CN114744024B - A kind of semiconductor device and preparation method thereof - Google Patents
A kind of semiconductor device and preparation method thereof Download PDFInfo
- Publication number
- CN114744024B CN114744024B CN202210659128.3A CN202210659128A CN114744024B CN 114744024 B CN114744024 B CN 114744024B CN 202210659128 A CN202210659128 A CN 202210659128A CN 114744024 B CN114744024 B CN 114744024B
- Authority
- CN
- China
- Prior art keywords
- hole
- substrate
- metal
- drain
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 78
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 150
- 229910052751 metal Inorganic materials 0.000 claims abstract description 150
- 239000000758 substrate Substances 0.000 claims abstract description 123
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000005530 etching Methods 0.000 claims description 12
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 8
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 229920006380 polyphenylene oxide Polymers 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 120
- 238000002161 passivation Methods 0.000 description 7
- 230000005533 two-dimensional electron gas Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
- H10D62/116—Dielectric isolations, e.g. air gaps adjoining the input or output regions of field-effect devices, e.g. adjoining source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本申请提供一种半导体器件及其制备方法,涉及半导体技术领域,方法通过去除漏极金属和背面金属之间的衬底,并在去除衬底的区域填充具有较低介电常数的第一介质层,从而有效降低漏极金属和背面金属之间所产生的源漏寄生电容Cds。同时,本申请通过将形成具有较低介电常数的第一介质层的工艺与原本形成源极通孔的工艺进行融合,有效简化工艺步骤,并且在半导体器件为GaN器件时,鉴于GaN器件的特性,通常衬底的厚度较厚,因此,在第一介质层设置于衬底上时,能够在漏极金属和背面金属之间填充更多的低介电常数的材料,有助于更好的降低漏极金属和背面金属之间所产生的源漏寄生电容Cds。
The present application provides a semiconductor device and a preparation method thereof, and relates to the technical field of semiconductors. The method includes removing the substrate between the drain metal and the backside metal, and filling the area where the substrate is removed with a first medium having a lower dielectric constant layer, thereby effectively reducing the source-drain parasitic capacitance Cds generated between the drain metal and the backside metal. At the same time, the present application effectively simplifies the process steps by integrating the process of forming the first dielectric layer with a lower dielectric constant and the original process of forming the source through hole, and when the semiconductor device is a GaN device, in view of the GaN device's Generally speaking, the thickness of the substrate is thicker. Therefore, when the first dielectric layer is disposed on the substrate, more materials with low dielectric constant can be filled between the drain metal and the back metal, which is conducive to better performance. It reduces the source-drain parasitic capacitance Cds generated between the drain metal and the backside metal.
Description
技术领域technical field
本申请涉及半导体技术领域,具体而言,涉及一种半导体器件及其制备方法。The present application relates to the field of semiconductor technology, and in particular, to a semiconductor device and a preparation method thereof.
背景技术Background technique
对于射频器件,漏极效率(Drain efficiency)是一个关键衡量指标,而影响漏极效率的主要因素为源漏之间的寄生电容Cds,Cds越小,漏极效率越高。For RF devices, drain efficiency is a key measure, and the main factor affecting drain efficiency is the parasitic capacitance Cds between source and drain. The smaller the Cds, the higher the drain efficiency.
在GaN器件中,为了减小器件的占用面积,通常会使用源极通孔将器件正面的多个源极金属均引出至器件背面的背面金属,也由此,使得背面金属和漏极金属在器件的纵向具有交叠区域,由此,增加了器件的Cds,导致漏极效率较低,影响器件性能。In GaN devices, in order to reduce the occupied area of the device, source through holes are usually used to lead out multiple source metals on the front side of the device to the back side metal on the back side of the device. The vertical direction of the device has overlapping regions, thereby increasing the Cds of the device, resulting in lower drain efficiency and affecting the performance of the device.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于,针对上述现有技术中的不足,提供一种半导体器件及其制备方法,以降低由于背面金属的引入所增加的Cds,提高漏极效率。The purpose of the present application is to provide a semiconductor device and a preparation method thereof in view of the above-mentioned deficiencies in the prior art, so as to reduce the increase of Cds due to the introduction of back metal and improve the drain efficiency.
为实现上述目的,本申请实施例采用的技术方案如下:To achieve the above purpose, the technical solutions adopted in the embodiments of the present application are as follows:
本申请实施例的一方面,提供一种半导体器件制备方法,方法包括:在衬底的正面形成半导体层;在半导体层的有源区形成源极金属、漏极金属和栅极金属;通过刻蚀在衬底背面分别形成贯穿衬底的第一通孔和初级通孔,其中,漏极金属在衬底的正投影覆盖第一通孔;在第一通孔内填充有第一介质层,第一介质层的介电常数小于衬底的介电常数;在初级通孔内刻蚀半导体层形成贯穿至源极金属的次级通孔,初级通孔与次级通孔连通形成源极通孔;在衬底背面形成经源极通孔与源极金属互联的背面金属,背面金属覆盖第一介质层。In one aspect of the embodiments of the present application, a method for fabricating a semiconductor device is provided. The method includes: forming a semiconductor layer on a front surface of a substrate; forming a source metal, a drain metal and a gate metal in an active region of the semiconductor layer; A first through hole and a primary through hole are formed on the backside of the substrate respectively by etching, wherein the drain metal covers the first through hole in the orthographic projection of the substrate; the first through hole is filled with a first dielectric layer, The dielectric constant of the first dielectric layer is smaller than the dielectric constant of the substrate; the semiconductor layer is etched in the primary through hole to form a secondary through hole extending through the source metal, and the primary through hole is connected with the secondary through hole to form a source through hole A hole is formed on the backside of the substrate, which is interconnected with the source metal through the source through hole, and the backside metal covers the first dielectric layer.
可选的,第一通孔部分延伸于半导体层。Optionally, the first through hole portion extends to the semiconductor layer.
可选的,第一通孔为多个,多个第一通孔间隔分布于漏极金属在衬底的正投影内。Optionally, there are a plurality of first through holes, and the plurality of first through holes are spaced and distributed in the orthographic projection of the drain metal on the substrate.
可选的,在第一通孔内填充有第一介质层包括:在第一通孔内填充有与衬底背面平齐的第一介质层。Optionally, filling the first through hole with the first dielectric layer includes: filling the first through hole with a first dielectric layer that is flush with the backside of the substrate.
可选的,第一介质层为导热第一介质层。Optionally, the first dielectric layer is a thermally conductive first dielectric layer.
可选的,第一介质层的材质为聚酰亚胺和聚苯醚中的一种。Optionally, the material of the first dielectric layer is one of polyimide and polyphenylene ether.
可选的,在衬底的正面形成半导体层之后,方法还包括:在半导体层的无源区分别形成有与漏极金属连接的漏极焊盘以及与栅极金属连接的栅极焊盘。Optionally, after the semiconductor layer is formed on the front surface of the substrate, the method further includes: respectively forming a drain pad connected to the drain metal and a gate pad connected to the gate metal in an inactive region of the semiconductor layer.
可选的,在半导体层的无源区分别形成有与漏极金属连接的漏极焊盘以及与栅极金属连接的栅极焊盘之后,方法还包括:通过刻蚀在衬底背面分别形成贯穿衬底的第二通孔和第三通孔,其中,漏极焊盘在衬底的正投影覆盖第二通孔,栅极焊盘在衬底的正投影覆盖第三通孔;在第二通孔和第三通孔内填充有第二介质层,第二介质层的介电常数小于衬底的介电常数;背面金属还分别覆盖第二通孔内和第三通孔内的第二介质层。Optionally, after respectively forming a drain pad connected to the drain metal and a gate pad connected to the gate metal in the inactive region of the semiconductor layer, the method further includes: forming respectively on the backside of the substrate by etching The second through hole and the third through hole passing through the substrate, wherein the orthographic projection of the drain pad on the substrate covers the second through hole, and the orthographic projection of the gate pad on the substrate covers the third through hole; The second through hole and the third through hole are filled with a second dielectric layer, and the dielectric constant of the second dielectric layer is smaller than that of the substrate; the back metal also covers the second through hole and the third through hole in the third through hole respectively. Two dielectric layers.
本申请实施例的另一方面,提供一种半导体器件,包括衬底以及设置于衬底正面的半导体层,在半导体层的有源区分别设置有源极金属、漏极金属和栅极金属;在衬底背面开设贯穿衬底的第一通孔,漏极金属在衬底的正投影覆盖第一通孔,在第一通孔内填充有第一介质层,第一介质层的介电常数小于衬底的介电常数;在衬底背面开设依次贯穿衬底和半导体层的源极通孔,在衬底背面设置经源极通孔与源极金属互联的背面金属,背面金属覆盖第一介质层。In another aspect of the embodiments of the present application, a semiconductor device is provided, including a substrate and a semiconductor layer disposed on the front surface of the substrate, and a source metal, a drain metal and a gate metal are respectively disposed in an active region of the semiconductor layer; A first through hole is opened on the backside of the substrate, the drain metal covers the first through hole on the orthographic projection of the substrate, and the first through hole is filled with a first dielectric layer, and the dielectric constant of the first dielectric layer The dielectric constant is smaller than the dielectric constant of the substrate; source through holes that penetrate the substrate and the semiconductor layer in sequence are provided on the back of the substrate, and a back metal interconnected with the source metal through the source through holes is arranged on the back of the substrate, and the back metal covers the first dielectric layer.
可选的,在半导体层的无源区设置有漏极焊盘和栅极焊盘,漏极焊盘与漏极金属连接,栅极焊盘与栅极金属连接;在衬底背面开设贯穿衬底的第二通孔和第三通孔,漏极焊盘在衬底的正投影覆盖第二通孔,栅极焊盘在衬底的正投影覆盖第三通孔;在第二通孔和第三通孔内分别填充有第二介质层,第二介质层的介电常数小于衬底的介电常数;背面金属还分别覆盖第二通孔内和第三通孔内的第二介质层。Optionally, a drain pad and a gate pad are arranged in the passive area of the semiconductor layer, the drain pad is connected to the drain metal, and the gate pad is connected to the gate metal; a through lining is provided on the backside of the substrate. The second through hole and the third through hole at the bottom, the orthographic projection of the drain pad on the substrate covers the second through hole, and the orthographic projection of the gate pad on the substrate covers the third through hole; The third through holes are respectively filled with a second dielectric layer, and the dielectric constant of the second dielectric layer is smaller than the dielectric constant of the substrate; the back metal also covers the second dielectric layer in the second through hole and in the third through hole, respectively .
本申请的有益效果包括:The beneficial effects of this application include:
本申请提供了一种半导体器件及其制备方法,方法通过去除漏极金属和背面金属之间的衬底,并在去除衬底的区域填充具有较低介电常数的第一介质层,从而有效降低漏极金属和背面金属之间所产生的源漏寄生电容Cds。同时,本申请通过将形成具有较低介电常数的第一介质层的工艺与原本形成源极通孔的工艺进行融合,有效简化工艺步骤,并且在半导体器件为GaN器件时,鉴于GaN器件的特性,通常衬底的厚度较厚,因此,在第一介质层设置于衬底上时,能够在漏极金属和背面金属之间填充更多的低介电常数的材料,有助于更好的降低漏极金属和背面金属之间所产生的源漏寄生电容Cds。The present application provides a semiconductor device and a method for fabricating the same. By removing the substrate between the drain metal and the backside metal, and filling a first dielectric layer with a lower dielectric constant in the region where the substrate is removed, the method can effectively Reduce the source-drain parasitic capacitance Cds generated between the drain metal and the backside metal. At the same time, the present application effectively simplifies the process steps by integrating the process of forming the first dielectric layer with a lower dielectric constant and the original process of forming the source through hole, and when the semiconductor device is a GaN device, in view of the GaN device's Generally speaking, the thickness of the substrate is thicker. Therefore, when the first dielectric layer is disposed on the substrate, more materials with low dielectric constant can be filled between the drain metal and the back metal, which is conducive to better performance. It reduces the source-drain parasitic capacitance Cds generated between the drain metal and the backside metal.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following drawings will briefly introduce the drawings that need to be used in the embodiments. It should be understood that the following drawings only show some embodiments of the present application, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例提供的一种半导体器件及其制备方法的流程图;FIG. 1 is a flowchart of a semiconductor device and a preparation method thereof provided by an embodiment of the present application;
图2为本申请实施例提供的一种半导体器件的结构示意图;FIG. 2 is a schematic structural diagram of a semiconductor device provided by an embodiment of the present application;
图3为本申请实施例提供的一种图2中A-A的剖视图;3 is a cross-sectional view of A-A in FIG. 2 according to an embodiment of the present application;
图4为本申请实施例提供的另一种图2中A-A的剖视图;Fig. 4 is another cross-sectional view of A-A in Fig. 2 provided by the embodiment of the application;
图5为本申请实施例提供的又一种图2中A-A的剖视图;Fig. 5 is another cross-sectional view of A-A in Fig. 2 provided by the embodiment of the application;
图6为本申请实施例提供的一种图2中B-B的剖视图;6 is a cross-sectional view of B-B in FIG. 2 according to an embodiment of the present application;
图7为本申请实施例提供的又一种图2中B-B的剖视图;Fig. 7 is another cross-sectional view of B-B in Fig. 2 provided by an embodiment of the present application;
图8为本申请实施例提供的一种图2中C-C的剖视图。FIG. 8 is a cross-sectional view of C-C in FIG. 2 according to an embodiment of the present application.
图标:100-衬底;110-有源区;120-无源区;130-源极金属;140-漏极金属;150-栅极金属;160-栅极焊盘;170-漏极焊盘;180-半导体层;181-缓冲层;190-源极场板;210-第一钝化层;220-第二钝化层;230-保护层;240-背面金属;250-源极通孔;260-第一介质层;270-第二介质层。Icons: 100-substrate; 110-active area; 120-inactive area; 130-source metal; 140-drain metal; 150-gate metal; 160-gate pad; 170-drain pad ; 180-semiconductor layer; 181-buffer layer; 190-source field plate; 210-first passivation layer; 220-second passivation layer; 230-protective layer; 240-backside metal; 250-source via ; 260 - the first dielectric layer; 270 - the second dielectric layer.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of the present application, but not all of the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
应当理解,虽然术语第一、第二等可以在本文中用于描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于区域分一个元件与另一个元件。例如,在不脱离本公开的范围的情况下,第一元件可称为第二元件,并且类似地,第二元件可称为第一元件。如本文所使用,术语“和/或”包括相关联的所列项中的一个或多个的任何和所有组合。It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
应当理解,当一个元件(诸如层、区域或衬底)被称为“在另一个元件上”或“延伸到另一个元件上”时,其可以直接在另一个元件上或直接延伸到另一个元件上,或者也可以存在介于中间的元件。相反,当一个元件被称为“直接在另一个元件上”或“直接延伸到另一个元件上”时,不存在介于中间的元件。同样,应当理解,当元件(诸如层、区域或衬底)被称为“在另一个元件之上”或“在另一个元件之上延伸”时,其可以直接在另一个元件之上或直接在另一个元件之上延伸,或者也可以存在介于中间的元件。相反,当一个元件被称为“直接在另一个元件之上”或“直接在另一个元件之上延伸”时,不存在介于中间的元件。还应当理解,当一个元件被称为“连接”或“耦接”到另一个元件时,其可以直接连接或耦接到另一个元件,或者可以存在介于中间的元件。相反,当一个元件被称为“直接连接”或“直接耦接”到另一个元件时,不存在介于中间的元件。It will be understood that when an element such as a layer, region or substrate is referred to as being "on" or "extending on" another element, it can be directly on or extending directly to the other element elements, or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or "extending directly onto" another element, there are no intervening elements present. Also, it will be understood that when an element such as a layer, region or substrate is referred to as being "on" or "extending over" another element, it can be directly on or directly on the other element Extends over another element, or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or "extending directly on" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.
除非另外定义,否则本文中使用的所有术语(包括技术术语和科学术语)的含义与本公开所属领域的普通技术人员通常理解的含义相同。还应当理解,本文所使用的术语应解释为含义与它们在本说明书和相关领域的情况下的含义一致,而不能以理想化或者过度正式的意义进行解释,除非本文中已明确这样定义。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It is also to be understood that terms used herein should be construed to have the same meaning as they have in the context of this specification and related art, and not to be construed in an idealized or overly formal sense unless explicitly defined as such herein.
本申请实施例的一方面,提供一种半导体器件制备方法,如图1所示,方法包括:In one aspect of the embodiments of the present application, a method for fabricating a semiconductor device is provided, as shown in FIG. 1 , the method includes:
S010:在衬底的正面形成半导体层。S010: A semiconductor layer is formed on the front surface of the substrate.
如图3所示,首先提供一衬底100,该衬底100可以是用于承载半导体集成电路元器件的基材,例如GaN、GaAs、SiC等。然后在该衬底100上沉积半导体层180,沉积的方式可以是通过化学气相沉积(CVD)、物理气相沉积(PVD)或原子层沉积(ALD)等工艺进行,本申请对其不做限定,具体可以根据实际需求进行合理选择。As shown in FIG. 3 , a
半导体层180可以是由多层活性半导体层180组成的叠层,具体设置时,可以根据器件类型进行合理选择,例如根据绝缘栅型场效应晶体管(MIS FET)、高电子迁移率晶体管(HEMT)等进行选择,本申请不对其做限制。The
在多层活性半导体层180中的至少两层异质结界面处形成二维电子气,通过刻蚀和离子注入等工艺去除部分区域的二维电子气,由此,在半导体层180上形成有源区110和无源区120。A two-dimensional electron gas is formed at the interface of at least two heterojunction layers in the multilayer
S020:在半导体层的有源区形成源极金属、漏极金属和栅极金属。S020 : forming source metal, drain metal and gate metal in the active region of the semiconductor layer.
如图3所示,在半导体层180的有源区110可以通过光刻、蒸镀、剥离等工艺在半导体层180背离衬底100的一侧表面形成间隔的源极金属130、漏极金属140和栅极金属150,其中,栅极金属150位于源极金属130和漏极金属140之间,借助半导体层180中的二维电子气能够形成具有栅控功能的主动器件。此外,如图2所示,可以在同一晶圆上的有源区110内形成多个主动器件,本申请对其不做限制。As shown in FIG. 3 , in the
S030:通过刻蚀在衬底背面分别形成贯穿衬底的第一通孔和初级通孔,其中,漏极金属在衬底的正投影覆盖第一通孔。S030 : respectively forming a first through hole and a primary through hole through the substrate on the backside of the substrate by etching, wherein the orthographic projection of the drain metal on the substrate covers the first through hole.
如图3所示,通过刻蚀在衬底100背面同时形成贯穿衬底100的第一通孔和初级通孔,其中,第一通孔位于漏极金属140的正下方,初级通孔位于源极金属130的正下方。As shown in FIG. 3 , a first through hole and a primary through hole through the
S040:在第一通孔内填充有第一介质层,第一介质层的介电常数小于衬底的介电常数。S040: A first dielectric layer is filled in the first through hole, and the dielectric constant of the first dielectric layer is smaller than the dielectric constant of the substrate.
如图3所示,在第一通孔内填充第一介质层260,基于第一通孔的位置,使得第一介质层260也位于漏极金属140的正下方。第一介质层260的介电常数小于衬底100的介电常数,换言之,第一介质层260为低介质层,其具有较低的介电常数,例如第一介质层260的相对介电常数为5至1。由此,能够便于降低后续背面金属240和漏极金属140之间所产生的源漏寄生电容Cds。As shown in FIG. 3 , the
S050:在初级通孔内刻蚀半导体层形成贯穿至源极金属的次级通孔,初级通孔与次级通孔连通形成源极通孔。S050: Etch the semiconductor layer in the primary through hole to form a secondary through hole extending through the source metal, and the primary through hole communicates with the secondary through hole to form a source through hole.
如图3所示,继续在初级通孔内对半导体层180进行刻蚀,从而在半导体层180上形成贯穿的次级通孔,次级通孔连通至源极金属130的底部,由此,初级通孔和次级通孔连通的整体作为源极通孔250。As shown in FIG. 3 , the
S060:在衬底背面形成经源极通孔与源极金属互联的背面金属,背面金属覆盖第一介质层。S060 : forming a backside metal interconnected with the source metal through the source through hole on the backside of the substrate, and the backside metal covers the first dielectric layer.
如图3所示,在衬底100的背面通过蒸镀形成覆盖第一介质层260的背面金属240,背面金属240可以通过源极通孔250与源极金属130连接,以实现对源极金属130的引出。As shown in FIG. 3 , the
综上所述,通过去除漏极金属140和背面金属240之间的衬底100,并在去除衬底100的区域填充具有较低介电常数的第一介质层260,从而有效降低漏极金属140和背面金属240之间所产生的源漏寄生电容Cds。同时,本申请通过将形成具有较低介电常数的第一介质层260的工艺与原本形成源极通孔250的工艺进行融合,有效简化工艺步骤,并且在半导体器件为GaN器件时,鉴于GaN器件的特性,通常衬底100的厚度较厚,因此,在第一介质层260设置于衬底100上时,能够在漏极金属140和背面金属240之间填充更多的低介电常数的材料,有助于更好的降低漏极金属140和背面金属240之间所产生的源漏寄生电容Cds。To sum up, by removing the
例如在GaN器件为GaN HEMT器件时,通常衬底100的厚度大于势垒层的厚度,因此,将第一介质层260设置于衬底100上时,能够更好的降低漏极金属140和背面金属240之间所产生的源漏寄生电容Cds。For example, when the GaN device is a GaN HEMT device, the thickness of the
请参阅图3,当第一通孔和第一介质层260位于衬底100时,能够避免影响衬底100之上的半导体层180,例如可以避免影响源漏导通等电学性能,保证半导体器件的正常工作。Referring to FIG. 3 , when the first through hole and the
请参阅图4,在一种实施例中:第一通孔还可以延伸于半导体层180内,由此,可以在漏极金属140和背面金属240之间填充更多的低介电常数的材料,有助于更好的降低漏极金属140和背面金属240之间所产生的源漏寄生电容Cds。例如图4所示,半导体层180包括依次形成于衬底100正面的缓冲层181、沟道层和势垒层,沟道层和势垒层形成具有二维电子气的异质结,在衬底100上设置的第一通孔还可以延伸于缓冲层181,由此,在获得较低的源漏寄生电容Cds的同时,还能够有效的避免第一通孔和第一介质层260对异质结造成影响,保证半导体器件的正常工作。Referring to FIG. 4 , in an embodiment, the first through hole may also extend into the
请参阅图5,在漏极金属140正下方设置的第一通孔还可以是多个,多个第一通孔以间隔分布的方式平铺于衬底100。由此,可以在漏极金属140和背面金属240之间填充更多低介电常数材料的同时,避免第一通孔的单体尺寸过大,从而降低因开孔对器件的结构稳定性造成的影响。Referring to FIG. 5 , there may also be a plurality of first through holes disposed directly under the
请参阅图3,通过S040在第一通孔内填充有第一介质层260时,可以使得第一通孔内填充的第一介质层260与衬底100的背面平齐,由此,能够获得一个较为平整的表面,便于后续在衬底100背面蒸镀背面金属240时,能够降低对背面金属240所造成的影响。Referring to FIG. 3 , when the first through hole is filled with the
在一种实施方式中,第一介质层260为导热第一介质层260,即第一介质层260在具有较低介电常数的同时,还具有较好的导热性能,由此,器件在获得较低的源漏寄生电容Cds的同时,还能够借助第一介质层260的导热性,有效提高器件的散热性能。In one embodiment, the
为了使得第一介质层260具有高导热、低介电常数、绝缘的特性,在一种实施方式中,第一介质层260的材质为聚酰亚胺和聚苯醚中的一种。In order to make the
在一种实施方式中,如图2至图5所示,还可以在半导体层180上依次形成第一钝化层210、第二钝化层220和保护层230(图2中未示出),其中,可以在第一钝化层210上开设栅极窗口,便于通过栅极窗口设置栅极金属150;可以在第一钝化层210、第二钝化层220和保护层230上设置贯穿三者的源极窗口和漏极窗口,通过源极窗口便于设置源极金属130,通过漏极窗口便于设置漏极金属140。为了提高栅极金属150对于栅极周围的电场调制效果,还可以在栅极金属150上方设置源极场板190(图2中未示出),栅极金属150和源极场板190可以通过第一钝化层210进行绝缘,并且源极场板190位于第二钝化层220和保护层230之间。In one embodiment, as shown in FIG. 2 to FIG. 5 , a
在一种实施方式中,通过S010在衬底100的正面形成半导体层180之后,方法还包括:In one embodiment, after forming the
S021:在半导体层180的无源区120分别形成有与漏极金属140连接的漏极焊盘170以及与栅极金属150连接的栅极焊盘160。S021 : a
如图2所示,在半导体层180的无源区120内形成漏极焊盘170和栅极焊盘160,其中,漏极焊盘170与漏极金属140连接,栅极焊盘160与栅极金属150连接,由此,便可以通过漏极焊盘170和栅极焊盘160将漏极金属140和栅极金属150引出至无源区120,便于打线、测试。As shown in FIG. 2 , a
S021可以和S020在同一工艺步骤中制备,本申请对其不做限制。S021 and S020 can be prepared in the same process step, which is not limited in this application.
S022:通过刻蚀在衬底100背面分别形成贯穿衬底100的第二通孔和第三通孔,其中,漏极焊盘170在衬底100的正投影覆盖第二通孔,栅极焊盘160在衬底100的正投影覆盖第三通孔。S022 : respectively forming a second through hole and a third through hole through the
如图6所示,通过刻蚀可以对应在无源区120的衬底100上形成贯穿衬底100的第二通孔,并且第二通孔位于漏极焊盘170的正下方。As shown in FIG. 6 , a second through hole penetrating through the
如图8所示,通过刻蚀可以对应在无源区120的衬底100上形成贯穿衬底100的第三通孔,并且第三通孔位于栅极焊盘160的正下方。As shown in FIG. 8 , a third through hole penetrating the
S022可以和S030在同一工艺步骤中进行,换言之,第一通孔、初级通孔、第二通孔和第三通孔可以通过同一刻蚀步骤形成于衬底100的不同区域,由此,进一步的简化工艺。S022 and S030 can be performed in the same process step, in other words, the first through hole, the primary through hole, the second through hole and the third through hole can be formed in different regions of the
S023:在第二通孔和第三通孔内填充有第二介质层270,第二介质层270的介电常数小于衬底100的介电常数。S023 : the second through holes and the third through holes are filled with a
如图6所示,可以在第二通孔内填充第二介质层270,基于第二通孔的位置,使得位于其内的第二介质层270也位于漏极焊盘170的正下方。如图8所示,可以在第三通孔内填充第二介质层270,基于第三通孔的位置,使得位于其内的第二介质层270也位于栅极焊盘160的正下方。As shown in FIG. 6 , the
S023可以和S040在同一工艺步骤中进行,即第一介质层260可以与第二介质层270为相同的介质层,由此,也能够有效简化工艺步骤。S023 and S040 may be performed in the same process step, that is, the
S023应当在S060之前进行,由此,能够在衬底100背面蒸镀背面金属240时,使得背面金属240在覆盖第一介质层260的同时,也覆盖位于第二通孔和第三通孔内的第二介质层270。并且由于第二介质层270的介电常数小于衬底100的介电常数,从而能够有效降低漏极焊盘170和背面金属240之间所产生的源漏寄生电容Cds以及栅极焊盘160和背面金属240之间所产生的栅源寄生电容Cgs。S023 should be performed before S060, so that when the
请参阅图7,在漏极焊盘170正下方设置的第二通孔还可以是多个,多个第二通孔以间隔分布的方式平铺于衬底100。由此,也可以在漏极焊盘170和背面金属240之间填充更多低介电常数材料的同时,避免第二通孔的单体尺寸过大,从而降低因开孔对器件的结构稳定性造成的影响。第三通孔同理也可以参照第二通孔进行设置,也具有对应的效果,此处不再赘述。Referring to FIG. 7 , there may also be a plurality of second through holes disposed directly under the
本申请实施例的另一方面,提供一种半导体器件,可以采用上述方法制备,本申请对其不做限制。如图3所示,半导体器件包括衬底100以及设置于衬底100正面的半导体层180,在半导体层180的有源区110分别设置有源极金属130、漏极金属140和栅极金属150;在衬底100背面开设贯穿衬底100的第一通孔,漏极金属140在衬底100的正投影覆盖第一通孔,在第一通孔内填充有第一介质层260,第一介质层260的介电常数小于衬底100的介电常数;在衬底100背面开设依次贯穿衬底100和半导体层180的源极通孔250,在衬底100背面设置经源极通孔250与源极金属130互联的背面金属240,背面金属240覆盖第一介质层260。Another aspect of the embodiments of the present application provides a semiconductor device, which can be prepared by the above method, which is not limited in the present application. As shown in FIG. 3 , the semiconductor device includes a
综上所述,通过去除漏极金属140和背面金属240之间的衬底100,并在去除衬底100的区域填充具有较低介电常数的第一介质层260,从而有效降低漏极金属140和背面金属240之间所产生的源漏寄生电容Cds。并且在半导体器件为GaN器件时,鉴于GaN器件的特性,通常衬底100的厚度较厚,因此,在第一介质层260设置于衬底100上时,能够在漏极金属140和背面金属240之间填充更多的低介电常数的材料,有助于更好的降低漏极金属140和背面金属240之间所产生的源漏寄生电容Cds。To sum up, by removing the
如图6至图8所示,在半导体层180的无源区120设置有漏极焊盘170和栅极焊盘160,漏极焊盘170与漏极金属140连接,栅极焊盘160与栅极金属150连接;在衬底100背面开设贯穿衬底100的第二通孔和第三通孔,漏极焊盘170在衬底100的正投影覆盖第二通孔,栅极焊盘160在衬底100的正投影覆盖第三通孔;在第二通孔和第三通孔内分别填充有第二介质层270,第二介质层270的介电常数小于衬底100的介电常数;背面金属240还分别覆盖第二通孔内和第三通孔内的第二介质层270。从而能够有效降低漏极焊盘170和背面金属240之间所产生的源漏寄生电容Cds以及栅极焊盘160和背面金属240之间所产生的栅源寄生电容Cgs。As shown in FIGS. 6 to 8 , a
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210659128.3A CN114744024B (en) | 2022-06-13 | 2022-06-13 | A kind of semiconductor device and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210659128.3A CN114744024B (en) | 2022-06-13 | 2022-06-13 | A kind of semiconductor device and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114744024A CN114744024A (en) | 2022-07-12 |
CN114744024B true CN114744024B (en) | 2022-08-26 |
Family
ID=82287552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210659128.3A Active CN114744024B (en) | 2022-06-13 | 2022-06-13 | A kind of semiconductor device and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114744024B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767009A (en) * | 2018-05-29 | 2018-11-06 | 苏州捷芯威半导体有限公司 | Semiconductor devices and preparation method thereof |
WO2020239122A1 (en) * | 2019-05-30 | 2020-12-03 | 苏州捷芯威半导体有限公司 | Semiconductor device, preparation method therefor, and semiconductor package structure |
CN113437136A (en) * | 2021-06-28 | 2021-09-24 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method thereof |
CN113437039A (en) * | 2021-06-29 | 2021-09-24 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method thereof |
CN113436975A (en) * | 2021-08-27 | 2021-09-24 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method |
CN113782594A (en) * | 2021-11-12 | 2021-12-10 | 深圳市时代速信科技有限公司 | a semiconductor device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4367599B2 (en) * | 2000-12-19 | 2009-11-18 | 日本電気株式会社 | Deposition method of high dielectric constant thin film |
US20020179982A1 (en) * | 2001-05-29 | 2002-12-05 | United Microelectronics Corp. | MOS field effect transistor structure and method of manufacture |
TWI298179B (en) * | 2006-05-19 | 2008-06-21 | Promos Technologies Inc | Metal oxide semiconductor transistor and method of manufacturing thereof |
US7682917B2 (en) * | 2008-01-18 | 2010-03-23 | International Business Machines Corporation | Disposable metallic or semiconductor gate spacer |
US20120241085A1 (en) * | 2011-03-22 | 2012-09-27 | David Carver | Creation of very thin dielectrics for high permittivity and very low leakage capacitors and energy storing devices and methods for forming the same |
US8592817B2 (en) * | 2009-04-21 | 2013-11-26 | Cbrite Inc. | Self-aligned metal oxide TFT with reduced number of masks |
US8273600B2 (en) * | 2009-04-21 | 2012-09-25 | Chan-Long Shieh | Self-aligned metal oxide TFT with reduced number of masks |
US9779959B2 (en) * | 2015-09-17 | 2017-10-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Structure and formation method of semiconductor device structure |
US10833193B2 (en) * | 2016-09-30 | 2020-11-10 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor device, method of manufacturing the same and electronic device including the device |
EP3840055A1 (en) * | 2019-12-17 | 2021-06-23 | Imec VZW | Method of manufacturing a mosfet and an intermediate structure manufactured thereby |
-
2022
- 2022-06-13 CN CN202210659128.3A patent/CN114744024B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767009A (en) * | 2018-05-29 | 2018-11-06 | 苏州捷芯威半导体有限公司 | Semiconductor devices and preparation method thereof |
WO2020239122A1 (en) * | 2019-05-30 | 2020-12-03 | 苏州捷芯威半导体有限公司 | Semiconductor device, preparation method therefor, and semiconductor package structure |
CN113437136A (en) * | 2021-06-28 | 2021-09-24 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method thereof |
CN113437039A (en) * | 2021-06-29 | 2021-09-24 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method thereof |
CN113436975A (en) * | 2021-08-27 | 2021-09-24 | 深圳市时代速信科技有限公司 | Semiconductor device and preparation method |
CN113782594A (en) * | 2021-11-12 | 2021-12-10 | 深圳市时代速信科技有限公司 | a semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN114744024A (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6301527B2 (en) | Semiconductor device | |
JP6109905B2 (en) | Semiconductor device | |
JP6691076B2 (en) | Semiconductor device having passivation layer and method of manufacturing the same | |
US8916962B2 (en) | III-nitride transistor with source-connected heat spreading plate | |
WO2015188677A1 (en) | Hemt component and manufacturing method | |
TWI683370B (en) | Semiconductor device and manufacturng method thereof | |
CN110970498B (en) | A kind of semiconductor device and preparation method thereof | |
CN105140281A (en) | Semiconductor device and manufacturing method thereof | |
TWI786422B (en) | High electron mobility transistor and method of fabricating the same | |
JPWO2014050054A1 (en) | Semiconductor device | |
CN115274825A (en) | A kind of semiconductor device and preparation method thereof | |
CN204946885U (en) | A kind of GaN base upside-down mounting HEMT device structure | |
CN105552047B (en) | A kind of AlGaN/GaN HEMT transistor fabrication process | |
CN105070701B (en) | A kind of GaN base upside-down mounting HEMT device structure and preparation method thereof | |
JP2006229218A (en) | Semiconductor device manufacturing method and device obtained | |
CN112736136A (en) | Semiconductor device and preparation method thereof | |
CN114744024B (en) | A kind of semiconductor device and preparation method thereof | |
WO2025000848A1 (en) | Hemt device and preparation method therefor | |
TW202125829A (en) | Semiconductor structure | |
CN113690236B (en) | High electron mobility transistor chip and its preparation method | |
JPS5914906B2 (en) | Method for manufacturing field effect transistors | |
TWI692039B (en) | Manufacturing method of semiconductor device | |
CN115274846A (en) | High Electron Mobility Transistor | |
CN112802802B (en) | Semiconductor power device based on SU-8 photoresist, preparation method thereof and power module comprising semiconductor power device | |
TWI798922B (en) | Semiconductor structure and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |