CN109599366B - Semiconductor device and method of forming the same - Google Patents
Semiconductor device and method of forming the same Download PDFInfo
- Publication number
- CN109599366B CN109599366B CN201710918629.8A CN201710918629A CN109599366B CN 109599366 B CN109599366 B CN 109599366B CN 201710918629 A CN201710918629 A CN 201710918629A CN 109599366 B CN109599366 B CN 109599366B
- Authority
- CN
- China
- Prior art keywords
- fin
- layer
- forming
- side wall
- sidewall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 108
- 239000004065 semiconductor Substances 0.000 title claims abstract description 88
- 229910052751 metal Inorganic materials 0.000 claims abstract description 70
- 239000002184 metal Substances 0.000 claims abstract description 70
- 230000008569 process Effects 0.000 claims abstract description 64
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 50
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 238000005530 etching Methods 0.000 claims description 53
- 125000006850 spacer group Chemical group 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 43
- 238000002955 isolation Methods 0.000 claims description 35
- 230000007704 transition Effects 0.000 claims description 29
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 420
- 238000010586 diagram Methods 0.000 description 15
- 239000011229 interlayer Substances 0.000 description 12
- 230000004888 barrier function Effects 0.000 description 11
- 230000005669 field effect Effects 0.000 description 9
- 238000006073 displacement reaction Methods 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229910003697 SiBN Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
- H10D84/0174—Manufacturing their gate conductors the gate conductors being silicided
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/856—Complementary IGFETs, e.g. CMOS the complementary IGFETs having different architectures than each other, e.g. high-voltage and low-voltage CMOS
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体器件及其形成方法,其中方法包括:提供半导体衬底,半导体衬底上具有第一鳍部;形成位于第一鳍部中的第一初始掺杂层;进行凹槽处理工艺,使第一初始掺杂层形成第一掺杂层,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽,所述凹槽在第一鳍部宽度方向的两侧侧壁表面为第一掺杂层的表面;在第一掺杂层的外侧壁和顶部表面、以及所述凹槽的内壁表面形成第一金属硅化物层。所述方法提高了半导体器件的性能。
A semiconductor device and a method for forming the same, wherein the method includes: providing a semiconductor substrate with a first fin on the semiconductor substrate; forming a first initial doped layer in the first fin; performing a groove treatment process, so that The first initial doped layer forms a first doped layer, the first doped layer has a groove, the top surface of the first doped layer exposes the groove, and the groove is in the width direction of the first fin. The sidewall surfaces on both sides are the surfaces of the first doped layer; the first metal silicide layer is formed on the outer sidewall and top surface of the first doped layer and the inner wall surface of the groove. The method improves the performance of semiconductor devices.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a forming method thereof.
背景技术Background technique
MOS(金属-氧化物-半导体)晶体管,是现代集成电路中最重要的元件之一。MOS晶体管的基本结构包括:半导体衬底;位于半导体衬底表面的栅极结构,所述栅极结构包括:位于半导体衬底表面的栅介质层以及位于栅介质层表面的栅电极层;位于栅极结构两侧半导体衬底中的源漏掺杂区。MOS (Metal-Oxide-Semiconductor) transistors are one of the most important components in modern integrated circuits. The basic structure of the MOS transistor includes: a semiconductor substrate; a gate structure located on the surface of the semiconductor substrate, and the gate structure includes: a gate dielectric layer located on the surface of the semiconductor substrate and a gate electrode layer located on the surface of the gate dielectric layer; The source and drain doped regions in the semiconductor substrate on both sides of the pole structure.
随着半导体技术的发展,传统的平面式的MOS晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂区。With the development of semiconductor technology, the ability of the traditional planar MOS transistor to control the channel current becomes weaker, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of the semiconductor substrate, and a gate structure covering part of the top surface and sidewall of the fin, located at The source and drain doped regions in the fins on both sides of the gate structure.
然而,现有技术中鳍式场效应晶体管构成的半导体器件的性能仍有待提高。However, the performance of semiconductor devices composed of fin field effect transistors in the prior art still needs to be improved.
发明内容Contents of the invention
本发明解决的问题是提供一种半导体器件及其形成方法,以提高半导体器件的性能。The problem to be solved by the invention is to provide a semiconductor device and its forming method to improve the performance of the semiconductor device.
为解决上述问题,本发明提供一种半导体器件的形成方法,包括:提供半导体衬底,半导体衬底上具有第一鳍部;形成位于第一鳍部中的第一初始掺杂层;进行凹槽处理工艺,使第一初始掺杂层形成第一掺杂层,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽,所述凹槽在第一鳍部宽度方向的两侧侧壁表面为第一掺杂层的表面;在第一掺杂层的外侧壁和顶部表面、以及所述凹槽的内壁表面形成第一金属硅化物层。In order to solve the above problems, the present invention provides a method for forming a semiconductor device, comprising: providing a semiconductor substrate having a first fin; forming a first initial doped layer located in the first fin; Groove treatment process, making the first initial doped layer form a first doped layer, the first doped layer has a groove, the top surface of the first doped layer exposes the groove, and the groove is in the first The sidewall surfaces on both sides of the fin width direction are the surfaces of the first doped layer; the first metal silicide layer is formed on the outer sidewall and top surface of the first doped layer and the inner wall surface of the groove.
可选的,还包括:在进行所述凹槽处理工艺之前,形成第一鳍侧墙,第一鳍侧墙位于第一初始掺杂层在第一鳍部宽度方向上的两侧侧壁且暴露出第一初始掺杂层的顶部表面;进行所述凹槽处理工艺的步骤包括:回刻蚀部分第一初始掺杂层以降低第一初始掺杂层的高度,使第一初始掺杂层形成第一过渡掺杂层,第一过渡掺杂层上具有位于第一鳍部中的凹陷,所述凹陷在第一鳍部宽度方向上的两侧侧壁具有第一鳍侧墙;在所述凹陷的侧壁形成掩膜侧墙,所述掩膜侧墙和第一鳍侧墙接触;以掩膜侧墙和第一鳍侧墙为掩膜刻蚀第一过渡掺杂层,使第一过渡掺杂层形成所述第一掺杂层;以掩膜侧墙和第一鳍侧墙为掩膜刻蚀第一过渡掺杂层后,去除所述掩膜侧墙;所述半导体器件的形成方法还包括:以掩膜侧墙和第一鳍侧墙为掩膜刻蚀第一过渡掺杂层后,去除第一鳍侧墙;去除第一鳍侧墙和掩膜侧墙后,形成所述第一金属硅化物层。Optionally, it also includes: before performing the groove treatment process, forming a first fin sidewall, the first fin sidewall is located on both sidewalls of the first initial doped layer in the width direction of the first fin and The top surface of the first initial doped layer is exposed; the step of performing the groove treatment process includes: etching back part of the first initial doped layer to reduce the height of the first initial doped layer, so that the first initial doped layer The layer forms a first transitional doping layer, and the first transitional doping layer has a depression located in the first fin, and the sidewalls on both sides of the depression in the width direction of the first fin have first fin sidewalls; The sidewall of the recess forms a mask sidewall, and the mask sidewall is in contact with the first fin sidewall; the first transition doped layer is etched using the mask sidewall and the first fin sidewall as a mask, so that The first transitional doped layer forms the first doped layer; after etching the first transitional doped layer using the mask sidewall and the first fin sidewall as a mask, the mask sidewall is removed; the semiconductor The device forming method further includes: removing the first fin sidewall after etching the first transition doped layer by using the mask sidewall and the first fin sidewall as a mask; removing the first fin sidewall and the mask sidewall , forming the first metal silicide layer.
可选的,还包括:在形成第一初始掺杂层之前,在所述半导体衬底上形成覆盖第一鳍部部分侧壁的隔离层,所述隔离层暴露出的第一鳍部包括第一置换区;形成所述第一鳍侧墙和第一初始掺杂层的方法包括:在第一置换区侧壁形成位于隔离层表面的第一鳍侧墙;刻蚀去除第一鳍侧墙覆盖的第一置换区,在第一鳍部中形成第一初始置换槽,在第一鳍部宽度方向上,第一初始置换槽的两侧侧壁分别具有第一鳍侧墙;刻蚀第一初始置换槽内壁的第一鳍侧墙以增大第一初始置换槽在第一鳍部宽度方向上的尺寸,形成第一置换槽;在第一置换槽中形成所述第一初始掺杂层。Optionally, it also includes: before forming the first initial doped layer, forming an isolation layer covering the sidewall of the first fin part on the semiconductor substrate, the first fin exposed by the isolation layer includes the first A replacement region; the method for forming the first fin sidewall and the first initial doped layer includes: forming a first fin sidewall on the surface of the isolation layer on the sidewall of the first replacement region; etching and removing the first fin sidewall Covering the first replacement region, forming a first initial replacement groove in the first fin, and in the width direction of the first fin, the sidewalls on both sides of the first initial replacement groove respectively have first fin sidewalls; etching the second The first fin sidewall of the inner wall of an initial replacement groove is used to increase the size of the first initial replacement groove in the width direction of the first fin to form a first replacement groove; the first initial doping is formed in the first replacement groove layer.
可选的,所述第一鳍侧墙的材料为SiN、SiCN、SiBN或SiON;所述掩膜侧墙的材料为SiN、SiCN、SiBN或SiON。Optionally, the material of the first fin sidewall is SiN, SiCN, SiBN or SiON; the material of the mask sidewall is SiN, SiCN, SiBN or SiON.
可选的,所述掩膜侧墙的厚度为2nm~10nm。Optionally, the thickness of the mask sidewall is 2nm˜10nm.
可选的,所述第一鳍侧墙的厚度为2nm~8nm。Optionally, the thickness of the first fin sidewall is 2nm˜8nm.
可选的,在凹陷的侧壁形成掩膜侧墙的步骤包括:在所述凹陷的侧壁和底部、第一鳍侧墙的表面以及半导体衬底上形成掩膜侧墙材料层;回刻蚀掩膜侧墙材料层直至暴露出第一过渡掺杂层顶部表面和第一鳍侧墙的顶部表面,形成所述掩膜侧墙。Optionally, the step of forming a mask sidewall on the sidewall of the recess includes: forming a mask sidewall material layer on the sidewall and bottom of the recess, the surface of the first fin sidewall and the semiconductor substrate; etching back The mask sidewall material layer is etched until the top surface of the first transition doped layer and the top surface of the first fin sidewall are exposed to form the mask sidewall.
可选的,以掩膜侧墙和第一鳍侧墙为掩膜刻蚀第一过渡掺杂层的工艺包括各向异性干刻工艺。Optionally, the process of etching the first transition doped layer by using the mask sidewall and the first fin sidewall as a mask includes an anisotropic dry etching process.
可选的,以掩膜侧墙和第一鳍侧墙为掩膜刻蚀第一过渡掺杂层的深度占据第一过渡掺杂层厚度的20%~100%。Optionally, the etching depth of the first transition doped layer occupies 20%-100% of the thickness of the first transition doped layer by using the mask sidewall and the first fin sidewall as a mask.
可选的,回刻蚀部分第一初始掺杂层的深度为3nm~10nm。Optionally, the depth of etching back part of the first initial doped layer is 3nm˜10nm.
可选的,在去除所述掩膜侧墙的过程中去除所述第一鳍侧墙。Optionally, the first fin sidewall is removed during the process of removing the mask sidewall.
可选的,所述凹槽在第一鳍部宽度方向上的剖面形状包括“U”形。Optionally, the cross-sectional shape of the groove in the width direction of the first fin includes a "U" shape.
可选的,还包括:在形成所述第一初始掺杂层之前,在半导体衬底上形成横跨第一鳍部的第一栅极结构,第一栅极结构覆盖第一鳍部的部分顶部表面和部分侧壁表面;第一初始掺杂层分别位于第一栅极结构两侧的第一鳍部中;形成第一掺杂层后,第一掺杂层分别位于第一栅极结构两侧的第一鳍部中。Optionally, it also includes: before forming the first initial doped layer, forming a first gate structure across the first fin on the semiconductor substrate, the first gate structure covering part of the first fin The top surface and part of the sidewall surface; the first initial doped layer is respectively located in the first fins on both sides of the first gate structure; after the first doped layer is formed, the first doped layer is respectively located in the first gate structure in the first fins on both sides.
可选的,所述半导体衬底包括第一区和第二区,第一鳍部位于半导体衬底第一区上,半导体衬底第二区上具有第二鳍部;所述半导体器件的形成方法还包括:在形成所述第一初始掺杂层之前,形成位于第二鳍部中的第二掺杂层;形成所述第一掺杂层后,在第二掺杂层的表面形成第二金属硅化物层。Optionally, the semiconductor substrate includes a first region and a second region, the first fin is located on the first region of the semiconductor substrate, and the second region of the semiconductor substrate has a second fin; the formation of the semiconductor device The method further includes: before forming the first initial doped layer, forming a second doped layer located in the second fin; after forming the first doped layer, forming a second doped layer on the surface of the second doped layer Two metal silicide layers.
可选的,所述半导体衬底上具有覆盖第二鳍部部分侧壁的隔离层,所述隔离层暴露出的第二鳍部包括第二置换区;所述半导体器件的形成方法还包括:在第二鳍部第二置换区的侧壁形成位于隔离层表面的第二鳍侧墙;刻蚀去除第二鳍侧墙覆盖的第二置换区,在第二鳍部中形成第二初始置换槽,在第二鳍部宽度方向上,第二初始置换槽的两侧侧壁分别具有第二鳍侧墙;刻蚀第二初始置换槽内壁的第二鳍侧墙以增大第二初始置换槽在第二鳍部宽度方向上的尺寸,形成第二置换槽;在第二置换槽中形成第二掺杂层;去除第二掺杂层侧壁的第二鳍侧墙后,形成所述第二金属硅化物层。Optionally, the semiconductor substrate has an isolation layer covering part of the sidewall of the second fin, and the second fin exposed by the isolation layer includes a second replacement region; the method for forming the semiconductor device further includes: Form a second fin sidewall on the surface of the isolation layer on the sidewall of the second replacement region of the second fin; etch to remove the second replacement region covered by the second fin sidewall, and form a second initial replacement in the second fin In the groove, in the width direction of the second fin, the sidewalls on both sides of the second initial displacement groove respectively have second fin sidewalls; the second fin sidewalls on the inner wall of the second initial displacement groove are etched to increase the second initial displacement The size of the groove in the width direction of the second fin forms a second replacement groove; a second doped layer is formed in the second replacement groove; after removing the second fin sidewall of the second doped layer sidewall, the formation of the the second metal silicide layer.
可选的,所述第一区用于形成N型晶体管,所述第二区用于形成P型晶体管。Optionally, the first region is used to form N-type transistors, and the second region is used to form P-type transistors.
可选的,形成所述第一初始掺杂层后,且在进行所述凹槽处理工艺之前,形成底层介质层,底层介质层位于半导体衬底、第一初始掺杂层和第二掺杂层上;在底层介质层中形成贯穿底层介质层的第一介质开口,第一介质开口位于第一初始掺杂层上;在底层介质层中形成贯穿底层介质层的第二介质开口,第二介质开口位于第二掺杂层上;形成第一介质开口和第二介质开口后,进行所述凹槽处理工艺;进行所述凹槽处理工艺后,在第一掺杂层的外侧壁和顶部表面、以及所述凹槽的内壁形成第一金属硅化物层,在第二掺杂层的顶部表面和侧壁表面形成第二金属硅化物层。Optionally, after forming the first initial doped layer and before performing the groove treatment process, an underlying dielectric layer is formed, and the underlying dielectric layer is located between the semiconductor substrate, the first initial doped layer and the second doped layer. layer; form a first dielectric opening that penetrates the underlying dielectric layer in the underlying dielectric layer, and the first dielectric opening is located on the first initial doped layer; form a second dielectric opening that penetrates the underlying dielectric layer in the underlying dielectric layer, and the second The dielectric opening is located on the second doped layer; after the first dielectric opening and the second dielectric opening are formed, the groove treatment process is performed; after the groove treatment process is performed, on the outer sidewall and top of the first doped layer A first metal silicide layer is formed on the surface and the inner wall of the groove, and a second metal silicide layer is formed on the top surface and the side wall surface of the second doped layer.
可选的,还包括:形成第一金属硅化物层和第二金属硅化物层后,在第一介质开口中形成第一插塞,在第二介质开口中形成第二插塞。Optionally, the method further includes: after forming the first metal silicide layer and the second metal silicide layer, forming a first plug in the first dielectric opening, and forming a second plug in the second dielectric opening.
本发明还提供一种半导体器件,包括:半导体衬底,半导体衬底上具有第一鳍部;位于第一鳍部中的第一掺杂层,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽,所述凹槽在第一鳍部宽度方向的两侧侧壁表面为第一掺杂层的表面;位于第一掺杂层外侧壁和顶部表面、以及所述凹槽的内壁表面的第一金属硅化物层。The present invention also provides a semiconductor device, comprising: a semiconductor substrate with a first fin; a first doped layer located in the first fin, with a groove in the first doped layer, the The top surface of the first doped layer exposes a groove, and the sidewall surfaces on both sides of the groove in the width direction of the first fin are the surfaces of the first doped layer; located on the outer sidewall and the top surface of the first doped layer , and the first metal silicide layer on the inner wall surface of the groove.
可选的,所述凹槽在第一鳍部宽度方向上的剖面形状包括“U”形。Optionally, the cross-sectional shape of the groove in the width direction of the first fin includes a "U" shape.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明技术方案提供的半导体器件的形成方法中,进行凹槽处理工艺后,使第一初始掺杂层形成第一掺杂层,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽,因此使第一掺杂层的表面面积大于第一初始掺杂层的表面面积。由于所述凹槽在第一鳍部宽度方向的两侧侧壁表面为第一掺杂层的表面,因此使凹槽侧壁的面积较大,进而使第一掺杂层的表面面积较大。第一金属硅化物层和第一掺杂层接触的面积较大。在自第一掺杂层至第一金属硅化物层的电流传导方向上的横截面积较大,因而降低了第一金属硅化物层和第一掺杂层之间的接触电阻,从而提高了提高半导体器件的性能。In the method for forming a semiconductor device provided by the technical solution of the present invention, after the groove treatment process is performed, the first initial doped layer is formed into a first doped layer, the first doped layer has grooves, and the first doped layer The top surface of the layer exposes the grooves, thus making the surface area of the first doped layer larger than the surface area of the first initially doped layer. Since the sidewall surfaces on both sides of the groove in the width direction of the first fin are the surfaces of the first doped layer, the area of the sidewall of the groove is larger, thereby making the surface area of the first doped layer larger . The contact area between the first metal silicide layer and the first doped layer is relatively large. The cross-sectional area in the current conduction direction from the first doped layer to the first metal silicide layer is larger, thereby reducing the contact resistance between the first metal silicide layer and the first doped layer, thereby improving the Improve the performance of semiconductor devices.
本发明技术方案提供的半导体器件中,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽。所述凹槽在第一鳍部宽度方向的两侧侧壁表面为第一掺杂层的表面,因此使第一掺杂层的表面面积较大,第一金属硅化物层和第一掺杂层接触的面积较大。在自第一掺杂层至第一金属硅化物层的电流传导方向上的横截面积较大,因而降低了第一金属硅化物层和第一掺杂层之间的接触电阻,从而提高了提高半导体器件的性能。In the semiconductor device provided by the technical solution of the present invention, the first doped layer has a groove, and the top surface of the first doped layer exposes the groove. The sidewall surfaces on both sides of the groove in the width direction of the first fin are the surfaces of the first doped layer, so the surface area of the first doped layer is larger, and the first metal silicide layer and the first doped layer The area of layer contact is larger. The cross-sectional area in the current conduction direction from the first doped layer to the first metal silicide layer is larger, thereby reducing the contact resistance between the first metal silicide layer and the first doped layer, thereby improving the Improve the performance of semiconductor devices.
附图说明Description of drawings
图1至图22是本发明一实施例中半导体器件形成过程的结构示意图。1 to 22 are structural schematic diagrams of the process of forming a semiconductor device in an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有技术形成的半导体器件的性能较差。As mentioned in the background, semiconductor devices formed in the prior art have poor performance.
一种半导体器件的形成方法,包括:提供半导体衬底,半导体衬底上具有鳍部;在半导体衬底上形成横跨鳍部的栅极结构;在栅极结构两侧的鳍部的鳍部中形成源漏掺杂层;在源漏掺杂层和栅极结构上形成层间介质层;在栅极结构两侧的层间介质层中形成暴露出源漏掺杂层侧壁表面和顶部表面的开口;刻蚀开口底部的源漏掺杂层,在源漏掺杂层中形成凹槽;之后,在源漏掺杂层侧壁和顶部表面形成金属硅化物层;形成金属硅化物层后,在开口中形成插塞。A method for forming a semiconductor device, comprising: providing a semiconductor substrate with fins on the semiconductor substrate; forming a gate structure across the fins on the semiconductor substrate; fins on the fins on both sides of the gate structure Form a source-drain doped layer; form an interlayer dielectric layer on the source-drain doped layer and the gate structure; form an exposed source-drain doped layer side wall surface and top in the interlayer dielectric layer on both sides of the gate structure Opening on the surface; etching the source-drain doped layer at the bottom of the opening to form a groove in the source-drain doped layer; after that, forming a metal silicide layer on the sidewall and top surface of the source-drain doped layer; forming a metal silicide layer Then, a plug is formed in the opening.
然而,上述方法形成的半导体器件的性能较差,经研究发现,原因在于:However, the performance of the semiconductor device formed by the above-mentioned method is relatively poor. After research, it is found that the reasons are:
所述金属硅化物层的作用为降低源漏掺杂层和插塞之间的接触势垒。在开口底部的源漏掺杂层中形成凹槽,以增加开口暴露出的源漏掺杂层的总表面,进而增加金属硅化物层和源漏掺杂层接触的面积。The function of the metal silicide layer is to reduce the contact barrier between the source-drain doped layer and the plug. A groove is formed in the doped source and drain layer at the bottom of the opening to increase the total surface of the doped source and drain layer exposed by the opening, thereby increasing the contact area between the metal silicide layer and the doped source and drain layer.
在刻蚀开口底部的源漏掺杂层之前,开口暴露出源漏掺杂层侧壁表面和顶部表面。刻蚀开口底部的源漏掺杂层后,形成的凹槽在鳍部宽度方向上至少贯穿源漏掺杂层,即凹槽的底部表面和源漏掺杂层在鳍部宽度方向上的外侧壁相连。Before etching the source-drain doped layer at the bottom of the opening, the opening exposes the sidewall surface and the top surface of the source-drain doped layer. After etching the doped source and drain layer at the bottom of the opening, the formed groove at least penetrates the doped source and drain layer in the width direction of the fin, that is, the bottom surface of the groove and the outer side of the doped source and drain layer in the width direction of the fin The walls are connected.
在此基础上,随着半导体器件的特征尺寸的不断减小,相邻栅极结构之间的距离不断减小,相应的,源漏掺杂区在沟道长度方向上的尺寸不断减小,导致源漏掺杂区和金属硅化物层接触的总面积减小,进而导致源漏掺杂区和金属硅化物层之间的接触电阻较大。On this basis, with the continuous reduction of the feature size of semiconductor devices, the distance between adjacent gate structures is continuously reduced, and correspondingly, the size of the source-drain doped region in the channel length direction is continuously reduced. As a result, the total contact area between the source-drain doped region and the metal silicide layer is reduced, which in turn leads to a larger contact resistance between the source-drain doped region and the metal silicide layer.
为了解决上述问题,本发明提供一种半导体器件的形成方法,包括:形成位于第一鳍部中的第一初始掺杂层;进行凹槽处理工艺,使第一初始掺杂层形成第一掺杂层,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽,所述凹槽在第一鳍部宽度方向的两侧侧壁表面为第一掺杂层的表面;在第一掺杂层的外侧壁和顶部表面、以及所述凹槽的内壁表面形成第一金属硅化物层。所述方法提高了半导体器件的性能。In order to solve the above problems, the present invention provides a method for forming a semiconductor device, including: forming a first initial doped layer located in the first fin; performing a groove treatment process, so that the first initial doped layer forms a first doped layer The impurity layer has a groove in the first doped layer, the top surface of the first doped layer exposes the groove, and the sidewall surfaces on both sides of the groove in the width direction of the first fin are first doped The surface of the layer; a first metal silicide layer is formed on the outer sidewall and top surface of the first doped layer and the inner wall surface of the groove. The method improves the performance of semiconductor devices.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1至图22是本发明一实施例中半导体器件形成过程的结构示意图。1 to 22 are structural schematic diagrams of the process of forming a semiconductor device in an embodiment of the present invention.
结合参考图1和图2,图2中第一区的示图为沿图1中切割线M1-M2的剖面图,图2中第二区的示图为沿图1中切割线N1-N2的剖面图,提供半导体衬底100,半导体衬底100上具有第一鳍部111。With reference to Fig. 1 and Fig. 2, the view of the first area in Fig. 2 is a sectional view along the cutting line M1-M2 in Fig. 1, and the view of the second area in Fig. 2 is along the cutting line N1-N2 in Fig. 1 A cross-sectional view of a
本实施例中,以半导体器件为鳍式场效应晶体管作为示例。在其它实施例中,半导体器件为三极管或二极管。In this embodiment, the semiconductor device is taken as an example of a fin field effect transistor. In other embodiments, the semiconductor device is a triode or a diode.
所述半导体衬底100可以是单晶硅、多晶硅或非晶硅。半导体衬底100也可以是硅、锗、锗化硅等半导体材料。本实施例中,半导体衬底100的材料为单晶硅。The
所述半导体衬底100包括第一区A,第一鳍部111位于半导体衬底100第一区A上。半导体衬底100还包括第二区B。半导体衬底100第二区B上具有第二鳍部112。The
在其它实施例中,半导体衬底不包括第二区。In other embodiments, the semiconductor substrate does not include the second region.
本实施例中,所述第一区A用于形成N型鳍式场效应晶体管,第二区B用于形成P型鳍式场效应晶体管。In this embodiment, the first region A is used to form an N-type fin field effect transistor, and the second region B is used to form a P-type fin field effect transistor.
所述第一鳍部111和第二鳍部112的材料为单晶硅或单晶锗硅。本实施例中,第一鳍部111的数量为若干个,第二鳍部112的数量为若干个。在其它实施例中,第一鳍部111的数量为一个,第二鳍部112的数量为一个。The material of the
本实施例中,还包括:在所述半导体衬底100上形成覆盖第一鳍部111部分侧壁和第二鳍部112部分侧壁的隔离层103,隔离层103的顶部表面低于第一鳍部111的顶部表面和第二鳍部112的顶部表面。所述隔离层103的材料包括氧化硅。In this embodiment, it further includes: forming an
所述隔离层103暴露出的第一鳍部111包括第一置换区和第一非置换区,第一置换区与第一非置换区邻接且位于第一非置换区两侧,自第一置换区至第一非置换区的方向平行于第一鳍部111的延伸方向。所述隔离层103暴露出的第二鳍部112包括第二置换区和第二非置换区,第二置换区与第二非置换区邻接且位于第二非置换区两侧,自第二置换区至第二非置换区的方向平行于第二鳍部112的延伸方向。The
继续结合参考图1和图2,在半导体衬底100和隔离层103上形成第一栅极结构121,第一栅极结构121横跨第一鳍部111的第一非置换区、且覆盖第一鳍部111第一非置换区的顶部表面和侧壁表面;在半导体衬底100和隔离层103上形成第二栅极结构122,第二栅极结构122横跨第二鳍部112的第二非置换区、且覆盖第二鳍部112第二非置换区的顶部表面和侧壁表面。Continuing to refer to FIG. 1 and FIG. 2 , a
第一栅极结构121包括横跨第一鳍部111的第一栅介质层和位于第一栅介质层上的第一栅电极层。第二栅极结构122包括横跨第二鳍部112的第二栅介质层和位于第二栅介质层上的第二栅电极层。第一栅介质层位于第一区A隔离层103部分表面、且覆盖第一鳍部111第一非置换区的顶部表面和侧壁表面。第二栅介质层位于第二区B隔离层103部分表面、且覆盖第二鳍部112第二非置换区的顶部表面和侧壁表面。The
本实施例中,第一栅介质层和第二栅介质层的材料为氧化硅。在其它实施例中,第一栅介质层和第二栅介质层的材料为高K介质材料(K大于3.9)。第一栅电极层和第二栅电极层的材料为多晶硅。In this embodiment, the material of the first gate dielectric layer and the second gate dielectric layer is silicon oxide. In other embodiments, the material of the first gate dielectric layer and the second gate dielectric layer is a high-K dielectric material (K greater than 3.9). The material of the first gate electrode layer and the second gate electrode layer is polysilicon.
本实施例中,第一栅极结构121的顶部表面还具有第一栅保护层131,所述第二栅极结构122的顶部表面还具有第二栅保护层132。所述第一栅保护层131和第二栅保护层132的材料为SiN、SiCN、SiBN或SiON。In this embodiment, the top surface of the
接着,形成位于第一鳍部111中的第一初始掺杂层。Next, a first initial doped layer located in the
本实施例中,还包括:在后续进行所述凹槽处理工艺之前,形成第一鳍侧墙,第一鳍侧墙位于第一初始掺杂层在第一鳍部111宽度方向上的两侧侧壁且暴露出第一初始掺杂层的顶部表面。形成所述第一鳍侧墙和第一初始掺杂层的方法包括:在第一置换区侧壁形成位于隔离层103表面的第一鳍侧墙;刻蚀去除第一鳍侧墙覆盖的第一置换区,在第一鳍部111中形成第一初始置换槽,在第一鳍部111宽度方向上,第一初始置换槽的两侧侧壁分别具有第一鳍侧墙;刻蚀第一初始置换槽内壁的第一鳍侧墙以增大第一初始置换槽在第一鳍部111宽度方向上的尺寸,形成第一置换槽;在第一置换槽中形成所述第一初始掺杂层。In this embodiment, it also includes: before performing the subsequent groove treatment process, forming first fin sidewalls, the first fin sidewalls are located on both sides of the first initial doping layer in the width direction of the
本实施例中,还包括:在形成所述第一初始掺杂层和第一鳍侧墙之前,形成位于第二鳍部112中的第二掺杂层。In this embodiment, it further includes: before forming the first initial doped layer and the first fin sidewall, forming a second doped layer located in the
本实施例中,还包括:在第二鳍部112第二置换区的侧壁形成位于隔离层103表面的第二鳍侧墙;刻蚀去除第二鳍侧墙覆盖的第二置换区,在第二鳍部112中形成第二初始置换槽,在第二鳍部112宽度方向上,第二初始置换槽的两侧侧壁分别具有第二鳍侧墙;刻蚀第二初始置换槽内壁的第二鳍侧墙以增大第二初始置换槽在第二鳍部112宽度方向上的尺寸,形成第二置换槽;在第二置换槽中形成第二掺杂层;去除第二掺杂层侧壁的第二鳍侧墙。In this embodiment, it also includes: forming a second fin sidewall located on the surface of the
结合参考图3和图4,图3为在图1基础上的示意图,图4为在图2基础上的示意图,在第一区A和第二区B的隔离层103表面、第一鳍部111第一置换区表面、第一栅极结构121和第一栅保护层131的侧壁、第一栅保护层131的顶部、第二鳍部112第二置换区表面、第二栅极结构122和第二栅保护层132的侧壁、以及第二栅保护层132的顶部形成第一侧墙膜140;回刻蚀第二区B的第一侧墙膜140直至暴露出第二区B隔离层103、第二栅保护层132和第二鳍部112的顶部表面,形成第二鳍侧墙142和第二栅侧墙141,第二鳍侧墙142位于第二鳍部112第二置换区的侧壁且位于隔离层103表面,第二栅侧墙141位于第二栅极结构122侧壁。Referring to FIG. 3 and FIG. 4 together, FIG. 3 is a schematic diagram based on FIG. 1 , and FIG. 4 is a schematic diagram based on FIG. 2 . 111 the surface of the first replacement region, the
本实施例中,还包括:在回刻蚀第二区B的第一侧墙膜140之前,在第一区A上形成第一掩膜层,第一掩膜层覆盖第一区A的第一侧墙膜140,且第一掩膜层未覆盖第二区B的第一侧墙膜140;以第一掩膜层为掩膜刻蚀第二区B的第一侧墙膜140直至暴露出第二区B隔离层103、第二栅保护层132和第二鳍部112的顶部表面,形成第二鳍侧墙142和第二栅侧墙141。In this embodiment, it also includes: before etching back the
第一侧墙膜140的材料为SiN、SiCN、SiBN或SiON。形成第一侧墙膜140的工艺为沉积工艺,如等离子体化学气相沉积工艺或原子层沉积工艺。The material of the
所述第一掩膜层的材料包括光刻胶。The material of the first mask layer includes photoresist.
结合参考图5和图6,图5为在图3基础上的示意图,图6为在图4基础上的示意图,刻蚀去除第二鳍侧墙142覆盖的第二置换区,在第二鳍部112中形成第二初始置换槽(未图示),在第二鳍部112宽度方向上,第二初始置换槽的两侧侧壁分别具有第二鳍侧墙142;刻蚀第二初始置换槽内壁的第二鳍侧墙142以增大第二初始置换槽在第二鳍部112宽度方向上的尺寸,形成第二置换槽;在第二置换槽中形成第二掺杂层182。Referring to FIG. 5 and FIG. 6 together, FIG. 5 is a schematic diagram based on FIG. 3, and FIG. 6 is a schematic diagram based on FIG. A second initial replacement groove (not shown) is formed in the
具体的,以第一掩膜层为掩膜刻蚀第二区B的第一侧墙膜140后,以第一掩膜层为掩膜刻蚀去除第二鳍侧墙142覆盖的第二置换区,形成第二初始置换槽;以第一掩膜层为掩膜刻蚀第二初始置换槽内壁的第二鳍侧墙142以增大第二初始置换槽在第二鳍部112宽度方向上的尺寸;之后,去除第一掩膜层;去除第一掩膜层后,形成第二掺杂层182。刻蚀第二初始置换槽内壁的第二鳍侧墙142的工艺为湿刻工艺。Specifically, after etching the
形成所述第二掺杂层182的工艺包括外延生长工艺。第二掺杂层182分别位于第二栅极结构122两侧的第二鳍部112中。The process of forming the second doped
本实施例中,第二掺杂层182的材料为掺杂第二离子的锗硅,第二离子的导电类型为P型。In this embodiment, the material of the second doped
第二初始置换槽由去除第二鳍侧墙142覆盖的第二置换区而形成,第二置换槽为扩大第二初始置换槽在第二鳍部112宽度方向上尺寸而形成,第二掺杂层182形成在第二置换槽中。因此第二掺杂层182在第二鳍部112宽度方向上的尺寸大于第二鳍部112第二置换区的宽度,这样使得第二掺杂层182的表面积增大。由于在第二掺杂层182形成的过程中,第二鳍侧墙142限制第二掺杂层182的形成空间,因此避免第二掺杂层182沿第二鳍部112宽度方向向外突出,进而避免在第二鳍部112宽度方向上相邻第二掺杂层182的边缘之间的距离过小。后续第二插塞和第二金属硅化物层的材料均容易填充在第二鳍部112宽度方向上相邻第二掺杂层182之间的区域。The second initial replacement groove is formed by removing the second replacement region covered by the
结合参考图7和图8,图7为在图5基础上的示意图,图8为在图6基础上的示意图,形成第二掺杂层182后,在第二区B的隔离层103表面、第二鳍侧墙142和第二掺杂层182的表面、第二栅保护层132的顶部、第二栅侧墙141表面、以及第一区A的第一侧墙膜140表面形成第二侧墙膜190。Referring to FIG. 7 and FIG. 8 in conjunction, FIG. 7 is a schematic diagram based on FIG. 5, and FIG. 8 is a schematic diagram based on FIG. 6. After the second doped
所述第二侧墙膜190的材料和形成方法参照第一侧墙膜140的材料和形成方法。The material and forming method of the second
结合参考图9和图10,图9为在图7基础上的示意图,图10为在图8基础上的示意图,回刻蚀第一区A的第二侧墙膜190和第一侧墙膜140直至暴露出第一区A的隔离层103表面、以及第一栅保护层131和第一鳍部111的顶部表面,形成第一鳍侧墙191和第一栅侧墙192,第一鳍侧墙191位于第一鳍部111第一置换区的侧壁且位于隔离层103表面,第一栅侧墙192位于第一栅极结构121的侧壁。Referring to FIG. 9 and FIG. 10 together, FIG. 9 is a schematic diagram based on FIG. 7 , and FIG. 10 is a schematic diagram based on FIG. 8 , etching back the second
本实施例中,还包括:在回刻蚀第一区A的第二侧墙膜190和第一侧墙膜140之前,在第二区B上形成第二掩膜层,第二掩膜层覆盖第二区B的第二侧墙膜190,且第二掩膜层未覆盖第一区A的第二侧墙膜190。以第二掩膜层为掩膜刻蚀第一区A的第二侧墙膜190和第一侧墙膜140以形成第一鳍侧墙191和第一栅侧墙192。第二掩膜层的材料参照第一掩膜层的材料。In this embodiment, it also includes: before etching back the second
本实施例中,第一栅侧墙192包括位于第一栅极结构121侧壁的第一子栅侧墙140a、位于第一子栅侧墙140a侧壁的第二子栅侧墙190a。其中,第一子栅侧墙140a由第一区A的第一侧墙膜140形成,第二子栅侧墙190a由第一区A的第二侧墙膜190形成。In this embodiment, the
本实施例中,第一鳍侧墙191包括位于第一鳍部111第一置换区的侧壁且位于隔离层103表面的第一子鳍侧墙140b、以及位于第一子鳍侧墙140b侧壁的第二子鳍侧墙190b。其中,第一子鳍侧墙140b由第一区A的第一侧墙膜140形成,第二子鳍侧墙190b由第一区A的第二侧墙膜190形成。In this embodiment, the
结合参考图11和图12,图11为在图9基础上的示意图,图12为在图10基础上的示意图,去除第一鳍侧墙191覆盖的第一置换区,在第一鳍部111中形成第一初始置换槽,在第一鳍部111宽度方向上,第一初始置换槽的两侧侧壁分别具有第一鳍侧墙191;刻蚀第一初始置换槽内壁的第一鳍侧墙191以增大第一初始置换槽在第一鳍部111宽度方向上的尺寸,形成第一置换槽;在第一置换槽中形成第一初始掺杂层181。Referring to FIG. 11 and FIG. 12 together, FIG. 11 is a schematic diagram based on FIG. 9, and FIG. 12 is a schematic diagram based on FIG. Form the first initial replacement groove, in the width direction of the
具体的,以第二掩膜层为掩膜刻蚀第一区A的第二侧墙膜190和第一侧墙膜140后,以第二掩膜层为掩膜刻蚀去除第一鳍侧墙191覆盖的第一置换区;以第二掩膜层为掩膜刻蚀第一初始置换槽内壁的第一鳍侧墙191以增大第一初始置换槽在第一鳍部111宽度方向上的尺寸;之后,去除第二掩膜层;去除第二掩膜层后,形成第一初始掺杂层181。刻蚀第一初始置换槽内壁的第一鳍侧墙191的工艺为湿刻工艺。Specifically, after etching the second
形成所述第一初始掺杂层181的工艺包括外延生长工艺。第一初始掺杂层181分别位于第一栅极结构121两侧的第一鳍部111中。本实施例中,第一初始掺杂层181的材料为掺杂第一离子的硅,第一离子的导电类型为N型。The process of forming the first initial doped
第一初始掺杂层181侧壁的第一鳍侧墙191的厚度为2nm~8nm。The thickness of the
在形成第一初始掺杂层181的过程中,第一鳍侧墙191限制第一初始掺杂层181的形成空间,避免第一初始掺杂层181沿第一鳍部111宽度方向向外突出,进而避免在第一鳍部111宽度方向上相邻第一初始掺杂层181的边缘之间的距离过小。后续第一插塞和第一金属硅化物层的材料均容易填充在第一鳍部111宽度方向上相邻第一掺杂层之间的区域。In the process of forming the first initial doped
结合参考图13和图14,图13为在图11基础上的示意图,图14为在图12基础上的示意图,形成所述第一初始掺杂层181后,形成底层介质层211,底层介质层211位于半导体衬底100、第一初始掺杂层181和第二掺杂层182上;在底层介质层211中形成贯穿底层介质层211的第一介质开口231,第一介质开口231位于第一初始掺杂层181上;在底层介质层211中形成贯穿底层介质层211的第二介质开口232,第二介质开口232位于第二掺杂层182上。13 and FIG. 14 in combination, FIG. 13 is a schematic diagram based on FIG. 11, and FIG. 14 is a schematic diagram based on FIG. 12. After forming the first initial doped
具体的,形成所述第一初始掺杂层181后,形成底层介质层211,底层介质层211位于第一区A隔离层103、第一鳍侧墙191和第一初始掺杂层181上、以及第一栅侧墙191的侧壁,底层介质层211还位于第二区B隔离层103、第二鳍侧墙142和第二掺杂层182上、以及第二栅侧墙141的侧壁;在形成底层介质层211的过程中去除第一栅保护层131和第二栅保护层132,暴露出第一栅极结构121的顶部表面和第二栅极结构122的顶部表面;形成底层介质层211后,去除第一栅极结构121,在第一区A底层介质层211中形成第一栅开口,去除第二栅极结构122,在第二区B底层介质层211中形成第二栅开口;在第一栅开口中形成第一金属栅极结构221,在第二栅开口中形成第二金属栅极结构222;在第一金属栅极结构221、第一栅侧墙191、第二金属栅极结构222、第二栅侧墙141和底层介质层211上形成顶层介质层212,顶层介质层212和底层介质层211构成层间介质层210;在第一金属栅极结构221两侧的层间介质层210中形成贯穿层间介质层210的第一介质开口231,所述第一初始掺杂层181和第一鳍侧墙191位于第一介质开口231底部;在第二金属栅极结构222两侧的层间介质层210中形成贯穿层间介质层210的第二介质开口232,第二掺杂层182和第二鳍侧墙142位于第二介质开口232底部。Specifically, after the first initial doped layer 181 is formed, an underlying dielectric layer 211 is formed, and the underlying dielectric layer 211 is located on the isolation layer 103 in the first region A, the first fin sidewall 191 and the first initial doped layer 181, and the sidewalls of the first gate spacers 191, the underlying dielectric layer 211 is also located on the isolation layer 103 in the second region B, the second fin spacers 142 and the second doped layer 182, and the sidewalls of the second gate spacers 141 ; In the process of forming the underlying dielectric layer 211, the first gate protection layer 131 and the second gate protection layer 132 are removed, exposing the top surface of the first gate structure 121 and the top surface of the second gate structure 122; forming the bottom dielectric layer After layer 211, the first gate structure 121 is removed, the first gate opening is formed in the underlying dielectric layer 211 in the first region A, the second gate structure 122 is removed, and the second gate is formed in the underlying dielectric layer 211 in the second region B. Opening; a first metal gate structure 221 is formed in the first gate opening, and a second metal gate structure 222 is formed in the second gate opening; in the first metal gate structure 221, the first gate spacer 191, the second The top dielectric layer 212 is formed on the metal gate structure 222, the second gate spacer 141 and the bottom dielectric layer 211, and the top dielectric layer 212 and the bottom dielectric layer 211 form an interlayer dielectric layer 210; on both sides of the first metal gate structure 221 The first dielectric opening 231 penetrating through the interlayer dielectric layer 210 is formed in the interlayer dielectric layer 210, and the first initial doped layer 181 and the first fin spacer 191 are located at the bottom of the first dielectric opening 231; A second dielectric opening 232 penetrating through the interlayer dielectric layer 210 is formed in the interlayer dielectric layer 210 on both sides of the pole structure 222 , and the second doped layer 182 and the second fin spacer 142 are located at the bottom of the second dielectric opening 232 .
形成第一金属栅极结构221后,第一初始掺杂层181分别位于第一金属栅极结构221两侧的第一鳍部111中。形成第二金属栅极结构222后,第二掺杂层182分别位于第二金属栅极结构122两侧的第二鳍部112中。After the first
形成第一介质开口231和第二介质开口232后,进行凹槽处理工艺,使第一初始掺杂层181形成第一掺杂层,第一掺杂层中具有凹槽,所述第一掺杂层的顶部表面暴露出凹槽,所述凹槽在第一鳍部111宽度方向的两侧侧壁表面为第一掺杂层的表面。After the first
本实施例中,形成第一介质开口231和第二介质开口232后,且在进行凹槽处理工艺之前,第二掺杂层182的侧壁具有第二鳍侧墙142,且第二掺杂层182和第二鳍侧墙142上具有第二侧墙膜190。In this embodiment, after the first
在进行凹槽处理工艺的过程中,第二区B的第二侧墙膜190和第二鳍侧墙142能够保护第二掺杂层182。在进行凹槽处理工艺之前,第一介质开口231还暴露出第一区A的隔离层103。During the groove processing process, the
下面参考图15至图18具体介绍凹槽处理工艺的过程。The process of the groove treatment process will be described in detail below with reference to FIGS. 15 to 18 .
参考图15,图15为在图14基础上的示意图,回刻蚀部分第一初始掺杂层181以降低第一初始掺杂层181的高度,使第一初始掺杂层181形成第一过渡掺杂层184,第一过渡掺杂层184上具有位于第一鳍部111中的凹陷240,所述凹陷240在第一鳍部111宽度方向上的两侧侧壁具有第一鳍侧墙191。Referring to FIG. 15, FIG. 15 is a schematic diagram based on FIG. 14. Part of the first initial doped
回刻蚀部分第一初始掺杂层181的深度为3nm~10nm。若刻蚀第一初始掺杂层181的深度过大,导致第一过渡掺杂层184的高度较小,后续由第一过渡掺杂层184形成的第一掺杂层的侧壁高度较小,第一掺杂层表面的总面积的增加会受到影响;若刻蚀第一初始掺杂层181的深度过小,导致凹陷240的深度较小,而凹陷240的深度决定了后续掩膜侧墙的高度,导致掩膜侧墙的高度过小,掩膜侧墙作为刻蚀第一过渡掺杂层184的掩膜作用降低。The depth of etching back part of the first initial doped
回刻蚀部分第一初始掺杂层181以降低第一初始掺杂层181的高度的工艺为干刻工艺,参数包括:采用的气体包括碳氟基气体。The process of etching back part of the first initial doped
参考图16,在凹陷240的侧壁形成掩膜侧墙250,所述掩膜侧墙250和第一鳍侧墙191接触。Referring to FIG. 16 , a
所述掩膜侧墙250的材料为SiN、SiCN、SiBN或SiON。The material of the
所述掩膜侧墙250的厚度为2nm~10nm。所述掩膜侧墙250的厚度指的是掩膜侧墙250在第一鳍部111宽度方向上的尺寸。所述掩膜侧墙250的厚度选择此范围的意义在于:若掩膜侧墙250的厚度大于10nm,导致凹陷240在第一鳍部111宽度方向上两侧掩膜侧墙250之间的距离较小,掩膜侧墙250暴露出的第一过渡掺杂层184的面积较小,后续刻蚀第一过渡掺杂层184以形成第一掺杂层的工艺窗口较小,后续在刻蚀第一过渡掺杂层184的过程中,刻蚀气体难以达到刻蚀区域,导致刻蚀第一过渡掺杂层184的深度受到限制;若掩膜侧墙250的厚度小于2nm,导致在后续刻蚀第一过渡掺杂层184的过程中,掩膜侧墙250的掩膜作用较小。The thickness of the
在凹陷240的侧壁形成掩膜侧墙250的步骤包括:在所述凹陷240的侧壁和底部、第一鳍侧墙191的表面以及半导体衬底100上形成掩膜侧墙材料层;回刻蚀掩膜侧墙材料层直至暴露出第一过渡掺杂层184顶部表面和第一鳍侧墙191的顶部表面,形成所述掩膜侧墙250。The step of forming the
需要说明的是,在形成掩膜侧墙250的过程中,还在第一鳍侧墙191的外侧壁、以及第一介质开口231的侧壁、第一介质开口231的侧壁、第二侧墙膜190的部分表面形成掩膜侧墙250的材料,进行凹陷处理工艺之后,去除相应的掩膜侧墙250的材料。It should be noted that, in the process of forming the
参考图17,以掩膜侧墙250和第一鳍侧墙191为掩膜刻蚀第一过渡掺杂层184,使第一过渡掺杂层184形成第一掺杂层183,第一掺杂层183中具有凹槽,所述第一掺杂层183的顶部表面暴露出凹槽,所述凹槽在第一鳍部111宽度方向的两侧侧壁表面为第一掺杂层183的表面。Referring to FIG. 17, the first transition doped
以掩膜侧墙250和第一鳍侧墙191为掩膜刻蚀第一过渡掺杂层184的工艺包括各向异性干刻工艺,参数包括:采用的气体包括碳氟基气体。The process of etching the first transition doped
在一个实施例中,以掩膜侧墙250和第一鳍侧墙191为掩膜刻蚀第一过渡掺杂层184的深度占据第一过渡掺杂层184厚度的20%~100%,第一过渡掺杂层184的厚度为在半导体衬底100表面法线方向上的尺寸。选择此范围的意义在于:若刻蚀第一过渡掺杂层184的深度占据第一过渡掺杂层184厚度小于20%,导致第一掺杂层183表面面积相对于第一过渡掺杂层184表面面积增加的程度较小,降低第一掺杂层183和后续第一金属硅化物层之间接触电阻的程度较小。In one embodiment, the etching depth of the first transitional doped
本实施例中,所述第一掺杂层183中凹槽在第一鳍部111宽度方向上的剖面形状为“U”形。在其它实施中,第一掺杂层中凹槽在第一鳍部宽度方向上的剖面形状为其它形状。In this embodiment, the cross-sectional shape of the groove in the first doped
对于第一掺杂层的顶部表面向外突出的情况,第一掺杂层表面面积的增大受限于第一掺杂层在(100)晶面法线方向的生长速率。而本实施例中,通过刻蚀第一过渡掺杂层184而形成具有所述凹槽的第一掺杂层183,因此所述凹槽的深度能够通过刻蚀工艺进行控制,第一掺杂层183表面面积的增大无需受限于第一掺杂层183的生长速率,能够使所述凹槽的深度较深,有利于第一掺杂层183表面面积的增大。For the case where the top surface of the first doped layer protrudes outward, the increase in the surface area of the first doped layer is limited by the growth rate of the first doped layer in the direction normal to the (100) crystal plane. However, in this embodiment, the first doped
本实施例中,所述第一区A用于形成N型鳍式场效应晶体管,第二区B用于形成P型鳍式场效应晶体管,第一掺杂层183的材料为掺杂第一离子的硅,第二掺杂层182的材料为掺杂第二离子的锗硅。相应的,仅在第一掺杂层183中形成所述凹槽,而在第二掺杂层183中未形成相应的凹槽,因此避免第二掺杂层183对P型鳍式场效应晶体管中沟道的应力损失,避免因应力损失降低P型鳍式场效应晶体管中沟道中载流子的迁移率。In this embodiment, the first region A is used to form an N-type fin field effect transistor, the second region B is used to form a P-type fin field effect transistor, and the material of the first doped
参考图18,以掩膜侧墙250和第一鳍侧墙191为掩膜刻蚀第一过渡掺杂层184后,去除所述掩膜侧墙250(参考图17)。Referring to FIG. 18 , after etching the first transition doped
去除掩膜侧墙250的工艺为湿刻蚀工艺或干刻工艺。The process of removing the
本实施例中,还包括:以掩膜侧墙250和第一鳍侧墙191为掩膜刻蚀第一过渡掺杂层184后,去除第一鳍侧墙191。去除第一鳍侧墙191和掩膜侧墙250,以暴露出第一掺杂层183的顶部表面和侧壁表面。In this embodiment, further includes: removing the
本实施例中,还包括:以掩膜侧墙250和第一鳍侧墙191为掩膜刻蚀第一过渡掺杂层184后,去除第二介质开口232底部的第二鳍侧墙142和第二区B的第二侧墙膜190,以暴露出第二掺杂层182的顶部表面和侧壁表面,第二介质开口232的底部还暴露出第二区B的隔离层103。In this embodiment, it also includes: removing the
本实施例中,在一道刻蚀工艺中,去除掩膜侧墙250、第一鳍侧墙191、第二鳍侧墙142和第二侧墙膜190,简化了工艺。In this embodiment, the
进行所述凹槽处理工艺后,在第一掺杂层183的外侧壁和顶部表面、以及所述凹槽的内壁形成第一金属硅化物层,在第二掺杂层182的顶部表面和侧壁表面形成第二金属硅化物层。具体的,去除第一鳍侧墙191和掩膜侧墙250后,在第一掺杂层183的表面形成第一金属硅化物层;去除第二掺杂层182侧壁的第二鳍侧墙142后,在第二掺杂层182的表面形成第二金属硅化物层。After performing the groove treatment process, a first metal silicide layer is formed on the outer sidewall and top surface of the first doped
下面参考图19至图20介绍形成第一金属硅化物层和第二金属硅化物层的方法。The method for forming the first metal silicide layer and the second metal silicide layer will be described below with reference to FIGS. 19 to 20 .
参考图19,在第一介质开口231的侧壁和底部、第一掺杂层183的外侧壁和顶部表面、以及所述凹槽的内壁表面、第二介质开口232的侧壁和底部、第二掺杂层182的侧壁表面和顶部表面、以及层间介质层210的顶部表面形成金属层260。19, on the sidewall and bottom of the first
所述金属层260的材料为Ti、Co或Ni。本实施例中,金属层260的材料为Ti。形成所述金属层260的工艺为沉积工艺,如溅射工艺。The material of the
本实施例中,还包括:在金属层260的表面形成阻挡层270。所述阻挡层270的材料为氮化钛或氮化钽。形成所述阻挡层270的工艺为沉积工艺,如化学气相沉积工艺。In this embodiment, it further includes: forming a
参考图20,进行退火工艺,使第一掺杂层183的外侧壁和顶部表面、以及所述凹槽的内壁的金属层260和第一掺杂层183表面材料反应形成第一金属硅化物层281,使第二掺杂层182侧壁表面和顶部表面的金属层260和第二掺杂层182表面材料反应形成第二金属硅化物层282。Referring to FIG. 20, an annealing process is performed to make the outer sidewall and top surface of the first doped
本实施例中,阻挡层270在进行退火工艺之前形成,在退火工艺的过程中,阻挡层270能够保护金属层260,避免金属层260被氧化。在其它实施例中,阻挡层在退火工艺之后形成。In this embodiment, the
本实施例中,还包括:形成第一金属硅化物层281和第二金属硅化物层282后,在第一介质开口231中形成第一插塞,在第二介质开口232中形成第二插塞。In this embodiment, it also includes: after forming the first
参考图21,形成第一金属硅化物层281和第二金属硅化物层282后,在第一介质开口231和第二介质开口232中、以及层间介质层210上形成插塞材料层290。Referring to FIG. 21 , after forming the first
所述插塞材料层290的材料为金属,如钨。形成所述插塞材料层290的工艺为沉积工艺。本实施例中,所述插塞材料层290位于阻挡层270表面。The material of the
参考图22,平坦化所述插塞材料层290、阻挡层270和金属层260直至暴露出层间介质层210的顶部表面,使第一介质开口231中的插塞材料层290形成第一插塞291,使第二介质开口232中的插塞材料层290形成第二插塞292。Referring to FIG. 22, the
所述第一插塞291和第一金属硅化物层281之间、第一插塞291和层间介质层210之间、以及第一插塞291和第一区A隔离层103之间具有阻挡层270。第一区A的阻挡层270用于阻挡第一插塞291的原子扩散。There are barriers between the
所述第二插塞292和第二金属硅化物层282之间、第二插塞292和层间介质层210之间、以及第二插塞292和第二区B隔离层103之间具有阻挡层270。第二区B的阻挡层270用于阻挡第二插塞292的原子扩散。There are barriers between the
相应的,本实施例还提供一种采用上述方法形成的半导体器件,请参考图20,包括:半导体衬底100,半导体衬底100上具有第一鳍部111;位于第一鳍部111中的第一掺杂层183,第一掺杂层183中具有凹槽,所述第一掺杂层183的顶部表面暴露出凹槽,所述凹槽在第一鳍部111宽度方向的两侧侧壁表面为第一掺杂层183的表面;位于第一掺杂层183外侧壁和顶部表面、以及所述凹槽的内壁表面的第一金属硅化物层281。Correspondingly, this embodiment also provides a semiconductor device formed by the above method, please refer to FIG. 20 , which includes: a
所述第一掺杂层183中凹槽在第一鳍部111宽度方向上的剖面形状包括“U”形。The cross-sectional shape of the groove in the first doped
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710918629.8A CN109599366B (en) | 2017-09-30 | 2017-09-30 | Semiconductor device and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710918629.8A CN109599366B (en) | 2017-09-30 | 2017-09-30 | Semiconductor device and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109599366A CN109599366A (en) | 2019-04-09 |
CN109599366B true CN109599366B (en) | 2023-03-21 |
Family
ID=65955799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710918629.8A Active CN109599366B (en) | 2017-09-30 | 2017-09-30 | Semiconductor device and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109599366B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230163180A1 (en) * | 2021-11-22 | 2023-05-25 | International Business Machines Corporation | Non-self-aligned wrap-around contact in a tight gate pitched transistor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101414621A (en) * | 2007-10-15 | 2009-04-22 | 台湾积体电路制造股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN106206302A (en) * | 2015-04-29 | 2016-12-07 | 中芯国际集成电路制造(上海)有限公司 | The forming method of fin formula field effect transistor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8358012B2 (en) * | 2010-08-03 | 2013-01-22 | International Business Machines Corporation | Metal semiconductor alloy structure for low contact resistance |
KR102246880B1 (en) * | 2015-02-10 | 2021-04-30 | 삼성전자 주식회사 | Integrated circuit device and method of manufacturing the same |
-
2017
- 2017-09-30 CN CN201710918629.8A patent/CN109599366B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101414621A (en) * | 2007-10-15 | 2009-04-22 | 台湾积体电路制造股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN106206302A (en) * | 2015-04-29 | 2016-12-07 | 中芯国际集成电路制造(上海)有限公司 | The forming method of fin formula field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
CN109599366A (en) | 2019-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10541238B2 (en) | FinFET and fabrication method thereof | |
CN113555285B (en) | Method for forming semiconductor structure | |
US9583622B2 (en) | Semiconductor structure and method for manufacturing the same | |
CN108807378A (en) | Fin field effect pipe and forming method thereof | |
CN111354641B (en) | Semiconductor device and method of forming the same | |
CN107591436B (en) | Fin type field effect transistor and forming method thereof | |
CN110970299B (en) | Semiconductor devices and methods of forming the same | |
CN110164968B (en) | Semiconductor device and method of forming the same | |
CN113851535B (en) | Semiconductor device and method for forming the same | |
CN110718582A (en) | Semiconductor structure and forming method thereof | |
CN109599366B (en) | Semiconductor device and method of forming the same | |
CN110808286B (en) | Semiconductor structures and methods of forming them | |
CN110034022B (en) | Semiconductor structure and method of forming the same | |
CN109659233B (en) | Semiconductor device and method of forming the same | |
CN113555284B (en) | Method for forming semiconductor structure | |
CN113838934B (en) | Semiconductor structure and forming method thereof | |
CN109273407B (en) | Semiconductor device and method of forming the same | |
CN111725068B (en) | Method for forming semiconductor structure | |
CN114497215A (en) | Semiconductor structure and forming method thereof | |
CN110034187B (en) | Semiconductor structure and forming method thereof | |
CN113903809A (en) | Semiconductor device and method of forming the same | |
CN113113486B (en) | Semiconductor device and method of forming the same | |
CN110534432B (en) | Semiconductor device and method of forming the same | |
CN109273528B (en) | Semiconductor device and method of forming the same | |
CN114695554A (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |