CN114759173A - Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application - Google Patents
Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application Download PDFInfo
- Publication number
- CN114759173A CN114759173A CN202210275754.2A CN202210275754A CN114759173A CN 114759173 A CN114759173 A CN 114759173A CN 202210275754 A CN202210275754 A CN 202210275754A CN 114759173 A CN114759173 A CN 114759173A
- Authority
- CN
- China
- Prior art keywords
- trivalent chromium
- positive electrode
- sodium
- chromium ion
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/523—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及储能材料钠离子电池正极材料领域,具体涉及三价铬离子掺杂改性混合焦磷酸铁钠正极材料、制备及应用。The invention relates to the field of energy storage material sodium ion battery positive electrode materials, in particular to trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode materials, preparation and application.
背景技术Background technique
近年来环境问题受到了世界各国的广泛关注,传统化石能源的使用一方面会造成环境污染另一方面其具有不可再生性过度的使用会造成能源危机。因此开发和利用新能源成为人们的首要选择,然而新能源的产生容易受到气候和环境的制约,并且其生产的能源具有不稳定性的特点。储能电池能够将清洁能源储存起来,然后进行稳定的输出和利用很好的解决了清洁能源不稳定性的问题。In recent years, environmental problems have received extensive attention from all over the world. On the one hand, the use of traditional fossil energy will cause environmental pollution, and on the other hand, its non-renewable excessive use will cause an energy crisis. Therefore, the development and utilization of new energy has become the first choice for people. However, the generation of new energy is easily restricted by climate and environment, and the energy produced by it is unstable. Energy storage batteries can store clean energy, and then perform stable output and utilization, which solves the problem of clean energy instability.
和锂离子电池(LIB)相比,钠离子电池(SIB)作为一种储能电池具有钠资源储量丰富,价格低廉以及工作电压高和较高的安全性等特点在大型储能领域具有广阔的应用前景。在钠离子电池正极材料的研究中人们致力于寻找一种能量密度高、稳定性能好、环境友好资源节约型的正极材料。聚阴离子正极材料大多具有开放的三维骨架、较好的倍率性能及较好的循环性能,但这类化合物的导电率一般较差,为提高其电子和离子导电性,往往需要采取掺杂和碳包覆等手段。Compared with lithium-ion battery (LIB), sodium-ion battery (SIB), as an energy storage battery, has the characteristics of abundant sodium resources, low price, high operating voltage and high safety. application prospects. In the research of cathode materials for sodium-ion batteries, people are devoted to finding a cathode material with high energy density, good stability, environmental friendliness and resource saving. Most of the polyanion cathode materials have an open three-dimensional framework, good rate performance and good cycle performance, but the conductivity of such compounds is generally poor. In order to improve their electronic and ionic conductivity, doping and carbon Coating, etc.
发明内容SUMMARY OF THE INVENTION
本发明是为了解决上述问题而进行的,目的在于提供三价铬离子掺杂改性混合焦磷酸铁钠正极材料、制备及应用。The present invention is carried out in order to solve the above problems, and the purpose is to provide trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material, preparation and application.
本发明提供了一种三价铬离子掺杂改性混合焦磷酸铁钠正极材料,具有这样的特征:三价铬离子掺杂改性混合焦磷酸铁钠正极材料包括三价铬离子掺杂混合焦磷酸铁钠和原位碳,三价铬离子掺杂混合焦磷酸铁钠为三价铬离子掺杂到晶体材料的晶胞中取代部分二价铁离子得到,原位碳均匀包覆在三价铬离子掺杂混合焦磷酸铁钠表面。The invention provides a trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material, which has the following characteristics: the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material comprises a trivalent chromium ion doping mixed Sodium iron pyrophosphate and in-situ carbon, trivalent chromium ion doping mixed sodium iron pyrophosphate is obtained by doping trivalent chromium ions into the unit cell of the crystal material to replace part of the divalent iron ions, and the in-situ carbon is uniformly coated on the three Chromium ion-doped mixed sodium iron pyrophosphate surface.
在本发明提供的三价铬离子掺杂改性混合焦磷酸铁钠正极材料中,还可以具有这样的特征:其中,三价铬离子掺杂改性混合焦磷酸铁钠正极材料的化学方程式为:Na3-xFe2- xCrx(PO4)P2O7@C或Na4-xFe3-xCrx(PO4)2P2O7@C,式中,0.01≤x≤1。The trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material provided by the present invention may also have the following characteristics: wherein, the chemical equation of the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material is: : Na 3-x Fe 2- x Cr x (PO 4 )P 2 O 7 @C or Na 4-x Fe 3-x Cr x (PO 4 ) 2 P 2 O 7 @C, where 0.01≤x ≤1.
本发明提供了一种三价铬离子掺杂改性混合焦磷酸铁钠正极材料的制备方法,具有这样的特征:包括以下步骤:步骤1,将铁源、铬源、钠源、磷源以及还原剂溶于水中,得到均匀分散的前驱体溶液。步骤2,将前驱体溶液搅拌、干燥、煅烧,即得三价铬离子掺杂改性混合焦磷酸铁钠正极材料,三价铬离子掺杂改性混合焦磷酸铁钠正极材料为本发明的三价铬离子掺杂改性混合焦磷酸铁钠正极材料。The invention provides a preparation method of a trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material, which has the following characteristics: comprising the following steps: step 1, mixing iron source, chromium source, sodium source, phosphorus source and The reducing agent is dissolved in water to obtain a uniformly dispersed precursor solution. In
在本发明提供的三价铬离子掺杂改性混合焦磷酸铁钠正极材料的制备方法中,还可以具有这样的特征:其中,步骤1中,铁源、铬源、钠源、磷源、以及所述还原剂的摩尔比为:(1~2):(0.01~1):(1~3):(1~3):(1~3)。In the preparation method of the trivalent chromium ion doping modified mixed sodium iron pyrophosphate cathode material provided by the present invention, it may also have the following characteristics: wherein, in step 1, the iron source, the chromium source, the sodium source, the phosphorus source, the And the molar ratio of the reducing agent is: (1-2):(0.01-1):(1-3):(1-3):(1-3).
在本发明提供的三价铬离子掺杂改性混合焦磷酸铁钠正极材料的制备方法中,还可以具有这样的特征:其中,步骤1中,铁源为九水合硝酸铁、草酸铁以及柠檬酸亚铁中的任意一种,铬源为九水合硝酸铬、乙酸铬中的任意一种,钠源为磷酸二氢钠、硝酸钠以及无水乙酸钠中的任意一种,磷源为磷酸二氢铵、羟基乙叉二磷酸中的任意一种,还原剂为草酸、柠檬酸、抗坏血酸以及酒石酸中的任意一种。In the preparation method of the trivalent chromium ion doping modified mixed sodium ferric pyrophosphate cathode material provided by the present invention, it can also have the following characteristics: wherein, in step 1, the iron source is ferric nitrate nonahydrate, ferric oxalate and lemon any one in ferrous acid, chromium source is any one in nonahydrate chromium nitrate, chromium acetate, sodium source is any one in sodium dihydrogen phosphate, sodium nitrate and anhydrous sodium acetate, phosphorus source is phosphoric acid Any one of ammonium dihydrogen and hydroxyethylidene diphosphoric acid, and the reducing agent is any one of oxalic acid, citric acid, ascorbic acid and tartaric acid.
本发明提供了一种三价铬离子掺杂改性混合焦磷酸铁钠正极材料在钠离子电池中的应用,具有这样的特征:将三价铬离子掺杂改性混合焦磷酸铁钠正极材料作为钠离子电池正极,应用到钠离子电池中,三价铬离子掺杂改性混合焦磷酸铁钠正极材料为本发明的三价铬离子掺杂改性混合焦磷酸铁钠正极材料。The invention provides an application of a trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material in a sodium ion battery, and has the following characteristics: the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material is As a positive electrode of a sodium ion battery, when applied to a sodium ion battery, the trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material is the trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material of the present invention.
在本发明提供的三价铬离子掺杂改性混合焦磷酸铁钠正极材料在钠离子电池中的应用中,还具有这样的特征:钠离子电池正极的制备方法为:将三价铬离子掺杂改性混合焦磷酸铁钠正极材料和粘结剂、导电剂混合浆化,并涂覆在集流体上,固化得到钠离子电池正极。In the application of the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material in the sodium ion battery provided by the present invention, it also has the following characteristics: the preparation method of the sodium ion battery positive electrode is as follows: The hetero-modified mixed sodium iron pyrophosphate positive electrode material is mixed and slurried with a binder and a conductive agent, and is coated on the current collector and cured to obtain a sodium ion battery positive electrode.
发明的作用与效果The role and effect of the invention
根据本发明所涉及的三价铬离子掺杂改性混合焦磷酸铁钠正极材料,因为三价铬离子掺杂改性混合焦磷酸铁钠正极材料包括三价铬离子掺杂混合焦磷酸铁钠和原位碳,三价铬离子掺杂混合焦磷酸铁钠为三价铬离子掺杂到晶体材料的晶胞中取代部分二价铁离子得到,原位碳均匀包覆在三价铬离子掺杂混合焦磷酸铁钠表面。According to the trivalent chromium ion doped modified mixed sodium iron pyrophosphate cathode material involved in the present invention, because the trivalent chromium ion doped modified mixed sodium iron pyrophosphate cathode material includes trivalent chromium ion doped mixed sodium iron pyrophosphate And in-situ carbon, trivalent chromium ion-doped mixed sodium iron pyrophosphate is obtained by doping trivalent chromium ions into the unit cell of the crystal material to replace part of the divalent iron ions, and the in-situ carbon is uniformly coated on the trivalent chromium ions doped. Hybrid mixed sodium ferric pyrophosphate surface.
因为,三价铬离子可以和磷酸根和焦磷酸根之间形成牢固的键合,在充放电过程中可以抑制晶胞体积的变化,因此具有化学和热稳定性。另一方面,三价铬离子会扩大晶格体积,拓宽空间,促进钠离子的扩散,同时三价铬离子的掺入还会产生一定量的钠空位,可以在一定程度上改善钠离子在大倍率充放电时的传输速率。其中抗坏血酸既是还原剂又是碳源在前体分散液中抗坏原酸可以将溶液中的三价铁离子还原成二价铁离子,并且起到螯合剂的作用和二价铁离子结合形成螯合物。在最终惰性气氛下煅烧过程中,抗坏血酸会形成原位碳均匀的包覆在材料表面,使材料的导电性能得到极大的改善。Because the trivalent chromium ion can form a strong bond with phosphate and pyrophosphate, it can suppress the change of the unit cell volume during the charging and discharging process, so it has chemical and thermal stability. On the other hand, trivalent chromium ions will expand the lattice volume, widen the space, and promote the diffusion of sodium ions. At the same time, the incorporation of trivalent chromium ions will also generate a certain amount of sodium vacancies, which can improve the sodium ions to a certain extent. The transfer rate during rate charge and discharge. Among them, ascorbic acid is both a reducing agent and a carbon source. In the precursor dispersion, ascorbic acid can reduce the ferric ions in the solution to ferrous ions, and act as a chelating agent and combine with ferrous ions to form chelates. compound. In the final calcination process in an inert atmosphere, ascorbic acid will form in-situ carbon and evenly coat the surface of the material, which greatly improves the electrical conductivity of the material.
本发明所涉及的三价铬离子掺杂改性混合焦磷酸铁钠正极材料的制备方法原料来源广、操作简单、可以大规模生产。通过该方法制备得到的改性混合聚阴离子化合物正极材料具有电子电导率高、可逆放电容量高、能量密度高等特点,为钠离子电池的进一步发展奠定了良好的基础。The preparation method of the trivalent chromium ion-doped modified mixed sodium iron pyrophosphate positive electrode material involved in the present invention has wide raw material sources, simple operation and large-scale production. The modified mixed polyanion compound cathode material prepared by this method has the characteristics of high electronic conductivity, high reversible discharge capacity and high energy density, which lays a good foundation for the further development of sodium-ion batteries.
附图说明Description of drawings
图1是本发明的实施例中三价铬离子掺杂改性混合焦磷酸铁钠正极材料和对比例中无掺杂的混合焦磷酸铁钠正极材料的X射线衍射图(XRD图);Fig. 1 is the X-ray diffraction pattern (XRD figure) of trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material and undoped mixed sodium iron pyrophosphate positive electrode material in the embodiment of the present invention;
图2是本发明的实施例中三价铬离子掺杂改性混合焦磷酸铁钠正极材料在0.1C的倍率下的充放曲线图;2 is a charge-discharge curve diagram of a trivalent chromium ion-doped modified mixed sodium iron pyrophosphate cathode material at a rate of 0.1C in an embodiment of the present invention;
图3是本发明的对比例中无掺杂的混合焦磷酸铁钠正极材料在0.1C的倍率下的充放电曲线图;3 is a charge-discharge curve diagram of an undoped mixed sodium iron pyrophosphate cathode material in a comparative example of the present invention at a rate of 0.1C;
图4是本发明的实施例和对比例中的混合焦磷酸铁钠正极材料在10C倍率下循环2000圈的循环图;4 is a cycle diagram of the mixed sodium ferric pyrophosphate positive electrode material in the embodiment of the present invention and the comparative example circulating 2000 cycles at a rate of 10C;
图5是本发明的实施例中三价铬离子掺杂改性混合焦磷酸铁钠正极材料的扫描电镜图。5 is a scanning electron microscope image of a trivalent chromium ion doping modified mixed sodium iron pyrophosphate cathode material in an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下实施例结合附图对本发明三价铬离子掺杂改性混合焦磷酸铁钠正极材料、制备及应用作具体阐述。In order to make the technical means, creative features, goals and effects realized by the present invention easy to understand, the following examples are combined with the accompanying drawings to describe the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material, preparation and application in detail. .
<实施例><Example>
在本实施例中,提供了一种三价铬离子掺杂改性混合焦磷酸铁钠正极材料。In this embodiment, a trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material is provided.
三价铬离子掺杂改性混合焦磷酸铁钠正极材料包括三价铬离子掺杂混合焦磷酸铁钠和原位碳,三价铬离子掺杂混合焦磷酸铁钠为三价铬离子掺杂到晶体材料的晶胞中取代部分二价铁离子得到,原位碳均匀包覆在三价铬离子掺杂混合焦磷酸铁钠表面。Trivalent chromium ion doped mixed sodium iron pyrophosphate cathode materials include trivalent chromium ion doped mixed sodium iron pyrophosphate and in-situ carbon, trivalent chromium ion doped mixed sodium iron pyrophosphate is trivalent chromium ion doped It is obtained by replacing part of divalent iron ions in the unit cell of the crystal material, and the in-situ carbon is uniformly coated on the surface of the trivalent chromium ion-doped mixed sodium iron pyrophosphate.
本实施例还提供了一种三价铬离子掺杂改性混合焦磷酸铁钠正极材料的制备方法,包括以下步骤:The present embodiment also provides a preparation method of a trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material, comprising the following steps:
步骤S1,在100ml烧杯中,将3.636g九水硝酸铁、0.4002g九水合硝酸铬、3g抗坏血酸、1.7255g磷酸二氢铵、1.1899g硝酸钠、0.05g十二烷基硫酸钠和5ml乙二醇溶于50mL去离子水中,搅拌1h,得到均匀分散的前驱体溶液。Step S1, in a 100ml beaker, mix 3.636g of ferric nitrate nonahydrate, 0.4002g of chromium nitrate nonahydrate, 3g of ascorbic acid, 1.7255g of ammonium dihydrogen phosphate, 1.1899g of sodium nitrate, 0.05g of sodium dodecyl sulfate and 5ml of ethylenediol The alcohol was dissolved in 50 mL of deionized water and stirred for 1 h to obtain a uniformly dispersed precursor solution.
步骤S2,将均匀分散的前驱体溶液置于恒温油浴锅中在80℃油浴条件下将溶液中的水分蒸干然后90℃真空干燥8h。将干燥后的原料在5%氢气+95%氩气的氛围下以2℃/min的升温速率加热到500℃煅烧,保温10h,即得到三价铬离子掺杂改性混合焦磷酸铁钠正极材料Na2.8Fe1.8Cr0.2(PO4)P2O7。In step S2, the uniformly dispersed precursor solution is placed in a constant temperature oil bath, and the water in the solution is evaporated to dryness under the condition of an oil bath at 80°C, and then vacuum dried at 90°C for 8 hours. The dried raw material was heated to 500°C at a heating rate of 2°C/min in an atmosphere of 5% hydrogen + 95% argon, and kept for 10 hours to obtain a trivalent chromium ion-doped modified mixed sodium iron pyrophosphate cathode. Material Na 2.8 Fe 1.8 Cr 0.2 (PO 4 )P 2 O 7 .
本实施例还提供了一种三价铬离子掺杂改性混合焦磷酸铁钠正极材料在钠离子电池中的应用:This embodiment also provides an application of a trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material in a sodium ion battery:
将三价铬离子掺杂改性混合焦磷酸铁钠正极材料作为钠离子电池正极,应用到钠离子电池中,三价铬离子掺杂改性混合焦磷酸铁钠正极材料为本实施例中的三价铬离子掺杂改性混合焦磷酸铁钠正极材料。The trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material is used as the positive electrode of the sodium ion battery and applied to the sodium ion battery. The trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material in this embodiment Trivalent chromium ion doping modified mixed sodium iron pyrophosphate cathode material.
钠离子电池正极的制备方法为:将三价铬离子掺杂改性混合焦磷酸铁钠正极材料和粘结剂、导电剂混合浆化,并涂覆在集流体上,固化得到钠离子电池正极。The preparation method of the positive electrode of the sodium ion battery is as follows: the positive electrode material of trivalent chromium ion doped and modified mixed sodium iron pyrophosphate is mixed and slurried, and the binder and the conductive agent are mixed and slurried, coated on the current collector, and cured to obtain the positive electrode of the sodium ion battery. .
<对比例><Comparative example>
本对比例中提供了一种混合焦磷酸铁钠正极材料及其制备方法。The present comparative example provides a mixed sodium iron pyrophosphate cathode material and a preparation method thereof.
本对比例中的混合焦磷酸铁钠正极材料的制备方法与实施例类似,不同之处在于:The preparation method of the mixed sodium ferric pyrophosphate cathode material in this comparative example is similar to the embodiment, the difference is:
步骤S1,在100ml烧杯中,将4.04g九水硝酸铁、3g抗坏血酸、1.7255g磷酸二氢铵、1.2749g硝酸钠、0.05g十二烷基硫酸钠和5ml乙二醇溶于50mL去离子水中,搅拌1h,得到均匀分散的前驱体溶液。Step S1, in a 100ml beaker, dissolve 4.04g ferric nitrate nonahydrate, 3g ascorbic acid, 1.7255g ammonium dihydrogen phosphate, 1.2749g sodium nitrate, 0.05g sodium dodecyl sulfate and 5ml ethylene glycol in 50mL deionized water , and stirred for 1 h to obtain a uniformly dispersed precursor solution.
其余步骤均与实施例相同。The rest of the steps are the same as in the embodiment.
图1是本实施例中三价铬离子掺杂改性混合焦磷酸铁钠正极材料和对比例中无掺杂的混合焦磷酸铁钠正极材料的X射线衍射图(XRD图)。FIG. 1 is the X-ray diffraction pattern (XRD pattern) of the trivalent chromium ion doped modified mixed sodium iron pyrophosphate positive electrode material in the present embodiment and the undoped mixed sodium iron pyrophosphate positive electrode material in the comparative example.
如图1所示,三价铬离子掺杂改性前后该物质的XRD图像衍射峰没有发生明显变化可以看出少量的掺杂对材料的纯度没有影响。As shown in Figure 1, the diffraction peaks of the XRD images of the material before and after doping modification with trivalent chromium ions did not change significantly. It can be seen that a small amount of doping has no effect on the purity of the material.
在本实施例中还对对比例和实施例中得到的三价铬离子掺杂改性混合焦磷酸铁钠正极材料进行了在0.1C的倍率下的充放电循环测试。In this example, the charge-discharge cycle test at a rate of 0.1C was also performed on the trivalent chromium ion-doped modified mixed sodium iron pyrophosphate positive electrode material obtained in the comparative example and the example.
图2是实施例中三价铬离子掺杂改性混合焦磷酸铁钠正极材料在0.1C的倍率下的充放电曲线图。FIG. 2 is a charge-discharge curve diagram of a trivalent chromium ion-doped modified mixed sodium iron pyrophosphate positive electrode material at a rate of 0.1 C in the embodiment.
图3是对比例中混合焦磷酸铁钠正极材料在0.1C的倍率下的充放电曲线图。FIG. 3 is a charge-discharge curve diagram of the mixed sodium iron pyrophosphate cathode material in the comparative example at a rate of 0.1C.
图4是实施例和对比例中的混合焦磷酸铁钠正极材料在10C倍率下循环2000圈的循环图。FIG. 4 is a cycle diagram of the mixed sodium iron pyrophosphate cathode material in the example and the comparative example cycled for 2000 cycles at a rate of 10C.
如图2~图4所示,实施例制备得到的三价铬离子掺杂改性混合焦磷酸铁钠正极材料在0.1C时的放电容量为113mAh·g-1,接近理论容量119mAh·g-1,优于对比例中混合焦磷酸铁钠正极材料(改性前),说明三价铬离子掺杂对材料容量的提升起到了积极的作用,通过三价铬离子掺杂前后材料在10C倍率下的循环图可以看出,三价铬离子掺杂改性后材料的容量和循环稳定性都有所改善。As shown in Figures 2 to 4, the discharge capacity of the trivalent chromium ion-doped modified mixed sodium iron pyrophosphate cathode material prepared in the Example is 113mAh·g -1 at 0.1C, which is close to the theoretical capacity of 119mAh·g - 1. It is better than the mixed sodium iron pyrophosphate cathode material (before modification) in the comparative example, indicating that the doping of trivalent chromium ions has a positive effect on the improvement of the material capacity. It can be seen from the cycle diagram below that the capacity and cycle stability of the material are improved after doping with trivalent chromium ions.
图5是实施例中三价铬离子掺杂改性混合焦磷酸铁钠正极材料的扫描电镜图。5 is a scanning electron microscope image of a trivalent chromium ion doping modified mixed sodium iron pyrophosphate cathode material in the embodiment.
如图5所示,三价铬离子掺杂改性混合焦磷酸铁钠正极材料其形貌较为分散,没有发生大块聚集有助于电解液的充分接触和钠离子的快速扩散。As shown in Figure 5, the morphology of the modified mixed sodium iron pyrophosphate cathode material doped with trivalent chromium ions is relatively dispersed, and no large aggregation occurs, which is conducive to the full contact of the electrolyte and the rapid diffusion of sodium ions.
实施例的作用与效果Action and effect of the embodiment
根据本实施例所涉及的三价铬离子掺杂改性混合焦磷酸铁钠正极材料、制备方法及其在钠离子电池中的应用,因为三价铬离子掺杂改性混合焦磷酸铁钠正极材料包括三价铬离子掺杂混合焦磷酸铁钠和原位碳,三价铬离子掺杂混合焦磷酸铁钠为三价铬离子掺杂到晶体材料的晶胞中取代部分二价铁离子得到,原位碳均匀包覆在三价铬离子掺杂混合焦磷酸铁钠表面。According to the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode material, preparation method and application in sodium ion battery involved in this embodiment, because the trivalent chromium ion doping modified mixed sodium iron pyrophosphate positive electrode The material includes trivalent chromium ion doped mixed sodium iron pyrophosphate and in-situ carbon, trivalent chromium ion doped mixed sodium iron pyrophosphate is obtained by doped trivalent chromium ion into the unit cell of the crystal material to replace part of the divalent iron ion , the in situ carbon is uniformly coated on the surface of trivalent chromium ion-doped mixed sodium iron pyrophosphate.
因此,三价铬离子可以和磷酸根和焦磷酸根之间形成牢固的键合,在充放电过程中可以抑制晶胞体积的变化,因此具有化学和热稳定性。另一方面,三价铬离子会扩大晶格体积,拓宽空间,促进钠离子的扩散,同时三价铬离子的掺入还会产生一定量的钠空位,可以在一定程度上改善钠离子在大倍率充放电时的传输速率。其中抗坏血酸既是还原剂又是碳源在前体分散液中抗坏原酸可以将溶液中的三价铁离子还原成二价铁离子,并且起到螯合剂的作用和二价铁离子结合形成螯合物。在最终惰性气氛下煅烧过程中,抗坏血酸会形成原位碳均匀的包覆在材料表面,使材料的导电性能得到极大的改善。Therefore, trivalent chromium ions can form strong bonds with phosphate and pyrophosphate, which can suppress the change of unit cell volume during charging and discharging, so it has chemical and thermal stability. On the other hand, trivalent chromium ions will expand the lattice volume, widen the space, and promote the diffusion of sodium ions. At the same time, the incorporation of trivalent chromium ions will also generate a certain amount of sodium vacancies, which can improve the sodium ions to a certain extent. The transfer rate during rate charge and discharge. Among them, ascorbic acid is both a reducing agent and a carbon source. In the precursor dispersion, ascorbic acid can reduce the ferric ions in the solution to ferrous ions, and act as a chelating agent and combine with ferrous ions to form chelates. compound. In the final calcination process in an inert atmosphere, ascorbic acid will form in-situ carbon and evenly coat the surface of the material, which greatly improves the electrical conductivity of the material.
上述实施例所涉及的三价铬离子掺杂改性混合焦磷酸铁钠正极材料的制备方法原料来源广、操作简单、可以大规模生产。通过该方法制备得到的改性混合聚阴离子化合物正极材料具有电子电导率高、可逆放电容量高、能量密度高等特点,为钠离子电池的进一步发展奠定了良好的基础。The preparation method of the trivalent chromium ion-doped modified mixed sodium ferric pyrophosphate cathode material involved in the above embodiment has a wide range of raw materials, simple operation, and large-scale production. The modified mixed polyanion compound cathode material prepared by this method has the characteristics of high electronic conductivity, high reversible discharge capacity and high energy density, which lays a good foundation for the further development of sodium-ion batteries.
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。The above embodiments are preferred cases of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210275754.2A CN114759173A (en) | 2022-03-21 | 2022-03-21 | Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210275754.2A CN114759173A (en) | 2022-03-21 | 2022-03-21 | Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114759173A true CN114759173A (en) | 2022-07-15 |
Family
ID=82328167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210275754.2A Pending CN114759173A (en) | 2022-03-21 | 2022-03-21 | Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114759173A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025056062A1 (en) * | 2023-09-15 | 2025-03-20 | 中伟新材料股份有限公司 | Polyanionic precursor, sodium ion battery positive electrode material and preparation method therefor, sodium ion battery, and electrical device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104364946A (en) * | 2012-06-12 | 2015-02-18 | 丰田自动车株式会社 | Positive electrode material for sodium batteries and method for producing same |
CN105140489A (en) * | 2015-09-25 | 2015-12-09 | 中南大学 | Titanium-doped carbon-coated sodium ferric phosphate material and preparation method thereof |
CN105836724A (en) * | 2012-03-09 | 2016-08-10 | 日本电气硝子株式会社 | Cathode active material for sodium ion secondary battery |
JP6101771B1 (en) * | 2015-11-09 | 2017-03-22 | 太平洋セメント株式会社 | Positive electrode active material for sodium ion battery and method for producing the same |
CN109103431A (en) * | 2018-08-19 | 2018-12-28 | 王子韩 | A kind of preparation method of sodium ion battery electrode material vanadium phosphate ferrisodium composite material |
CN113328073A (en) * | 2021-05-24 | 2021-08-31 | 上海电力大学 | Modified iron-based polyanion compound cathode material and preparation method thereof |
CN114057175A (en) * | 2021-11-11 | 2022-02-18 | 上海电力大学 | Fluoride ion doping modified sodium iron pyrophosphate for positive electrode material of sodium ion battery, its preparation method and application |
-
2022
- 2022-03-21 CN CN202210275754.2A patent/CN114759173A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105836724A (en) * | 2012-03-09 | 2016-08-10 | 日本电气硝子株式会社 | Cathode active material for sodium ion secondary battery |
CN104364946A (en) * | 2012-06-12 | 2015-02-18 | 丰田自动车株式会社 | Positive electrode material for sodium batteries and method for producing same |
CN105140489A (en) * | 2015-09-25 | 2015-12-09 | 中南大学 | Titanium-doped carbon-coated sodium ferric phosphate material and preparation method thereof |
JP6101771B1 (en) * | 2015-11-09 | 2017-03-22 | 太平洋セメント株式会社 | Positive electrode active material for sodium ion battery and method for producing the same |
CN109103431A (en) * | 2018-08-19 | 2018-12-28 | 王子韩 | A kind of preparation method of sodium ion battery electrode material vanadium phosphate ferrisodium composite material |
CN113328073A (en) * | 2021-05-24 | 2021-08-31 | 上海电力大学 | Modified iron-based polyanion compound cathode material and preparation method thereof |
CN114057175A (en) * | 2021-11-11 | 2022-02-18 | 上海电力大学 | Fluoride ion doping modified sodium iron pyrophosphate for positive electrode material of sodium ion battery, its preparation method and application |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025056062A1 (en) * | 2023-09-15 | 2025-03-20 | 中伟新材料股份有限公司 | Polyanionic precursor, sodium ion battery positive electrode material and preparation method therefor, sodium ion battery, and electrical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107819115B (en) | A kind of doped modified sodium vanadium fluorophosphate cathode material and preparation method thereof | |
CN111082058B (en) | Nasicon structure sodium titanium phosphate surface modified P2 type manganese-based sodium ion battery positive electrode material and preparation method thereof | |
CN111952579A (en) | A kind of high energy density sodium ion battery iron-manganese-based cathode material and preparation method thereof | |
CN106784777B (en) | Alkaline earth metal vanadate electrode material and its preparation method and application | |
CN113929069B (en) | A kind of manganese-rich phosphate cathode material and its preparation method and application | |
CN111559741B (en) | Preparation method of polyanion composite material | |
CN110797529A (en) | Doped high-nickel high-voltage NCM positive electrode material and preparation method thereof | |
CN115057485A (en) | A kind of non-metal boron doped layered oxide sodium ion battery cathode material and preparation method and application thereof | |
CN115132981A (en) | Binary doped iron-based fluorophosphate sodium ion positive electrode material and preparation method thereof | |
CN114864945A (en) | Preparation method and application of highly conductive lithium iron phosphate | |
CN116845230A (en) | Mn and Al-containing vanadium-based phosphate positive electrode material, preparation method thereof, battery and energy storage equipment | |
CN114057175B (en) | Fluoride ion-doped modified sodium iron pyrophosphate is used as cathode material for sodium ion batteries, its preparation method and application | |
CN114242972B (en) | Nickel-rich high-voltage sodium-ion battery positive electrode material and preparation method and application thereof | |
CN114105115B (en) | Production methods and applications of iron phosphate and lithium iron phosphate | |
CN114759173A (en) | Trivalent chromium ion doped modified mixed ferric sodium pyrophosphate positive electrode material, preparation and application | |
CN102134064A (en) | Preparation method of positive material of lithium iron phosphate | |
CN117577828B (en) | Long-cycle lithium battery positive electrode material and preparation method thereof | |
CN116081591B (en) | A method for preparing a negative electrode material for a sodium ion battery | |
CN111653749A (en) | Semi-Solid Lithium Cathode Suspension Based on Nickel Cobalt Lithium Manganate Carbon Nanotube Composites | |
CN117819508A (en) | Low-temperature rate lithium iron phosphate positive electrode material and preparation method thereof | |
CN116969434A (en) | Cr-containing vanadium-based phosphate positive electrode material, preparation method thereof, battery and energy storage equipment | |
CN107611420B (en) | A kind of lithium battery nanometer electrode material LiNaV2O6 and preparation method thereof | |
CN113942988B (en) | Ferric phosphate and preparation method thereof | |
CN114084879B (en) | Lithium iron phosphate and production method and application thereof | |
CN116722131A (en) | Low-entropy antimony-based binary superfine nanocrystalline oxide negative electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220715 |
|
WD01 | Invention patent application deemed withdrawn after publication |