CN114695554A - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN114695554A CN114695554A CN202011642925.8A CN202011642925A CN114695554A CN 114695554 A CN114695554 A CN 114695554A CN 202011642925 A CN202011642925 A CN 202011642925A CN 114695554 A CN114695554 A CN 114695554A
- Authority
- CN
- China
- Prior art keywords
- source
- spacer
- gate structure
- forming
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 239000004065 semiconductor Substances 0.000 title claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 125000006850 spacer group Chemical group 0.000 claims description 143
- 239000000463 material Substances 0.000 claims description 50
- 230000008569 process Effects 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 239000011133 lead Substances 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000000231 atomic layer deposition Methods 0.000 claims description 6
- 150000002500 ions Chemical group 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 description 16
- 239000003989 dielectric material Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
- H10D30/0241—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET] doping of vertical sidewalls, e.g. using tilted or multi-angled implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.
背景技术Background technique
随着半导体器件集成度的提高,晶体管的关键尺寸不断缩小,关键尺寸的缩小意味着在芯片上可布置更多数量的晶体管,进而提高器件的性能。然而,随着器件面积的不断缩小,问题也随之产生。随着晶体管尺寸的急剧减小,栅介质层厚度与工作电压不能相应改变使抑制短沟道效应的难度加大,使晶体管的沟道漏电流增大。With the improvement of the integration level of semiconductor devices, the critical dimension of transistors is continuously reduced, and the reduction of the critical dimension means that a larger number of transistors can be arranged on a chip, thereby improving the performance of the device. However, as device areas continue to shrink, problems also arise. With the sharp reduction of the size of the transistor, the thickness of the gate dielectric layer and the operating voltage cannot be changed accordingly, which makes it more difficult to suppress the short-channel effect and increases the channel leakage current of the transistor.
MOS管缩小进而栅极变短,从而在栅极下面的电流沟道也跟着变短,当MOS管沟道缩短到一定程度时,就会出现短沟道效应。理论上说,沟道长度为源极前延到漏极前延的距离,然而,沟道的有效长度会受到源极和漏极与衬底形成的结面空泛区的影响而发生变化。当沟道长度与结面空泛区的深度相当或者更短时,结面空泛区会明显的切入电流沟道,导致栅极阈值电压降低,这便是短沟道效应。The MOS tube shrinks and the gate becomes shorter, so that the current channel under the gate also becomes shorter. When the MOS tube channel is shortened to a certain extent, a short channel effect will occur. Theoretically, the channel length is the distance from the source front extension to the drain front extension. However, the effective length of the channel will be affected by the junction void region formed by the source and drain and the substrate. When the channel length is equal to or shorter than the depth of the junction surface void region, the junction surface void region will significantly cut into the current channel, resulting in a lower gate threshold voltage, which is the short-channel effect.
为了降低半导体器件的短沟道效应,现有技术中通常会增加栅极结构沿鳍部延伸方向上的第一宽度尺寸。然而,当增加栅极结构第一宽度尺寸的同时也会产生其他的问题,使得最终形成的半导体结构的性能降低。In order to reduce the short channel effect of the semiconductor device, the first width dimension of the gate structure along the extension direction of the fin is usually increased in the prior art. However, when the first width dimension of the gate structure is increased, other problems will also occur, so that the performance of the finally formed semiconductor structure is degraded.
因此,现有技术中形成的半导体结构的性能仍有待提升。Therefore, the performance of the semiconductor structures formed in the prior art still needs to be improved.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是提供一种半导体结构及其形成方法,能够有效提升最终形成的半导体结构的性能。The technical problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, which can effectively improve the performance of the finally formed semiconductor structure.
为解决上述问题,本发明提供一种半导体结构,包括:衬底,所述衬底包括第一区和第二区,所述第一区上具有若干相互分立的第一鳍部,所述第二区上具有若干相互分立的第二鳍部,所述第一鳍部和所述第二鳍部分别沿第一方向延伸;位于所述第一区上的若干第一栅极结构,所述第一栅极结构横跨所述第一鳍部,且相邻的所述第一栅极结构之间沿所述第一方向具有第一尺寸,所述第一栅极结构的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向具有第二尺寸;位于所述第二区上的若干第二栅极结构,所述第二栅极结构横跨所述第二鳍部,且相邻的所述第二栅极结构之间沿所述第一方向具有第三尺寸,所述第三尺寸小于所述第一尺寸,所述第二栅极结构的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向具有第四尺寸,所述第四尺寸小于所述第二尺寸;位于所述第一栅极结构两侧的所述第一鳍部内的第一源漏开口;位于所述第二栅极结构两侧的所述第二鳍部内的第二源漏开口;位于所述第一源漏开口和所述第二源漏开口内的源漏掺杂层,位于所述第一源漏开口内的源漏掺杂层的顶部表面低于所述第一鳍部的顶部表面,位于所述第二源漏开口内的源漏掺杂层的顶部表面齐平于所述第二鳍部的顶部表面。In order to solve the above problems, the present invention provides a semiconductor structure, comprising: a substrate, the substrate includes a first region and a second region, the first region has a plurality of first fins separated from each other, the first region The second area has a plurality of mutually separated second fins, the first fins and the second fins respectively extend along the first direction; a plurality of first gate structures located on the first area, the The first gate structure straddles the first fin, and the adjacent first gate structures have a first dimension along the first direction, and the sidewalls of the first gate structures have a first dimension. a first spacer structure, the first spacer structure has a second dimension along the first direction; a plurality of second gate structures located on the second region, the second gate structures spanning the The second fins have a third size along the first direction between the adjacent second gate structures, the third size is smaller than the first size, and the side of the second gate structures There is a second spacer structure on the wall, and the second spacer structure has a fourth size along the first direction, and the fourth size is smaller than the second size; a first source-drain opening in the first fin; a second source-drain opening in the second fin on both sides of the second gate structure; the first source-drain opening and the second a source-drain doped layer in the source-drain opening, the top surface of the source-drain doped layer located in the first source-drain opening is lower than the top surface of the first fin, and located in the second source-drain opening The top surface of the source-drain doped layer is flush with the top surface of the second fin.
可选的,还包括:位于所述源漏掺杂层上的导电层。Optionally, the method further includes: a conductive layer on the source and drain doped layers.
可选的,所述导电层的材料包括金属,所述金属包括:钨、铝、铜、钛、银、金、铅或者镍。Optionally, the material of the conductive layer includes metal, and the metal includes: tungsten, aluminum, copper, titanium, silver, gold, lead or nickel.
可选的,所述第一侧墙结构包括:位于所述第一栅极结构侧壁的第一侧墙、以及位于所述第一侧墙侧壁的第二侧墙。Optionally, the first spacer structure includes: a first spacer located on a sidewall of the first gate structure, and a second spacer located on a sidewall of the first spacer.
可选的,所述第二侧墙结构包括:位于所述第二栅极结构侧壁的第三侧墙。Optionally, the second spacer structure includes: a third spacer located on the sidewall of the second gate structure.
可选的,所述第一栅极结构具有沿所述第一方向的第一宽度尺寸,所述第二栅极结构具有沿所述第一方向的第二宽度尺寸,所述第一宽度尺寸大于所述第二宽度尺寸。Optionally, the first gate structure has a first width dimension along the first direction, the second gate structure has a second width dimension along the first direction, and the first width dimension greater than the second width dimension.
可选的,所述源漏掺杂层的材料包括:SiP、SiCP、SiGe或SiGeB。Optionally, the material of the source and drain doped layers includes: SiP, SiCP, SiGe or SiGeB.
相应的,本发明的技术方案中还提供了一种半导体结构的形成方法,包括:提供衬底,所述衬底包括第一区和第二区,所述第一区上具有若干相互分立的第一鳍部,所述第二区上具有若干相互分立的第二鳍部,所述第一鳍部和所述第二鳍部分别沿第一方向延伸;在所述第一区上形成若干第一栅极结构,所述第一栅极结构横跨所述第一鳍部,且相邻的所述第一栅极结构之间沿所述第一方向具有第一尺寸,所述第一栅极结构的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向具有第二尺寸;在所述第二区上形成若干第二栅极结构,所述第二栅极结构横跨所述第二鳍部,且相邻的所述第二栅极结构之间沿所述第一方向具有第三尺寸,所述第三尺寸小于所述第一尺寸,所述第二栅极结构的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向具有第四尺寸,所述第四尺寸小于所述第二尺寸;在所述第一栅极结构两侧的所述第一鳍部内形成第一源漏开口;在所述第二栅极结构两侧的所述第二鳍部内形成第二源漏开口;在所述第一源漏开口和所述第二源漏开口内同时形成源漏掺杂层,直至所述源漏掺杂层填充满所述第二源漏开口为止,位于所述第一源漏开口内的源漏掺杂层的顶部表面低于所述第一鳍部的顶部表面,位于所述第二源漏开口内的源漏掺杂层的顶部表面齐平于所述第二鳍部的顶部表面。Correspondingly, the technical solution of the present invention also provides a method for forming a semiconductor structure, including: providing a substrate, the substrate includes a first region and a second region, and the first region has a plurality of mutually discrete a first fin, the second area has a plurality of mutually discrete second fins, the first fin and the second fin respectively extend along a first direction; a plurality of second fins are formed on the first area a first gate structure, the first gate structure spanning the first fin, and a first dimension along the first direction between adjacent first gate structures, the first A first spacer structure is formed on the sidewall of the gate structure, and the first spacer structure has a second dimension along the first direction; a plurality of second gate structures are formed on the second region, the first spacer structure is Two gate structures span the second fins, and adjacent second gate structures have a third dimension along the first direction, and the third dimension is smaller than the first dimension, so A second spacer structure is formed on the sidewall of the second gate structure, and the second spacer structure has a fourth size along the first direction, and the fourth size is smaller than the second size; forming first source-drain openings in the first fins on both sides of the first gate structure; forming second source-drain openings in the second fins on both sides of the second gate structure; A source-drain doped layer is formed in the source-drain opening and the second source-drain opening at the same time, until the source-drain doped layer fills the second source-drain opening, and the source-drain doped layer located in the first source-drain opening The top surface of the drain doped layer is lower than the top surface of the first fin, and the top surface of the source and drain doped layer in the second source/drain opening is flush with the top surface of the second fin.
可选的,在形成所述源漏掺杂层之后,还包括:在所述源漏掺杂层上形成导电层。Optionally, after forming the source and drain doped layers, the method further includes: forming a conductive layer on the source and drain doped layers.
可选的,所述导电层的材料包括金属,所述金属包括:钨、铝、铜、钛、银、金、铅或者镍。Optionally, the material of the conductive layer includes metal, and the metal includes: tungsten, aluminum, copper, titanium, silver, gold, lead or nickel.
可选的,所述第一侧墙结构包括:位于所述第一栅极结构侧壁的第一侧墙、以及位于所述第一侧墙侧壁的第二侧墙。Optionally, the first spacer structure includes: a first spacer located on a sidewall of the first gate structure, and a second spacer located on a sidewall of the first spacer.
可选的,所述第二侧墙结构包括:位于所述第二栅极结构侧壁的第三侧墙。Optionally, the second spacer structure includes: a third spacer located on the sidewall of the second gate structure.
可选的,在形成所述第一栅极结构和所述第二栅极结构之前,还包括:在所述第一区上形成第一伪栅结构,所述第一伪栅结构横跨所述第一鳍部;在所述第二区上形成第二伪栅结构,所述第二伪栅结构横跨所述第二鳍部。Optionally, before forming the first gate structure and the second gate structure, the method further includes: forming a first dummy gate structure on the first region, the first dummy gate structure spanning all the forming the first fin portion; forming a second dummy gate structure on the second region, the second dummy gate structure spanning the second fin portion.
可选的,所述第一侧墙的形成方法包括:在所述第一伪栅结构和所述第二伪栅结构的侧壁和顶部表面、以及所述衬底上形成第一侧墙材料层;回刻蚀所述第一侧墙材料层,直至暴露出所述第一伪栅结构和所述第二伪栅结构顶部表面为止,形成初始第一侧墙;去除位于所述第二伪栅结构侧壁的所述初始第一侧墙,在所述第一伪栅结构的侧壁形成所述第一侧墙。Optionally, the method for forming the first spacer includes: forming a first spacer material on sidewalls and top surfaces of the first dummy gate structure and the second dummy gate structure, and on the substrate layer; etch back the first spacer material layer until the top surfaces of the first dummy gate structure and the second dummy gate structure are exposed to form an initial first spacer; remove the second dummy gate structure The initial first spacer on the sidewall of the gate structure, and the first spacer is formed on the sidewall of the first dummy gate structure.
可选的,所述第一侧墙材料层的形成工艺包括原子层沉积工艺。Optionally, the formation process of the first spacer material layer includes an atomic layer deposition process.
可选的,所述第二侧墙和所述第三侧墙的形成方法包括:在所述第一侧墙和所述第二伪栅结构的侧壁、所述第一伪栅结构和所述第二伪栅结构的顶部表面、以及所述衬底上形成第二侧墙材料层;回刻蚀所述第二侧墙材料层,直至暴露出所述第一伪栅结构和所述第二伪栅结构的顶部表面为止,在所述第一侧墙的侧壁形成所述第二侧墙、以及在所述第二伪栅结构的侧壁形成所述第三侧墙。Optionally, the method for forming the second spacer and the third spacer includes: forming the first spacer and the sidewall of the second dummy gate structure, the first dummy gate structure and the sidewall of the second dummy gate structure. forming a second spacer material layer on the top surface of the second dummy gate structure and the substrate; and etching back the second spacer material layer until the first dummy gate structure and the first spacer material layer are exposed Up to the top surface of the two dummy gate structures, the second spacer is formed on the sidewall of the first spacer, and the third spacer is formed on the sidewall of the second dummy gate structure.
可选的,所述第二侧墙材料层的形成工艺包括原子层沉积工艺。Optionally, the formation process of the second spacer material layer includes an atomic layer deposition process.
可选的,所述第一栅极结构和所述第二栅极结构的形成方法包括:在所述衬底上形成介质层,所述介质层覆盖所述第一伪栅结构和所述第二伪栅结构的侧壁;去除所述第一伪栅结构,在所述介质层内形成第一栅极开口;去除所述第二伪栅结构,在所述介质层内形成第二栅极开口;在所述第一栅极开口内形成所述第一栅极结构;在所述第二栅极开口内形成所述第二栅极结构。Optionally, the method for forming the first gate structure and the second gate structure includes: forming a dielectric layer on the substrate, the dielectric layer covering the first dummy gate structure and the second gate structure Two sidewalls of dummy gate structures; removing the first dummy gate structure, forming a first gate opening in the dielectric layer; removing the second dummy gate structure, forming a second gate in the dielectric layer opening; forming the first gate structure in the first gate opening; forming the second gate structure in the second gate opening.
可选的,所述第一栅极结构具有沿所述第一方向的第一宽度尺寸,所述第二栅极结构具有沿所述第一方向的第二宽度尺寸,所述第一宽度尺寸大于所述第二宽度尺寸。Optionally, the first gate structure has a first width dimension along the first direction, the second gate structure has a second width dimension along the first direction, and the first width dimension greater than the second width dimension.
可选的,所述源漏掺杂层的形成方法包括:采用外延生长工艺在所述第一源漏开口和所述第二源漏开口内同时形成外延层,直至所述外延层填充满所述第二源漏开口为止;在所述外延生长过程中对所述外延层进行原位掺杂,在所述外延层中掺入所述源漏离子,形成所述源漏掺杂层。Optionally, the method for forming the source-drain doped layer includes: using an epitaxial growth process to simultaneously form an epitaxial layer in the first source-drain opening and the second source-drain opening, until the epitaxial layer is fully filled. In-situ doping is performed on the epitaxial layer during the epitaxial growth process, and the source-drain ions are doped into the epitaxial layer to form the source-drain doped layer.
可选的,所述源漏掺杂层的材料包括:SiP、SiCP、SiGe或SiGeB。Optionally, the material of the source and drain doped layers includes: SiP, SiCP, SiGe or SiGeB.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明技术方案的结构中,位于所述第一区上的第一栅极结构,所述第一栅极结构的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向具有第二尺寸;位于所述第二区上的第二栅极结构,所述第二栅极结构的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向具有第四尺寸,所述第四尺寸小于所述第二尺寸。通过增大所述第一侧墙结构沿所述第一方向的第二尺寸,进一步的覆盖所述第一鳍部,减小所述第一鳍部沿所述第一方向暴露的尺寸,进而使得形成的所述第一源漏开口沿所述第一方向上的尺寸减小。当所述第一源漏开口沿所述第一方向上的尺寸减小时,当所述第二源漏开口内的源漏掺杂层填满时,形成在所述第一源漏开口内的所述源漏掺杂层能够填充更多的空间,减小了所述第一源漏开口内的源漏掺杂层在中间位置出现的凹陷,进而降低后续形成的导电层穿透所述源漏掺杂层的中间部分的风险,使得所述导电层与所述第一源漏开口内的源漏掺杂层之间的接触性提升,进而提升最终形成的半导体结构的性能。In the structure of the technical solution of the present invention, the first gate structure located on the first region has a first spacer structure on the sidewall of the first gate structure, and the first spacer structure is along the The first direction has a second dimension; the second gate structure located on the second region has a second spacer structure on the sidewall of the second gate structure, and the second spacer structure is along the The first direction has a fourth dimension that is smaller than the second dimension. By increasing the second dimension of the first sidewall structure along the first direction, the first fin portion is further covered, and the exposed dimension of the first fin portion along the first direction is reduced, thereby further covering the first fin portion. The size of the formed first source-drain opening along the first direction is reduced. When the size of the first source-drain opening decreases along the first direction, when the source-drain doping layer in the second source-drain opening is filled, the doped layer formed in the first source-drain opening is filled. The source-drain doped layer can fill more space, which reduces the concavity of the source-drain doped layer in the first source-drain opening in the middle position, thereby reducing the penetration of the source-drain doped layer by the subsequently formed conductive layer. The risk of the middle portion of the drain doped layer improves the contact between the conductive layer and the source-drain doped layer in the first source-drain opening, thereby improving the performance of the finally formed semiconductor structure.
本发明技术方案的形成方法中,在所述第一区上形成第一栅极结构,所述第一栅极结构的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向具有第二尺寸;在所述第二区上形成第二栅极结构,所述第二栅极结构的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向具有第四尺寸,所述第四尺寸小于所述第二尺寸。通过增大所述第一侧墙结构沿所述第一方向的第二尺寸,进一步的覆盖所述第一鳍部,减小所述第一鳍部沿所述第一方向暴露的尺寸,进而使得形成的所述第一源漏开口沿所述第一方向上的尺寸减小。当所述第一源漏开口沿所述第一方向上的尺寸减小时,当所述第二源漏开口内的源漏掺杂层填满时,形成在所述第一源漏开口内的所述源漏掺杂层能够填充更多的空间,减小了所述第一源漏开口内的源漏掺杂层在中间位置出现的凹陷,进而降低后续形成的导电层穿透所述源漏掺杂层的中间部分的风险,使得所述导电层与所述第一源漏开口内的源漏掺杂层之间的接触性提升,进而提升最终形成的半导体结构的性能。In the formation method of the technical solution of the present invention, a first gate structure is formed on the first region, a first spacer structure is formed on the sidewall of the first gate structure, and the first spacer structure is along the The first direction has a second dimension; a second gate structure is formed on the second region, a sidewall of the second gate structure has a second spacer structure, and the second spacer structure is along the The first direction has a fourth dimension that is smaller than the second dimension. By increasing the second dimension of the first sidewall structure along the first direction, the first fin portion is further covered, and the exposed dimension of the first fin portion along the first direction is reduced, thereby further covering the first fin portion. The size of the formed first source-drain opening along the first direction is reduced. When the size of the first source-drain opening decreases along the first direction, when the source-drain doping layer in the second source-drain opening is filled, the doped layer formed in the first source-drain opening is filled. The source-drain doped layer can fill more space, which reduces the concavity of the source-drain doped layer in the first source-drain opening in the middle position, thereby reducing the penetration of the source-drain doped layer by the subsequently formed conductive layer. The risk of the middle portion of the drain doped layer improves the contact between the conductive layer and the source-drain doped layer in the first source-drain opening, thereby improving the performance of the finally formed semiconductor structure.
附图说明Description of drawings
图1是一种半导体结构的结构示意图;1 is a schematic structural diagram of a semiconductor structure;
图2至图13是本发明半导体结构形成方法一实施例各步骤结构示意图。FIG. 2 to FIG. 13 are schematic structural diagrams of each step of an embodiment of a method for forming a semiconductor structure of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有技术中形成的半导体结构的性能仍有待提升。以下将结合附图进行具体说明。As described in the background art, the performance of the semiconductor structures formed in the prior art still needs to be improved. The following will be described in detail with reference to the accompanying drawings.
请参考图1,提供衬底100,所述衬底100上具有若干相互分立的鳍部101,所述鳍部沿第一方向X延伸;在所述衬底100上形成隔离层102,所述隔离层102覆盖所述鳍部101的部分侧壁表面,且所述隔离层102的顶部表面低于所述鳍部101的顶部表面;在所述衬底100上形成伪栅结构103,所述伪栅结构103横跨所述鳍部101,且所述伪栅结构103覆盖所述鳍部101的部分侧壁和顶部表面;在所述伪栅结构103两侧的所述鳍部101内形成源漏开口(未标示);在所述源漏开口内形成源漏掺杂层104,所述源漏掺杂层104内具有源漏离子;在所述源漏掺杂层104上形成导电层105。Referring to FIG. 1 , a
在本实施例中,通过在所述第一方向X上增大所述伪栅结构103的第一宽度尺寸d1,所述第一宽度尺寸d1大于50nm,以此增加沟道的长度,进而降低沟道效应所产生的影响。In this embodiment, by increasing the first width dimension d1 of the
然而,当所述伪栅结构103的第一宽度尺寸d1增加时,所述鳍部101沿所述第一方向X上的增大尺寸也会增加,进而使得所述伪栅结构103两侧暴露出的所述鳍部101的第二宽度尺寸d2增加;当暴露出的所述鳍部101的第二宽度尺寸d2增加时,使得后续形成的源漏开口沿所述第一方向X上的尺寸也会增加。由于所述源漏掺杂层104是附着在所述源漏开口表面暴露出的鳍部101上外延生长形成,当所述源漏开口沿所述第一方向X上的尺寸较大时,会使得所述源漏掺杂层104在第二方向Y生长的体积较小,所述第二方向Y与所述第一方向X垂直,进而使得所述源漏掺杂层104在中间位置会出现凹陷。However, when the first width dimension d1 of the
当所述源漏掺杂层104在中间位置会出现凹陷时,在形成所述导电层105的过程中容易将所述源漏掺杂层104刻蚀穿透,进而使得最终形成的导电层105的底部表面与所述鳍部101接触,使得所述导电层105与所述源漏掺杂层104之间的接触电阻增加,进而使得最终形成的半导体结构性能降低。When the source-drain doped
在此基础上,本发明提供一种半导体结构及其形成方法,所述第一侧墙结构沿所述第一方向具有第二尺寸;所述第二侧墙结构沿所述第一方向具有第四尺寸,所述第四尺寸小于所述第二尺寸。通过增大所述第一侧墙结构沿所述第一方向的第二尺寸,使得形成的所述第一源漏开口沿所述第一方向上的尺寸减小。当所述第二源漏开口内的源漏掺杂层填满时,形成在所述第一源漏开口内的所述源漏掺杂层能够填充更多的空间,减小了所述第一源漏开口内的源漏掺杂层在中间位置出现的凹陷,进而降低后续形成的导电层穿透所述源漏掺杂层的中间部分的风险,使得所述导电层与所述第一源漏开口内的源漏掺杂层之间的接触性提升,进而提升最终形成的半导体结构的性能。On this basis, the present invention provides a semiconductor structure and a method for forming the same, wherein the first spacer structure has a second dimension along the first direction; the second spacer structure has a second dimension along the first direction Four dimensions, the fourth dimension being smaller than the second dimension. By increasing the second size of the first spacer structure along the first direction, the size of the formed first source-drain opening along the first direction is reduced. When the source-drain doped layers in the second source-drain openings are filled, the source-drain doped layers formed in the first source-drain openings can fill more space, reducing the first source-drain doped layer. A recess in the middle of the source-drain doped layer in the source-drain opening reduces the risk of the subsequently formed conductive layer penetrating the middle portion of the source-drain doped layer, so that the conductive layer and the first The contact between the source-drain doped layers in the source-drain opening is improved, thereby improving the performance of the finally formed semiconductor structure.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细地说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图2至图13是本发明实施例的一种半导体结构的形成过程的结构示意图。2 to 13 are schematic structural diagrams of a process of forming a semiconductor structure according to an embodiment of the present invention.
请参考图2,提供衬底200,所述衬底200包括第一区I和第二区II,所述第一区I上具有若干相互分立的第一鳍部201,所述第二区II上具有若干相互分立的第二鳍部202,所述第一鳍部201和所述第二鳍部202分别沿第一方向X延伸。Referring to FIG. 2 , a
在本实施例中,所述衬底200、第一鳍部201以及第二鳍部202的形成方法包括:提供初始衬底(未图示);在所述初始衬底上形成图形化层(未图示),所述图形化层暴露出部分所述初始衬底的顶部表面;以所述图形化层为掩膜刻蚀所述初始衬底,形成所述衬底200、第一鳍部201和第二鳍部202;在形成所述衬底200、第一鳍部201和第二鳍部202之后,去除所述图形化层。In this embodiment, the method for forming the
在本实施例中,所述衬底200的材料为硅;在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。In this embodiment, the material of the
在本实施例中,所述第一鳍部201和所述第二鳍部202的材料为硅;在其他实施例中,所述第一鳍部和所述第二鳍部的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。In this embodiment, the materials of the
请参考图3,在所述衬底200上形成隔离层203,所述隔离层203覆盖所述第一鳍部201和所述第二鳍部202的部分侧壁,且所述隔离层203的顶部表面低于所述第一鳍部201和所述第二鳍部202的顶部表面。Referring to FIG. 3 , an
在本实施例中,所述隔离层203的形成方法包括:在所述衬底200上形成初始隔离层(未图示),所述初始隔离层覆盖所述第一鳍部201和所述第二鳍部202;回刻蚀所述初始隔离层,形成所述隔离层203,所述始隔离层203的顶部表面低于所述第一鳍部201和所述第二鳍部202的顶部表面。In this embodiment, the method for forming the
所述隔离层203的材料采用绝缘材料,所述绝缘材料包括:氧化硅、氮化硅或氮氧化硅;在本实施例中,所述隔离层203的材料采用氧化硅。The material of the
在形成所述隔离层203之后,还包括:在所述第一区I上形成若干第一栅极结构,所述第一栅极结构横跨所述第一鳍部201,且相邻的所述第一栅极结构之间沿所述第一方向X具有第一尺寸,所述第一栅极结构的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向X具有第二尺寸;在所述第二区II上形成若干第二栅极结构,所述第二栅极结构横跨所述第二鳍部202,且相邻的所述第二栅极结构之间沿所述第一方向X具有第三尺寸,所述第三尺寸小于所述第一尺寸,所述第二栅极结构的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向X具有第四尺寸,所述第四尺寸小于所述第二尺寸;在所述第一栅极结构两侧的所述第一鳍部201内形成第一源漏开口;在所述第二栅极结构两侧的所述第二鳍部201内形成第二源漏开口;在所述第一源漏开口和所述第二源漏开口内同时形成源漏掺杂层,直至所述源漏掺杂层填充满所述第二源漏开口为止,位于所述第一源漏开口内的源漏掺杂层的顶部表面低于所述第一鳍部201的顶部表面,位于所述第二源漏开口内的源漏掺杂层的顶部表面齐平于所述第二鳍部202的顶部表面。具体过程请参考图4至图12。After forming the
请参考图4,在所述第一区I上形成第一伪栅结构204,所述第一伪栅结构204横跨所述第一鳍部201;在所述第二区II上形成第二伪栅结构205,所述第二伪栅结构205横跨所述第二鳍部202。Referring to FIG. 4 , a first
在本实施例中,所述第一伪栅结构204包括:第一伪栅介质层,所述第一伪栅介质层覆盖所述第一鳍部201的部分侧壁和顶部表面、以及位于所述第一伪栅介质层上的第一伪栅层(未标示);所述第二伪栅结构205包括:第二伪栅介质层,所述第二伪栅介质层覆盖所述第二鳍部202的部分侧壁和顶部表面、以及位于所述第二伪栅介质层上的第二伪栅层(未标示)。In this embodiment, the first
在本实施例中,所述第一伪栅介质层和所述第二伪栅介质层的材料采用采用氧化硅;在其他实施例中,所述第一伪栅介质层和所述第二伪栅介质层的材料还可以采用氮氧化硅。In this embodiment, the materials of the first dummy gate dielectric layer and the second dummy gate dielectric layer are silicon oxide; in other embodiments, the first dummy gate dielectric layer and the second dummy gate dielectric layer are made of silicon oxide. The material of the gate dielectric layer can also be silicon oxynitride.
在本实施例中,所述第一伪栅层和所述第二伪栅层的材料采用多晶硅。In this embodiment, the materials of the first dummy gate layer and the second dummy gate layer are polysilicon.
在本实施例中,所述第一伪栅结构204和所述第二伪栅结构205同时形成,通过全局工艺同时形成所述第一伪栅结构204和所述第二伪栅结构205,能够有效提升生产效率。In this embodiment, the first
在本实施例中,相邻的所述第一伪栅结构204之间沿所述第一方向X具有第一尺寸D1。In this embodiment, the adjacent first
在本实施例中,相邻的所述第二伪栅结构205之间沿所述第一方向X具有第三尺寸D3,所述第三尺寸D3小于所述第一尺寸D1。In this embodiment, the adjacent second
请参考图5,在所述第一伪栅结构204和所述第二伪栅结构205的侧壁和顶部表面、以及所述衬底200上形成第一侧墙材料层206。Referring to FIG. 5 , a first
在本实施例中,所述第一侧墙材料层206的形成工艺采用原子层沉积工艺。In this embodiment, the formation process of the first
请参考图6,回刻蚀所述第一侧墙材料层206,直至暴露出所述第一伪栅结构204和所述第二伪栅结构205顶部表面为止,形成初始第一侧墙207。Referring to FIG. 6 , the first
在本实施例中,回刻蚀所述第一侧墙材料层206的工艺采用干法刻蚀工艺。在其他实施例中,回刻蚀所述初始第一侧墙材料层的工艺还可以采用湿法刻蚀工艺。In this embodiment, the process of etching back the first
请参考图7,去除位于所述第二伪栅结构205侧壁的所述初始第一侧墙207,在所述第一伪栅结构204的侧壁形成所述第一侧墙208。Referring to FIG. 7 , the initial
在本实施例中,去除位于所述第二伪栅结构205侧壁的所述初始第一侧墙207的方法包括:在所述第一区I上形成牺牲层(未图示),所述牺牲层覆盖所述第一伪栅结构204;在形成所述牺牲层之后,去除位于所述第二伪栅结构205侧壁的所述初始第一侧墙207,形成所述第一侧墙208;在形成所述第一侧墙208之后,去除所述牺牲层。In this embodiment, the method for removing the initial
请参考图8,在形成所述第一侧墙208之后,在所述第一侧墙208的侧壁形成第二侧墙209,在所述第二伪栅结构205的侧壁形成第三侧墙210。Referring to FIG. 8 , after the
在本实施例中,所述第二侧墙209和所述第三侧墙210同时形成。In this embodiment, the
在本实施例中,所述第二侧墙209和所述第三侧墙210的形成方法包括:在所述第一侧墙208和所述第二伪栅结构205的侧壁、所述第一伪栅结构204和所述第二伪栅结构205的顶部表面、以及所述衬底200上形成第二侧墙材料层(未图示);回刻蚀所述第二侧墙材料层,直至暴露出所述第一伪栅结构204和所述第二伪栅结构205的顶部表面为止,在所述第一侧墙208的侧壁形成所述第二侧墙209、以及在所述第二伪栅结构205的侧壁形成所述第三侧墙210。In this embodiment, the method for forming the
在本实施例中,所述第二侧墙材料层的形成工艺采用原子层沉积工艺。In this embodiment, the formation process of the second spacer material layer adopts an atomic layer deposition process.
在本实施例中,所述第一侧墙结构包括:位于所述第一栅极结构侧壁的第一侧墙208、以及位于所述第一侧墙208侧壁的第二侧墙209,所述第一侧墙结构沿所述第一方向X具有第二尺寸D2;所述第二侧墙结构包括:位于所述第二栅极结构205侧壁的第三侧墙210,所述第二侧墙结构沿所述第一方向X具有第四尺寸D4,所述第四尺寸D4小于所述第二尺寸D2。通过增大所述第一侧墙结构沿所述第一方向X的第二尺寸D2,进一步的覆盖所述第一鳍部201,减小所述第一鳍部201沿所述第一方向X暴露的尺寸,进而使得后续形成的第一源漏开口沿所述第一方向X上的尺寸减小。当所述第一源漏开口沿所述第一方向X上的尺寸减小时,当所述第二源漏开口内的源漏掺杂层填满时,形成在所述第一源漏开口内的所述源漏掺杂层能够填充更多的空间,减小了所述第一源漏开口内的源漏掺杂层在中间位置出现的凹陷,进而降低后续形成的导电层穿透所述源漏掺杂层的中间部分的风险,使得所述导电层与所述第一源漏开口内的源漏掺杂层之间的接触性提升,进而提升最终形成的半导体结构的性能。In this embodiment, the first spacer structure includes: a
请参考图9,在形成所述第一侧墙结构和所述第二侧墙结构之后,在所述第一伪栅结构204两侧的所述第一鳍部201内形成第一源漏开口211;在所述第二伪栅结构205两侧的所述第二鳍部205内形成第二源漏开口212。Referring to FIG. 9 , after the first spacer structure and the second spacer structure are formed, first source-drain openings are formed in the
在本实施例中,所述第一源漏开口211和所述第二源漏开口212的形成方法包括:以所述第一伪栅结构204和所述第一侧墙结构为掩膜刻蚀所述第一鳍部201,在所述第一鳍部201内形成所述第一源漏开口211;以所述第二伪栅结构205和所述第二侧墙结构为掩膜刻蚀所述第二鳍部202,在所述第二鳍部202内形成所述第二源漏开口212。In this embodiment, the method for forming the first source-
在本实施例中,刻蚀所述第一鳍部201和所述第二鳍部202的工艺采用湿法刻蚀工艺;在其他实施例中,刻蚀所述第一鳍部和所述第二鳍部的工艺还可以采用干法刻蚀工艺。In this embodiment, the process of etching the
请参考图10,在所述第一源漏开口211和所述第二源漏开口212内同时形成源漏掺杂层213,直至所述源漏掺杂层213填充满所述第二源漏开口212为止,位于所述第一源漏开口211内的源漏掺杂层213的顶部表面低于所述第一鳍部201的顶部表面,位于所述第二源漏开口212内的源漏掺杂层213的顶部表面齐平于所述第二鳍部202的顶部表面。Referring to FIG. 10 , a source-drain doped
在本实施例中,所述源漏掺杂层213的形成方法包括:采用外延生长工艺在所述第一源漏开口211和所述第二源漏开口212内同时形成外延层(未图示),直至所述外延层填充满所述第二源漏开口212为止;在所述外延生长过程中对所述外延层进行原位掺杂,在所述外延层中掺入所述源漏离子,形成所述源漏掺杂层213。In this embodiment, the method for forming the source-drain doped
所述源漏掺杂层213的材料包括:SiP、SiCP、SiGe或SiGeB;在本实施例中,所述源漏掺杂层213的材料采用SiP。The material of the source and drain
请参考图11,在形成所述源漏掺杂层213之后,在所述衬底200上形成介质层214,所述介质层覆盖所述第一伪栅结构204和所述第二伪栅结构205的侧壁。Referring to FIG. 11 , after the source-drain doped
在本实施例中,所述介质层214的材料采用氧化硅;在其他实施例中,所述介质层的材料还可以为低K介质材料(低K介质材料指相对介电常数低于3.9的介质材料)或超低K介质材料(超低K介质材料指相对介电常数低于2.5的介质材料)。In this embodiment, the material of the
请参考图12,在形成所述介质层214之后,去除所述第一伪栅结构204,在所述介质层214内形成第一栅极开口;去除所述第二伪栅结构205,在所述介质层214内形成第二栅极开口;在所述第一栅极开口内形成所述第一栅极结构215;在所述第二栅极开口内形成所述第二栅极结构216。Referring to FIG. 12, after the
在本实施例中,所述第一栅极结构215包括:第一栅介质层以及位于所述第一栅介质层上的第一栅极层(未标示);所述第二栅极结构216包括:第二栅介质层以及位于所述第二栅介质层上的第二栅极层(未标示)。In this embodiment, the
在本实施例中,所述第一栅介质层和所述第二栅介质层的材料包括高K介质材料。In this embodiment, the materials of the first gate dielectric layer and the second gate dielectric layer include high-K dielectric materials.
所述第一栅极层和所述第二栅极层的材料包括金属,所述金属包括:钨、铝、铜、钛、银、金、铅或者镍。在本实施例中,所述第一栅极层和所述第二栅极层的材料采用钨。Materials of the first gate layer and the second gate layer include metals, and the metals include tungsten, aluminum, copper, titanium, silver, gold, lead or nickel. In this embodiment, the first gate layer and the second gate layer are made of tungsten.
在本实施例中,所述第一栅极结构215沿所述第一方向X具有第一宽度尺寸d1,所述第二栅极结构215沿所述第一方向X具有第二宽度尺寸d2,所述第一宽度尺寸d1大于所述第二宽度尺寸d2。In this embodiment, the
在本实施例中,所述第一宽度尺寸d1的范围为大于50nm;通过将所述第一栅极结构215的第一宽度尺寸d1设置为大于50nm,以此增加沟道的长度,进而降低沟道效应所产生的影响。In this embodiment, the range of the first width dimension d1 is greater than 50 nm; by setting the first width dimension d1 of the
请参考图13,在形成所述第一栅极结构215和所述第二栅极结构216之后,在所述源漏掺杂层213上形成导电层217。Referring to FIG. 13 , after the
在本实施例中,所述导电层217的形成方法包括:在所述介质层214内形成导电开口(未图示),所述导电开口暴露出所述源漏掺杂层的213表面;在所述导电开口内形成所述导电层217。In this embodiment, the method for forming the
所述导电层217的材料包括金属,所述金属包括钨、铝、铜、钛、银、金、铅或者镍。在本实施例中,所述导电层217的材料采用铜。The material of the
相应的,本发明实施例中还提供了一种半导体结构,请继续参考图13,包括:衬底200,所述衬底200包括第一区I和第二区II,所述第一区I上具有若干相互分立的第一鳍部201,所述第二区II上具有若干相互分立的第二鳍部202,所述第一鳍部201和所述第二鳍部202分别沿第一方向X延伸;位于所述第一区I上的若干第一栅极结构215,所述第一栅极结构215横跨所述第一鳍部201,且相邻的所述第一栅极结构215之间沿所述第一方向X具有第一尺寸D1,所述第一栅极结构215的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向X具有第二尺寸D2;位于所述第二区II上的若干第二栅极结构216,所述第二栅极结构216横跨所述第二鳍部202,且相邻的所述第二栅极结构216之间沿所述第一方向X具有第三尺寸D3,所述第三尺寸D3小于所述第一尺寸D1,所述第二栅极结构216的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向X具有第四尺寸D4,所述第四尺寸D4小于所述第二尺寸D2;位于所述第一栅极结构215两侧的所述第一鳍部201内的第一源漏开口211;位于所述第二栅极结构216两侧的所述第二鳍部202内的第二源漏开口212;位于所述第一源漏开口211和所述第二源漏开口212内的源漏掺杂层213,位于所述第一源漏开口211内的源漏掺杂层213的顶部表面低于所述第一鳍部201的顶部表面,位于所述第二源漏开口212内的源漏掺杂层213的顶部表面齐平于所述第二鳍部202的顶部表面。Correspondingly, an embodiment of the present invention further provides a semiconductor structure, please continue to refer to FIG. 13 , including: a
在本实施例中,通过位于所述第一区I上的第一栅极结构215,所述第一栅极结构215的侧壁上具有第一侧墙结构,所述第一侧墙结构沿所述第一方向X具有第二尺寸D2;位于所述第二区II上的第二栅极结构216,所述第二栅极结构216的侧壁上具有第二侧墙结构,所述第二侧墙结构沿所述第一方向X具有第四尺寸D4,所述第四尺寸D4小于所述第二尺寸D2。通过增大所述第一侧墙结构沿所述第一方向X的第二尺寸D2,进一步的覆盖所述第一鳍部201,减小所述第一鳍部201沿所述第一方向X暴露的尺寸,进而使得形成的所述第一源漏开口211沿所述第一方向X上的尺寸减小。当所述第一源漏开口211沿所述第一方向X上的尺寸减小时,当所述第二源漏开口212内的源漏掺杂层213填满时,形成在所述第一源漏开口211内的所述源漏掺杂层213能够填充更多的空间,减小了所述第一源漏开口211内的源漏掺杂层在中间位置出现的凹陷,进而降低后续形成的导电层217穿透所述源漏掺杂层213的中间部分的风险,使得所述导电层217与所述第一源漏开口211内的源漏掺杂层213之间的接触性提升,进而提升最终形成的半导体结构的性能。In this embodiment, through the
在本实施例中,还包括:位于所述源漏掺杂层213上的导电层217。In this embodiment, it further includes: a
在本实施例中,所述导电层217的材料包括金属,所述金属包括钨、铝、铜、钛、银、金、铅或者镍。In this embodiment, the material of the
在本实施例中,所述第一侧墙结构包括:位于所述第一栅极结构215侧壁的第一侧墙208、以及位于所述第一侧墙208侧壁的第二侧墙209。In this embodiment, the first spacer structure includes: a
在本实施例中,所述第二侧墙结构包括:位于所述第二栅极结构216侧壁的第三侧墙210。In this embodiment, the second spacer structure includes: a
在本实施例中,所述第一栅极结构215具有沿所述第一方向X的第一宽度尺寸d1,所述第二栅极结构216具有沿所述第一方向X的第二宽度尺寸d2,所述第一宽度尺寸d1大于所述第二宽度尺寸d2。In this embodiment, the
所述源漏掺杂层213的材料包括:SiP、SiCP、SiGe或SiGeB;在本实施例中,所述源漏掺杂层213的材料采用SiP。The material of the source and drain
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011642925.8A CN114695554A (en) | 2020-12-30 | 2020-12-30 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011642925.8A CN114695554A (en) | 2020-12-30 | 2020-12-30 | Semiconductor structure and forming method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114695554A true CN114695554A (en) | 2022-07-01 |
Family
ID=82135818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011642925.8A Pending CN114695554A (en) | 2020-12-30 | 2020-12-30 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114695554A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009283685A (en) * | 2008-05-22 | 2009-12-03 | Panasonic Corp | Semiconductor device, and its method for manufacturing |
CN104979201A (en) * | 2014-04-03 | 2015-10-14 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
CN106328531A (en) * | 2015-07-01 | 2017-01-11 | 中芯国际集成电路制造(上海)有限公司 | Fin-type field effect transistor formation method |
CN109390235A (en) * | 2017-08-02 | 2019-02-26 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN110767549A (en) * | 2018-07-26 | 2020-02-07 | 中芯国际集成电路制造(北京)有限公司 | Semiconductor structure and method of forming the same |
CN111627814A (en) * | 2019-02-27 | 2020-09-04 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
-
2020
- 2020-12-30 CN CN202011642925.8A patent/CN114695554A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009283685A (en) * | 2008-05-22 | 2009-12-03 | Panasonic Corp | Semiconductor device, and its method for manufacturing |
CN104979201A (en) * | 2014-04-03 | 2015-10-14 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
CN106328531A (en) * | 2015-07-01 | 2017-01-11 | 中芯国际集成电路制造(上海)有限公司 | Fin-type field effect transistor formation method |
CN109390235A (en) * | 2017-08-02 | 2019-02-26 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN110767549A (en) * | 2018-07-26 | 2020-02-07 | 中芯国际集成电路制造(北京)有限公司 | Semiconductor structure and method of forming the same |
CN111627814A (en) * | 2019-02-27 | 2020-09-04 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110534433B (en) | Semiconductor structure and forming method thereof | |
CN108807378A (en) | Fin field effect pipe and forming method thereof | |
US11251089B2 (en) | Semiconductor device | |
TWI704622B (en) | Semiconductor device and method for fabricating the same | |
CN110808286B (en) | Semiconductor structures and methods of forming them | |
CN109087892B (en) | Semiconductor structure, forming method thereof and forming method of fin field effect transistor | |
CN114520148B (en) | Method for forming semiconductor structure | |
CN107958935B (en) | Fin-type field effect transistor and method of forming the same | |
KR100855857B1 (en) | Semiconductor device and manufacturing method thereof | |
CN113838934B (en) | Semiconductor structure and forming method thereof | |
CN111725068B (en) | Method for forming semiconductor structure | |
CN109599366B (en) | Semiconductor device and method of forming the same | |
CN114695554A (en) | Semiconductor structure and forming method thereof | |
CN114497215A (en) | Semiconductor structure and forming method thereof | |
CN109273407B (en) | Semiconductor device and method of forming the same | |
CN114497214B (en) | Semiconductor structure and method for forming the same | |
US12349455B2 (en) | Semiconductor structure and fabrication method thereof | |
CN114551351A (en) | Method of forming a semiconductor structure | |
CN112151605A (en) | Semiconductor structure and forming method thereof | |
CN114203697B (en) | Semiconductor structure and method for forming the same | |
CN113903806B (en) | Semiconductor structure and forming method thereof | |
EP4358153A1 (en) | Semiconductor transistor | |
CN114551442A (en) | Semiconductor structure and method of forming the same | |
CN113903805B (en) | Semiconductor structure and forming method thereof | |
CN111430460B (en) | Laterally diffused metal oxide semiconductor device and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |