CN113929069B - A kind of manganese-rich phosphate cathode material and its preparation method and application - Google Patents
A kind of manganese-rich phosphate cathode material and its preparation method and application Download PDFInfo
- Publication number
- CN113929069B CN113929069B CN202111170822.0A CN202111170822A CN113929069B CN 113929069 B CN113929069 B CN 113929069B CN 202111170822 A CN202111170822 A CN 202111170822A CN 113929069 B CN113929069 B CN 113929069B
- Authority
- CN
- China
- Prior art keywords
- sodium
- manganese
- combination
- preparation
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供一种正极材料,所述正极材料为含有V和Ti的富Mn基磷酸盐正极材料,所述正极材料的化学式为Na3+δ+(4‑n)x+2yTi1‑δ‑x‑yMn+ xVδMn1+y(PO4)3;其中,所述Mn+包括Li+、K+、Mg2+、Ca2+、Sr2+、Zn2+、Co2+、Ni2+、Cu2+、Al3+、Cr3+、Fe3+、Y3+、La3+、Ga3+、Zr4+、Sn4+、Nb5+或W6+中的任意一种或至少两种的组合;所述0≤x≤0.5;所述0<δ≤0.5;所述n≥1;所述0≤y≤0.5。本发明制备的所述正极材料可获得更高的有效比容量,抑制富锰基磷酸盐正极的电压滞后现象,抑制锰离子姜泰勒结构畸变和锰离子的溶解,展示出良好动力学性能和倍率性能,进一步提升材料的电化学性能。
The invention provides a cathode material. The cathode material is a Mn-rich phosphate cathode material containing V and Ti. The chemical formula of the cathode material is Na 3+δ+(4‑n)x+2y Ti 1‑δ ‑x‑y M n+ x V δ Mn 1+y (PO 4 ) 3 ; wherein, the M n+ includes Li + , K + , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Co 2 + , Ni 2+ , Cu 2+ , Al 3+ , Cr 3+ , Fe 3+ , Y 3+ , La 3+ , Ga 3+ , Zr 4+ , Sn 4+ , Nb 5+ or W 6+ Any one or a combination of at least two of them; the 0≤x≤0.5; the 0<δ≤0.5; the n≥1; the 0≤y≤0.5. The positive electrode material prepared by the present invention can obtain a higher effective specific capacity, suppress the voltage hysteresis phenomenon of the manganese-rich phosphate positive electrode, suppress the Jiang Taylor structural distortion of manganese ions and the dissolution of manganese ions, and exhibit good dynamic performance and rate performance, further improving the electrochemical performance of the material.
Description
技术领域Technical field
本发明涉及钠离子电池领域,涉及一种新型的富锰基磷酸盐正极材料及其制备方法和应用。The invention relates to the field of sodium ion batteries, and relates to a new type of manganese-rich phosphate cathode material and its preparation method and application.
背景技术Background technique
在这一背景下,清洁能源(太阳能、风能和潮汐能等)以及智能电网等先进技术得到了前所未有的发展。因此对能源储存装置也提出了更高的要求。二次可充锂离子电池作为一种储能装置,因为较高的转换效率和能量密度被广泛研究。然而锂资源的匮乏和分布不均匀等问题限制了它未来的发展。随着大规模储能的兴起,以及考虑到钠资源地壳丰度高且价格便宜等特点,钠离子电池成为锂离子电池重要的补充。钠超离子导体的磷酸盐正极材料,具有三维离子通道,因而得到广泛的研究。其中磷酸钒钠正极,由于钒离子能够提供又稳又平的电压平台,使得磷酸钒钠展示了优异的倍率性能和循环性能。但由于钒资源相对昂贵,极大地限制了磷酸钒钠的工业化应用。钠超离子导体结构的铁基磷酸盐正极虽然具有成本优势,但Fe2+/Fe3+电压平台过低,仅为2.5V左右,不具有实际应用价值。而对于同样绿色低廉的锰基磷酸盐正极材料,如磷酸钒锰钠,尽管也有两个反应电对,但是钒的用量依然偏高,使得材料的成本仍然居高,不易于工业化;对于不含钒的磷酸锰钛材料,价格低廉,并且正四价钛离子可激活Mn2+/Mn3+和Mn3+/Mn4+两个反应电对,它们的电压平台分别在3.6V和4.1V,甚至高于V3+/V4+的电压平台(3.4V),然而材料中Na和Mn的互占位严重,导致材料在钠脱嵌过程中衰减严重,也不具有实际应用价值。Against this background, advanced technologies such as clean energy (solar energy, wind energy, tidal energy, etc.) and smart grids have achieved unprecedented development. Therefore, higher requirements are also put forward for energy storage devices. As an energy storage device, secondary rechargeable lithium-ion batteries have been widely studied because of their high conversion efficiency and energy density. However, problems such as the scarcity and uneven distribution of lithium resources limit its future development. With the rise of large-scale energy storage and considering the high abundance and low price of sodium resources in the earth's crust, sodium-ion batteries have become an important supplement to lithium-ion batteries. Phosphate cathode materials, which are sodium superion conductors, have three-dimensional ion channels and have been extensively studied. Among them, sodium vanadium phosphate cathode, because vanadium ions can provide a stable and flat voltage platform, sodium vanadium phosphate exhibits excellent rate performance and cycle performance. However, because vanadium resources are relatively expensive, the industrial application of sodium vanadium phosphate is greatly limited. Although the iron-based phosphate cathode with a sodium superion conductor structure has a cost advantage, the Fe 2+ /Fe 3+ voltage platform is too low, only about 2.5V, and has no practical application value. For the same green and low-cost manganese-based phosphate cathode materials, such as sodium vanadium manganese phosphate, although there are two reaction pairs, the amount of vanadium is still high, making the cost of the material still high and difficult to industrialize; for non-containing Vanadium manganese titanium phosphate material is cheap, and positive tetravalent titanium ions can activate two reaction pairs, Mn 2+ /Mn 3+ and Mn 3+ /Mn 4+ . Their voltage platforms are at 3.6V and 4.1V respectively. It is even higher than the voltage platform of V 3+ /V 4+ (3.4V). However, the mutual occupation of Na and Mn in the material is serious, resulting in serious attenuation of the material during the sodium deintercalation process, and it has no practical application value.
在锰基磷酸盐中,由于锰离子和钠离子半径相似,晶体结构中锰离子极易占据钠的活性位点(Na1位),产生钠锰混排现象,导致材料的容量无法有效发挥。在充电过程中,二价锰离子氧化形成更小的三价锰离子(或四价锰离子)后,会迁移至热力学稳定的状态。而这种锰离子的迁移过程,使得充放电曲线发生严重的电压滞后现象,这不仅降低材料的输出电压,还会影响材料在有效电压窗口的容量释放。而且Mn3+的Jahn-Teller效应和Mn2+在有机电解液中的溶解,会降低材料的结构稳定性并恶化材料动力学性能。因此迫切开发新型的价格低廉的富Mn基磷酸盐正极,克服以上富锰磷酸盐结构的不足,获得较好的倍率性能和循环性能,这对富锰基磷酸盐正极的未来工业化应用具有重要意义。In manganese-based phosphates, since the radii of manganese ions and sodium ions are similar, the manganese ions in the crystal structure can easily occupy the active site of sodium (Na1 position), resulting in a mixed arrangement of sodium and manganese, resulting in the inability to effectively exert the capacity of the material. During the charging process, divalent manganese ions are oxidized to form smaller trivalent manganese ions (or tetravalent manganese ions), which then migrate to a thermodynamically stable state. This migration process of manganese ions causes serious voltage hysteresis in the charge-discharge curve, which not only reduces the output voltage of the material, but also affects the capacity release of the material in the effective voltage window. Moreover, the Jahn-Teller effect of Mn 3+ and the dissolution of Mn 2+ in the organic electrolyte will reduce the structural stability of the material and worsen the dynamic properties of the material. Therefore, it is urgent to develop new low-priced Mn-rich phosphate cathodes to overcome the above shortcomings of the manganese-rich phosphate structure and obtain better rate performance and cycle performance, which is of great significance for the future industrial application of manganese-rich phosphate cathodes. .
CN106981641A公开了一种碳包覆的磷酸钛锰钠正极材料的制备方法,以有机化合物作为还原剂和碳源,将磷源、锰源、钠源和钛源混合球磨,经过高温烧结后,即可获得碳包覆的磷酸钛锰钠正极材料。虽然引入碳包覆可以提升正极材料的整体导电率,但是磷酸钛锰钠结构中的钠锰混排、三价锰离子的姜泰勒效应和锰离子的溶解等问题依然没有得到有效的解决,所述磷酸钛锰钠正极材料放电比容量较低、循环性较差,很难实现工业级的大规模生产。CN106981641A discloses a method for preparing carbon-coated sodium titanium manganese phosphate cathode material. Organic compounds are used as reducing agents and carbon sources, and phosphorus sources, manganese sources, sodium sources and titanium sources are mixed and ball milled. After high-temperature sintering, that is, Carbon-coated sodium titanium manganese phosphate cathode material is available. Although the introduction of carbon coating can improve the overall conductivity of the cathode material, problems such as sodium and manganese mixing in the sodium titanium manganese phosphate structure, the Ginger Taylor effect of trivalent manganese ions, and the dissolution of manganese ions have still not been effectively solved. The above-mentioned sodium titanium manganese phosphate cathode material has a low discharge specific capacity and poor cycleability, making it difficult to achieve industrial-level mass production.
CN111092220A公开了一种M元素体相掺杂改性隧道型钠离子电池锰基正极材料及其制备方法,通过固相球磨制备前驱体和高温固相烧结反应,制备出棒状结构M元素体相掺杂的隧道型钠离子电池锰基材料。M元素体相掺杂有效地提高了电极材料的电子导电性,改善了材料的结构稳定性,有利于提高其倍率性能及循环稳定性。其中,M元素包括Al3+、Co3+、Ni2+、Mg2+和Fe3+中的任意一种或至少两种的组合。虽然M元素体相掺杂提高了材料的导电性,但是对正极材料导电性的提升具有局限性,而且对材料循环性能与倍率性能的提升也具有局限性。CN111092220A discloses a M element bulk-doped modified tunnel-type sodium-ion battery manganese-based cathode material and its preparation method. The precursor is prepared by solid-phase ball milling and high-temperature solid-phase sintering reaction to prepare a rod-shaped structure of M element bulk-doped material. Complex manganese-based materials for tunnel-type sodium-ion batteries. The bulk doping of M element effectively improves the electronic conductivity of the electrode material, improves the structural stability of the material, and is beneficial to improving its rate performance and cycle stability. Among them, the M element includes any one or a combination of at least two of Al 3+ , Co 3+ , Ni 2+ , Mg 2+ and Fe 3+ . Although M element bulk doping improves the conductivity of the material, it has limitations in improving the conductivity of the cathode material, and also has limitations in improving the material's cycle performance and rate performance.
CN112563484A公开了一种钠离子电池正极材料及其制备方法、钠离子电池,该钠离子电池正极材料的化学式为NaxNiyM1-yO2,其中,0.5<x<1,0.1<y<0.5,M选自Mn、Fe、Co、V、Cu、Cr和Ti中的至少一种;所述钠离子电池正极材料为类球形颗粒,所述钠离子电池正极材料具有层状结构。虽然提高了电池正极材料的循环性能但是对电池的导电率的提高并没有起到有益效果。CN112563484A discloses a sodium-ion battery cathode material and a preparation method thereof, as well as a sodium-ion battery. The chemical formula of the sodium-ion battery cathode material is Na x Ni y M 1-y O 2 , where, 0.5<x<1, 0.1<y <0.5, M is selected from at least one of Mn, Fe, Co, V, Cu, Cr and Ti; the sodium ion battery cathode material is spherical-like particles, and the sodium ion battery cathode material has a layered structure. Although the cycle performance of the battery cathode material is improved, it does not have a beneficial effect on improving the battery conductivity.
如何提高钠离子电池的电化学性能,是本领域的重要研究方向。How to improve the electrochemical performance of sodium-ion batteries is an important research direction in this field.
发明内容Contents of the invention
本发明的目的在于提供一种含有V和Ti的富Mn基磷酸盐正极材料,可获得更多的有效比容量,抑制富锰基磷酸盐正极的电压滞后现象,展示出良好动力学性能和倍率性能,可抑制锰离子姜泰勒结构畸变和锰离子的溶解,进一步提升材料的电化学性能。The purpose of the present invention is to provide a Mn-rich phosphate cathode material containing V and Ti, which can obtain more effective specific capacity, suppress the voltage hysteresis of the Mn-rich phosphate cathode, and exhibit good kinetic performance and rate It can inhibit the structural distortion of the manganese ions and the dissolution of manganese ions, further improving the electrochemical performance of the material.
为达到此发明目的,本发明采用以下技术方案:In order to achieve the purpose of this invention, the present invention adopts the following technical solutions:
本发明的目的之一在于提供一种正极材料,所述正极材料为含有V和Ti的富Mn基磷酸盐正极材料,所述正极材料的化学式为Na3+δ+(4-n)x+2yTi1-δ-x-yMn+ xVδMn1+y(PO4)3。One of the objects of the present invention is to provide a cathode material. The cathode material is a Mn-rich phosphate cathode material containing V and Ti. The chemical formula of the cathode material is Na 3+δ+(4-n)x+ 2y Ti 1-δ-xy M n+ x V δ Mn 1+y (PO 4 ) 3 .
其中,所述Mn+包括Li+、K+、Mg2+、Ca2+、Sr2+、Zn2+、Co2+、Ni2+、Cu2+、Al3+、Cr3+、Fe3+、Y3+、La3+、Ga3+、Zr4+、Sn4+、Nb5+或W6+中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:Li+和K+的组合、K+和Mg2+的组合、Mg2+和Ca2+的组合、Ca2+和Zn2+的组合、Co2+和Ni2+的组合、Cu2+和Al3+的组合、Cr3+和Y3+和La3+的组合、Sr2+和Fe3+和Sn4+的组合、Ga3+和Zr4+的组合或Nb5+和W6+的组合等。Wherein, the M n+ includes Li + , K + , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Al 3+ , Cr 3+ , Fe Any one or a combination of at least two of 3+ , Y 3+ , La 3+ , Ga 3+ , Zr 4+ , Sn 4+ , Nb 5+ or W 6+ , the combination is typical but not limiting Examples are: the combination of Li + and K + , the combination of K + and Mg 2+ , the combination of Mg 2+ and Ca 2+ , the combination of Ca 2+ and Zn 2+ , the combination of Co 2+ and Ni 2+ , The combination of Cu 2+ and Al 3+ , the combination of Cr 3+ and Y 3+ and La 3+ , the combination of Sr 2+ and Fe 3+ and Sn 4+ , the combination of Ga 3+ and Zr 4+ or Nb 5 + and W 6+ combinations, etc.
所述0≤x≤0.5,其中所述x的值可以是0、0.1、0.2、0.3、0.4或0.5等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Said 0≤x≤0.5, wherein the value of x may be 0, 0.1, 0.2, 0.3, 0.4 or 0.5, etc., but is not limited to the listed values, and other unlisted values within this range of values are also applicable.
所述0<δ≤0.5,其中所述δ的值可以是0.1、0.2、0.3、0.4或0.5等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。The 0<δ≤0.5, wherein the value of δ can be 0.1, 0.2, 0.3, 0.4 or 0.5, etc., but is not limited to the listed values, and other unlisted values within this range of values are also applicable.
所述n≥1,其中所述n的值可以是1、2、3、4、5、6或7等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Said n≥1, wherein the value of said n can be 1, 2, 3, 4, 5, 6 or 7, etc., but is not limited to the listed values, and other unlisted values within this numerical range are also applicable.
所述0≤y≤0.5,其中所述y的值可以是0、0.1、0.2、0.3、0.4或0.5等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Said 0≤y≤0.5, wherein the value of y can be 0, 0.1, 0.2, 0.3, 0.4 or 0.5, etc., but is not limited to the listed values, and other unlisted values within this range of values are also applicable.
本发明所述的富Mn基磷酸盐正极材料,相比于已经报道的诸多含Mn和Ti的磷酸盐正极材料而言,由于三价钒离子的掺杂,可获得更多的有效比容量,更多的钠含量可降低钠锰混排程度,从而抑制富锰基磷酸盐正极的电压滞后现象;V3+和Ti4+以及Mn2+具有很好的固溶性和协同效应,展示出良好动力学性能和倍率性能;而材料中的其它Mn+离子,可抑制锰离子姜泰勒结构畸变和锰离子的溶解,进一步提升材料的电化学性能。Compared with many reported Mn- and Ti-containing phosphate cathode materials, the Mn-rich phosphate cathode material of the present invention can obtain more effective specific capacity due to the doping of trivalent vanadium ions. More sodium content can reduce the degree of sodium and manganese mixing, thereby suppressing the voltage hysteresis of the manganese-rich phosphate cathode; V 3+ , Ti 4+ and Mn 2+ have good solid solubility and synergistic effects, showing good Dynamic performance and rate performance; other Mn + ions in the material can inhibit the Jiang Taylor structural distortion of manganese ions and the dissolution of manganese ions, further improving the electrochemical performance of the material.
本发明中,V3+和Ti4+以及Mn2+具有很好的固溶性,为了降低原材料的成本,利用少量活性V3+与Ti4+和Mn2+形成新型富Mn磷酸盐。通过调节Mn+、δ、x和y的值,引入更多的钠离子占据晶格位点,使得钠锰混排程度减少,减少三价或四价锰离子在电化学反应过程中的迁移,从而抑制材料的电压滞后现象。由于V3+和Ti4+以及Mn2+具有很好的固溶性,有利于形成纯相,在电化学反应过程具有协同效应,展示出良好动力学性能和倍率性能。引入典型稳定作用的Mn+离子,可获得更稳定的框架结构,抑制锰离子姜泰勒结构畸变和锰离子的溶解,提升材料的循环稳定性。In the present invention, V 3+ , Ti 4+ and Mn 2+ have good solid solubility. In order to reduce the cost of raw materials, a small amount of active V 3+ is used to form a new type of Mn-rich phosphate with Ti 4+ and Mn 2+ . By adjusting the values of Mn + , δ, x and y, more sodium ions are introduced to occupy the lattice sites, which reduces the degree of sodium-manganese mixing and reduces the migration of trivalent or tetravalent manganese ions during the electrochemical reaction. Thereby suppressing the voltage hysteresis of the material. Since V 3+ , Ti 4+ and Mn 2+ have good solid solubility, they are conducive to the formation of a pure phase, which has a synergistic effect in the electrochemical reaction process and exhibits good kinetic performance and rate performance. Introducing Mn + ions with typical stabilizing effects can obtain a more stable framework structure, suppress the structural distortion of the manganese ions and the dissolution of manganese ions, and improve the cycle stability of the material.
本发明的目的之二在于提供一种如第一方面所述的正极材料的制备方法,所述制备方法包括:The second object of the present invention is to provide a method for preparing the cathode material as described in the first aspect. The preparation method includes:
将正极材料的原料与溶剂混合得到前驱体,对所述前驱体进行干燥后烧结得到所述正极材料。The raw materials of the cathode material are mixed with a solvent to obtain a precursor, which is dried and then sintered to obtain the cathode material.
本发明中合成正极材料的方法包括固相法、喷雾干燥法和溶胶-凝胶法中的任意一种。The method for synthesizing the cathode material in the present invention includes any one of solid phase method, spray drying method and sol-gel method.
作为本发明优选的技术方案,所述原料包括钠源、锰源、钛源、钒源、磷源和金属离子源。As a preferred technical solution of the present invention, the raw materials include sodium source, manganese source, titanium source, vanadium source, phosphorus source and metal ion source.
作为本发明优选的技术方案,所述钠源包括碳酸氢钠、碳酸钠、乙酸钠、硝酸钠、氢氧化钠或草酸钠中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:碳酸氢钠和碳酸钠的组合、碳酸钠和乙酸钠的组合、乙酸钠和硝酸钠的组合、硝酸钠和氢氧化钠的组合或氢氧化钠和草酸钠的组合等。As a preferred technical solution of the present invention, the sodium source includes any one or a combination of at least two of sodium bicarbonate, sodium carbonate, sodium acetate, sodium nitrate, sodium hydroxide or sodium oxalate. The combination is typical but not limited to Limiting examples are: the combination of sodium bicarbonate and sodium carbonate, the combination of sodium carbonate and sodium acetate, the combination of sodium acetate and sodium nitrate, the combination of sodium nitrate and sodium hydroxide or the combination of sodium hydroxide and sodium oxalate, etc.
优选地,所述锰源包括乙酸锰、硝酸锰、乙酰丙酮锰、草酸锰、碳酸锰、一氧化锰、二氧化锰、三氧化二锰、四氧化三锰、亚锰酸酐、锰酸酐或高锰酐中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:乙酸锰和硝酸锰的组合、乙酰丙酮锰和草酸锰的组合、草酸锰和碳酸锰的组合、一氧化锰和二氧化锰的组合、三氧化二锰和四氧化三锰的组合、四氧化三锰和亚锰酸酐的组合、亚锰酸酐和锰酸酐的组合或锰酸酐和高锰酐的组合等。Preferably, the manganese source includes manganese acetate, manganese nitrate, manganese acetylacetonate, manganese oxalate, manganese carbonate, manganese monoxide, manganese dioxide, manganese trioxide, manganese tetroxide, manganous anhydride, manganese anhydride or high Any one or a combination of at least two manganese anhydrides. Typical but non-limiting examples of the combinations are: the combination of manganese acetate and manganese nitrate, the combination of manganese acetylacetonate and manganese oxalate, the combination of manganese oxalate and manganese carbonate, The combination of manganese monoxide and manganese dioxide, the combination of manganese trioxide and manganese tetroxide, the combination of manganese tetroxide and manganous anhydride, the combination of manganous anhydride and manganese anhydride or the combination of manganese anhydride and permanganese anhydride wait.
优选地,所述钛源包括二氧化钛、三氧化二钛、钛酸钠、乙酰丙酮钛、乙酰丙酮氧钛或钛酸四丁酯中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:二氧化钛和三氧化二钛的组合、三氧化二钛和钛酸钠的组合、钛酸钠和乙酰丙酮钛的组合、乙酰丙酮钛和乙酰丙酮氧钛的组合或乙酰丙酮氧钛和钛酸四丁酯的组合等。Preferably, the titanium source includes any one or a combination of at least two of titanium dioxide, titanium trioxide, sodium titanate, titanium acetylacetonate, titanium acetylacetonate or tetrabutyl titanate, and the combination is typically Non-limiting examples are: the combination of titanium dioxide and titanium trioxide, the combination of titanium trioxide and sodium titanate, the combination of sodium titanate and titanium acetylacetonate, the combination of titanium acetylacetonate and titanium acetylacetonate or titanium acetylacetonate. The combination of titanium and tetrabutyl titanate, etc.
优选地,所述钒源包括各类五氧化二钒、四氧化二钒、三氧化二钒、氧化钒、偏钒酸铵钠、钒酸铵、乙酰丙酮氧钒或乙酰丙酮钒中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:五氧化二钒和四氧化二钒的组合、四氧化二钒和三氧化二钒的组合、三氧化二钒和氧化钒的组合、氧化钒和偏钒酸铵钠的组合、偏钒酸铵钠和钒酸铵的组合、钒酸铵和乙酰丙酮氧钒的组合或乙酰丙酮氧钒和乙酰丙酮钒的组合等。Preferably, the vanadium source includes any one of various types of vanadium pentoxide, vanadium tetroxide, vanadium trioxide, vanadium oxide, sodium ammonium metavanadate, ammonium vanadate, vanadium acetylacetonate or vanadium acetylacetonate. One or a combination of at least two. Typical but non-limiting examples of the combination include: the combination of vanadium pentoxide and vanadium tetroxide, the combination of vanadium tetroxide and vanadium trioxide, vanadium trioxide and vanadium oxide. The combination of vanadium oxide and sodium ammonium metavanadate, the combination of sodium ammonium metavanadate and ammonium vanadate, the combination of ammonium vanadate and vanadyl acetylacetonate or the combination of vanadyl acetylacetonate and vanadium acetylacetonate, etc.
优选地,所述磷源包括磷酸、磷酸二氢铵钠、磷酸二氢铵、磷酸氢二铵钠、磷酸氢二铵、磷酸铵或磷酸铵钠中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:磷酸和磷酸二氢铵钠的组合、磷酸二氢铵钠和磷酸二氢铵的组合、磷酸二氢铵和磷酸氢二铵钠的组合、磷酸氢二铵钠和磷酸氢二铵的组合或磷酸铵和磷酸铵钠的组合等。Preferably, the phosphorus source includes any one or a combination of at least two of phosphoric acid, sodium ammonium dihydrogen phosphate, ammonium dihydrogen phosphate, sodium diammonium hydrogen phosphate, diammonium hydrogen phosphate, ammonium phosphate or sodium ammonium phosphate, Typical but non-limiting examples of the combinations include: the combination of phosphoric acid and sodium ammonium dihydrogen phosphate, the combination of sodium ammonium dihydrogen phosphate and ammonium dihydrogen phosphate, the combination of ammonium dihydrogen phosphate and sodium diammonium hydrogen phosphate, dihydrogen dihydrogen phosphate. The combination of sodium ammonium and diammonium hydrogen phosphate or the combination of ammonium phosphate and sodium ammonium phosphate, etc.
优选地,所述金属离子源包括Li+、K+、Mg2+、Ca2+、Sr2+、Zn2+、Co2+、Ni2+、Cu2+、Al3+、Cr3 +、Fe3+、Y3+、La3+、Ga3+、Zr4+、Sn4+、Nb5+或W6+对应的酸、碱、钠盐或铵盐中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:Li+对应的碱和K+对应的酸的组合、K+对应的酸和Mg2+对应的碱的组合、Mg2+对应的钠盐和Ca2+对应的铵盐的组合、Ca2+对应的酸和Zn2+对应的碱的组合、Co2+对应的钠盐和Ni2+对应的碱的组合、Cu2+对应的铵盐和Al3+对应的酸的组合、Cr3+对应的碱和Y3+对应的碱和La3+对应的碱的组合、Ga3+对应的酸和Zr4+对应的碱的组合或Nb5+对应的钠盐和W6+对应的酸的组合等。Preferably, the metal ion source includes Li + , K + , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Al 3+ , Cr 3 + , Fe 3+ , Y 3+ , La 3+ , Ga 3+ , Zr 4+ , Sn 4+ , Nb 5+ or any one of the corresponding acids, bases, sodium salts or ammonium salts or at least Two combinations, typical but non-limiting examples of the combinations include: the combination of the base corresponding to Li + and the acid corresponding to K + , the combination of the acid corresponding to K + and the base corresponding to Mg 2+ , the combination of the base corresponding to Mg 2+ The combination of sodium salt and the ammonium salt corresponding to Ca 2+ , the combination of the acid corresponding to Ca 2+ and the alkali corresponding to Zn 2+ , the combination of the sodium salt corresponding to Co 2+ and the alkali corresponding to Ni 2+ , the combination of Cu 2+ The combination of the ammonium salt and the acid corresponding to Al 3+ , the combination of the base corresponding to Cr 3+ and the base corresponding to Y 3+ and the base corresponding to La 3+ , the acid corresponding to Ga 3+ and the base corresponding to Zr 4+ Combination or combination of sodium salt corresponding to Nb 5+ and acid corresponding to W 6+ , etc.
作为本发明优选的技术方案,所述原料还包括碳源。As a preferred technical solution of the present invention, the raw material further includes a carbon source.
优选地,所述碳源包括柠檬酸钠、柠檬酸、油酸钠、油酸、聚乙烯吡咯烷酮、聚乙二醇、葡萄糖、抗坏血酸、蔗糖、盐酸多巴胺、淀粉、氧化石墨烯、还原石墨烯、碳纳米管或科琴黑中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:柠檬酸钠和柠檬酸的组合、柠檬酸和油酸钠的组合、油酸钠和油酸的组合、油酸和聚乙烯吡咯烷酮的组合、聚乙烯吡咯烷酮和聚乙二醇的组合、聚乙二醇和葡萄糖的组合、抗坏血酸和蔗糖的组合、盐酸多巴胺和淀粉的组合、氧化石墨烯和还原石墨烯的组合或碳纳米管和科琴黑的组合等。Preferably, the carbon source includes sodium citrate, citric acid, sodium oleate, oleic acid, polyvinylpyrrolidone, polyethylene glycol, glucose, ascorbic acid, sucrose, dopamine hydrochloride, starch, graphene oxide, reduced graphene, Any one or a combination of at least two of carbon nanotubes or Ketjen Black. Typical but non-limiting examples of the combination are: the combination of sodium citrate and citric acid, the combination of citric acid and sodium oleate, oleic acid The combination of sodium and oleic acid, the combination of oleic acid and polyvinylpyrrolidone, the combination of polyvinylpyrrolidone and polyethylene glycol, the combination of polyethylene glycol and glucose, the combination of ascorbic acid and sucrose, the combination of dopamine hydrochloride and starch, graphite oxide The combination of ene and reduced graphene or the combination of carbon nanotubes and Ketjen Black, etc.
优选的,所述碳源和所述金属离子源的摩尔比为0~10:1,其中所述摩尔比可以是0、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为0~3:1。Preferably, the molar ratio of the carbon source and the metal ion source is 0 to 10:1, wherein the molar ratio can be 0, 1:1, 2:1, 3:1, 4:1, 5: 1, 6:1, 7:1, 8:1, 9:1 or 10:1, etc., but are not limited to the listed values. Other unlisted values within this range are also applicable, and more preferably 0 to 3: 1.
作为本发明优选的技术方案,所述溶剂包括去离子水、乙醇或丙酮中的任意一种或至少两种的组合,所述组合典型但非限制性实例有:去离子水和乙醇的组合、去离子水和丙酮的组合或乙醇和丙酮的组合等。As a preferred technical solution of the present invention, the solvent includes any one or a combination of at least two of deionized water, ethanol or acetone. Typical but non-limiting examples of the combination include: a combination of deionized water and ethanol, The combination of deionized water and acetone or the combination of ethanol and acetone, etc.
作为本发明优选的技术方案,所述干燥后进行研磨处理。As a preferred technical solution of the present invention, grinding is performed after the drying.
优选地,所述干燥的温度为60~150℃,所述温度可以是60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃、135℃、140℃、145℃或150℃等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为90~120℃;Preferably, the drying temperature is 60-150°C, and the temperature can be 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C ℃, 115 ℃, 120 ℃, 125 ℃, 130 ℃, 135 ℃, 140 ℃, 145 ℃ or 150 ℃, etc., but are not limited to the listed values. Other unlisted values within this range of values are also applicable, and further preferably 90~120℃;
优选地,所述研磨处理的时间为1min~48h,其中所述时间可以是1min、5min、10min、20min、30min、40min、50min、1h、5h、10h、15h、20h、25h、30h、35h、40h、45h或48h等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。进一步优选为30min~2h。Preferably, the time of the grinding treatment is 1 min to 48 h, wherein the time may be 1 min, 5 min, 10 min, 20 min, 30 min, 40 min, 50 min, 1 h, 5 h, 10 h, 15 h, 20 h, 25 h, 30 h, 35 h, 40h, 45h or 48h, etc., but not limited to the listed values, other unlisted values within this range are also applicable. More preferably, it is 30 min to 2 hours.
作为本发明优选地技术方案,所述烧结的气氛包括惰性气氛和/或还原气氛。As a preferred technical solution of the present invention, the sintering atmosphere includes an inert atmosphere and/or a reducing atmosphere.
优选地,所述还原气氛包括一氧化碳和/或氢气。Preferably, the reducing atmosphere includes carbon monoxide and/or hydrogen.
优选地,所述惰性气氛包括氩气和/或氮气。Preferably, the inert atmosphere includes argon and/or nitrogen.
作为本发明优选的技术方案,所述烧结的温度为500~900℃,其中所述温度可以是500℃、550℃、600℃、650℃、700℃、750℃、800℃、850℃或900℃等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。As a preferred technical solution of the present invention, the sintering temperature is 500-900°C, where the temperature can be 500°C, 550°C, 600°C, 650°C, 700°C, 750°C, 800°C, 850°C or 900°C ℃, etc., but are not limited to the listed values, other unlisted values within this range are also applicable.
优选地,所述烧结的时间为2~20h,其中所述时间可以是2h、3h、4h、5h、6h、7h、8h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h、19h或20h等,但不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。Preferably, the sintering time is 2 to 20h, wherein the time can be 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h, 11h, 12h, 13h, 14h, 15h, 16h, 17h , 18h, 19h or 20h, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
本发明的目的之三在于提供一种如第一方面所述的正极材料的应用,其特征在于,所述正极材料应用于钠离子电池。The third object of the present invention is to provide an application of the cathode material as described in the first aspect, which is characterized in that the cathode material is used in a sodium-ion battery.
本发明中所述钠离子电池用于太阳能发电、风力发电、智能电网调峰、分布电站、后备电源或通信基站的大规模储能设备。The sodium ion battery in the present invention is used for large-scale energy storage equipment in solar power generation, wind power generation, smart grid peak shaving, distributed power stations, backup power supplies or communication base stations.
相对于现有技术,本发明具有以下有益效果:Compared with the existing technology, the present invention has the following beneficial effects:
(1)本发明中所制备的含有V和Ti的富Mn基磷酸盐正极材料,由于V用量少,极大地降低了成本。(1) The Mn-rich phosphate cathode material containing V and Ti prepared in the present invention greatly reduces the cost due to the small amount of V used.
(2)本发明制备的含有V和Ti的富Mn基磷酸盐正极材料具有良好的电化学性能,0.1C下进行充放电测试,其首次放电克比容量达110mAh/g以上,放电中压3.5V以上;在10C下可获得80mAh/g以上;2C下循环1000周容量保持率90%以上。(2) The Mn-rich phosphate cathode material containing V and Ti prepared by the present invention has good electrochemical properties. When charged and discharged at 0.1C, its first discharge gram specific capacity reached more than 110mAh/g, and the discharge medium voltage was 3.5 V or above; more than 80mAh/g can be obtained at 10C; the capacity retention rate after 1000 cycles at 2C is more than 90%.
附图说明Description of the drawings
图1是本发明实施例1制备的含有V和Ti的富Mn基磷酸盐正极材料的XRD图谱。Figure 1 is an XRD pattern of the Mn-rich phosphate cathode material containing V and Ti prepared in Example 1 of the present invention.
图2是本发明实施例1制备的含有V和Ti的富Mn基磷酸盐正极材料的扫描电镜图。Figure 2 is a scanning electron microscope image of the Mn-rich phosphate cathode material containing V and Ti prepared in Example 1 of the present invention.
图3是本发明实施例1制备的含有V和Ti的富Mn基磷酸盐正极材料的倍率充放电曲线图。Figure 3 is a rate charge-discharge curve of the Mn-rich Mn-based phosphate cathode material containing V and Ti prepared in Example 1 of the present invention.
图4是本发明实施例1制备的含有V和Ti的富Mn基磷酸盐正极材料在2C下的循环性能图。Figure 4 is a cycle performance diagram at 2C of the Mn-rich Mn-based phosphate cathode material containing V and Ti prepared in Example 1 of the present invention.
图5是实施例1-2和对比例1-2制备的磷酸盐正极的充放电曲线。Figure 5 is a charge-discharge curve of the phosphate cathode prepared in Example 1-2 and Comparative Example 1-2.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solution of the present invention will be further described below through specific implementations. Those skilled in the art should understand that the embodiments are only to help understand the present invention and should not be regarded as specific limitations of the present invention.
实施例1Example 1
本实施例提供一种含有V和Ti的富Mn基磷酸盐正极材料的制备方法:This embodiment provides a method for preparing a Mn-rich phosphate cathode material containing V and Ti:
将组成比例为1:0.80:0.15:0.05:3.25:3的乙酸锰、二氧化钛、偏钒酸铵、乙酸镁、乙酸钠和磷酸加入含有柠檬酸的乙醇溶液中,其中碳和过渡金属的物质的量比为1.5:1。然后将混合溶液置于水浴锅中70摄氏度磁力搅拌直至乙醇蒸发完全。将所得到的前驱体于100摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中700摄氏度烧结10小时,即可得到Na3.25Ti0.8V0.15Mg0.05Mn(PO4)3@C正极材料。Add manganese acetate, titanium dioxide, ammonium metavanadate, magnesium acetate, sodium acetate and phosphoric acid with a composition ratio of 1:0.80:0.15:0.05:3.25:3 to an ethanol solution containing citric acid, in which carbon and transition metal substances The volume ratio is 1.5:1. The mixed solution was then placed in a water bath at 70 degrees Celsius and stirred magnetically until the ethanol evaporated completely. The obtained precursor is dried at 100 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 700 degrees Celsius for 10 hours in an argon atmosphere to obtain Na 3.25 Ti 0.8 V 0.15 Mg 0.05 Mn(PO 4 ) 3 @C cathode material.
对本实施例中的正极材料进行结构分析,使用X射线仪对本实施例制备得到的富Mn磷酸盐正极材料进行XRD分析,测试结果如图1所示,从图中可以看出,材料结晶度良好,且具有较高的物相纯度。The structure of the cathode material in this example was analyzed, and an X-ray instrument was used to conduct XRD analysis on the Mn-rich phosphate cathode material prepared in this example. The test results are shown in Figure 1. It can be seen from the figure that the crystallinity of the material is good. , and has high phase purity.
使用扫描电镜对本实施例制备的磷酸盐正极进行表面形貌分析,测试结果如图2所示,从图中可以看出,所制备的材料为无规则一次颗粒堆叠而成。这种团聚现象是颗粒嵌入碳层,呈现交联状态所致。A scanning electron microscope was used to analyze the surface morphology of the phosphate cathode prepared in this example. The test results are shown in Figure 2. It can be seen from the figure that the prepared material is composed of random primary particles stacked. This agglomeration phenomenon is caused by the particles being embedded in the carbon layer and showing a cross-linked state.
利用本实施例制备的磷酸盐正极组装成2032型可测试的扣式电池,倍率充放电曲线如图3所示。在2C下的循环性能如图4所示。The phosphate cathode prepared in this example is used to assemble a 2032-type testable button battery, and the rate charge and discharge curve is shown in Figure 3. The cycle performance at 2C is shown in Figure 4.
实施例2Example 2
本实施例提供一种含有V和Ti的富Mn基磷酸盐正极材料的制备方法:This embodiment provides a method for preparing a Mn-rich phosphate cathode material containing V and Ti:
将组成比例为1.2:0.65:0.075:0.025:3.55:3的碳酸锰、二氧化钛、三氧化二钒、三氧化二铝、氢氧化钠、磷酸二氢铵和油酸加入水溶液中,其中碳和过渡金属的物质的量比为3:1。然后将混合物放于球磨机混合均匀。将所得到的前驱体于110摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中750摄氏度烧结20小时,即可得到Na3.55Ti0.65V0.10Al0.05Mn1.2(PO4)3@C正极材料。Add manganese carbonate, titanium dioxide, vanadium trioxide, aluminum trioxide, sodium hydroxide, ammonium dihydrogen phosphate and oleic acid with a composition ratio of 1.2:0.65:0.075:0.025:3.55:3 into the aqueous solution, in which carbon and transition The molar ratio of metallic substances is 3:1. Then put the mixture into a ball mill and mix evenly. The obtained precursor is dried at 110 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 750 degrees Celsius for 20 hours in an argon atmosphere to obtain Na 3.55 Ti 0.65 V 0.10 Al 0.05 Mn 1.2 (PO 4 ) 3 @C cathode material.
实施例3Example 3
本实施例提供一种含有V和Ti的富Mn基磷酸盐正极材料的制备方法:This embodiment provides a method for preparing a Mn-rich phosphate cathode material containing V and Ti:
将组成比例为1:0.74:0.25:0.01:3.19:3的乙酸锰、钛酸四丁酯、偏钒酸铵、钨酸铵、乙酸钠和磷酸加入含有抗坏血酸的丙酮溶液中,其中碳和过渡金属的物质的量比为1:1。然后将混合溶液置于水浴锅中80摄氏度磁力搅拌直至丙酮蒸发完全。将所得到的前驱体于110摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中650摄氏度烧结12小时,即可得到Na3.19Ti0.74V0.25W0.01Mn(PO4)3@C正极材料。Add manganese acetate, tetrabutyl titanate, ammonium metavanadate, ammonium tungstate, sodium acetate and phosphoric acid with a composition ratio of 1:0.74:0.25:0.01:3.19:3 to an acetone solution containing ascorbic acid, in which carbon and transition The molar ratio of metallic substances is 1:1. The mixed solution was then placed in a water bath with magnetic stirring at 80 degrees Celsius until the acetone evaporated completely. The obtained precursor is dried at 110 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 650 degrees Celsius for 12 hours in an argon atmosphere to obtain Na 3.19 Ti 0.74 V 0.25 W 0.01 Mn(PO 4 ) 3 @C cathode material.
实施例4Example 4
本实施例提供一种含有V和Ti的富Mn基磷酸盐正极材料的制备方法:This embodiment provides a method for preparing a Mn-rich phosphate cathode material containing V and Ti:
将组成比例为1.15:0.7:0.05:0.05:1.775:3的碳酸锰、二氧化钛、三氧化二钒、二氧化锆、碳酸钠、磷酸二氢铵和葡萄糖加入水溶液中,其中碳和过渡金属的物质的量比为1.25:1。然后将混合物放于球磨机混合均匀。将所得到的前驱体于120摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中800摄氏度烧结10小时,即可得到Na3.4Ti0.7V0.10Zr0.05Mn1.15(PO4)3@C正极材料。Add manganese carbonate, titanium dioxide, vanadium trioxide, zirconium dioxide, sodium carbonate, ammonium dihydrogen phosphate and glucose with a composition ratio of 1.15:0.7:0.05:0.05:1.775:3 into the aqueous solution, in which carbon and transition metal substances The quantity ratio is 1.25:1. Then put the mixture into a ball mill and mix evenly. The obtained precursor is dried at 120 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 800 degrees Celsius for 10 hours in an argon atmosphere to obtain Na 3.4 Ti 0.7 V 0.10 Zr 0.05 Mn 1.15 (PO 4 ) 3 @C cathode material.
实施例5Example 5
本实施例提供一种含有V和Ti的富Mn基磷酸盐正极材料的制备方法:This embodiment provides a method for preparing a Mn-rich phosphate cathode material containing V and Ti:
将组成比例为1:0.75:0.25:3.25:3的乙酸锰、钛酸四丁酯、乙酰丙酮钒、乙酸钠和磷酸加入乙醇溶液中,其中碳和过渡金属的物质的量比为1.25:1。然后将混合物放于球磨机混合均匀。将所得到的前驱体于120摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中800摄氏度烧结10小时,即可得到Na3.4Ti0.7V0.10Zr0.05Mn1.15(PO4)3@C正极材料。Add manganese acetate, tetrabutyl titanate, vanadium acetylacetonate, sodium acetate and phosphoric acid with a composition ratio of 1:0.75:0.25:3.25:3 into the ethanol solution, in which the amount of carbon and transition metal substances is 1.25:1 . Then put the mixture into a ball mill and mix evenly. The obtained precursor is dried at 120 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 800 degrees Celsius for 10 hours in an argon atmosphere to obtain Na 3.4 Ti 0.7 V 0.10 Zr 0.05 Mn 1.15 (PO 4 ) 3 @C cathode material.
实施例6Example 6
本实施例将组成比例为1:0.80:0.15:0.05:3.25:3的乙酸锰、二氧化钛、偏钒酸铵、乙酸镁、乙酸钠和磷酸加入含有柠檬酸的乙醇溶液中,其中碳和过渡金属的物质的量比为1.5:1,替换为组成比例1:0.80:0.15:0.05:3.25:3的乙酸锰、二氧化钛、偏钒酸铵、乙酸镁、乙酸钠和磷酸加入含有更多柠檬酸的乙醇溶液中,使得其中碳和过渡金属的物质的量比为10:1,其他条件均与实施例1相同。In this example, manganese acetate, titanium dioxide, ammonium metavanadate, magnesium acetate, sodium acetate and phosphoric acid with a composition ratio of 1:0.80:0.15:0.05:3.25:3 are added to an ethanol solution containing citric acid, in which carbon and transition metals The amount ratio of the substances is 1.5:1, replace it with the composition ratio of 1:0.80:0.15:0.05:3.25:3 of manganese acetate, titanium dioxide, ammonium metavanadate, magnesium acetate, sodium acetate and phosphoric acid, add more citric acid In the ethanol solution, the amount ratio of carbon and transition metal substances was 10:1, and other conditions were the same as in Example 1.
实施例7Example 7
本实施例将组成比例为1:0.80:0.15:0.05:3.25:3的乙酸锰、二氧化钛、偏钒酸铵、乙酸镁、乙酸钠和磷酸加入含有柠檬酸的乙醇溶液中,其中碳和过渡金属的物质的量比为1.5:1替换为组成比例1:0.80:0.15:0.05:3.25:3的乙酸锰、二氧化钛、偏钒酸铵、乙酸镁、乙酸钠和磷酸加入乙醇溶液中,其中碳和过渡金属的物质的量比为0,其他条件均与实施例1相同。In this example, manganese acetate, titanium dioxide, ammonium metavanadate, magnesium acetate, sodium acetate and phosphoric acid with a composition ratio of 1:0.80:0.15:0.05:3.25:3 are added to an ethanol solution containing citric acid, in which carbon and transition metals The mass ratio of the substances is 1.5:1, replaced by the composition ratio of 1:0.80:0.15:0.05:3.25:3. Manganese acetate, titanium dioxide, ammonium metavanadate, magnesium acetate, sodium acetate and phosphoric acid are added to the ethanol solution, in which carbon and The substance ratio of the transition metal is 0, and other conditions are the same as in Example 1.
对比例1Comparative example 1
本对比例提供一种只含有Ti和Mn的磷酸盐正极材料的制备方法:This comparative example provides a method for preparing a phosphate cathode material containing only Ti and Mn:
制备步骤如下:The preparation steps are as follows:
将组成比例为1:1:3:3的乙酸锰、钛酸四丁酯、乙酸钠和磷酸加入含有柠檬酸的乙醇溶液中,其中碳和过渡金属的物质的量比为1.5:1。然后将混合溶液置于水浴锅中80摄氏度磁力搅拌直至乙醇蒸发完全。将所得到的前驱体于100摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中700摄氏度烧结10小时,即可得到Na3TiMn(PO4)3@C正极材料。Manganese acetate, tetrabutyl titanate, sodium acetate and phosphoric acid with a composition ratio of 1:1:3:3 were added to the ethanol solution containing citric acid, in which the amount ratio of carbon and transition metal substances was 1.5:1. The mixed solution was then placed in a water bath with magnetic stirring at 80 degrees Celsius until the ethanol evaporated completely. The obtained precursor is dried at 100 degrees Celsius, ground to a powder state, and sintered in a tube furnace in an argon atmosphere at 700 degrees Celsius for 10 hours to obtain the Na 3 TiMn(PO 4 ) 3 @C cathode material.
对比例2Comparative example 2
本对比例提供一种只含有Ti和Mn,且Mn含量更多的磷酸盐正极材料的制备方法:This comparative example provides a method for preparing a phosphate cathode material that only contains Ti and Mn and has more Mn content:
将组成比例为1.2:0.8:1.5:3的碳酸锰、二氧化钛、碳酸钠、磷酸二氢铵和葡萄糖加入水溶液中,其中碳和过渡金属的物质的量比为2:1。然后将混合物放于球磨机混合均匀。将所得到的前驱体于120摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中800摄氏度烧结15小时,即可得到Na3.4Ti0.8Mn1.2(PO4)3@C正极材料。Manganese carbonate, titanium dioxide, sodium carbonate, ammonium dihydrogen phosphate and glucose with a composition ratio of 1.2:0.8:1.5:3 were added to the aqueous solution, in which the amount ratio of carbon and transition metal substances was 2:1. Then put the mixture into a ball mill and mix evenly. The obtained precursor is dried at 120 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 800 degrees Celsius for 15 hours in an argon atmosphere to obtain the Na 3.4 Ti 0.8 Mn 1.2 (PO 4 ) 3 @C cathode. Material.
对比例3Comparative example 3
本对比例提供一种只含有V和Mn的磷酸盐正极材料的制备方法:This comparative example provides a method for preparing a phosphate cathode material containing only V and Mn:
将组成比例为1.2:0.8:1.5:3的碳酸锰、三氧化二钒、碳酸钠、磷酸二氢铵和葡萄糖加入水溶液中,其中碳和过渡金属的物质的量比为2:1。然后将混合物放于球磨机混合均匀。将所得到的前驱体于120摄氏度干燥,并研磨至粉末状态,置于氩气氛围的管式炉中800摄氏度烧结15小时,即可得到Na3.4Ti0.8Mn1.2(PO4)3@C正极材料。Add manganese carbonate, vanadium trioxide, sodium carbonate, ammonium dihydrogen phosphate and glucose with a composition ratio of 1.2:0.8:1.5:3 into the aqueous solution, in which the amount ratio of carbon to transition metal is 2:1. Then put the mixture into a ball mill and mix evenly. The obtained precursor is dried at 120 degrees Celsius, ground to a powder state, and sintered in a tube furnace at 800 degrees Celsius for 15 hours in an argon atmosphere to obtain the Na 3.4 Ti 0.8 Mn 1.2 (PO 4 ) 3 @C cathode. Material.
对实施例1-5和对比例1-3所制备的正极材料进行电化学性能分析,Conduct electrochemical performance analysis on the cathode materials prepared in Examples 1-5 and Comparative Examples 1-3,
其中,电化学性能分析如下:Among them, the electrochemical performance analysis is as follows:
1、电池制备1. Battery preparation
(1)电池正极片的制备:将制得的磷酸盐正极材料、科琴黑、聚四氟乙烯粘结剂按质量比7:2:1研磨混合均匀后,用对辊机充分碾压形成均匀厚度的薄膜。在120℃真空干燥箱干燥5小时后,将得到正极薄膜切成边长约为6mm的方形极片,准确称量其质量后,根据配方组成计算出正极片中活性物质的质量。(1) Preparation of battery cathode sheet: Grind and mix the prepared phosphate cathode material, Ketjen Black, and polytetrafluoroethylene binder in a mass ratio of 7:2:1, and then fully roll them with a pair of rollers to form Film of uniform thickness. After drying in a vacuum drying oven at 120°C for 5 hours, the positive electrode film was cut into square electrode pieces with a side length of about 6 mm. After accurately weighing its mass, the mass of the active material in the positive electrode piece was calculated based on the formula composition.
(2)电池组装:(2)Battery assembly:
将上述所得方形正极极片、直径为16mm的隔膜、直径为15mm钠片以及弹片和垫片等,在手套箱(氧含量小于0.01ppm,水含量小于0.01ppm)中组装成2032型可测试的纽扣式电池。Assemble the square positive electrode piece, the diaphragm with a diameter of 16mm, the sodium piece with a diameter of 15mm, the shrapnel and the gasket obtained above in a glove box (oxygen content is less than 0.01ppm, water content is less than 0.01ppm) to form a testable 2032 type. Button cell battery.
2、电化学性能测试方法:2. Electrochemical performance testing method:
使用武汉蓝电高性能电池测试系统对组装的电池,在各种倍率下进行充放电测试,结果如表1所示。其中实施例1、实施例2、对比例1、和对比例2制备的磷酸盐正极的冲放电曲线如图5所示。The assembled batteries were charged and discharged at various rates using the Wuhan Blue Power high-performance battery testing system. The results are shown in Table 1. The charge and discharge curves of the phosphate positive electrodes prepared in Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are shown in Figure 5.
表1Table 1
通过比较上述实施例1-5和对比例1-3可以看出,Ti元素可激活富锰基磷酸盐正极和锰有关的两个电压平台;V的引入则可获得更多的有效比容量,同时抑制富锰基磷酸盐正极的电压滞后现象,而且V、Ti和Mn三种元素有较好的固溶性质和协同作用,展示出良好动力学性能和倍率性能。而引入稳定金属离子Mn+,可有效抑制锰离子姜泰勒结构畸变和锰离子的溶解,进一步提升材料的电化学性能。比较实施例1和实施例7对比可以看出,没有碳包覆由于电子导电率差,电化学性能相应变差;比较实施例1和实施例6对比可以看出,过多的碳包覆会增加正极材料的界面阻抗,且副反应较多,也不利于材料的电化学性能。By comparing the above Examples 1-5 and Comparative Examples 1-3, it can be seen that the Ti element can activate the two voltage platforms related to manganese-rich phosphate cathode and manganese; the introduction of V can obtain more effective specific capacity, At the same time, the voltage hysteresis of the manganese-rich phosphate cathode is suppressed, and the three elements V, Ti and Mn have good solid solution properties and synergistic effects, showing good kinetic properties and rate performance. The introduction of stable metal ions Mn+ can effectively suppress the structural distortion of the Jiang Taylor structure of manganese ions and the dissolution of manganese ions, further improving the electrochemical performance of the material. Comparing Example 1 and Example 7, it can be seen that without carbon coating, the electrochemical performance will be worse due to poor electronic conductivity; Comparing Example 1 and Example 6, it can be seen that too much carbon coating will It increases the interface resistance of the cathode material and causes more side reactions, which is also detrimental to the electrochemical performance of the material.
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。The applicant declares that the above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Those skilled in the technical field should understand that any person skilled in the technical field will not use the invention disclosed in the present invention. Within the technical scope, changes or substitutions that can be easily imagined fall within the protection scope and disclosure scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111170822.0A CN113929069B (en) | 2021-10-08 | 2021-10-08 | A kind of manganese-rich phosphate cathode material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111170822.0A CN113929069B (en) | 2021-10-08 | 2021-10-08 | A kind of manganese-rich phosphate cathode material and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113929069A CN113929069A (en) | 2022-01-14 |
CN113929069B true CN113929069B (en) | 2023-09-22 |
Family
ID=79278190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111170822.0A Active CN113929069B (en) | 2021-10-08 | 2021-10-08 | A kind of manganese-rich phosphate cathode material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113929069B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114613997A (en) * | 2022-03-09 | 2022-06-10 | 武汉理工大学 | A kind of manganese phosphate titanium chromium sodium self-supporting electrode material and its preparation method and application |
CN114824216B (en) * | 2022-04-28 | 2024-10-29 | 武汉工程大学 | Multi-element doped sodium ion battery positive electrode material and preparation method and application thereof |
CN115084502A (en) * | 2022-05-13 | 2022-09-20 | 福州大学 | NASICON type structure ternary sodium ion battery positive electrode material, preparation method and application thereof |
CN115207347A (en) * | 2022-06-27 | 2022-10-18 | 武汉工程大学 | A kind of titanium-doped vanadium manganese phosphate sodium sodium ion battery cathode material and preparation method thereof |
CN115636402B (en) * | 2022-10-28 | 2024-04-16 | 深圳市德方纳米科技股份有限公司 | Lithium iron manganese phosphate material and preparation method and application thereof |
CN116081591B (en) * | 2023-02-23 | 2024-05-14 | 武汉工程大学 | A method for preparing a negative electrode material for a sodium ion battery |
CN116605862A (en) * | 2023-06-16 | 2023-08-18 | 中国科学院过程工程研究所 | A Ga-containing vanadium-based phosphate positive electrode material, preparation method thereof, battery, and energy storage device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101883735A (en) * | 2007-10-01 | 2010-11-10 | 巴斯夫欧洲公司 | Process for the preparation of crystalline lithium-, vanadium- and phosphate-comprising materials |
CN102569797A (en) * | 2012-01-20 | 2012-07-11 | 中国科学院宁波材料技术与工程研究所 | Novel phosphate based composite cathode material, its preparation method and application thereof |
CN106328911A (en) * | 2016-11-30 | 2017-01-11 | 合肥工业大学 | Material with mixture of ions with sodium vanadium phosphate cathode material coated by carbon and preparing method thereof |
CN106981641A (en) * | 2017-05-11 | 2017-07-25 | 中南大学 | A kind of carbon coating titanium phosphate manganese sodium composite and preparation method thereof and the application in sodium-ion battery |
CN107425190A (en) * | 2017-09-01 | 2017-12-01 | 北京科技大学 | A kind of vanadium phosphate sodium combination electrode material and its preparation method and application |
CN111244446A (en) * | 2020-01-17 | 2020-06-05 | 河北九丛科技有限公司 | Method for synthesizing high-voltage phosphate lithium ion battery anode material |
CN112421040A (en) * | 2020-11-16 | 2021-02-26 | 中国科学院过程工程研究所 | Phosphate anode material and preparation method and application thereof |
CN112786857A (en) * | 2021-01-19 | 2021-05-11 | 华南师范大学 | Fast ion conductor sodium secondary battery positive electrode material and preparation method and application thereof |
CN113353985A (en) * | 2021-05-25 | 2021-09-07 | 北京大学深圳研究生院 | Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery |
CN113363483A (en) * | 2021-04-27 | 2021-09-07 | 北京当升材料科技股份有限公司 | Olivine-structure positive electrode material, preparation method and application thereof, and lithium ion battery |
CN113422043A (en) * | 2021-07-19 | 2021-09-21 | 中国科学院过程工程研究所 | Modified titanium manganese sodium phosphate cathode material and preparation method and application thereof |
-
2021
- 2021-10-08 CN CN202111170822.0A patent/CN113929069B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101883735A (en) * | 2007-10-01 | 2010-11-10 | 巴斯夫欧洲公司 | Process for the preparation of crystalline lithium-, vanadium- and phosphate-comprising materials |
CN102569797A (en) * | 2012-01-20 | 2012-07-11 | 中国科学院宁波材料技术与工程研究所 | Novel phosphate based composite cathode material, its preparation method and application thereof |
WO2013107186A1 (en) * | 2012-01-20 | 2013-07-25 | 中国科学院宁波材料技术与工程研究所 | Novel phosphate based composite anode material, preparation method and use thereof |
CN106328911A (en) * | 2016-11-30 | 2017-01-11 | 合肥工业大学 | Material with mixture of ions with sodium vanadium phosphate cathode material coated by carbon and preparing method thereof |
CN106981641A (en) * | 2017-05-11 | 2017-07-25 | 中南大学 | A kind of carbon coating titanium phosphate manganese sodium composite and preparation method thereof and the application in sodium-ion battery |
CN107425190A (en) * | 2017-09-01 | 2017-12-01 | 北京科技大学 | A kind of vanadium phosphate sodium combination electrode material and its preparation method and application |
CN111244446A (en) * | 2020-01-17 | 2020-06-05 | 河北九丛科技有限公司 | Method for synthesizing high-voltage phosphate lithium ion battery anode material |
CN112421040A (en) * | 2020-11-16 | 2021-02-26 | 中国科学院过程工程研究所 | Phosphate anode material and preparation method and application thereof |
CN112786857A (en) * | 2021-01-19 | 2021-05-11 | 华南师范大学 | Fast ion conductor sodium secondary battery positive electrode material and preparation method and application thereof |
CN113363483A (en) * | 2021-04-27 | 2021-09-07 | 北京当升材料科技股份有限公司 | Olivine-structure positive electrode material, preparation method and application thereof, and lithium ion battery |
CN113353985A (en) * | 2021-05-25 | 2021-09-07 | 北京大学深圳研究生院 | Lithium ion battery positive electrode material and preparation method thereof, lithium ion battery positive electrode and lithium ion battery |
CN113422043A (en) * | 2021-07-19 | 2021-09-21 | 中国科学院过程工程研究所 | Modified titanium manganese sodium phosphate cathode material and preparation method and application thereof |
Non-Patent Citations (3)
Title |
---|
Encapsulation of Na4MnV(PO4)3 in robust dual-carbon framework rendering high-energy, durable sodium storage;CongcongCai et al.;《JOURNAL OF PHYSICS-ENERGY》;20200226;第2卷(第2期);第1-7页 * |
NaxMV(PO4)(3) (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction;Zhou, WD et al.;《NANO LETTERS》;20161110;第16卷(第12期);第7836-7841页 * |
Zn2+掺杂对Na0.67Ni0.33Mn0.67O2的影响;陈森等;《第31届全国化学与物理电源学术年会论文集》;20151031;第160页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113929069A (en) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113929069B (en) | A kind of manganese-rich phosphate cathode material and its preparation method and application | |
CN102738458B (en) | Surface modification method of lithium-rich cathode material | |
CN113422043B (en) | Modified titanium manganese sodium phosphate cathode material and preparation method and application thereof | |
CN103956485B (en) | Lithium iron phosphate electrode material of a kind of three-dimensional hierarchical structure and preparation method thereof | |
CN108046231A (en) | A kind of sodium-ion battery positive material and preparation method thereof | |
CN102931405B (en) | Lithium manganese phosphate cathode material and preparation method thereof | |
CN101955175A (en) | Industrial preparation method for lithium iron phosphate | |
CN110098442A (en) | A method of LiFePO4 is regenerated using leaching-spray drying-solid phase method | |
CN111082059A (en) | V-doped P2 type sodium ion battery positive electrode material and preparation method thereof | |
CN106784726B (en) | Lithium vanadyl phosphate modified lithium-rich manganese-based layered lithium ion battery cathode material and preparation method thereof | |
CN112421040A (en) | Phosphate anode material and preparation method and application thereof | |
CN107978738B (en) | A composite cathode material of sodium manganese pyrophosphate/carbon and its preparation and application | |
CN102583300A (en) | Fluorine and vanadium ion-doped lithium iron phosphate material and preparation method thereof | |
CN114715869B (en) | NASICON structured high entropy metal phosphate and preparation method and application thereof | |
CN114927663A (en) | Five-membered layered oxide sodium ion battery positive electrode material and preparation method and application thereof | |
CN110611080A (en) | A transition metal-doped sodium titanomanganese phosphate/carbon composite positive electrode material and its preparation and application in sodium-ion batteries | |
CN115224254A (en) | Cu, zn and Mg co-doped layered oxide sodium ion battery positive electrode material and preparation method and application thereof | |
CN107200358A (en) | A kind of iron system CuFe for sodium-ion battery2O4The preparation method of material | |
CN116119642A (en) | Sodium-rich ferric sodium pyrophosphate positive electrode material, preparation method and application | |
CN116845230A (en) | Mn and Al-containing vanadium-based phosphate positive electrode material, preparation method thereof, battery and energy storage equipment | |
CN116190629A (en) | A cation-doped lithium-rich manganese-based positive electrode material and preparation method thereof | |
CN111952560A (en) | A composite cathode material, preparation method thereof, and lithium ion battery | |
CN115621460A (en) | Positive electrode material and preparation method thereof | |
CN103107327B (en) | Ti4+,Al3+,Fe3+,F-Doped layer-spinelle composite lithium-rich anode material and preparation method | |
CN116969434A (en) | Cr-containing vanadium-based phosphate positive electrode material, preparation method thereof, battery and energy storage equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |