amplify fragments of the NPT II gene. When using 35S forward primers and gene-specific reverse primers for amplification, 4 of them Lines can amplify fragments of the expected size, indicating that they are positive transgenic lines.

表1、引物序列信息Table 1. Primer sequence information

表2、PCR反应程序Table 2, PCR reaction program

表3、PCR反应体系Table 3. PCR reaction system

实施例7:Embodiment 7:

半定量RT-PCR检测FcWRKY70基因的表达Semi-quantitative RT-PCR detection of FcWRKY70 gene expression

本研究采用半定量RT-PCR分析转基因烟草,柠檬及金柑植株中外源基因FcWRKY70的表达量,转基因株系叶片RNA提取使用Trizol试剂盒,其步骤如下:In this study, semi-quantitative RT-PCR was used to analyze the expression of the exogenous gene FcWRKY70 in transgenic tobacco, lemon and kumquat plants, and the RNA extraction of transgenic lines was performed using Trizol kits. The steps are as follows:

1、研钵于-80℃冰冻预冷,取适量叶片材量于研钵中,液氮研磨至粉末状。2、取1.5ml离心管加入1ml Trizol缓冲液(裂解cell并保护RNA),将研磨的粉末适量加入缓冲液中,剧烈震荡2min,静置10min,4℃12000g,离心15min。3、取上清,加200μL氯仿,剧烈震荡2min,室温静置10min,4℃12000g,离心15min。4、重复步骤3。5、取上清,加500μL异丙醇,缓慢混匀,静置10min,4℃12000g,离心10min。6、弃上清,加1ml75%的乙醇(用灭菌DEPC水配)洗沉淀3次。风干沉淀,加30-50μl DEPC水溶解,-80℃保存。7、取2μl检测RNA的浓度和质量。1. Pre-cool the mortar at -80°C, take an appropriate amount of leaf material in the mortar, and grind it into powder with liquid nitrogen. 2. Take a 1.5ml centrifuge tube and add 1ml Trizol buffer (to lyse cells and protect RNA), add an appropriate amount of ground powder into the buffer, shake vigorously for 2 minutes, let stand for 10 minutes, centrifuge at 12000g at 4°C for 15 minutes. 3. Take the supernatant, add 200 μL chloroform, shake vigorously for 2 minutes, let stand at room temperature for 10 minutes, centrifuge at 12000 g at 4°C for 15 minutes. 4. Repeat step 3. 5. Take the supernatant, add 500 μL isopropanol, mix slowly, let stand for 10 minutes, centrifuge at 12,000 g at 4°C for 10 minutes. 6. Discard the supernatant, add 1ml of 75% ethanol (made with sterilized DEPC water) to wash the precipitate 3 times. Air-dry the precipitate, add 30-50 μl DEPC water to dissolve, and store at -80°C. 7. Take 2 μl to detect the concentration and quality of RNA.

取2μl RNA合成第一链cDNA,所用试剂盒为First Strand cDNA Synthesis Kit(购自Toyobo),具体操作参见试剂盒说明书。半定量所用引物为FcWRKY70基因特异引物(F:5'-CCAAGCAAGTAAGCAGGTTCA-3’;R:5'-TGACTCCAGAAATCACATCCC-3’),反应程序参加表2(退火温度56℃)。烟草的ubiquitin基因和柑橘actin基因分别做为内参基因,引物如下:Take 2 μl of RNA to synthesize the first-strand cDNA. The kit used is First Strand cDNA Synthesis Kit (purchased from Toyobo). For specific operations, refer to the kit manual. The primers used for semi-quantitative analysis were FcWRKY70 gene-specific primers (F: 5'-CCAAGCAAGTAAGCAGGTTCA-3'; R: 5'-TGACTCCAGAAATCACATCCC-3'), and the reaction program was listed in Table 2 (annealing temperature 56°C). The tobacco ubiquitin gene and citrus actin gene were used as internal reference genes respectively, and the primers were as follows:

Ubiqutin-F:5'-GGTGTTTCCAGTGGCGGACG-3’Ubiqutin-F: 5'-GGTGTTTCCAGTGGCGGACG-3'

Ubiqutin-R:5'-TCCTCCCCTCAGCTACGGGGTAT-3’Ubiqutin-R: 5'-TCCTCCCCTCAGCTACGGGGTAT-3'

Actin-F:5'-CCAAGCAGCATGAAGATCAA-3'Actin-F: 5'-CCAAGCAGCATGAAGATCAA-3'

Actin-R:5'-ATCTGCTGGAAGGTGCTGAG-3'Actin-R: 5'-ATCTGCTGGAAGGTGCTGAG-3'

选取烟草4个转基因系,柠檬3个转基因系,金柑5个转基因系的表达水平进行分析,结果表明,在超表达转基因烟草及柠檬中所有选择的7个系中FcWRKY70表达水平均得到了显著增强(图7D,E)。而在干涉的转基因金柑中,5个转基因系中FcWRKY70的表达均显示出不同程度的削弱(图7F)。在这些不同的转基因材料中,各选择2个转基因系用于后续转基因抗性评价实验中。The expression levels of 4 transgenic lines of tobacco, 3 transgenic lines of lemon, and 5 transgenic lines of kumquat were selected for analysis. The results showed that the expression levels of FcWRKY70 in all 7 selected lines in overexpressed transgenic tobacco and lemon were significantly enhanced. (Fig. 7D,E). In the interfering transgenic kumquats, the expression of FcWRKY70 in the five transgenic lines all showed different degrees of weakening ( FIG. 7F ). Among these different transgenic materials, two transgenic lines were selected for subsequent transgenic resistance evaluation experiments.

实施例8:Embodiment 8:

转FcWRKY70基因植株的抗旱性评价Drought Resistance Evaluation of FcWRKY70 Transgenic Plants

为评价FcWRKY70是否能改变转基因植株干旱抗性,转基因烟草,柠檬及金柑材料均被施以不同程度干旱逆境,以此观察每份材料的表型差异,评价其抗旱性。In order to evaluate whether FcWRKY70 can change the drought resistance of transgenic plants, transgenic tobacco, lemon and kumquat materials were subjected to different degrees of drought stress, so as to observe the phenotypic differences of each material and evaluate its drought resistance.

取烟草转基因系(1#和4#)及野生型离体苗叶片置于室温条件下自然脱水,60分钟后,野生型材料叶片明显出现萎蔫症状,类似表型没有出现在转基因叶片上。同时脱水后各系叶片被用于trypan blue染色,野生型叶片呈现出深蓝染色,转基因叶片则略呈浅蓝(图8A),说明在自然脱水后,转基因系细胞死亡程序远低于野生型。另一方面,在脱水60分钟过程中,各系表现出不同程度的失水,60分钟后,野生型相对失水率达到39.3%,转基因系分别是30.5%及24.6%,显著低于野生型,说明转基因系持水能力优于野生型(图8B)。据此表明FcWRKY70可明显提高转基因材料的抗脱水能力。Leaves of tobacco transgenic lines (1# and 4#) and wild-type detached seedlings were naturally dehydrated at room temperature. After 60 minutes, the leaves of wild-type materials showed obvious wilting symptoms, and similar phenotypes did not appear on the transgenic leaves. At the same time, the leaves of each line were stained with trypan blue after dehydration. The wild-type leaves showed dark blue staining, while the transgenic leaves were slightly light blue (Figure 8A), indicating that after natural dehydration, the cell death program of the transgenic lines was much lower than that of the wild type. On the other hand, during the 60-minute dehydration process, each line showed different degrees of water loss. After 60 minutes, the relative water loss rate of the wild type reached 39.3%, and the transgenic lines were 30.5% and 24.6%, which were significantly lower than the wild type. , indicating that the water holding capacity of the transgenic line is better than that of the wild type (Fig. 8B). Accordingly, it was shown that FcWRKY70 could significantly improve the anti-dehydration ability of transgenic materials.

为进一步考察长期干旱胁迫下转基因材料的表型,50天苗龄的烟草材料在经过1周的正常浇灌后,进入了控水期。图8C所示,FcWRKY70并不影响转基因材料的正常表型(图左),但是控水后野生型与转基因材料的表型差异则非常明显(图右),野生型材料萎蔫黄枯,而转基因材料虽然生长也受到一定抑制,但并没有出现任何萎蔫症状,仍保持着良好的叶片张力。随机取样测试土壤含水量,测试结果否定了地下部供水差异导致表型差异的可能(图8D)。野生型与转基因材料中丙二醛(MDA)含量的差异进一步表明控水后,转基因材料细胞受伤害程度明显较低(图8E)。上述结果表明FcWRKY70有效改变了转基因烟草材料在脱水及干旱胁迫下的表型,提高其抗性。In order to further investigate the phenotype of the transgenic material under long-term drought stress, the 50-day-old tobacco material entered the water control period after 1 week of normal watering. As shown in Figure 8C, FcWRKY70 does not affect the normal phenotype of the transgenic material (left in the figure), but the phenotype difference between the wild type and the transgenic material after water control is very obvious (right in the figure), the wild type material is wilted and yellow, while the transgenic material Although the growth of the material was also inhibited to a certain extent, it did not show any wilting symptoms and still maintained good leaf tension. Random samples were taken to test the soil moisture content, and the test results negated the possibility that the difference in underground water supply caused the difference in phenotype (Fig. 8D). The difference in malondialdehyde (MDA) content between the wild type and the transgenic material further indicated that after water control, the degree of cell damage in the transgenic material was significantly lower (Fig. 8E). The above results indicated that FcWRKY70 effectively changed the phenotype of the transgenic tobacco material under dehydration and drought stress, and improved its resistance.

为提供更为丰富有力的实验证据说明FcWRKY70在抗旱下的作用,不同的柑橘材料也被用于进行增强或削弱转基因表达的研究,为柑橘分子育种提供有效的基因资源。取超表达柠檬材料(28#,43#)与野生型材料叶片于室温条件下自然脱水,各系材料表现出不同程度的失水,6小时后,野生型材料失水率达到30.5%,转基因系材料表现出较强的持水能力,失水率分别是26.7%与22.3%(图9A)。脱水后,取各系材料分别进行NBT及DAB染色分析。野生型材料叶片半数被染上深蓝色,而转基因材料叶片上只有零星的蓝色点染色反应(图9B)。同样的结果呈现在DAB染色中。如图9C所示,转基因柠檬叶片均匀的分布了零星的浅褐色染色斑点,而野生型叶片则有大面积的深褐色染色。染色结果说明自然脱水6小时后,野生型材料中积累了更多的活性氧,造成严重了细胞伤害,而转基因材料则是有效的清除了多余的活性氧,维持了细胞的正常功能。另一方面,设计削弱FcWRKY70在金柑中的表达,图10所示,取有效削弱系(20#,22#)与野生型材料于室温条件下自然脱水,6小时后,野生型相对失水率为56.2%,20#及22#相对失水率分别为63.5%及60.0%,明显高于野生型,说明20#及22#材料持水能力与野生型相比,明显被削弱。在柑橘中的研究说明,超表达FcWRKY70,则柠檬材料抗脱水能力明显提高;反之削弱FcWRKY70的表达,金柑材料抗脱水的能力明显变弱,表明FcWRKY70有效改变了转基因柑橘材料对干旱胁迫的耐受性。In order to provide more abundant and powerful experimental evidence for the role of FcWRKY70 in drought resistance, different citrus materials were also used to enhance or weaken the expression of transgenes, providing effective genetic resources for citrus molecular breeding. The leaves of the overexpressed lemon materials (28#, 43#) and the wild-type materials were naturally dehydrated at room temperature. The materials of each line showed different degrees of water loss. After 6 hours, the water loss rate of the wild-type materials reached 30.5%. The series materials showed strong water holding capacity, and the water loss rates were 26.7% and 22.3%, respectively (Fig. 9A). After dehydration, the materials of each line were taken for NBT and DAB staining analysis. Half of the leaves of the wild-type material were stained dark blue, while there were only sporadic blue spots on the leaves of the transgenic material ( FIG. 9B ). The same results were presented in DAB staining. As shown in Figure 9C, the transgenic lemon leaves evenly distributed sporadic light brown staining spots, while the wild-type leaves had a large area of dark brown staining. The staining results showed that after 6 hours of natural dehydration, more active oxygen accumulated in the wild-type material, causing serious cell damage, while the transgenic material effectively removed excess active oxygen and maintained the normal function of cells. On the other hand, the design weakens the expression of FcWRKY70 in kumquats, as shown in Figure 10, taking the effective weakening line (20#, 22#) and the wild-type material at room temperature for natural dehydration. After 6 hours, the relative water loss rate of the wild-type The relative water loss rate of 20# and 22# was 63.5% and 60.0%, respectively, which was significantly higher than that of the wild type, indicating that the water holding capacity of 20# and 22# materials was significantly weakened compared with the wild type. Studies in citrus have shown that overexpressing FcWRKY70 can significantly improve the dehydration resistance of lemon materials; conversely, weakening the expression of FcWRKY70 can significantly weaken the dehydration resistance of kumquat materials, indicating that FcWRKY70 can effectively change the tolerance of transgenic citrus materials to drought stress sex.

                         SEQUENCE LISTING SEQUENCE LISTING

  the

<110>  华中农业大学 <110> Huazhong Agricultural University

  the

<120>  金柑FcWRKY70基因及其在提高植物耐旱中的应用 <120> Kumquat FcWRKY70 Gene and Its Application in Improving Plant Drought Tolerance

  the

<130>  金柑FcWRKY70基因及其在提高植物耐旱中的应用 <130> Kumquat FcWRKY70 Gene and Its Application in Improving Plant Drought Tolerance

  the

<160>  4     <160> 4

  the

<170>  PatentIn version 3.3 <170> PatentIn version 3.3

  the

<210>  1 <210> 1

<211>  1196 <211> 1196

<212>  DNA <212> DNA

<213>  金柑 <213> Kumquat

  the

<400>  1 <400> 1

acatggggat atttaaaagc aagcatttgc cttttctctt ttgctactcc tacttggaaa     60 acatggggat atttaaaagc aagcatttgc cttttctctt ttgctactcc tacttggaaa 60

  the

aaaaggggga aaaaaaatca taatgaaaat ggaggccggt caggccacat cttcatcttc    120 aaaaggggga aaaaaaatca taatgaaaat ggaggccggt caggccacat cttcatcttc 120

  the

ttggctagag aattcatcag atcgaagaag ggccatagaa gagcttatca aaggccaaga    180 ttggctagag aattcatcag atcgaagaag ggccatagaa gagcttatca aaggccaaga 180

  the

aatggcactg cagcttcgaa atctcattca cacatccaca aaaaaaggag aagggtcaaa    240 aatggcactg cagcttcgaa atctcattca cacatccaca aaaaaaggag aagggtcaaa 240

  the

agcgatgatc atcaaccaag atctcgtggc aaatatactg agcttattta caaactctct    300 agcgatgatc atcaaccaag atctcgtggc aaatatactg agcttattta caaactctct 300

  the

ttcaatattg aaaaatggtg actctgatga agcttcccaa gttcaagaac atacccaatt    360 ttcaatattg aaaaatggtg actctgatga agcttcccaa gttcaagaac atacccaatt 360

  the

gagctctcct tgctgggagg cttatttgaa gacggaggat tcaggtgaaa gcagcaagag    420 gagctctcct tgctgggagg cttatttgaa gacggaggat tcaggtgaaa gcagcaagag 420

  the

ctcaaccgtt aaagaccgga gaggatgcta caagagaaga aagtgtgcgg agtcatggac    480 ctcaaccgtt aaagaccgga gaggatgcta caagagaaga aagtgtgcgg agtcatggac 480

  the

agagcatagc tccactctga cagatgatgg ctttgcatgg aggaaatatg ggcaaaaagt    540 agagcatagc tccactctga cagatgatgg ctttgcatgg aggaaatatg ggcaaaaagt 540

  the

gattctcaat tccaaatttc caaggaatta ctttaggtgc actcataaat ttgatcaagg    600 gattctcaat tccaaatttc caaggaatta ctttaggtgc actcataaat ttgatcaagg 600

  the

ctgccaagca agtaagcagg ttcaaaggat tcaaggggaa cctccactat acagaacaac    660 ctgccaagca agtaagcagg ttcaaaggat tcaaggggaa cctccactat acagaacaac 660

  the

atattatggc cgccacactt gcaaaagttt gatcaagtcc tctcaactga tgccagattc    720 atattatggc cgccacactt gcaaaagttt gatcaagtcc tctcaactga tgccagattc 720

  the

tactactagt gatcagtgtc caatgatcag ctttggtagt gcccacatca ccgaaaaaga    780 tactactagt gatcagtgtc caatgatcag ctttggtagt gcccacatca ccgaaaaaga 780

  the

ttttaaccca tttttatcat cattcccatc aataaagcag gagtcaaata aggatgatca    840 ttttaaccca tttttatcat cattcccatc aataaagcag gagtcaaata aggatgatca 840

  the

ggcaccttta agcgatatga ctcacaacca atcatcatca tctgatgaat atcttgtgtc    900 ggcaccttta agcgatatga ctcacaacca atcatcatca tctgatgaat atcttgtgtc 900

  the

acatgacttc ccagcatttg aatcaaatga gcacatgaaa gtactttctt ctgatcatgg    960 acatgacttc ccagcatttg aatcaaatga gcacatgaaa gtactttctt ctgatcatgg 960

  the

ggatgtgatt tctggagtca actcatcatg cactgcttct gctcacagct tggacttggc   1020 ggatgtgatt tctggagtca actcatcatg cactgcttct gctcacagct tggacttggc 1020

  the

ggtggatatg tctgttaact ttgatgatgt tttggagttt aatttttgat gcttagttag   1080 ggtggatatg tctgttaact ttgatgatgt tttggagttt aatttttgat gcttagttag 1080

  the

ttactgctac cgctagtcct ttgcaacttt catgtataaa cagatgagtt tgctcttaac   1140 ttactgctac cgctagtcct ttgcaacttt catgtataaa cagatgagtt tgctcttaac 1140

  the

tagtttctca atataatgtt agtttctgca acccctttag gtaaaaaaaa aaaaaa       1196 tagtttctca atataatgtt agtttctgca acccctttag gtaaaaaaaa aaaaaa 1196

  the

  the

<210>  2 <210> 2

<211>  328 <211> 328

<212>  PRT <212> PRT

<213>  金柑 <213> Kumquat

  the

<400>  2 <400> 2

  the

Met Lys Met Glu Ala Gly Gln Ala Thr Ser Ser Ser Ser Trp Leu Glu Met Lys Met Glu Ala Gly Gln Ala Thr Ser Ser Ser Ser Trp Leu Glu

1               5                   10                  15      1 5 10 15

  the

  the

Asn Ser Ser Asp Arg Arg Arg Ala Ile Glu Glu Leu Ile Lys Gly Gln Asn Ser Ser Asp Arg Arg Arg Ala Ile Glu Glu Leu Ile Lys Gly Gln

            20                  25                  30          20 25 30

  the

  the

Glu Met Ala Leu Gln Leu Arg Asn Leu Ile His Thr Ser Thr Lys Lys Glu Met Ala Leu Gln Leu Arg Asn Leu Ile His Thr Ser Thr Lys Lys

        35                  40                  45               35 40 45 45

  the

  the

Gly Glu Gly Ser Lys Ala Met Ile Ile Asn Gln Asp Leu Val Ala Asn Gly Glu Gly Ser Lys Ala Met Ile Ile Asn Gln Asp Leu Val Ala Asn

    50                  55                  60                  50 55 60 60

  the

  the

Ile Leu Ser Leu Phe Thr Asn Ser Leu Ser Ile Leu Lys Asn Gly Asp Ile Leu Ser Leu Phe Thr Asn Ser Leu Ser Ile Leu Lys Asn Gly Asp

65                  70                  75                  80  65 70 75 80

  the

  the

Ser Asp Glu Ala Ser Gln Val Gln Glu His Thr Gln Leu Ser Ser Pro Ser Asp Glu Ala Ser Gln Val Gln Glu His Thr Gln Leu Ser Ser Pro

                85                  90                  95      85 90 95

  the

  the

Cys Trp Glu Ala Tyr Leu Lys Thr Glu Asp Ser Gly Glu Ser Ser Lys Cys Trp Glu Ala Tyr Leu Lys Thr Glu Asp Ser Gly Glu Ser Ser Ser Lys

            100                 105                 110         100 105 110

  the

  the

Ser Ser Thr Val Lys Asp Arg Arg Gly Cys Tyr Lys Arg Arg Lys Cys Ser Ser Thr Val Lys Asp Arg Arg Gly Cys Tyr Lys Arg Arg Lys Cys

        115                 120                 125             115 120 125

  the

  the

Ala Glu Ser Trp Thr Glu His Ser Ser Thr Leu Thr Asp Asp Gly Phe Ala Glu Ser Trp Thr Glu His Ser Ser Thr Leu Thr Asp Asp Gly Phe

    130                 135                 140                 130 135 140

  the

  the

Ala Trp Arg Lys Tyr Gly Gln Lys Val Ile Leu Asn Ser Lys Phe Pro Ala Trp Arg Lys Tyr Gly Gln Lys Val Ile Leu Asn Ser Lys Phe Pro

145                 150                 155                 160 145 150 155 160

  the

  the

Arg Asn Tyr Phe Arg Cys Thr His Lys Phe Asp Gln Gly Cys Gln Ala Arg Asn Tyr Phe Arg Cys Thr His Lys Phe Asp Gln Gly Cys Gln Ala

                165                 170                 175     165 170 175

  the

  the

Ser Lys Gln Val Gln Arg Ile Gln Gly Glu Pro Pro Leu Tyr Arg Thr Ser Lys Gln Val Gln Arg Ile Gln Gly Glu Pro Pro Leu Tyr Arg Thr

            180                 185                 190         180 185 190

  the

  the

Thr Tyr Tyr Gly Arg His Thr Cys Lys Ser Leu Ile Lys Ser Ser Gln Thr Tyr Tyr Gly Arg His Thr Cys Lys Ser Leu Ile Lys Ser Ser Gln

        195                 200                 205             195 200 205

  the

  the

Leu Met Pro Asp Ser Thr Thr Ser Asp Gln Cys Pro Met Ile Ser Phe Leu Met Pro Asp Ser Thr Thr Ser Asp Gln Cys Pro Met Ile Ser Phe

    210                 215                 220                 210 215 220

  the

  the

Gly Ser Ala His Ile Thr Glu Lys Asp Phe Asn Pro Phe Leu Ser Ser Gly Ser Ala His Ile Thr Glu Lys Asp Phe Asn Pro Phe Leu Ser Ser

225                 230                 235                 240 225 230 235 240

  the

  the

Phe Pro Ser Ile Lys Gln Glu Ser Asn Lys Asp Asp Gln Ala Pro Leu Phe Pro Ser Ile Lys Gln Glu Ser Asn Lys Asp Asp Gln Ala Pro Leu

                245                 250                 255     245 250 255

  the

  the

Ser Asp Met Thr His Asn Gln Ser Ser Ser Ser Asp Glu Tyr Leu Val Ser Asp Met Thr His Asn Gln Ser Ser Ser Ser Ser Asp Glu Tyr Leu Val

            260                 265                 270         260 265 270

  the

  the

Ser His Asp Phe Pro Ala Phe Glu Ser Asn Glu His Met Lys Val Leu Ser His Asp Phe Pro Ala Phe Glu Ser Asn Glu His Met Lys Val Leu

        275                 280                 285             275 280 285

  the

  the

Ser Ser Asp His Gly Asp Val Ile Ser Gly Val Asn Ser Ser Cys Thr Ser Ser Asp His Gly Asp Val Ile Ser Gly Val Asn Ser Ser Cys Thr

    290                 295                 300                 290 295 300

  the

  the

Ala Ser Ala His Ser Leu Asp Leu Ala Val Asp Met Ser Val Asn Phe Ala Ser Ala His Ser Leu Asp Leu Ala Val Asp Met Ser Val Asn Phe

305                 310                 315                 320 305 310 315 320

  the

  the

Asp Asp Val Leu Glu Phe Asn Phe Asp Asp Val Leu Glu Phe Asn Phe

                325                                              

  the

  the

<210>  3 <210> 3

<211>  35 <211> 35

<212>  DNA <212> DNA

<213>  人工合成 <213> Synthetic

  the

<400>  3 <400> 3

catgccatgg atcataatga aaatggaggc cggtc                                35 catgccatgg atcataatga aaatggaggc cggtc 35

  the

  the

<210>  4 <210> 4

<211>  33 <211> 33

<212>  DNA <212> DNA

<213>  人工合成 <213> Synthetic

  the

<400>  4 <400> 4

gggtcaccag ttgcaaagga ctagcggtag cag                                  33 gggtcaccag ttgcaaagga ctagcggtag cag 33

  the

  the

Claims (4)

1.一种分离的基因,其序列为SEQ ID NO.1所示。1. An isolated gene, whose sequence is shown in SEQ ID NO.1. 2.权利要求1所述基因编码的蛋白质,其序列为SEQ ID NO.2所示。2. The protein encoded by the gene of claim 1, whose sequence is shown in SEQ ID NO.2. 3.权利要求1所述基因或权利要求2所述蛋白在提高金柑或柠檬耐旱性中的应用。3. The application of the gene according to claim 1 or the protein according to claim 2 in improving the drought tolerance of kumquat or lemon. 4.权利要求1所述基因或权利要求2所述蛋白在提高烟草耐旱性中的应用。4. The application of the gene according to claim 1 or the protein according to claim 2 in improving the drought tolerance of tobacco.
CN201310724243.5A 2013-12-25 2013-12-25 Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof Active CN103695439B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310724243.5A CN103695439B (en) 2013-12-25 2013-12-25 Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310724243.5A CN103695439B (en) 2013-12-25 2013-12-25 Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof

Publications (2)

Publication Number Publication Date
CN103695439A CN103695439A (en) 2014-04-02
CN103695439B true CN103695439B (en) 2015-10-21

Family

ID=50357103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310724243.5A Active CN103695439B (en) 2013-12-25 2013-12-25 Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof

Country Status (1)

Country Link
CN (1) CN103695439B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187779B (en) * 2020-02-14 2022-06-10 西南大学 Disease-resistant gene OsRLR1, transcription factor OsWRKY19 and application in breeding of rice resistant to bacterial blight
CN114645053B (en) * 2020-12-17 2023-04-07 中国农业大学 ZmWRKY70 protein and application of encoding gene thereof in drought resistance of plants
CN113388621B (en) * 2021-07-09 2023-06-16 河南农业大学 Rehmannia WRKY transcription factor RgWRKY37 gene and application thereof
CN114591969B (en) * 2022-03-22 2023-08-15 赣南师范大学 A Drought Resistance Gene CrWRKY57 and Its Application in Plant Drought Resistance Improvement
CN114990115B (en) * 2022-05-23 2023-08-18 赣南师范大学 Vector constructed by optimized citrus Ccl-eEF1a promoter and CsUAP56 small intron and application
CN116355926A (en) * 2023-03-09 2023-06-30 广西壮族自治区亚热带作物研究所(广西亚热带农产品加工研究所) A method for cloning and heterologous expression of key enzyme gene FcSPP of kumquat sucrose biosynthesis
CN117467696B (en) * 2023-11-03 2024-10-18 四川大学 Application of BnaA7.WRKY70 gene in improving plant waterlogging tolerance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814620A (en) * 2005-02-01 2006-08-09 中国科学院遗传与发育生物学研究所 Soybean WRKY transcription factor GmWRKY6 and its coding gene and use
CN101050234A (en) * 2007-03-20 2007-10-10 中国农业大学 WRKY transcription factor of plant, coded gene, and application
CN101130785A (en) * 2007-07-30 2008-02-27 北京未名凯拓农业生物技术有限公司 Clone of rice WRKY gene relative to drought resistance and application thereof
CN101851634A (en) * 2010-03-10 2010-10-06 华中农业大学 Improving drought and cold tolerance of plants using the arginine decarboxylase gene PtADC
WO2011017422A2 (en) * 2009-08-04 2011-02-10 The Penn State Research Foundation Methods and compositions relating to controlled induction of plant senescence
CN102477435A (en) * 2010-11-22 2012-05-30 华中农业大学 Method for improving drought resistance of plant by using Poncirus trifoliata transcription factor gene PtrABF
CN102533811A (en) * 2010-12-15 2012-07-04 华中农业大学 Cloning of poncirustrifoliata mitogen-activated protein kinase (PtrMAPK) and application of PtrMAPK to improvement of drought resistance of plant
CN102703465A (en) * 2012-05-04 2012-10-03 济南大学 Salt-tolerant drought-tolerant wheat gene TaWRKY79 and application thereof
CN103451191A (en) * 2013-09-24 2013-12-18 华中农业大学 Fortunella crassfolia FcSILP gene and application thereof for improving plant adverse resistance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814620A (en) * 2005-02-01 2006-08-09 中国科学院遗传与发育生物学研究所 Soybean WRKY transcription factor GmWRKY6 and its coding gene and use
CN101050234A (en) * 2007-03-20 2007-10-10 中国农业大学 WRKY transcription factor of plant, coded gene, and application
CN101130785A (en) * 2007-07-30 2008-02-27 北京未名凯拓农业生物技术有限公司 Clone of rice WRKY gene relative to drought resistance and application thereof
WO2011017422A2 (en) * 2009-08-04 2011-02-10 The Penn State Research Foundation Methods and compositions relating to controlled induction of plant senescence
CN101851634A (en) * 2010-03-10 2010-10-06 华中农业大学 Improving drought and cold tolerance of plants using the arginine decarboxylase gene PtADC
CN102477435A (en) * 2010-11-22 2012-05-30 华中农业大学 Method for improving drought resistance of plant by using Poncirus trifoliata transcription factor gene PtrABF
CN102533811A (en) * 2010-12-15 2012-07-04 华中农业大学 Cloning of poncirustrifoliata mitogen-activated protein kinase (PtrMAPK) and application of PtrMAPK to improvement of drought resistance of plant
CN102703465A (en) * 2012-05-04 2012-10-03 济南大学 Salt-tolerant drought-tolerant wheat gene TaWRKY79 and application thereof
CN103451191A (en) * 2013-09-24 2013-12-18 华中农业大学 Fortunella crassfolia FcSILP gene and application thereof for improving plant adverse resistance

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis;Jing Li et al.;《New Phytologist》;20130701;457–472 *
DNA 微阵列技术在柑橘研究中的应用;张凌云等;《果树学报》;20101231;110-114 *
TheWRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense;Jing Li et al.;《The Plant Cell》;20040228;319–331 *
枳抗逆基因的克隆及功能鉴定;黄小三;《中国博士学位论文全文数据库农业科技辑》;20130115;全文 *
柑桔叶片干旱胁迫抑制差减cDNA文库的构建与初步分析;谈安群;《中国优秀硕士学位论文全文数据库农业科技辑》;20080915;全文 *
龚小庆.金柑(Fortunella crassifolia)三个抗逆基因克隆、功能鉴定及作用机制解析.《中国博士学位论文全文数据库农业科技辑》.2014,全文. *

Also Published As

Publication number Publication date
CN103695439A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
Salleh et al. A novel function for a redox‐related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses
CN103695439B (en) Gold mandarin orange FcWRKY70 gene and the application in raising drought tolerance in plants thereof
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
CN107164391A (en) A kind of strawberry floral genes FvbHLH78 and its application
CN103194457B (en) Germinoid Protein Gene LrGLP2 of Lily Minjiang River and Its Application
CN101358193B (en) Identification and application of rice leaf senescence-specific promoter
CN102776203A (en) Cold resistant transcription factor PtrICE1 of trifoliate orange and application thereof in cold resistant improvement of plant
CN102719449A (en) Clone of apple resistance-related gene MdSIMYB1 and application thereof
CN102978218A (en) Cloning of apple stress-resistant related gene MdSIMYB2 and application of cloning of apple stress-resistant related gene MdSIMYB2
CN111454972A (en) The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance
CN104694552B (en) GhEXLB2Application of the gene in plant drought resistance is strengthened
CN108103074B (en) Drought-resistance gene and expression vector of Brachypodium biscarp, its encoded protein and application
CN102719451A (en) Poncirus trifoliata basic helix-loop-helix (PtrbHLH) and application in improving cold resistance of plant
CN106554964B (en) Application of cotton GbABR1 gene in resistance to Verticillium wilt
CN111118036B (en) Gene Encoding the PHD3 Transcription Factor of Tamarix brixensis and Its Application
CN102533811A (en) Cloning of poncirustrifoliata mitogen-activated protein kinase (PtrMAPK) and application of PtrMAPK to improvement of drought resistance of plant
CN102477435A (en) Method for improving drought resistance of plant by using Poncirus trifoliata transcription factor gene PtrABF
CN116640198B (en) Loquat cold-resistance gene EjGLK1 and its encoded protein and its application
CN111423500A (en) Application of SiMYB56 protein and its encoding gene in regulating plant drought tolerance
CN103320448B (en) Lilium regle bZIP transcription factor LrbZIP1 and application
CN113666993B (en) Alfalfa MsSPL12 protein and related biological materials and their application in improving plant stress resistance
CN116655761A (en) Hovenia dulcis thunb transcription factor PtrTGA2 and application thereof in plant cold-resistant genetic improvement
CN104945492A (en) Plant stress tolerance associated protein TaAREB3 as well as encoding gene and application thereof
CN106191059B (en) Capsella bursa-pastoris peroxidase gene promoter and application thereof in improving cold resistance of plants
CN105925593B (en) A kind of tonoplast hydrogen ion pyrophosphatase gene AlVP1, its encoded protein and its application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant