CN114749494A - Plant control device, plant control method, and program - Google Patents
Plant control device, plant control method, and program Download PDFInfo
- Publication number
- CN114749494A CN114749494A CN202111240294.1A CN202111240294A CN114749494A CN 114749494 A CN114749494 A CN 114749494A CN 202111240294 A CN202111240294 A CN 202111240294A CN 114749494 A CN114749494 A CN 114749494A
- Authority
- CN
- China
- Prior art keywords
- control
- operation process
- plant
- abnormality
- mechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 230000005856 abnormality Effects 0.000 claims abstract description 106
- 230000008569 process Effects 0.000 claims abstract description 70
- 238000012545 processing Methods 0.000 claims abstract description 48
- 230000004044 response Effects 0.000 claims abstract description 29
- 238000005096 rolling process Methods 0.000 claims description 109
- 239000002826 coolant Substances 0.000 claims description 87
- 238000010801 machine learning Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 abstract description 10
- 239000000463 material Substances 0.000 description 65
- 238000013528 artificial neural network Methods 0.000 description 51
- 230000001629 suppression Effects 0.000 description 34
- 238000012384 transportation and delivery Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 230000002159 abnormal effect Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 13
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0428—Safety, monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
- B21B37/44—Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/0285—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and fuzzy logic
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/03—Sleeved rolls
- B21B27/05—Sleeved rolls with deflectable sleeves
- B21B27/055—Sleeved rolls with deflectable sleeves with sleeves radially deflectable on a stationary beam by means of hydraulic supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
- B21B37/30—Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/48—Tension control; Compression control
- B21B37/52—Tension control; Compression control by drive motor control
- B21B37/54—Tension control; Compression control by drive motor control including coiler drive control, e.g. reversing mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/33—Director till display
- G05B2219/33035—Slow learning combined with fast learning artificial neural network, two time scale ann
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/33—Director till display
- G05B2219/33322—Failure driven learning
Landscapes
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Mechanical Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Manufacturing & Machinery (AREA)
- Control Of Metal Rolling (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及工厂设备控制装置、工厂设备控制方法以及程序。The present invention relates to a factory equipment control device, a factory equipment control method, and a program.
背景技术Background technique
在进行作为工厂设备控制之一的轧机控制时,以往在控制板的波动状态的形状控制时,应用了模糊控制、神经模糊控制。模糊控制应用于利用了冷却剂的形状控制,另外,神经模糊控制应用于森吉米尔式轧机的形状控制。When performing rolling mill control, which is one of plant equipment controls, fuzzy control and neuro-fuzzy control have conventionally been applied to shape control of the wave state of the control panel. Fuzzy control is applied to shape control using coolant, and neuro-fuzzy control is applied to shape control of Sendzimir mill.
在应用了神经模糊控制的形状控制中,如专利文献1所示,进行求出由形状检测器检测出的实绩形状图案与目标形状图案之差以及与预先设定的基准形状图案的类似比例的处理。而且,在应用了神经模糊控制的形状控制中,根据所求出的类似比例,通过由针对预先设定的基准形状图案的控制操作端操作量表现出的控制规则,来求出针对操作端的控制输出量。In the shape control to which the neuro-fuzzy control is applied, as shown in
形状控制具有多个控制操作端,通过这些多个控制操作端的特征的差来执行控制。形状为板宽方向的板的波动状态,控制操作端能够使板宽方向的特定的区域的形状变化。例如,AS-U辊能够使操作的鞍座位置附近的形状变化,中间辊移位能够使板端部的形状变化。在进行形状控制时,根据实际形状,以抑制形状偏差的方式组合各个控制操作端进行动作。The shape control has a plurality of control operation ends, and control is performed by differences in characteristics of the plurality of control operation ends. The shape is the wave state of the board in the board width direction, and the shape of a specific region in the board width direction can be changed by controlling the operation end. For example, AS-U rolls can change the shape near the saddle position of the operation, and intermediate roll displacement can change the shape of the plate ends. When performing shape control, according to the actual shape, each control operation end is combined to operate so as to suppress the shape deviation.
在轧机实施轧制时,为了被轧制材料与轧机的辊间的润滑以及由轧制引起的发热的冷却,需要冷却材料(以下称为冷却剂)。该冷却材料成为形状控制的操作端,通过在板宽方向上调整冷却剂的喷射量,能够在板宽方向整个区域使形状变化。在6级轧机中,如专利文献2所示,在板宽方向上具有冷却剂喷射量调整机构,使用实绩形状变更喷射量,由此实施形状控制。但是,在森吉米尔式轧机中,在轧制中,轧机的辊处于浸入冷却剂中的状态,冷却剂在出现对于形状的效果之前,与AS-U、中间辊移位相比需要时间。另外,由于冷却剂喷射量的调整无法自动进行,因此也考虑流量调整阀的操作等操作者需要实施的情况。在这样的情况下,仅在轧制开始前能够进行调整。When rolling in a rolling mill, a cooling material (hereinafter referred to as a coolant) is required for lubrication between the material to be rolled and the rolls of the rolling mill and for cooling of heat generated by rolling. This cooling material serves as an operation end for shape control, and by adjusting the injection amount of the coolant in the plate width direction, the shape can be changed over the entire area in the plate width direction. In the 6-stage rolling mill, as shown in
在轧机中的轧制的实施中,有时发生被轧制材料断裂的机械作业异常。被轧制材料的断裂多是因为被轧制材料而发生的,但也存在被轧制材料因弯折而断裂的情况。被轧制材料的弯折是指被轧制材料向轧机的单侧偏移,通常在轧机的中央部执行轧制。During the implementation of rolling in a rolling mill, a mechanical operation abnormality in which the material to be rolled is broken may occur. The fracture of the material to be rolled often occurs because of the material to be rolled, but the material to be rolled also breaks due to bending. The bending of the material to be rolled means that the material to be rolled is displaced to one side of the rolling mill, and rolling is usually performed at the center of the rolling mill.
可以预想到这样的弯折是由于AS-U辊或中间辊移位的位置而发生的。在形状控制中,为了将被轧制材料的形状维持为目标形状而操作AS-U、中间辊移位,但作为其结果,机械状态有时成为容易发生被轧制材料的弯折的状态。Such buckling is expected to occur due to the displaced position of the AS-U rolls or intermediate rolls. In shape control, AS-U and intermediate roll shift are operated in order to maintain the shape of the material to be rolled at the target shape, but as a result, the mechanical state may become a state in which bending of the material to be rolled is likely to occur.
以往,在4级轧机、6级轧机等通常的轧机中,除了作为机械操作部的折弯机、校平机之外,还具有在板宽方向上变更冷却剂喷射量的操作部,用于形状控制。与森吉米尔式轧机不同,在通常的轧机中,轧机的辊未浸渍在冷却剂中,能够在与机械操作单元同等的时间内获得对冷却剂的形状带来的效果。因此,通常的轧机中的形状控制将机械操作单元和冷却剂同等地处理,将冷却剂用作控制操作端。在该情况下,冷却剂在板宽方向整个区域具有效果,因此与机械操作部竞争,即使被轧制材料的实绩形状相同,机械操作部的实绩位置也大多不同。Conventionally, in ordinary rolling mills such as 4-stage rolling mills and 6-stage rolling mills, in addition to a bending machine and a leveling machine as a mechanical operating part, there is also an operating part for changing the coolant injection amount in the plate width direction. shape control. Unlike the Sendzimir mill, in a normal rolling mill, the rolls of the rolling mill are not immersed in the coolant, and the effect on the shape of the coolant can be obtained in the same time as the mechanical operation unit. Therefore, in the shape control in a normal rolling mill, the mechanical operation unit and the coolant are treated equally, and the coolant is used as the control operation end. In this case, since the coolant has an effect over the entire area in the plate width direction, the actual position of the machine operation part is often different even if the actual shape of the material to be rolled is the same, in competition with the machine operation part.
图15表示现有的森吉米尔式轧机的控制装置的概略结构。FIG. 15 shows a schematic configuration of a control device of a conventional Sendzimir mill.
首先,在运算器901中,求出目标形状d1与由轧机990得到的被轧制材料的形状实绩d2的差分,将该差分提供给第一形状控制部902和第二形状控制部903。第一形状控制部902控生成为机械操作部的机械操作端904。第二形状控制部903控制变更冷却剂喷射量的冷却剂操作端905。First, the
轧机990执行基于机械操作端904的机械操作处理和基于冷却剂操作端905的冷却剂喷射量的操作处理,进行被轧制材料的轧制处理,得到被轧制材料的形状实绩d2和轧制实绩d3。在该情况下,在由机械操作端904进行的机械操作处理中,通过操作量的控制,以比较高速的响应来变更被轧制材料的形状。另一方面,在由冷却剂操作端905进行的冷却剂喷射量的操作处理中,即使进行操作量的控制,响应也比机械操作处理更低速。The
在该图15所示的结构的情况下,如已经说明的那样,由机械操作端904进行的机械操作处理与由冷却剂操作端905进行的冷却剂喷射量的操作处理竞争。此时,即使形状实绩d2相同,机械操作端904的机械操作量也不一定相同。而且,由机械操作端904进行的机械操作处理和由冷却剂操作端905进行的冷却剂喷射量的操作处理的响应速度不同,而且效果波及到板宽方向的范围在各个操作处理中不同。因此,存在难以适当地控制由机械操作端904进行的机械操作处理和由冷却剂操作端905进行的冷却剂喷射量的操作处理双方这一问题。例如,在接近高速响应的机械操作端904的动作范围的上限的状态时,有时无法稳定地控制形状实绩d2、轧制实绩d3而发生振动,无法使作为控制对象工厂设备的轧机990稳定地进行动作。In the case of the structure shown in FIG. 15 , as already explained, the mechanical operation processing by the
作为适当地进行这样的森吉米尔式轧机的形状控制的现有技术,例如,如专利文献3所记载的那样,存在根据实绩数据使用机器学习来学习被轧制材料的实绩形状偏差与控制操作端操作量的关系并进行控制的技术。在该专利文献3所记载的技术中,根据形状偏差输出控制输出,进行操作控制操作端的形状控制。As a prior art for appropriately performing shape control of such a Sendzimir mill, for example, as described in Patent Document 3, there is a method of learning the actual shape deviation and control operation edge of the material to be rolled using machine learning based on actual performance data. A technique for controlling the relationship between the operating quantities. In the technique described in Patent Document 3, the control output is output based on the shape deviation, and the shape control of the operation control operation end is performed.
现有技术文献prior art literature
专利文献Patent Literature
专利文献1:日本专利2804161号公报Patent Document 1: Japanese Patent No. 2804161
专利文献2:日本专利2515028号公报Patent Document 2: Japanese Patent No. 2515028
专利文献3:日本特开2018-005544号公报Patent Document 3: Japanese Patent Laid-Open No. 2018-005544
发明内容SUMMARY OF THE INVENTION
发明要解决的课题The problem to be solved by the invention
专利文献3所记载的技术通过学习针对形状偏差的控制操作方法来执行形状控制,没有考虑控制操作端位置。在进行实际的控制时,根据控制操作端的机械条件来限定操作范围,但使针对该控制操作端的控制输出停止,在可能的情况下,仅通过其他控制操作端进行操作。The technique described in Patent Document 3 performs shape control by learning a control operation method for shape deviation, without considering the position of the control operation end. In the actual control, the operating range is limited according to the mechanical conditions of the control operation terminal, but the control output to the control operation terminal is stopped, and if possible, the operation is only performed by other control operation terminals.
另外,在如森吉米尔式轧机那样作为形状控制操作端的冷却剂对形状造成影响之前的时间比机械操作端长的情况下,即使与以往同样地、与机械操作端同样地输出冷却剂的操作指令,仍通过对形状造成的影响在短时间内传递的机械操作端控制形状,无法有效地实施基于冷却剂的形状控制。In addition, when the time until the coolant, which is the operation end of the shape control, affects the shape is longer than that of the mechanical operation end, as in the past, the operation command of the coolant is output in the same way as the mechanical operation end. , the shape control based on the coolant cannot be effectively implemented by the mechanical operation end control of the shape in which the influence on the shape is transmitted in a short time.
在利用轧机进行轧制的情况下,根据被轧制材料的特性、轧制状态以及形状控制的机械操作端的实绩位置,会发生板断裂等机械作业异常,因此要求限制机械操作端的实绩位置。但是,使用机械操作端和冷却剂作为形状控制的操作端时,限制机械操作端的实绩位置是极其困难的。In the case of rolling with a rolling mill, mechanical operation abnormalities such as plate breakage may occur depending on the properties of the material to be rolled, the rolling state, and the actual position of the machine operating end for shape control. Therefore, it is required to limit the actual position of the machine operating end. However, when the mechanical operating end and the coolant are used as the operating end for shape control, it is extremely difficult to restrict the actual position of the mechanical operating end.
如上所述,在以往的形状控制中,由于与机械操作端同样地基于形状偏差来控制冷却剂,所以存在无法限制导致板断裂等机械作业异常的机械操作端的实绩位置的问题。As described above, in the conventional shape control, since the coolant is controlled based on the shape deviation similarly to the machine operation end, there is a problem that the actual position of the machine operation end which causes mechanical operation abnormality such as plate breakage cannot be restricted.
此外,在到此为止的说明中,对森吉米尔式轧机的形状控制的问题进行了叙述,但各种工厂设备控制装置在同时进行响应性快的控制操作和响应性慢的控制操作的情况下,在同时适当地进行双方的控制操作时,存在同样的问题。In addition, in the description so far, the problem of the shape control of the Sendzimir mill has been described, but when various plant equipment control devices perform control operations with high responsiveness and control operations with slow responsiveness at the same time , the same problem exists when both control operations are performed appropriately at the same time.
本发明的目的在于提供预测控制对象工厂设备中的机械作业异常的发生,并以不发生机械作业异常的方式适当地操作控制操作端,从而能够进行控制效果和操作效率的提高的工厂设备控制装置、工厂设备控制方法以及程序。An object of the present invention is to provide a plant equipment control device capable of predicting the occurrence of machine operation abnormality in a control target plant equipment, and appropriately operating a control operation terminal so that the machine operation abnormality does not occur, thereby improving the control effect and operation efficiency. , Factory equipment control methods and procedures.
用于解决课题的手段means of solving problems
为了解决上述课题,例如采用请求专利权的技术方案所记载的结构。In order to solve the above-mentioned problems, for example, the configuration described in the claimed invention is adopted.
本申请包含多个解决上述课题的手段,若列举其一例,则作为工厂设备控制装置,对控制对象工厂设备进行针对操作的响应速度为预定的响应速度的第一操作处理和针对操作的响应速度比第一操作处理慢的第二操作处理,所述工厂设备控制装置具备:The present application includes a plurality of means for solving the above-mentioned problems. To take one example, as a factory equipment control device, the control target factory equipment performs a first operation process in which the response speed to an operation is a predetermined response speed and a response speed to the operation. The second operation process is slower than the first operation process, and the plant equipment control device includes:
第一控制部,其取得控制对象工厂设备的作为目标的状态量,进行第一操作处理的指示;a first control unit that acquires a target state quantity of the plant equipment to be controlled, and instructs to perform a first operation process;
第二控制部,其取得控制对象工厂设备的作为目标的状态量,进行第二操作处理的指示;a second control unit that acquires the target state quantity of the plant equipment to be controlled, and instructs to perform the second operation process;
第一操作端,其通过第一控制部的指示,执行控制对象工厂设备的第一操作处理;a first operation terminal, which executes the first operation process of the control target factory equipment through the instruction of the first control part;
第二操作端,其通过第二控制部的指示,执行控制对象工厂设备的第二操作处理;the second operation terminal, which executes the second operation process of the control target factory equipment through the instruction of the second control part;
安全操作范围决定部,其根据第一操作端的实绩来决定第一操作端的第一操作处理的安全操作范围;以及a safe operation range determination unit that determines a safe operation range of the first operation process of the first operation side according to the actual performance of the first operation side; and
第三控制部,其在由安全操作范围决定部进行的判断中,在由第一操作端进行的第一操作处理不在安全操作范围的情况下,对由第二控制部进行的第二操作处理的指示进行校正或变更,使由第一操作端进行的第一操作处理的实绩位置移动到未推定出发生机械作业异常的实绩位置。A third control unit that, in the judgment by the safe operation range determination unit, controls the second operation process performed by the second control unit when the first operation process performed by the first operation terminal is not within the safe operation range Correction or change is performed according to the instruction of , so that the actual performance position of the first operation process performed by the first operation terminal is moved to the actual performance position where the occurrence of machine operation abnormality is not estimated.
发明效果Invention effect
根据本发明,能够适当地控制控制对象工厂设备中的操作状态,抑制成为机械作业异常的操作端的实绩位置。其结果是,能够期待控制对象工厂设备的控制精度的提高、操作效率的提高、以及抑制机械作业异常的发生。According to the present invention, it is possible to appropriately control the operating state in the plant equipment to be controlled, and to suppress the actual performance position of the operating end that becomes abnormal in the mechanical operation. As a result, it can be expected to improve the control accuracy of the plant equipment to be controlled, improve the operation efficiency, and suppress the occurrence of abnormal machine operations.
上述以外的课题、结构以及效果通过以下的实施方式的说明而变得明确。Problems, structures, and effects other than those described above will be clarified by the description of the following embodiments.
附图说明Description of drawings
图1是表示本发明的一个实施方式的例子的工厂设备控制装置的结构例的框图。FIG. 1 is a block diagram showing a configuration example of a plant equipment control apparatus according to an example of an embodiment of the present invention.
图2是表示将本发明的一个实施方式的例子的工厂设备控制装置应用于轧机的情况下的结构例的框图。2 is a block diagram showing a configuration example in the case where the plant equipment control device according to the example of the embodiment of the present invention is applied to a rolling mill.
图3是表示森吉米尔式轧机的例子的结构图。FIG. 3 is a configuration diagram showing an example of a Sendzimir mill.
图4是表示单机座轧机的轧制设备的例子的结构图。FIG. 4 is a configuration diagram showing an example of a rolling facility of a single-stand rolling mill.
图5是表示本发明的一个实施方式的例子的机械操作端的概要的图。FIG. 5 is a diagram showing an outline of a mechanical operating end of an example of an embodiment of the present invention.
图6是表示本发明的一个实施方式的例子的安全操作范围决定部的结构例的框图。6 is a block diagram showing a configuration example of a safe operating range determination unit in an example of an embodiment of the present invention.
图7是表示本发明的一个实施方式的例子的神经网络的结构例的图。FIG. 7 is a diagram showing a configuration example of a neural network according to an example of an embodiment of the present invention.
图8是表示本发明的一个实施方式的例子的神经网络管理表的结构例的图。FIG. 8 is a diagram showing a configuration example of a neural network management table in an example of an embodiment of the present invention.
图9是表示本发明的一个实施方式的例子的学习数据库的结构例的图。FIG. 9 is a diagram showing a configuration example of a learning database in an example of an embodiment of the present invention.
图10是表示本发明的一个实施方式的例子的机械操作端位置抑制控制部的结构例的框图。10 is a block diagram showing a configuration example of a mechanical manipulation end position suppression control unit according to an example of an embodiment of the present invention.
图11是表示本发明的一个实施方式的例子的机械操作端位置异常区域判定部的概要的图。11 is a diagram showing an outline of a machine operation end position abnormal region determination unit according to an example of an embodiment of the present invention.
图12是表示本发明的一个实施方式的例子的冷却剂操作端控制输出运算部的结构及动作的图。FIG. 12 is a diagram showing the configuration and operation of a coolant operation end control output calculation unit according to an example of an embodiment of the present invention.
图13是表示本发明的一个实施方式的例子的冷却剂操作端控制输出选择部的动作的图。13 is a diagram showing an operation of a coolant operation end control output selection unit in an example of an embodiment of the present invention.
图14是表示由计算机构成本发明的一个实施方式的例子的工厂设备控制装置的情况下的硬件结构例的框图。14 is a block diagram showing an example of a hardware configuration in the case where the plant equipment control apparatus according to the example of the embodiment of the present invention is configured by a computer.
图15是表示现有的轧机的控制装置的结构例的框图。FIG. 15 is a block diagram showing a configuration example of a control device of a conventional rolling mill.
附图标记说明Description of reference numerals
11…形状检测预处理部、12…图案识别部、13…控制运算部、14…形状检测器、50…控制装置、100…工厂设备控制装置(计算机)、101…运算器、102…第三控制部、103…高速操作端、104…低速操作端、105…安全操作范围决定部、110…控制单元、111…第一控制部、112…第二控制部、190…控制对象工厂设备、201…运算器、202…机械操作端位置抑制控制部、203…机械操作端、204…冷却剂操作端、205…机械操作端安全操作范围决定部、210…形状控制单元、211…第一形状控制部、212…第二形状控制部、300…被轧制材料、301…轧机、302…送入侧张力卷筒(送入侧TR)、303…送出侧张力卷筒(送出侧TR)、304…碾磨速度控制部、305…送入侧TR控制部、306…送出侧张力卷筒控制部、307…辊隙控制部、308…送入侧张力计、309…送出侧张力计、310…轧制速度设定部、311…送入侧张力设定部、312…送出侧张力设定部、313…送入侧张力控制部、314…送出侧张力控制部、315…送入侧张力电流变换部、316…送出侧张力电流变换部、317…送出侧板厚计、318…送出侧板厚控制部、319…辊隙设定部、401…工作辊、402…第一中间辊、403…第二中间辊、404…AS-U辊、405…分割辊、406…鞍座、501…输入数据生成部、502…神经网络、503…神经网络学习控制部、504…神经网络选择部、505…监督数据生成部、506…机械作业异常判定部、511…学习数据数据库、512…控制规则数据库、610…机械操作端位置异常区域判定部、611…机械操作端位置异常区域搜索部、612…输入数据生成部、613…输出数据判定部、620…机械操作端位置异常抑制控制部、621…冷却剂操作端控制输出运算部、622…冷却剂操作端控制输出选择部、623…冷却剂控制规则数据库、631…数据库检索部、632…输出合成部、901…运算器、902…第一形状控制部、903…第二形状控制部、904…机械操作端、905…冷却剂操作端、990…轧机、d11…第一状态量目标、d12…第一状态量、d13…第二状态量、d14…安全操作范围、d21…目标形状、d22…机械操作端位置实绩、d23…形状实绩、d24…轧制实绩、d25…机械操作端安全操作范围、d26…机械作业异常评价值、d27…实绩位置异常区域操作端判定值、d28…异常抑制输出、29…形状控制输出、d30…冷却剂操作输出、d31…推定位置、d32…机械作业异常判定值。11...shape detection preprocessing unit, 12...pattern recognition unit, 13...control calculation unit, 14...shape detector, 50...control device, 100...factory equipment control device (computer), 101...calculator, 102...third Control unit, 103...high speed operation end, 104...low speed operation end, 105...safe operation range determination unit, 110...control unit, 111...first control unit, 112...second control unit, 190...control target plant equipment, 201 ...calculator, 202...machine operation end position suppression control unit, 203...machine operation end, 204...coolant operation end, 205...machine operation end safe operation range determination unit, 210...shape control unit, 211...first shape control Section, 212...Second shape control section, 300...Material to be rolled, 301...Rolling mill, 302...Incoming side tension reel (Incoming side TR), 303...Outgoing side tension reel (Outgoing side TR), 304 ...grinding speed control unit, 305...feeding side TR control unit, 306...feeding side tension drum control unit, 307...roll gap control unit, 308...feeding side tension meter, 309...feeding side tension meter, 310... Rolling speed setting part, 311...feeding side tension setting part, 312...feeding side tension setting part, 313...feeding side tension control part, 314...feeding side tension control part, 315...feeding side tension current Conversion section, 316...Tension current conversion section on the delivery side, 317...Sheet thickness gauge on the delivery side, 318...Sheet thickness control section on the delivery side, 319...Roll gap setting section, 401...Work roll, 402...First intermediate roll, 403 ...second intermediate roller, 404...AS-U roller, 405...split roller, 406...saddle, 501...input data generation unit, 502...neural network, 503...neural network learning control unit, 504...neural network selection unit, 505...supervision data generation unit, 506...machine operation abnormality determination unit, 511...learning data database, 512...control rule database, 610...machine operation end position abnormality area determination unit, 611...machine operation end position abnormality area search unit, 612 ...input data generation unit, 613...output data determination unit, 620...machine operation end position abnormality suppression control unit, 621...coolant operation end control output calculation unit, 622...coolant operation end control output selection unit, 623...coolant control rule database, 631...database retrieval unit, 632...output synthesis unit, 901...calculator, 902...first shape control unit, 903...second shape control unit, 904...machine operation end, 905...coolant operation end, 990...Rolling mill, d11...First state quantity target, d12...First state quantity, d13...Second state quantity, d14...Safe operating range, d21...Target shape, d22...Machine operation end position actual performance, d23...Shape actual performance, d24…Rolling actual performance, d25…Safe operation range of machine operation end, d26…Machine operation abnormal evaluation value, d27…Actual performance position difference Normal area operation end judgment value, d28...abnormal suppression output, 29...shape control output, d30...coolant operation output, d31...estimated position, d32...machine operation abnormality judgment value.
具体实施方式Detailed ways
以下,参照图1~图13对本发明的一个实施方式的例子(以下,称为“本例”)的工厂设备控制装置进行说明。Hereinafter, with reference to FIGS. 1-13, the factory equipment control apparatus of the example (henceforth "this example") of one Embodiment of this invention is demonstrated.
[工厂设备控制装置的整体结构][Overall structure of factory equipment control device]
图1表示本例的工厂设备控制装置的整体结构的例子。FIG. 1 shows an example of the overall configuration of the plant equipment control apparatus of this example.
图1所示的工厂设备控制装置对控制对象工厂设备190进行控制,作为控制对象工厂设备190的控制,执行基于高速操作端(第一操作端)103的操作处理和基于低速操作端(第二操作端)104的操作处理。The plant equipment control device shown in FIG. 1 controls the
本例的工厂设备控制装置取得第一状态量目标d11,通过运算器101取得与第一状态量d12的差分。第一状态量d12作为高速操作端103以及低速操作端104的操作处理的结果,是从控制对象工厂设备190得到的。另外,作为高速操作端103及低速操作端104、对控制对象工厂设备190施加的其他操作端的操作处理的结果,得到第二状态量d13。The plant equipment control apparatus of this example obtains the first state quantity target d11, and obtains the difference from the first state quantity d12 by the
工厂设备控制装置的控制单元110具有控制高速操作端103的操作处理的第一控制部111和控制低速操作端104的操作处理的第二控制部112。The
第一控制部111的控制输出被直接供给至高速操作端103,控制高速操作端103的操作处理。The control output of the
第二控制部112的控制输出被供给至第三控制部102,根据需要进行控制输出的校正或变更后,被供给至低速操作端104。The control output of the
另外,本例的工厂设备控制装置具备安全操作范围决定部105。安全操作范围决定部105取得高速操作端103的操作实绩,判定所取得的操作实绩是否在安全操作范围内有富余,并将作为判定结果的安全操作范围d14的数据供给至第三控制部102。In addition, the plant equipment control apparatus of this example includes the safe operation
并且,安全操作范围决定部105取得控制对象工厂设备190的第一状态量d12和第二状态量d13。然后,安全操作范围决定部105参照第一状态量d12和第二状态量d13,判定高速操作端103的当前的操作实绩是否在安全操作范围中有富余。Then, the safe operation
在此,安全操作范围决定部105检测机械作业异常的发生,学习该时刻的第一状态量d12及第二状态量d13、高速操作端103的实绩位置,以在高速操作端103不发生机械作业异常的方式,决定可操作的范围即安全操作范围d14。由于机械作业异常不是频繁发生的现象,所以优选安全操作范围决定部105持续性地采集实绩数据,使用机器学习等执行学习,得到安全操作范围d14。Here, the safe operation
然后,安全操作范围决定部105将判定出的安全操作范围d14的数据供给至第三控制部102。Then, the safe operation
第三控制部102在根据安全操作范围d14的数据判定为在安全操作范围中有富余时,将第二控制部112的控制输出直接供给至低速操作端104。另一方面,第三控制部102在根据安全操作范围d14的数据判定为处于安全操作范围没有富余的状态时,对第二控制部112的控制输出进行校正或变更,并供给至低速操作端104。The
对第三控制部102供给运算器101的输出、高速操作端103的操作实绩、第二状态量d13,第三控制部102基于这些信息,校正或变更第二控制部112的控制输出。The output of the
根据图1所示的结构的工厂设备控制装置,能够使高速操作端103在不发生机械作业异常的范围内高效地进行动作,除了操作效率的提高以外,还能够期待控制精度的提高。According to the plant equipment control device having the configuration shown in FIG. 1 , the high-
[应用于森吉米尔式轧机的控制装置的情况下的整体结构][Overall structure in the case of application to the control device of Sendzimir mill]
接着,对将本例的工厂设备控制装置应用于森吉米尔式轧机的情况下的整体结构进行说明。Next, the overall configuration in the case where the plant control device of this example is applied to a Sendzimir mill will be described.
图2表示应用于森吉米尔式轧机的情况下的本例的工厂设备控制装置的结构。FIG. 2 shows the configuration of the plant control device of this example when applied to a Sendzimir mill.
图2所示的工厂设备控制装置取得被轧制材料的目标形状d21,通过运算器201取得与轧制后的形状实绩d23的差分。The plant equipment control device shown in FIG. 2 acquires the target shape d21 of the material to be rolled, and the
本例的工厂设备控制装置中,作为轧机301的控制,执行基于机械操作端203的操作处理和基于冷却剂操作端204的操作处理。由机械操作端203进行的操作处理是使进行轧制处理的辊隙等机械地变化的处理,被轧制材料的形状实绩d23中出现的响应变得高速。另一方面,由冷却剂操作端204进行操作处理是使冷却剂喷射量变化的处理,被轧制材料的轧制实绩d24中出现的响应与机械操作端203的操作相比变得低速。In the plant equipment control device of this example, as the control of the rolling
工厂设备控制装置的形状控制单元210具有控制机械操作端203的操作处理的第一形状控制部211和控制冷却剂操作端204的操作处理的第二形状控制部212。第一形状控制部211和第二形状控制部212以使被轧制材料成为目标形状d21的方式进行控制。目标形状d21是根据被轧制材料的特性等而预先设定的形状。The shape control unit 210 of the plant equipment control device has a first
第一形状控制部211的控制输出被直接供给至机械操作端203,控制机械操作端203的操作处理。The control output of the first
第二形状控制部212的控制输出被供给至机械操作端位置抑制控制部202,根据需要进行控制输出的校正或变更后,被供给至冷却剂操作端204。The control output of the second
关于机械操作端位置抑制控制部202的结构,将在图10中后述。The configuration of the mechanical operation end position
另外,本例的工厂设备控制装置具备机械操作端安全操作范围决定部205。机械操作端安全操作范围决定部205取得机械操作端203的操作实绩即机械操作端位置实绩d22,判定所取得的机械操作端位置实绩d22是否在安全操作范围中有富余。然后,机械操作端安全操作范围决定部205将作为判定结果的机械操作端安全操作范围d25的数据供给至机械操作端位置抑制控制部202。In addition, the plant equipment control device of this example includes a machine operation side safe operation
并且,机械操作端位置抑制控制部202取得轧机301的形状实绩d23和轧制实绩d24。然后,机械操作端安全操作范围决定部205参照形状实绩d23和轧制实绩d24,判定所取得的机械操作端位置实绩d22是否在安全操作范围中有富余。Then, the machine operation end position
机械操作端安全操作范围决定部205检测机械作业异常的发生,学习该时刻的形状实绩d23及轧制实绩d24、机械操作端位置实绩d22。通过该学习,机械操作端安全操作范围决定部205以在机械操作端203不发生机械作业异常的方式,决定可操作的范围即机械操作端安全操作范围d25。在此,机械操作端安全操作范围决定部205持续采集实绩数据,使用机器学习等执行学习,得到机械操作端安全操作范围d25。The machine operation end safety operation
然后,机械操作端安全操作范围决定部205将判定出的机械操作端安全操作范围d25的数据供给至机械操作端位置抑制控制部202。Then, the machine operation end safe operation
此外,关于机械操作端安全操作范围决定部205进行机械作业异常的学习等的详细结构,将在图6中后述。In addition, the detailed structure of the machine operation side safe operation
机械操作端位置抑制控制部202在根据机械操作端安全操作范围d25的数据判定为安全操作范围有富余时,将第二形状控制部212的控制输出直接供给至冷却剂操作端204。另一方面,机械操作端位置抑制控制部202在根据机械操作端安全操作范围d25的数据判定为处于安全操作范围没有富余的状态时,对第二形状控制部212的控制输出进行校正或变更,并供给到冷却剂操作端204。The machine operation end position
另外,向机械操作端位置抑制控制部202供给运算器201的输出、机械操作端位置实绩d22、轧制实绩d24,机械操作端位置抑制控制部202基于这些信息,对第二形状控制部212的控制输出进行校正或变更。In addition, the output of the
[森吉米尔式轧机的结构][Structure of Sendzimir Mill]
在此,对森吉米尔式轧机的结构例进行说明。Here, a configuration example of a Sendzimir mill will be described.
图3表示在森吉米尔式轧机中进行形状控制的情况下的概略结构。FIG. 3 shows a schematic configuration when shape control is performed in a Sendzimir mill.
森吉米尔式轧机通过形状检测器14检测轧制后的被轧制材料的实际形状。由形状检测器14检测出的实际形状在由控制装置50的形状检测预处理部11实施了图案识别的预处理之后,由图案识别部12运算与预先设定的基准形状图案中的哪个最接近。然后,基于运算出的基准形状图案,由控制运算部13判断应操作的操作端以及操作量,执行利用该应操作的操作端以及操作量控制森吉米尔式轧机的处理。In the Sendzimir mill, the
图4表示单机座轧机的轧制设备的例子。森吉米尔式轧机是单机座轧机的一种。FIG. 4 shows an example of a rolling facility of a single-stand rolling mill. Sendzimir mill is a type of single stand rolling mill.
图4所示的轧制设备由轧机301、送入侧张力卷筒(以下,称为“TR”)302和送出侧TR303构成,从送入侧TR302拉出的被轧制材料300通过轧机301,被送出侧TR303卷绕。The rolling facility shown in FIG. 4 is composed of a rolling
轧机301对被轧制材料300进行轧制。这里的轧制是指将被轧制材料300的板厚减薄至预定的板厚的处理。The rolling
在轧机301中设置有用于调整轧制速度的碾磨速度控制部304和用于调整轧机301的辊隙的辊隙控制部307。另外,在送入侧TR302和送出侧TR303设置有用于调整各自产生的张力的送入侧TR控制部305以及送出侧TR控制部306。The rolling
利用辊隙控制部307调整轧机301的上下辊间隔,由此施加压扁被轧制材料300的压力,并利用碾磨速度控制部304将被轧制材料300向送出侧送出,由此实施轧制处理。此时,在轧机301的送入侧和送出侧,也进行使用送入侧TR302和送出侧TR303对被轧制材料300施加张力的处理。The rolling
对于轧制作业而言重要的是成为产品的被轧制材料300的板厚(轧机的送出侧板厚),以使被轧制材料300成为预先决定的板厚的方式预先设定辊隙及送入侧张力、送出侧张力。What is important in the rolling operation is the thickness of the material to be rolled 300 (the sheet thickness on the delivery side of the rolling mill) to be a product, and the roll gap and Feed side tension, feed side tension.
送入侧张力电流变换部315使用由送入侧张力设定部311设定的送入侧张力,求出为了得到所设定的送入侧张力所需的电流,经由送入侧TR控制部305而提供给送入侧TR302,由此得到送入侧张力。The feed-side tension
同样地,送出侧张力电流变换部316使用由送出侧张力设定部312设定的送出侧张力,求出为了得到所设定的送出侧张力所需的电流,经由送出侧TR控制部306而提供给送出侧TR303,由此得到送出侧张力。Similarly, the sending-side tension
由辊隙设定部319设定的辊隙被提供给辊隙控制部307,由辊隙控制部307设定辊隙。The roll gap set by the roll
轧制速度设定部310根据轧机的操作者的指示来决定轧机301的速度,并通过碾磨速度控制部304来设定轧机301的速度。The rolling
在轧机301的送入侧及送出侧设置送入侧张力计308及送出侧张力计309,送入侧张力控制部313及送出侧张力控制部314执行控制,以使由它们测定出的实绩张力与设定张力一致。另外,在轧机301的送出侧设置送出侧板厚计317,送出侧板厚控制部318执行控制,以使在此测定出的实绩板厚与设定板厚一致。An entry-
在以上的结构的基础上,如已经说明的图3所示,在轧机的送出侧设置有用于检测被轧制材料的形状的形状检测器14,以使检测出的形状与预先设定的目标形状一致的方式执行形状控制。In addition to the above configuration, as shown in FIG. 3 already explained, a
如已说明的那样,形状是作为被轧制材料的金属板的波动程度。因此,根据轧机的下工序中的加工性、轧机中的轧制操作的效率性,预先设定成为目标的形状即目标形状。一般而言,由于对被轧制材料施加张力,所以如果在板端部存在裂纹等伤痕,则容易从该处产生裂口,产生被轧制材料在板宽方向上断开(板断裂)的情况。因此,为了使张力不集中而使板端部成为波动的状态的情况较多。As already explained, the shape is the degree of fluctuation of the metal sheet as the material to be rolled. Therefore, the target shape, which is the target shape, is set in advance according to the workability in the next step of the rolling mill and the efficiency of the rolling operation in the rolling mill. In general, since tension is applied to the material to be rolled, if there are flaws such as cracks at the end of the plate, cracks are likely to occur there, and the material to be rolled is broken in the plate width direction (plate fracture). . Therefore, there are many cases in which the edge of the plate is in a wavy state in order to prevent the tension from concentrating.
被轧制材料的波动实际上是对被轧制材料施加张力,因此不明显,外观上没有波动,但在板宽方向上张力分布变化。The fluctuation of the material to be rolled is actually the application of tension to the material to be rolled, so it is not obvious, and there is no fluctuation in appearance, but the tension distribution changes in the width direction of the plate.
在此,图3所示的形状检测器14通过测定板宽方向上的张力分布来推定板的波动,并检测为形状实绩。Here, the
[形状控制机械操作端的结构及处理][Structure and processing of the operating end of the shape control machine]
图5中的(a)表示通过森吉米尔式轧机的机械操作端203进行操作处理时的结构。在图5中,示出被轧制材料300的板宽方向的截面,仅示出被轧制材料300的上侧的结构,省略下侧的结构。(a) of FIG. 5 shows the structure at the time of operation processing by the
另外,图5中的(b)、(c)分别表示使被轧制材料300的形状变化时的动作波形。In addition, (b) and (c) in FIG. 5 show the operation waveforms when the shape of the material to be rolled 300 is changed, respectively.
如图5中的(a)所示,森吉米尔式轧机以夹着被轧制材料300的方式,由工作辊401、第一中间辊402、第二中间辊403、AS-U辊404构成。As shown in FIG. 5( a ), the Sendzimir mill is composed of work rolls 401 , first
第一中间辊402在上下向相反侧对辊设置有锥形,在板宽方向上移位,由此能够对被轧制材料300的板端部的形状产生影响。The first
AS-U辊404成为在多个分割辊405之间加入了鞍座406的结构,通过改变鞍座406的位置(图5的纵向的位置),能够使AS-U辊404的挠曲在板宽方向上变化。The AS-
例如,如图5中的(b)所示,在降低中心的鞍座406的情况下,能够对被轧制材料300的中央部的形状造成影响。For example, as shown in FIG. 5( b ), when the
在此,图5中的(b)、(c)的最下段所示的动作波形表示对鞍座406或第一中间辊402进行了移位操作时的被轧制材料300的板厚分布的变化。形状变化与板厚分布相反。Here, the operation waveforms shown in the lowermost stages of (b) and (c) in FIG. 5 represent the plate thickness distribution of the material to be rolled 300 when the
形状是板宽方向的波动的程度的分布,波动大意味着被轧制材料300伸长。这是因为等同于“送出侧板厚变薄”、“变薄的部分的被轧制材料的伸长率大”、“被轧制材料的形状变大”。The shape is a distribution of the degree of fluctuation in the plate width direction, and a large fluctuation means that the material 300 to be rolled is elongated. This is because it is equivalent to "the thickness of the sheet on the delivery side is reduced", "the elongation of the material to be rolled in the thinned portion is large", and "the shape of the material to be rolled is increased".
关于机械作业异常,被轧制材料300的板断裂是大的问题。若发生板断裂,则断裂后的被轧制材料300会使轧机的工作辊401、第一中间辊402破损。另外,根据情况,由于板断裂的发生,第二中间辊403、AS-U辊404也会破损。若发生这些破损,则需要更换这些辊,并且残留在轧机内的被轧制材料300的除去处理需要时间,机械作业效率极端低下。Regarding the abnormality of the mechanical operation, the plate breakage of the material to be rolled 300 is a big problem. When sheet fracture occurs, the fractured
AS-U辊404以利用鞍座406压入分割辊405的方式按压于第二中间辊403,因此根据鞍座406的位置,有时分割辊405与第二中间辊403不接触。若成为这样的状态,则从该部分的工作辊401施加于被轧制材料300的力急剧减少,被轧制材料300不再伸长,施加于该部分的被轧制材料300的张力增大。The AS-
在被轧制材料300的板端部产生这样的状态的情况下,从板端部发生板断裂。另外,由于施加于被轧制材料300的板宽方向两端部的张力发生变化,所以有时会产生被轧制材料300的板宽方向中心从轧机的板宽方向中心偏离的现象,与轧机前后的机械设备碰撞而导致板断裂。这样,根据机械操作端203的实绩位置,有时会发生机械作业异常。When such a state occurs in the plate end portion of the material 300 to be rolled, plate breakage occurs from the plate end portion. In addition, since the tension applied to both ends in the width direction of the material to be rolled 300 changes, the center of the material to be rolled 300 in the width direction may deviate from the center in the width direction of the rolling mill. The mechanical equipment collided and caused the plate to break. In this way, depending on the actual performance position of the
发生机械作业异常的实绩位置不是根据机械结构通过计算而求出的,在被轧制材料300的板宽方向板厚分布、送出送入侧板厚、张力和轧制载荷等轧制状态、与其他形状控制机械操作端的位置关系也发生变化,因此难以预先预测。The actual position of occurrence of mechanical operation abnormality is not obtained by calculation based on the machine structure, but is the rolling state such as the plate thickness distribution in the plate width direction of the material to be rolled 300, the plate thickness at the feeding and feeding side, the tension and rolling load, and the The positional relationship of the operating ends of other shape control machines also changes, so it is difficult to predict in advance.
因此,在本例中,机械操作端安全操作范围决定部205将发生了轧制异常时的这些条件保存为实绩数据,通过与正常时的实绩数据进行比较,求出容易发生轧制异常的形状控制机械操作端的实绩位置。Therefore, in this example, the machine operator end safety operation
本例的机械操作端安全操作范围决定部205使用机器学习来决定机械操作端安全操作范围。在进行机器学习时的实绩数据中使用送出送入侧板厚、张力和轧制载荷等轧制状态、机械操作端203的实绩位置,在监督数据中使用轧制异常发生信息。The machine operator safety operation
作为轧制异常发生信息,使用板断裂及轧机的紧急停止的信息。板断裂能够通过送入送出侧张力减少来进行判定,紧急停止使用在轧制状态中发生某种异常而停止操作的情况下操作者操作的操作开关的信息。操作开关的信息能够由构成控制轧机的控制装置的计算机检测,能够作为实绩信息的1个来利用。机械操作端安全操作范围决定部205使用这些实绩数据及监督数据,生成判定有无发生机械作业异常的神经网络(N.N.)。As information on occurrence of abnormality in rolling, information on plate breakage and emergency stop of the rolling mill is used. The plate breakage can be determined by the reduction of the tension on the feeding and feeding side, and the emergency stop uses the information of the operation switch operated by the operator when a certain abnormality occurs in the rolling state and the operation is stopped. The information of the operation switch can be detected by the computer which comprises the control apparatus which controls a rolling mill, and can be utilized as one piece of actual performance information. The machine operator safety operation
[机械操作端安全操作范围决定部的结构和神经网络的结构][Structure of the safe operation range determination part of the machine operation side and structure of the neural network]
图6表示通过机器学习来实现机械操作端安全操作范围决定部205的情况下的结构。FIG. 6 shows a configuration in a case where the machine operation end safe operation
另外,图7表示机械操作端安全操作范围决定部205具备的神经网络502的结构。In addition, FIG. 7 shows the structure of the
如图7所示,神经网络502在输入端502a从输入数据生成部501得到轧制实绩d24和机械操作端位置实绩d22,从输出端502b输出机械作业异常判定值d32。机械作业异常判定值d32是作为轧制异常发生信息的板断裂的信息以及紧急停止的信息。神经网络502根据这些输入数据和输出数据的组合来执行学习。As shown in FIG. 7 , the
对图6所示的机械操作端安全操作范围决定部205进行说明,输入数据生成部501采集机械操作端位置实绩d22及形状实绩d23。另外,监督数据生成部505采集由机械作业异常判定部506判定出的机械作业异常判定值d32。这些输入数据生成部501和监督数据生成部505中的数据采集通过神经网络学习控制部503的控制而以固定时间周期进行,每1个动作周期得到1组学习数据。所得到的学习数据被顺序地存储在学习数据数据库511中。The machine operation end safe operation
机械作业异常判定部506根据轧制实绩d24判定有无机械作业异常即板断裂及轧机的紧急停止。作为判定结果的机械作业异常判定值d32是板断裂及紧急停止的信息。The mechanical operation
另外,轧机根据规格对各种被轧制材料300进行轧制,得到产品。因此,轧机一般根据被轧制材料300的规格,变更机械结构即工作辊401的规格(板宽方向的直径分布)、第一中间辊402的锥形规格、AS-U辊404的分割辊405的组合来进行应对。另外,关于被轧制材料300,板宽、材质也不一样。因此,根据机械结构、被轧制材料300的规格来区分神经网络502的方式能够进行高效的学习。Moreover, the rolling mill rolls various to-
因此,本例的机械操作端安全操作范围决定部205具有多种神经网络502,以能够切换使用的方式具备控制规则数据库512以及神经网络选择部504。Therefore, the machine operator safety operation
图8表示控制规则数据库512的结构例。FIG. 8 shows a configuration example of the
在控制规则数据库512中,如图8中的(a)所示,保存有使用由输入数据和监督数据的组合构成的学习数据而进行了学习的多个神经网络。In the
然后,神经网络学习控制部503指定需要学习的神经网络No.。神经网络选择部504接受需要神经网络学习控制部503的学习的神经网络No.的指定,从控制规则数据库512取出该神经网络,并设定为神经网络502。Then, the neural network
神经网络选择部504根据现状的轧制实绩d24,与轧制条件以及机械结构相匹配地,从控制规则数据库512取出相应的神经网络No.的神经网络,作为控制用神经网络d33对机械操作端位置抑制控制部202进行设定。The neural
图8中的(b)表示存储在控制规则数据库512中的神经网络管理表的结构。管理表根据(B1)板宽、(B2)钢种以及机械结构(a)来进行区分。作为(B1)板宽,例如使用3英尺宽、米宽、4英尺宽、5英尺宽这4个区分。作为(B2)钢种,使用钢种(1)~钢种(10)的10个区分左右。关于(A),例如根据作为第一中间辊402的锥形规格的锥形部的长度,区分为(A1)、(A2)。(b) in FIG. 8 shows the structure of the neural network management table stored in the
以上的表格区别是一个例子,需要根据轧制设备、生产的被轧制材料的种类适时设定。The difference in the table above is an example, and needs to be set appropriately according to the type of rolling equipment and the material to be rolled to be produced.
机械操作端安全操作范围决定部205根据轧制条件以及机械结构分开使用这些神经网络。The machine operation side safe operation
神经网络学习控制部503按照图8中的(b)所示的神经网络管理表,将图8中的(a)所示的输入数据以及监督数据的组合即学习数据与相应的神经网络No.建立关联而存储于学习数据数据库511。The neural network
图9表示学习数据数据库511存储的学习数据的例子。FIG. 9 shows an example of learning data stored in the learning
如图9所示,学习数据数据库511存储与每个神经网络No.对应的学习数据。As shown in FIG. 9 , the learning
神经网络学习控制部503对输入数据生成部501以及监督数据生成部505指示从学习数据数据库511取出与该神经网络对应的输入数据以及监督数据的管理表。神经网络502使用这些数据来执行学习。以往提出了各种神经网络的学习方法,也可以使用任意的学习方法。The neural network
机器学习需要大量的学习数据的组,如果在学习数据数据库511中存储了某种程度(例如10000组),则神经网络502执行学习。Machine learning requires a large number of sets of learning data, and if a certain degree (eg, 10,000 sets) is stored in the learning
当神经网络502的学习完成时,神经网络学习控制部503将作为学习结果的神经网络502写回到控制规则数据库512的该神经网络No.的位置,由此学习完成。When the learning of the
学习完成的神经网络502通过输入轧制实绩d24和机械操作端位置实绩d22,输出机械作业异常判定值。因此,神经网络502通过赋予预想的将来的形状实绩d23和机械操作端位置实绩d22,能够预测有无发生机械作业异常,能够搜索机械操作端安全操作范围d25。The learned
[机械操作端位置抑制控制部的结构][Structure of the mechanical operation end position suppression control section]
图10表示机械操作端位置抑制控制部202的结构。FIG. 10 shows the configuration of the mechanical operation end position
机械操作端位置抑制控制部202具备机械操作端位置异常区域判定部610和机械操作端位置异常抑制控制部620。The machine operation end position
机械操作端位置异常区域判定部610使用在图7中说明的神经网络502,对预测机械作业异常的发生的机械操作端203进行推定。这里使用的神经网络502是从机械操作端安全操作范围决定部205接受的控制用神经网络d33。The machine operation end position abnormality
机械操作端位置异常抑制控制部620根据机械操作端位置异常区域判定部610的判定结果,生成冷却剂操作端204的操作指令。The machine operation end position abnormality
在轧制操作中,轧机301的形状实绩d23时刻变化,用于将该轧机维持为目标形状d21的第一形状控制部211操作机械操作端203,机械操作端位置实绩d22也时刻变化。机械操作端位置异常区域判定部610所具备的机械操作端位置异常区域搜索部611使用机械操作端位置实绩d22,通过输入数据生成部612生成神经网络502的输入数据。During the rolling operation, the actual shape record d23 of the rolling
图11表示机械操作端位置异常区域判定部610进行的处理。FIG. 11 shows the processing performed by the mechanical operation end position abnormal
在图11的例子中,在机械操作端203为n种(n为整数)的情况下,机械操作端位置实绩d22如下。In the example of FIG. 11, when the
POS(k),k=1,2,...,nPOS(k), k=1,2,...,n
这里的机械操作端203为n种,例如相当于AS-U辊404的鞍座406的数量和能够在板宽方向上移位的第一中间辊402的数量的合计值。在图5所示的例子的情况下,鞍座数为5,第一中间辊为上下2根,因此n=7。Here, there are n types of mechanical operation ends 203, for example, corresponding to the total value of the number of the
在利用第一形状控制部211对机械操作端203进行操作的情况下,以每个控制周期中的恒定量为限度进行操作,因此机械操作端位置异常区域搜索部611如下所述地生成各机械操作端203的机械操作端位置实绩d22的推定位置。在此,例如设为有通过多次的控制进行操作的可能性的位置实绩变化量ΔPOS,考虑位置实绩没有变化的情况和实绩值在正负方向上变化的情况这3个情形。When the
POS(k),POS(k)±ΔPOS,k=1,2,...、nPOS(k), POS(k)±ΔPOS, k=1, 2, ..., n
由此,各机械操作端203的推定位置实绩能够生成3n种(例如在n=7的情况下为2187)。例如,在n=7的情况下,推定位置实绩能够生成2187种。将该推定位置实绩依次输出到输入数据生成部612。Thereby, 3 n types (for example, 2187 in the case of n=7) can be generated for the estimated position actual records of each
输入数据生成部612根据轧制实绩d24和推定位置d31生成向神经网络502的输入数据,并向神经网络502输出。The input
神经网络502输出图11中的(d)所示的机械作业异常判定值d32。机械作业异常判定值d32是成为板断裂和紧急停止的程度,但在此,输出数据判定部613接受从神经网络502输出的机械作业异常判定值d32,对两者的程度进行加权并相加,并设为机械作业异常评价值d26。通常,虽然在发生了机械作业异常的情况下,操作者实施紧急停止,但在发生了导致板断裂的征兆的情况下也会实施。作为这里的导致板断裂的征兆,例如有被轧制材料300的弯折。The
在没有紧急停止而发生了板断裂的情况下,对无征兆地发生且板断裂的情况进行抑制的优先度高。因此,将增大板断裂的程度的加权。In the case where the plate breakage occurs without emergency stop, the priority is high to suppress the occurrence of the plate breakage without warning. Therefore, the weighting of the degree of plate breakage will be increased.
机械操作端位置异常区域搜索部611预先存储输出的推定位置d31和返回来的机械作业异常评价值d26,搜索机械作业异常评价值d26为最大的推定值。在搜索的结果是机械作业异常评价值d26的最大值超过了预先决定的阈值的情况下,机械操作端位置异常区域搜索部611将该情况下的推定位置d31处的实绩位置变更量作为实绩位置异常区域操作端判定值d27输出。另外,该情况下的机械作业异常评价值d26也作为机械作业异常评价最大值而包含在实绩位置异常区域操作端判定值d27中。The machine operation end position abnormality
在以上说明的例子中,机械操作端位置异常区域搜索部611将从机械操作端203的实绩位置起的变化量设为3种来生成推定位置d31,但也可以通过其他处理来生成。例如,机械操作端位置异常区域搜索部611精细地控制推定位置d31的变化量。此外,机械操作端位置异常区域搜索部611也可以不实施向明显不发生机械作业异常的方向的搜索等,而根据状况适时变更。在此,明显不发生机械作业异常的方向是指例如考虑向机械操作端实绩位置的中央方向移动的情况。In the example described above, the machine operator end position abnormal
机械操作端位置异常抑制控制部620根据作为机械操作端位置异常区域判定部610的输出的实绩位置异常区域操作端判定值d27和第二形状控制部212对冷却剂操作端204的控制指令,生成对冷却剂操作端204的控制输出。The mechanical operation end position abnormality
在判断为机械操作端位置实绩d22即使在控制中变化也不会发生机械作业异常的情况下,能够进行通常的基于第二形状控制部212的使用了冷却剂操作端204的操作。然后,在机械作业异常评价值d26不太大的情况下,也可以是在第二形状控制部212的控制输出中合成用于抑制机械作业异常的异常抑制输出d28的方式下的输出。当然,在机械作业异常评价值d26大的情况下,将异常抑制输出d28优先输出到冷却剂操作端204。When it is determined that the machine operation end position actual performance d22 is changed during control and no machine operation abnormality occurs, the normal operation of the second
冷却剂控制规则数据库623预先决定各机械操作端203(k)与影响的冷却剂操作端204的对应。该对应也可以在轧制操作中实际操作机械操作端203和冷却剂操作端204来求出,另外,也可以通过机器学习,根据实绩数据来求出。在此,考虑根据实际操作的结果求出对应,并登记到冷却剂控制规则数据库623中的情况。The coolant
[冷却剂操作端控制输出运算部的结构及动作][Configuration and operation of the coolant operation end control output calculation unit]
图12表示冷却剂操作端控制输出运算部621的结构和动作。FIG. 12 shows the configuration and operation of the coolant operation end control
在冷却剂控制规则数据库623(图10)中登记有能够得到与操作各机械操作端203(k)同等效果的冷却剂流量变化需要量。图12中的(a)所示的数据库检索部631根据由机械操作端位置异常区域判定部610得到的实绩位置异常区域操作端判定值d27,取出与发生机械作业异常的机械操作端203(k)的实绩位置变更量相应的冷却剂流量变化需要量。In the coolant control rule database 623 ( FIG. 10 ), the required amount of coolant flow rate change that can obtain the same effect as operating each machine operation end 203(k) is registered. The
然后,输出合成部632对取出的每个机械操作端203(k)的冷却剂流量变化需要量进行加法处理,得到异常抑制输出d28。Then, the
例如,当在图11中的(a)和(b)所示的位置实绩和推定位置得到了图11中的(d)所示的实绩位置异常区域操作端判定值d27时,成为图12中的(b)所示那样的异常抑制输出d28。For example, when the actual position abnormality region operation end determination value d27 shown in (d) of FIG. 11 is obtained from the actual position records and estimated positions shown in (a) and (b) of FIG. The abnormality suppression output d28 as shown in (b) of the .
冷却剂操作端204实施轧制操作所需的润滑、冷却,因此作为冷却剂流量而决定板宽方向各点处的最大流量、最小流量的情况较多,能够得到发生机械作业异常的异常抑制输出d28。The
[冷却剂操作端控制输出选择部中的输出选择处理][Output selection processing in the coolant operation side control output selection section]
图13表示冷却剂操作端控制输出选择部622进行的输出选择处理。FIG. 13 shows the output selection process performed by the coolant operation end control
冷却剂操作端控制输出选择部622按照实绩位置异常区域操作端判定值d27内的机械作业异常评价最大值(图11中的(d))的大小,选择或合成图10所示的异常抑制输出d28和第二形状控制部212的形状控制输出d29并进行输出。由该冷却剂操作端控制输出选择部622选择或合成出的输出作为冷却剂操作输出d30被供给至冷却剂操作端204。The coolant operation end control
在图11中的(d)所示的机械作业异常评价最大值小的情况下,即使直接实施形状控制,发生机械作业异常的可能性也低,因此冷却剂操作端控制输出选择部622将形状控制输出d29直接作为冷却剂操作输出d30供给到冷却剂操作端204。即,冷却剂操作输出d30=形状控制输出d29。When the maximum value of the evaluation of mechanical operation abnormality shown in (d) of FIG. 11 is small, the possibility of occurrence of mechanical operation abnormality is low even if the shape control is directly performed. Therefore, the coolant operation end control
另一方面,在机械作业异常评价最大值大的情况下,冷却剂操作端控制输出选择部622判断为发生机械作业异常的可能性大。此时,如图13中的(b)所示,产生异常抑制输出d28,冷却剂操作端控制输出选择部622设为图13中的(a)所示那样的冷却剂操作输出d30,以使异常抑制输出d28的效果在冷却剂流量的最大值、最小值内成为最大限度。On the other hand, in the case where the maximum value of the mechanical operation abnormality evaluation value is large, the coolant operation end control
另外,在机械作业异常评价最大值不那么大的情况下,冷却剂操作端控制输出选择部622如图13中的(c)所示那样将形状控制输出d29与异常抑制输出d28相加并输出。此时,异常抑制输出d28以使冷却剂操作端流量收敛于最大、最小值内的方式被调整并相加而成为图11中的(d)所示的方式。In addition, when the maximum value of the mechanical work abnormality evaluation is not so large, the coolant operation end control
在此,关于机械作业异常评价最大值的值为大、不那么大、小中的任一个判定,使用在冷却剂操作端控制输出选择部622中预先设定的阈值来判定。另外,冷却剂操作端控制输出选择部622也可以始终将形状控制输出d29与异常抑制输出d28相加并输出。但是,在该情况下,使相加后的异常抑制输出d28不会变得那么大。Here, whether the value of the maximum value of the mechanical operation abnormality evaluation maximum value is large, not so large, or small is determined using a threshold value set in advance in the coolant operation end control
并且,在冷却剂操作端控制输出选择部622中的加法运算时,也可以不进行单纯加法运算而进行加权加法运算,使加权根据机械作业异常评价最大值而变化。In addition, in the addition operation in the coolant operation end control
如以上说明的那样,根据本例的工厂设备控制装置,能够防止由机械操作端203的机械操作端位置实绩d22引起的机械作业异常,并且执行良好的形状控制。As described above, according to the plant equipment control device of this example, it is possible to prevent machine operation abnormality caused by the machine operation end position actual performance d22 of the
[变形例][Variation]
此外,本发明并不限定于上述的实施方式的例子而包含各种变形例。例如,上述的实施方式的例子是为了容易理解地说明本发明而详细说明的例子,并不限定于必须具备所说明的全部结构。In addition, this invention is not limited to the example of embodiment mentioned above, Various modification examples are included. For example, the examples of the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to having all the structures described.
例如,在上述的实施方式的例子中,通过机器学习来实现了机械操作端安全操作范围决定部205,但也可以根据操作者的经验并通过数学式来表现,由此实现机械操作端安全操作范围决定部205。或者,也可以将机械作业异常发生时的轧制状态数据库化,判定有无相应的情形,实现机械操作端安全操作范围决定部205。For example, in the example of the above-described embodiment, the machine operating side safe operation
另外,机械操作端安全操作范围决定部205也可以基于操作者、操作技术人员的知识,生成数值模型、符号逻辑模型,并在机器学习时使用。In addition, the machine operation side safe operation
另外,在上述实施方式的例子中,机械操作端位置异常抑制控制部620在冷却剂控制规则数据库623中预先存储通过实验等求出的结果并加以利用。与此相对,机械操作端位置异常抑制控制部620也可以使用机器学习,根据实绩数据来生成规则库。In addition, in the example of the said embodiment, the machine operating end position abnormality
另外,在上述的实施方式的例子中,以轧机的形状控制为对象,但本发明也能够应用于一般的工厂设备控制。In addition, in the example of the above-mentioned embodiment, although the shape control of a rolling mill is aimed at, this invention can also be applied to the control of general factory equipment.
另外,在图1等的框图中,控制线、信息线仅示出了认为说明上需要的部分,并不一定示出了产品上所有的控制线、信息线。实际上也可以认为几乎全部的结构相互连接。In addition, in the block diagrams, such as FIG. 1, the control line and the information line show only the part considered to be necessary for description, and do not necessarily show all control lines and information lines on the product. In fact, it can also be considered that almost all structures are connected to each other.
另外,在上述的实施方式的例子中说明的控制部等处理部也可以分别由专用的硬件构成,但也可以通过在计算机中安装程序(应用)来实现在上述的实施方式的例子中说明的各处理部的功能。In addition, the processing units such as the control unit described in the example of the above-mentioned embodiment may be constituted by dedicated hardware, respectively, but the above-mentioned example of the embodiment may be realized by installing a program (application) in a computer. Function of each processing unit.
图14表示由计算机构成工厂设备控制装置的情况下的硬件结构例。FIG. 14 shows an example of the hardware configuration in the case where the plant equipment control apparatus is constituted by a computer.
图14所示的工厂设备控制装置(计算机)100具备分别与总线连接的CPU(CentralProcessing Unit:中央处理器)100a、ROM(Read Only Memory:只读存储器)100b以及RAM(Random Access Memory:随机存取存储器)100c。并且,工厂设备控制装置100具备非易失性存储器100d、网络接口100e、输入输出装置100f以及显示装置100g。The plant equipment control device (computer) 100 shown in FIG. 14 includes a CPU (Central Processing Unit) 100a, a ROM (Read Only Memory) 100b, and a RAM (Random Access Memory) 100b connected to a bus, respectively. fetch memory) 100c. Furthermore, the plant
CPU100a是从ROM100b读出实现工厂设备控制装置100进行的功能的软件的程序代码并执行的运算处理部。The
在RAM100c中暂时写入在运算处理的中途产生的变量、参数等。Variables, parameters, and the like generated in the middle of the arithmetic processing are temporarily written in the
非易失性存储器100d例如使用HDD(Hard Disk Drive:硬盘驱动器)、SSD(SolidState Drive:固态驱动器)等大容量信息存储介质。在非易失性存储器100d中记录执行工厂设备控制装置100进行的处理功能的程序(工厂设备控制程序)。另外,在非易失性存储器100d中记录用于进行机器学习所需的数据。As the
网络接口100e经由LAN(Local Area Network:局域网)、专用线等与外部进行各种信息的收发。The
输入输出装置100f输入来自控制对象工厂设备190(轧机301)的各种信息,并且输出进行对各操作端103、104(203、204)的指示的信息。The input/
显示装置100g显示控制对象工厂设备190(轧机301)的控制状态。The
此外,实现工厂设备控制装置100进行的各处理功能的程序的信息除了放置在HDD、SSD等非易失性存储器之外,还能够放置在半导体存储器、IC卡、SD卡、光盘等记录介质中。In addition, the information of the program that realizes each processing function performed by the factory
另外,在工厂设备控制装置的各处理部的一部分或者全部由硬件构成的情况下,也可以利用FPGA(Field Programmable Gate Array:现场可编程门阵列)、ASIC(Application Specific Integrated Circuit:专用集成电路)。In addition, when a part or all of each processing unit of the factory equipment control device is constituted by hardware, an FPGA (Field Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit) may be used. .
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-002428 | 2021-01-08 | ||
JP2021002428A JP7650666B2 (en) | 2021-01-08 | 2021-01-08 | PLANT CONTROL DEVICE, PLANT CONTROL METHOD, AND PROGRAM |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114749494A true CN114749494A (en) | 2022-07-15 |
CN114749494B CN114749494B (en) | 2024-07-12 |
Family
ID=82116705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111240294.1A Active CN114749494B (en) | 2021-01-08 | 2021-10-25 | Plant control device, plant control method, and storage medium |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7650666B2 (en) |
CN (1) | CN114749494B (en) |
DE (1) | DE102021214275A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7554710B2 (en) | 2021-05-28 | 2024-09-20 | 株式会社日立製作所 | PLANT CONTROL DEVICE, PLANT CONTROL METHOD, AND PROGRAM |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633693A (en) * | 1984-03-29 | 1987-01-06 | Sumitomo Metal Industries, Ltd. | Method of controlling the strip shape and apparatus therefor |
CN1052803A (en) * | 1989-12-25 | 1991-07-10 | 石川岛播磨重工业株式会社 | The thickness control system of milling train |
JP2515028B2 (en) * | 1988-12-28 | 1996-07-10 | 古河電気工業株式会社 | Rolling mill shape control method and apparatus for implementing this method |
JPH105832A (en) * | 1996-06-25 | 1998-01-13 | Kawasaki Steel Corp | Rolling control method for tandem rolling mill |
JP2804161B2 (en) * | 1990-06-04 | 1998-09-24 | 株式会社日立製作所 | Method and apparatus for controlling shape of Sendzimir mill |
JPH1145109A (en) * | 1997-07-25 | 1999-02-16 | Toshiba Corp | Operation support device |
JP2000190012A (en) * | 1998-12-25 | 2000-07-11 | Furukawa Electric Co Ltd:The | Plate shape controlling method and equipment in cold rolling |
JP2002172406A (en) * | 2000-12-06 | 2002-06-18 | Mitsubishi Heavy Ind Ltd | Method for correcting plate thickness by rolling mill |
KR20040050017A (en) * | 2002-12-09 | 2004-06-14 | 주식회사 포스코 | Operation fault diagnosis apparatus and method for hot strip mill |
US20050149208A1 (en) * | 2000-07-12 | 2005-07-07 | Aspen Technology, Inc. | Automated closed loop step testing of process units |
CN1830588A (en) * | 2005-03-08 | 2006-09-13 | 株式会社日立制作所 | Control method and control device for rolling device |
CN101020365A (en) * | 2007-03-17 | 2007-08-22 | 常熟市飞达汽车保养工具设备有限公司 | Hot extruder |
CN101204717A (en) * | 2006-12-19 | 2008-06-25 | 株式会社日立制作所 | Winding temperature control device and control method |
CN101443135A (en) * | 2006-03-08 | 2009-05-27 | 纽科尔公司 | Method and plant for integrated monitoring and control of strip flatness and strip profile |
CN102652961A (en) * | 2011-03-04 | 2012-09-05 | 东芝三菱电机产业系统株式会社 | Control device and control method |
CN103464475A (en) * | 2013-09-06 | 2013-12-25 | 鞍钢股份有限公司 | Hot rolling coiling temperature forecasting method based on associated neural network |
CN103475297A (en) * | 2013-09-27 | 2013-12-25 | 中国航天科技集团公司烽火机械厂 | Electric steering gear control method and electric steering gear controller |
CN103940350A (en) * | 2014-02-19 | 2014-07-23 | 超威电源有限公司 | Coating-machine online pole plate thickness measurement device and thickness measurement adjustment method |
CN105243512A (en) * | 2015-11-06 | 2016-01-13 | 湖南千盟物联信息技术有限公司 | Dynamic scheduling method of steelmaking operation plan |
CN105259754A (en) * | 2015-10-16 | 2016-01-20 | 华北理工大学 | Board thickness intelligent control method based on active learning |
WO2016019748A1 (en) * | 2014-08-07 | 2016-02-11 | 中兴通讯股份有限公司 | Mine safety management method and apparatus based on geographic information system |
CN106555620A (en) * | 2015-09-30 | 2017-04-05 | 大亚湾核电运营管理有限责任公司 | A kind of Steam Turhine Adjustment control valve device and method |
EP3187948A1 (en) * | 2016-01-04 | 2017-07-05 | Sidel Participations, S.A.S. | System and method for managing product quality in container processing plants |
JP2017157094A (en) * | 2016-03-03 | 2017-09-07 | 新日鐵住金株式会社 | Product state prediction device, product state control device, product state prediction method and program |
CN107272586A (en) * | 2016-04-08 | 2017-10-20 | 发那科株式会社 | Rote learning device, learning by rote, failure precognition apparatus and system |
JP2018005544A (en) * | 2016-07-01 | 2018-01-11 | 株式会社日立製作所 | Plant controller, rolling controller, plant control method, and plant control program |
CN108223344A (en) * | 2017-12-30 | 2018-06-29 | 盛瑞传动股份有限公司 | Electric pump control method and system |
CN108687137A (en) * | 2017-04-10 | 2018-10-23 | 株式会社日立制作所 | Complete equipment control device, rolling mill control apparatus, control method and storage medium |
WO2018221136A1 (en) * | 2017-05-29 | 2018-12-06 | 三菱電機株式会社 | Abnormality determination device, abnormality determination method, and abnormality determination program |
CN109450084A (en) * | 2018-10-24 | 2019-03-08 | 国网江苏省电力有限公司 | A kind of intelligent substation multi-layer protocol Cooperative Analysis method based on information data chain |
CN109772900A (en) * | 2017-11-14 | 2019-05-21 | 宝山钢铁股份有限公司 | A method of improving hot rolling new steel grade new spec oiler temperature control |
CN109807184A (en) * | 2017-11-22 | 2019-05-28 | 东芝三菱电机产业系统株式会社 | The shape control apparatus of cluster mill |
CN110376964A (en) * | 2018-04-13 | 2019-10-25 | 发那科株式会社 | Machine learning device, control device and machine learning method |
CN110785717A (en) * | 2017-06-19 | 2020-02-11 | 杰富意钢铁株式会社 | Abnormal state diagnostic device and abnormal state diagnostic method for process |
US20200249650A1 (en) * | 2019-01-31 | 2020-08-06 | Fanuc Corporation | Numerical control system |
JP2020166452A (en) * | 2019-03-28 | 2020-10-08 | パナソニックIpマネジメント株式会社 | Vehicle anomaly detection device, vehicle anomaly detection system and program |
CN112041771A (en) * | 2019-03-26 | 2020-12-04 | 东芝三菱电机产业系统株式会社 | Abnormality determination support device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010247192A (en) | 2009-04-16 | 2010-11-04 | Sumitomo Light Metal Ind Ltd | Shape control method and control apparatus for rolling mill |
JP5854765B2 (en) | 2011-11-01 | 2016-02-09 | 古河電気工業株式会社 | Shape control method for workpiece using cluster rolling mill and shape control apparatus for cluster rolling mill |
CN106475422B (en) | 2015-08-31 | 2018-07-06 | 宝山钢铁股份有限公司 | High order board-shape control method |
-
2021
- 2021-01-08 JP JP2021002428A patent/JP7650666B2/en active Active
- 2021-10-25 CN CN202111240294.1A patent/CN114749494B/en active Active
- 2021-12-14 DE DE102021214275.3A patent/DE102021214275A1/en active Pending
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633693A (en) * | 1984-03-29 | 1987-01-06 | Sumitomo Metal Industries, Ltd. | Method of controlling the strip shape and apparatus therefor |
JP2515028B2 (en) * | 1988-12-28 | 1996-07-10 | 古河電気工業株式会社 | Rolling mill shape control method and apparatus for implementing this method |
CN1052803A (en) * | 1989-12-25 | 1991-07-10 | 石川岛播磨重工业株式会社 | The thickness control system of milling train |
JP2804161B2 (en) * | 1990-06-04 | 1998-09-24 | 株式会社日立製作所 | Method and apparatus for controlling shape of Sendzimir mill |
JPH105832A (en) * | 1996-06-25 | 1998-01-13 | Kawasaki Steel Corp | Rolling control method for tandem rolling mill |
JPH1145109A (en) * | 1997-07-25 | 1999-02-16 | Toshiba Corp | Operation support device |
JP2000190012A (en) * | 1998-12-25 | 2000-07-11 | Furukawa Electric Co Ltd:The | Plate shape controlling method and equipment in cold rolling |
US20050149208A1 (en) * | 2000-07-12 | 2005-07-07 | Aspen Technology, Inc. | Automated closed loop step testing of process units |
JP2002172406A (en) * | 2000-12-06 | 2002-06-18 | Mitsubishi Heavy Ind Ltd | Method for correcting plate thickness by rolling mill |
KR20040050017A (en) * | 2002-12-09 | 2004-06-14 | 주식회사 포스코 | Operation fault diagnosis apparatus and method for hot strip mill |
CN1830588A (en) * | 2005-03-08 | 2006-09-13 | 株式会社日立制作所 | Control method and control device for rolling device |
CN101444797A (en) * | 2005-03-08 | 2009-06-03 | 株式会社日立制作所 | Control method and control device thereof |
CN101443135A (en) * | 2006-03-08 | 2009-05-27 | 纽科尔公司 | Method and plant for integrated monitoring and control of strip flatness and strip profile |
CN101204717A (en) * | 2006-12-19 | 2008-06-25 | 株式会社日立制作所 | Winding temperature control device and control method |
CN101020365A (en) * | 2007-03-17 | 2007-08-22 | 常熟市飞达汽车保养工具设备有限公司 | Hot extruder |
CN102652961A (en) * | 2011-03-04 | 2012-09-05 | 东芝三菱电机产业系统株式会社 | Control device and control method |
JP2012183553A (en) * | 2011-03-04 | 2012-09-27 | Toshiba Mitsubishi-Electric Industrial System Corp | Control device and control method |
CN103464475A (en) * | 2013-09-06 | 2013-12-25 | 鞍钢股份有限公司 | Hot rolling coiling temperature forecasting method based on associated neural network |
CN103475297A (en) * | 2013-09-27 | 2013-12-25 | 中国航天科技集团公司烽火机械厂 | Electric steering gear control method and electric steering gear controller |
CN103940350A (en) * | 2014-02-19 | 2014-07-23 | 超威电源有限公司 | Coating-machine online pole plate thickness measurement device and thickness measurement adjustment method |
WO2016019748A1 (en) * | 2014-08-07 | 2016-02-11 | 中兴通讯股份有限公司 | Mine safety management method and apparatus based on geographic information system |
CN106555620A (en) * | 2015-09-30 | 2017-04-05 | 大亚湾核电运营管理有限责任公司 | A kind of Steam Turhine Adjustment control valve device and method |
CN105259754A (en) * | 2015-10-16 | 2016-01-20 | 华北理工大学 | Board thickness intelligent control method based on active learning |
CN105243512A (en) * | 2015-11-06 | 2016-01-13 | 湖南千盟物联信息技术有限公司 | Dynamic scheduling method of steelmaking operation plan |
EP3187948A1 (en) * | 2016-01-04 | 2017-07-05 | Sidel Participations, S.A.S. | System and method for managing product quality in container processing plants |
JP2017157094A (en) * | 2016-03-03 | 2017-09-07 | 新日鐵住金株式会社 | Product state prediction device, product state control device, product state prediction method and program |
CN107272586A (en) * | 2016-04-08 | 2017-10-20 | 发那科株式会社 | Rote learning device, learning by rote, failure precognition apparatus and system |
JP2018005544A (en) * | 2016-07-01 | 2018-01-11 | 株式会社日立製作所 | Plant controller, rolling controller, plant control method, and plant control program |
CN108687137A (en) * | 2017-04-10 | 2018-10-23 | 株式会社日立制作所 | Complete equipment control device, rolling mill control apparatus, control method and storage medium |
WO2018221136A1 (en) * | 2017-05-29 | 2018-12-06 | 三菱電機株式会社 | Abnormality determination device, abnormality determination method, and abnormality determination program |
CN110785717A (en) * | 2017-06-19 | 2020-02-11 | 杰富意钢铁株式会社 | Abnormal state diagnostic device and abnormal state diagnostic method for process |
CN109772900A (en) * | 2017-11-14 | 2019-05-21 | 宝山钢铁股份有限公司 | A method of improving hot rolling new steel grade new spec oiler temperature control |
CN109807184A (en) * | 2017-11-22 | 2019-05-28 | 东芝三菱电机产业系统株式会社 | The shape control apparatus of cluster mill |
CN108223344A (en) * | 2017-12-30 | 2018-06-29 | 盛瑞传动股份有限公司 | Electric pump control method and system |
CN110376964A (en) * | 2018-04-13 | 2019-10-25 | 发那科株式会社 | Machine learning device, control device and machine learning method |
CN109450084A (en) * | 2018-10-24 | 2019-03-08 | 国网江苏省电力有限公司 | A kind of intelligent substation multi-layer protocol Cooperative Analysis method based on information data chain |
US20200249650A1 (en) * | 2019-01-31 | 2020-08-06 | Fanuc Corporation | Numerical control system |
CN112041771A (en) * | 2019-03-26 | 2020-12-04 | 东芝三菱电机产业系统株式会社 | Abnormality determination support device |
JP2020166452A (en) * | 2019-03-28 | 2020-10-08 | パナソニックIpマネジメント株式会社 | Vehicle anomaly detection device, vehicle anomaly detection system and program |
Non-Patent Citations (1)
Title |
---|
章顺虎: "塑性成型力学与轧制原理", 31 December 2020, 冶金工业出版社, pages: 370 - 376 * |
Also Published As
Publication number | Publication date |
---|---|
DE102021214275A1 (en) | 2022-07-14 |
CN114749494B (en) | 2024-07-12 |
JP2022107463A (en) | 2022-07-21 |
JP7650666B2 (en) | 2025-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107949813B (en) | Manufacturing equipment diagnosis support device and manufacturing equipment diagnosis support method | |
CN114749494A (en) | Plant control device, plant control method, and program | |
JP4589850B2 (en) | Rolling control device and rolling control method | |
EP3838432B1 (en) | System for predicting contraction | |
CN115407727B (en) | Device control apparatus, device control method, and computer-readable recording medium | |
KR102682285B1 (en) | Plant control apparatus, plant control method and program | |
JP5712009B2 (en) | Rolling control device, rolling control method, and rolling control program | |
JP7513064B2 (en) | Method for generating shape control actuator setting model for rolling equipment, method for setting shape control actuator for rolling equipment, method for controlling shape of steel plate, method for manufacturing steel plate, and shape control device for rolling equipment | |
KR100328940B1 (en) | Method of prevention of pinched tail eupression for hot strip | |
KR20250093609A (en) | Method for predicting the width of a finished rolled product, method for controlling the width of a finished rolled product, method for manufacturing a hot rolled steel sheet, and method for generating a width prediction model of a finished rolled product | |
TW202303319A (en) | Anomaly detection device | |
JP7277604B2 (en) | Prevention of undulations during rolling of metal strip | |
KR20030054325A (en) | Control method for preventing center mark in skin pass mill of continuous annealing line | |
JP2021133415A (en) | Model learning method, running plate thickness changing method, steel plate manufacturing method, model learning device, running plate thickness changing device and steel plate manufacturing device | |
JP7677266B2 (en) | Method for setting rolling conditions for a cold rolling mill, cold rolling method, method for manufacturing a steel sheet, device for setting rolling conditions for a cold rolling mill, and cold rolling mill | |
JP7337472B1 (en) | Work roll surface damage reduction method, control device, and rolling mill | |
JP2003334603A (en) | Control method of tandem rolling equipment and tandem rolling equipment | |
JP7393646B2 (en) | Method for controlling meandering of rolled material | |
JP2025092957A (en) | Cold rolling method for steel sheet, manufacturing method for cold rolled steel sheet, and manufacturing equipment for cold rolled steel sheet | |
JP2023086615A (en) | Crack detection method of high-temperature steel, rolling method of high-temperature steel, and generation method of crack detection model of high-temperature steel | |
KR20250014461A (en) | Apparatus and method for generating prediction model for crown of steel sheet | |
KR20250001610A (en) | Rolling load predicition system for controlling rolling mill and rolling load prediction method using the same | |
KR20230113802A (en) | End buckling restraint device | |
WO2023218619A1 (en) | Rolling productivity improvement assistance device | |
CN116529682A (en) | Abnormality determination device, abnormality determination model generation method, and abnormality determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |