CN114689901B - Accelerometer field calibration method and device - Google Patents
Accelerometer field calibration method and device Download PDFInfo
- Publication number
- CN114689901B CN114689901B CN202210100948.9A CN202210100948A CN114689901B CN 114689901 B CN114689901 B CN 114689901B CN 202210100948 A CN202210100948 A CN 202210100948A CN 114689901 B CN114689901 B CN 114689901B
- Authority
- CN
- China
- Prior art keywords
- error
- accelerometer
- drone
- zero
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
本申请提供一种加速度计现场标定方法和装置,方法包括:根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值;基于误差参数组的参数初值,对误差参数组对应的惯性传感器的各项误差分别进行标定,并自动判定对应的标定结果是否为已完成状态。本申请能够有效提高加速度计的零速区间检测的效率及精确度,进而能够有效提高加速度计现场标定误差参数的效率及精度,并能够有效提高加速度计现场标定误差参数的自动化程度及可靠性。
The application provides a method and device for on-site calibration of an accelerometer. The method includes: detecting whether the UAV is currently in a static state after rotation according to the preset multi-criteria zero-speed interval detection method, and if so, obtaining the acceleration of the UAV Calculate the initial value of the parameters of the error parameter group currently to be calibrated; based on the initial value of the parameters of the error parameter group, calibrate each error of the inertial sensor corresponding to the error parameter group, and automatically determine whether the corresponding calibration result is completed . The application can effectively improve the efficiency and accuracy of the zero-speed interval detection of the accelerometer, thereby effectively improving the efficiency and accuracy of the on-site calibration error parameters of the accelerometer, and can effectively improve the automation and reliability of the on-site calibration error parameters of the accelerometer.
Description
技术领域Technical Field
本申请涉及MEMS加速度标定技术领域,尤其涉及加速度计现场标定方法和装置。The present application relates to the technical field of MEMS acceleration calibration, and in particular to an accelerometer on-site calibration method and device.
背景技术Background Art
随着微机电系统(Micro-Electro-Mechanical Systems,MEMS)的发展,低成本的MEMS惯性传感器IMU具有体积小、功耗低、重量轻等优点,使得其在定位技术中逐渐发展起来。低成本的惯性传感器IMU的主要误差包含系统误差和随机误差,其中系统误差主要包括安装误差、缩放因子和零偏误差等,所以如何精确、快速地标定出惯性传感器IMU的各项误差参数成为了一个重要的研究方向。With the development of Micro-Electro-Mechanical Systems (MEMS), low-cost MEMS inertial sensors IMU have the advantages of small size, low power consumption, and light weight, which makes them gradually develop in positioning technology. The main errors of low-cost inertial sensor IMU include systematic errors and random errors, among which the systematic errors mainly include installation errors, scaling factors, and zero bias errors, so how to accurately and quickly calibrate the various error parameters of inertial sensor IMU has become an important research direction.
加速度计现场标定方法需要在多个不同静止姿态下采集静态加速度值,采集方式决定了加速度计的标定时间长短。目前加速度数据采集方式可分为基于人工和零速区间检测两种方法。其中基于人工方式存在操作繁琐、采集时间较长等问题,无法应用于多无人机的加速度计标定;基于零速区间检测方法,可自动区分出动静态区间数据,具有效率高的优势。但现有的零速区间检测方式均存在精确度差且效率低等问题,因此也会导致现有的加速度计现场标定惯性传感器IMU的误差参数的方式也存在精确度差且效率低等问题。The on-site calibration method of the accelerometer requires the collection of static acceleration values under multiple different static postures. The collection method determines the length of the calibration time of the accelerometer. At present, the acceleration data collection methods can be divided into two methods: manual and zero-speed interval detection. Among them, the manual method has problems such as cumbersome operation and long collection time, and cannot be applied to the calibration of accelerometers of multiple drones; the zero-speed interval detection method can automatically distinguish between dynamic and static interval data, and has the advantage of high efficiency. However, the existing zero-speed interval detection methods have problems such as poor accuracy and low efficiency. Therefore, the existing methods of on-site calibration of inertial sensors IMU by accelerometers also have problems such as poor accuracy and low efficiency.
发明内容Summary of the invention
鉴于此,本申请实施例提供了加速度计现场标定方法和装置,以消除或改善现有技术中存在的一个或更多个缺陷。In view of this, embodiments of the present application provide an accelerometer on-site calibration method and apparatus to eliminate or improve one or more defects existing in the prior art.
本申请的一个方面提供了一种加速度计现场标定方法,包括:One aspect of the present application provides an accelerometer field calibration method, comprising:
根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值;Detect whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method, and if so, obtain the initial value of the error parameter group of the accelerometer of the drone to be calibrated;
基于所述误差参数组的参数初值,对所述误差参数组对应的惯性传感器的各项误差分别进行标定,并自动判定对应的标定结果是否为已完成状态。Based on the initial parameter values of the error parameter group, various errors of the inertial sensor corresponding to the error parameter group are calibrated respectively, and it is automatically determined whether the corresponding calibration result is in a completed state.
在本申请的一些实施例中,所述根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值,包括:In some embodiments of the present application, the zero-speed interval detection method according to the preset multi-criteria detects whether the drone is currently in a stationary state after rotation, and if so, obtains the initial value of the error parameter group of the accelerometer of the drone to be calibrated, including:
根据无人机当前的加速度差分模值、角速度差分模值和加速度方差获取该无人机当前的零速区间检测结果;Obtain the current zero-speed interval detection result of the drone according to the current acceleration differential modulus, angular velocity differential modulus and acceleration variance of the drone;
基于有限状态机筛除所述零速区间检测结果中的毛刺数据,以得到对应的目标检测结果;Screening out burr data in the zero-speed interval detection result based on a finite state machine to obtain a corresponding target detection result;
若所述目标检测结果显示所述无人机当前处于旋转后静止状态,则获取该无人机的加速度计当前待标定的误差参数组的参数初值。If the target detection result shows that the UAV is currently in a stationary state after rotation, the initial parameter values of the error parameter group to be calibrated of the accelerometer of the UAV are obtained.
在本申请的一些实施例中,所述根据无人机当前的加速度差分模值、角速度差分模值和加速度方差获取该无人机当前的零速区间检测结果,包括:In some embodiments of the present application, the step of obtaining the current zero-speed interval detection result of the drone according to the current acceleration differential modulus, angular velocity differential modulus, and acceleration variance of the drone includes:
获取所述无人机当前的加速度差分模值和角速度差分模值;Obtaining the current acceleration differential modulus and angular velocity differential modulus of the drone;
判断所述加速度差分模值和角速度差分模值是否均小于各自对应的阈值,若是,则获取所述无人机当前的加速度方差;Determine whether the acceleration differential modulus and the angular velocity differential modulus are both less than their respective corresponding thresholds, and if so, obtain the current acceleration variance of the drone;
判断所述加速度方差是否小于对应的阈值,若是,则获取该无人机当前的零速区间检测结果。It is determined whether the acceleration variance is less than the corresponding threshold value. If so, the current zero-speed interval detection result of the drone is obtained.
在本申请的一些实施例中,所述误差参数组中包含有:所述无人机的惯性传感器的非正交轴误差旋转角度、零点偏移和尺度参数。In some embodiments of the present application, the error parameter group includes: non-orthogonal axis error rotation angle, zero point offset and scale parameter of the inertial sensor of the drone.
在本申请的一些实施例中,在所述根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值之前,还包括:In some embodiments of the present application, before detecting whether the drone is currently in a stationary state after rotation according to the zero-speed interval detection method of the preset multi-criteria, and if so, obtaining the initial parameter value of the error parameter group to be calibrated of the accelerometer of the drone, it also includes:
根据无人机所在地的当地纬度值和当地海拔高度值确定该无人机的当地重力加速度;Determine the local gravity acceleration of the drone according to the local latitude value and the local altitude value of the drone location;
以及,建立所述无人机的加速度计的误差模型;and, establishing an error model of the accelerometer of the drone;
相对应的,所述基于所述误差参数组的参数初值,对所述误差参数组对应的惯性传感器的各项误差分别进行标定,包括:Correspondingly, the various errors of the inertial sensor corresponding to the error parameter group are calibrated based on the initial parameter values of the error parameter group, including:
将所述无人机的惯性传感器的非正交轴误差旋转角度的初值设置为0;The initial value of the non-orthogonal axis error rotation angle of the inertial sensor of the UAV is set to 0;
对所述加速度计的误差模型进行简化处理,并基于对有的简化处理结果生成所述惯性传感器的零点偏移的初值;Simplifying the error model of the accelerometer, and generating an initial value of the zero point offset of the inertial sensor based on the simplified processing result;
以及,根据所述当地重力加速度生成所述惯性传感器的尺度参数的初值;and, generating an initial value of a scale parameter of the inertial sensor according to the local gravitational acceleration;
基于所述非正交轴误差旋转角度的初值、所述零点偏移的初值和所述尺度参数的初值生成误差参数组的参数初值;Generate initial values of parameters of an error parameter group based on the initial value of the non-orthogonal axis error rotation angle, the initial value of the zero point offset and the initial value of the scale parameter;
采用所述误差参数组的参数初值对所述非正交轴误差旋转角度、所述零点偏移及所述尺度参数分别进行标定。The initial values of the parameters of the error parameter group are used to calibrate the non-orthogonal axis error rotation angle, the zero point offset and the scale parameter respectively.
在本申请的一些实施例中,所述采用所述误差参数组的参数初值对所述非正交轴误差旋转角度、所述零点偏移及所述尺度参数分别进行标定,包括:In some embodiments of the present application, the use of the initial values of the parameters of the error parameter group to calibrate the non-orthogonal axis error rotation angle, the zero point offset and the scale parameter respectively includes:
获取所述误差参数组的非线性最小二乘回归拟合优化函数;Obtaining a nonlinear least squares regression fitting optimization function of the error parameter group;
基于信赖域Dogleg算法对所述非线性最小二乘回归拟合优化函数进行优化,并基于所述误差参数组的参数初值对优化后的非线性最小二乘回归拟合优化函数进行迭代,以得到所述非正交轴误差旋转角度、所述零点偏移及所述尺度参数对应的标定结果。The nonlinear least squares regression fitting optimization function is optimized based on the trust region Dogleg algorithm, and the optimized nonlinear least squares regression fitting optimization function is iterated based on the initial parameter values of the error parameter group to obtain the calibration results corresponding to the non-orthogonal axis error rotation angle, the zero point offset and the scale parameter.
在本申请的一些实施例中,所述自动判定对应的标定结果是否为已完成状态,包括:In some embodiments of the present application, the automatically determining whether the corresponding calibration result is in a completed state includes:
基于预设的标定精度因子,自动判定所述惯性传感器的各项误差对应的标定结果是否为已完成状态。Based on a preset calibration accuracy factor, it is automatically determined whether the calibration results corresponding to the various errors of the inertial sensor are in a completed state.
本申请的另一个方面提供了一种加速度计现场标定装置,包括:Another aspect of the present application provides an accelerometer field calibration device, comprising:
零速区间检测模块,用于根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值;The zero-speed interval detection module is used to detect whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method. If so, the initial value of the error parameter group of the accelerometer of the drone to be calibrated is obtained;
误差标定及结果判定模块,用于基于所述误差参数组的参数初值,对所述误差参数组对应的惯性传感器的各项误差分别进行标定,并自动判定对应的标定结果是否为已完成状态。The error calibration and result determination module is used to calibrate the various errors of the inertial sensor corresponding to the error parameter group based on the initial parameter values of the error parameter group, and automatically determine whether the corresponding calibration result is in a completed state.
本申请的另一个方面提供了一种电子设备,包括存储器、包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述的加速度计现场标定方法。Another aspect of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the accelerometer field calibration method when executing the computer program.
本申请的另一个方面提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述的加速度计现场标定方法。Another aspect of the present application provides a computer-readable storage medium having a computer program stored thereon, and the computer program implements the accelerometer field calibration method when executed by a processor.
本申请的加速度计现场标定方法,根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,能够实现加速度计的零速区间检测的精确、快速判别,能够有效提高加速度计的零速区间检测的效率及精确度,进而能够有效提高加速度计现场标定误差参数的效率及精度;且由于不需要采用机器学习等方式,因此不需要进行复杂运算,也不需要采用大量数据训练,因此能够更进一步地提高加速度计现场标定误差参数的效率;通过自动判定惯性传感器的误差标定结果是否为已完成状态,能够有效解决标定完成状态需要人工判定造成标定效率低下、标定时间长的问题,进而能够更进一步提高加速度计现场标定误差参数的效率,并能够有效提高加速度计现场标定误差参数的自动化程度及可靠性。The accelerometer field calibration method of the present application detects whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method, which can realize accurate and rapid judgment of the zero-speed interval detection of the accelerometer, and can effectively improve the efficiency and accuracy of the zero-speed interval detection of the accelerometer, thereby effectively improving the efficiency and accuracy of the error parameters of the accelerometer field calibration; and because there is no need to adopt machine learning and other methods, there is no need to perform complex calculations, nor is there a need to use a large amount of data training, so the efficiency of the accelerometer field calibration error parameters can be further improved; by automatically determining whether the error calibration result of the inertial sensor is in a completed state, it can effectively solve the problem of low calibration efficiency and long calibration time caused by the need for manual determination of the calibration completion state, thereby further improving the efficiency of the accelerometer field calibration error parameters, and can effectively improve the degree of automation and reliability of the accelerometer field calibration error parameters.
本申请的附加优点、目的,以及特征将在下面的描述中将部分地加以阐述,且将对于本领域普通技术人员在研究下文后部分地变得明显,或者可以根据本申请的实践而获知。本申请的目的和其它优点可以通过在说明书以及附图中具体指出的结构实现到并获得。Additional advantages, purposes, and features of the present application will be partially described in the following description, and will become partially apparent to those skilled in the art after studying the following, or may be learned from the practice of the present application. The purposes and other advantages of the present application can be achieved and obtained by the structures specifically pointed out in the specification and the drawings.
本领域技术人员将会理解的是,能够用本申请实现的目的和优点不限于以上具体所述,并且根据以下详细说明将更清楚地理解本申请能够实现的上述和其他目的。Those skilled in the art will understand that the purposes and advantages that can be achieved by the present application are not limited to the above specific description, and the above and other purposes that can be achieved by the present application will be more clearly understood based on the following detailed description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,并不构成对本申请的限定。附图中的部件不是成比例绘制的,而只是为了示出本申请的原理。为了便于示出和描述本申请的一些部分,附图中对应部分可能被放大,即,相对于依据本申请实际制造的示例性装置中的其它部件可能变得更大。在附图中:The drawings described herein are used to provide a further understanding of the present application, constitute a part of the present application, and do not constitute a limitation of the present application. The components in the drawings are not drawn to scale, but are only for the purpose of illustrating the principles of the present application. In order to facilitate the illustration and description of some parts of the present application, the corresponding parts in the drawings may be enlarged, that is, they may become larger relative to other components in the exemplary device actually manufactured according to the present application. In the drawings:
图1为本申请一实施例中的加速度计现场标定方法的总流程示意图。FIG1 is a schematic diagram of the overall flow of an accelerometer field calibration method in an embodiment of the present application.
图2为本申请一实施例中的加速度计现场标定方法的具体流程示意图。FIG. 2 is a schematic diagram of a specific flow chart of an accelerometer field calibration method in an embodiment of the present application.
图3为本申请另一实施例中的加速度计现场标定装置的结构示意图。FIG3 is a schematic structural diagram of an accelerometer field calibration device in another embodiment of the present application.
图4为本申请应用实例提供的基于有限状态机与精度因子的加速度计现场标定方法的整体标定流程示意图。FIG4 is a schematic diagram of the overall calibration process of the accelerometer field calibration method based on the finite state machine and precision factor provided in the application example of the present application.
图5为本申请应用实例提供的基于多准则的零速区间检测的算法流程示意图。FIG5 is a schematic diagram of an algorithm flow of zero-speed interval detection based on multiple criteria provided in an application example of the present application.
图6为本申请应用实例提供的多准则零速区间检测中毛刺现象示意图。FIG6 is a schematic diagram of the burr phenomenon in the multi-criteria zero-speed interval detection provided in the application example of the present application.
图7为本申请应用实例提供的基于多准则的有限状态机零速区间检测状态转移示意图。FIG. 7 is a schematic diagram of the zero-speed interval detection state transition of a finite state machine based on multiple criteria provided in an application example of the present application.
具体实施方式DETAILED DESCRIPTION
为使本申请的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本申请做进一步详细说明。在此,本申请的示意性实施方式及其说明用于解释本申请,但并不作为对本申请的限定。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the implementation modes and the accompanying drawings. Here, the illustrative implementation modes and descriptions of the present application are used to explain the present application, but are not intended to limit the present application.
在此,还需要说明的是,为了避免因不必要的细节而模糊了本申请,在附图中仅仅示出了与根据本申请的方案密切相关的结构和/或处理步骤,而省略了与本申请关系不大的其他细节。It should also be noted here that in order to avoid obscuring the present application due to unnecessary details, only the structures and/or processing steps closely related to the scheme according to the present application are shown in the accompanying drawings, while other details that are not very relevant to the present application are omitted.
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。It should be emphasized that the term “include/comprises” when used herein refers to the presence of features, elements, steps or components, but does not exclude the presence or addition of one or more other features, elements, steps or components.
在此,还需要说明的是,如果没有特殊说明,术语“连接”在本文不仅可以指直接连接,也可以表示存在中间物的间接连接。It should also be noted that, unless otherwise specified, the term “connection” herein may refer not only to a direct connection but also to an indirect connection with an intermediate.
在下文中,将参考附图描述本申请的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。Hereinafter, embodiments of the present application will be described with reference to the accompanying drawings. In the accompanying drawings, the same reference numerals represent the same or similar components, or the same or similar steps.
加速度计现场标定方式之一可以考虑采用最小二乘拟合方法,通过多次翻转,对系统输出惯性数据应用最小二乘拟合的方法求解得到惯性传感器IMU的各项误差系数。然而,该方式采集惯性数据时间长,耗时大,操作繁琐,容易人为造成误差,影响标定精度。One of the methods for on-site calibration of accelerometers is to use the least squares fitting method. By repeatedly flipping the system output inertial data, the least squares fitting method is applied to solve the various error coefficients of the inertial sensor IMU. However, this method takes a long time to collect inertial data, is time-consuming, and has cumbersome operations. It is easy to cause errors caused by human intervention, which affects the calibration accuracy.
加速度计现场标定方式之二可以考虑采用深度学习的方法,以MEMS加速度计的测量输出信息为输入,利用深度学习算法进行误差补偿,能够预测出MEMS惯导的关键误差参数。然而,深度学习的方法计算量大,网络复杂,对数据量要求大,深度学习网络的好坏也会影响标定结果。The second method of accelerometer on-site calibration is to consider using deep learning methods, taking the measured output information of the MEMS accelerometer as input, using deep learning algorithms for error compensation, and being able to predict the key error parameters of the MEMS inertial navigation. However, the deep learning method has a large amount of calculation, a complex network, and a large amount of data requirements. The quality of the deep learning network will also affect the calibration results.
也就是说,现有的惯性传感器IMU的误差检测方法均存在精确度差且效率低等问题。That is to say, the existing error detection methods of inertial sensors IMU have problems such as poor accuracy and low efficiency.
基于此,为了解决现有的加速度计现场标定方法存在的检测精度差而导致标定参数精度差、检测过程复杂或耗时长而导致的检测效率低等问题,本申请分别提供一种加速度计现场标定方法、用于执行该加速度计现场标定方法的加速度计现场标定装置、作为加速度计现场标定装置的实体的电子设备以及存储介质,其中的加速度计现场标定方法根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,能够实现加速度计的零速区间检测的精确、快速判别,能够有效提高加速度计的零速区间检测的效率及精确度,进而能够有效提高加速度计现场标定误差参数的效率及精度;且由于不需要采用机器学习等方式,因此不需要进行复杂运算,也不需要采用大量数据训练,因此能够更进一步地提高加速度计现场标定误差参数的效率;通过自动判定惯性传感器的误差标定结果是否为已完成状态,能够有效解决标定完成状态需要人工判定造成标定效率低下、标定时间长的问题,进而能够更进一步提高加速度计现场标定误差参数的效率,并能够有效提高加速度计现场标定误差参数的自动化程度及可靠性。Based on this, in order to solve the problems of poor detection accuracy in existing accelerometer field calibration methods, resulting in poor calibration parameter accuracy, and low detection efficiency due to complex or time-consuming detection process, the present application provides an accelerometer field calibration method, an accelerometer field calibration device for executing the accelerometer field calibration method, an electronic device as an entity of the accelerometer field calibration device, and a storage medium. The accelerometer field calibration method detects whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method, and can achieve accurate and rapid judgment of the accelerometer's zero-speed interval detection, which can effectively improve the accelerometer's zero-speed interval detection efficiency. The efficiency and accuracy of time detection can be improved, thereby effectively improving the efficiency and accuracy of on-site calibration error parameters of the accelerometer; and since there is no need to adopt machine learning and other methods, there is no need to perform complex calculations or use a large amount of data training, thereby further improving the efficiency of on-site calibration error parameters of the accelerometer; by automatically determining whether the error calibration result of the inertial sensor is in a completed state, it can effectively solve the problem of low calibration efficiency and long calibration time caused by the need for manual determination of the calibration completion state, thereby further improving the efficiency of on-site calibration error parameters of the accelerometer, and effectively improving the degree of automation and reliability of on-site calibration error parameters of the accelerometer.
在本申请的一个或多个实施例中,IMU是指惯性测量单元或者惯性传感器。In one or more embodiments of the present application, IMU refers to an inertial measurement unit or an inertial sensor.
基于上述内容,本申请还提供一种用于实现本申请一个或多个实施例中提供的加速度计现场标定方法的加速度计现场标定装置,该加速度计现场标定装置可以为一服务器,该加速度计现场标定装置可以自行或通过第三方服务器等与无人机及控制站等之间通信连接,以获取无人机对应的各项传感数据,并根据这些数据执行本申请实施例中提及的加速度计现场标定方法,并在得到最终的标定结果之后,可以将标定结果发送至控制站或者运维人员持有的客户端设备等中进行显示,以使运维人员及时获知并分析标定结果。Based on the above content, the present application also provides an accelerometer field calibration device for implementing the accelerometer field calibration method provided in one or more embodiments of the present application. The accelerometer field calibration device can be a server. The accelerometer field calibration device can communicate with the drone and the control station by itself or through a third-party server, etc. to obtain various sensor data corresponding to the drone, and execute the accelerometer field calibration method mentioned in the embodiments of the present application based on these data. After obtaining the final calibration result, the calibration result can be sent to the control station or the client device held by the operation and maintenance personnel for display, so that the operation and maintenance personnel can promptly know and analyze the calibration result.
另外,所述加速度计现场标定装置进行加速度计现场标定的部分可以在如上述内容的服务器中执行,而在另一种实际应用情形中,也可以所有的操作都在客户端设备中完成。具体可以根据所述客户端设备的处理能力,以及用户使用场景的限制等进行选择。本申请对此不作限定。若所有的操作都在所述客户端设备中完成,所述客户端设备还可以包括处理器,用于加速度计现场标定的具体处理。In addition, the part of the accelerometer field calibration device that performs the accelerometer field calibration can be executed in the server as described above, and in another practical application scenario, all operations can also be completed in the client device. The specific selection can be based on the processing capability of the client device and the limitations of the user's usage scenario. This application does not limit this. If all operations are completed in the client device, the client device may also include a processor for specific processing of the accelerometer field calibration.
上述的客户端设备可以具有通信模块(即通信单元),可以与远程的服务器进行通信连接,实现与所述服务器的数据传输。所述服务器可以包括任务调度中心一侧的服务器,其他的实施场景中也可以包括中间平台的服务器,例如与任务调度中心服务器有通信链接的第三方服务器平台的服务器。所述的服务器可以包括单台计算机设备,也可以包括多个服务器组成的服务器集群,或者分布式装置的服务器结构。The client device may have a communication module (i.e., a communication unit) that can communicate with a remote server to achieve data transmission with the server. The server may include a server on the task scheduling center side, and other implementation scenarios may also include a server on an intermediate platform, such as a server on a third-party server platform that has a communication link with the task scheduling center server. The server may include a single computer device, or a server cluster consisting of multiple servers, or a server structure of a distributed device.
上述服务器与所述客户端设备端之间可以使用任何合适的网络协议进行通信,包括在本申请提交日尚未开发出的网络协议。所述网络协议例如可以包括TCP/IP协议、 UDP/IP协议、HTTP协议、HTTPS协议等。当然,所述网络协议例如还可以包括在上述协议之上使用的RPC协议(Remote Procedure Call Protocol,远程过程调用协议)、REST 协议(Representational State Transfer,表述性状态转移协议)等。The server and the client device may communicate with each other using any suitable network protocol, including network protocols that have not been developed on the date of filing this application. The network protocols may include, for example, TCP/IP protocol, UDP/IP protocol, HTTP protocol, HTTPS protocol, etc. Of course, the network protocols may also include, for example, RPC protocol (Remote Procedure Call Protocol) and REST protocol (Representational State Transfer) used on top of the above protocols.
具体通过下述各个实施例及应用实例分别进行详细说明。The details are described in detail through the following embodiments and application examples.
为了解决现有的零速区间检测方式均存在精确度差且效率低等问题,因此也会导致现有的加速度计现场标定惯性传感器IMU的误差参数的方式也存在精确度差且效率低等问题,本申请提供一种加速度计现场标定方法的实施例,参见图1,基于所述加速度计现场标定装置执行的所述加速度计现场标定方法具体包含有如下内容:In order to solve the problems of poor accuracy and low efficiency in the existing zero-speed interval detection methods, which also lead to the problems of poor accuracy and low efficiency in the existing methods of calibrating the error parameters of the inertial sensor IMU on-site by the accelerometer, the present application provides an embodiment of an accelerometer on-site calibration method, referring to FIG1, the accelerometer on-site calibration method performed by the accelerometer on-site calibration device specifically includes the following contents:
步骤100:根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值。Step 100: Detect whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method. If so, obtain the initial parameter values of the error parameter group to be calibrated of the accelerometer of the drone.
在步骤100中,若根据预设的多准则的零速区间检测方式检测无人机当前未处于旋转后静止状态,则不进行后续执行,可以在预设时间间隔后再次重新执行步骤100,直至确定无人机当前处于旋转后静止状态。In step 100, if it is detected that the drone is not currently in a stationary state after rotation according to the preset multi-criteria zero-speed interval detection method, no subsequent execution is performed, and step 100 can be re-executed after a preset time interval until it is determined that the drone is currently in a stationary state after rotation.
可以理解的是,在步骤100中提及的旋转后静止状态是指无人机从旋转状态中转换到静止状态,用于区分无人机未运行的初始静止状态。It can be understood that the post-rotation static state mentioned in step 100 refers to the transition of the drone from a rotating state to a static state, which is used to distinguish the initial static state of the drone when it is not in operation.
另外,所述多准则的零速区间检测方式是指采用多种检测标准或准则来进行无人机当前是否处于零速区间(即:旋转后的静止状态)的方式。In addition, the multi-criteria zero-speed interval detection method refers to a method of using multiple detection standards or criteria to determine whether the drone is currently in a zero-speed interval (ie, a stationary state after rotation).
在本申请的一个或多个实施例中,所述误差参数组中包含有惯性传感器的多项误差参数,可以理解的是,所述误差参数组的参数初值是指所述误差参数组中的每一个误差参数各自对应的初值。In one or more embodiments of the present application, the error parameter group includes multiple error parameters of the inertial sensor. It can be understood that the initial value of the parameter of the error parameter group refers to the initial value corresponding to each error parameter in the error parameter group.
步骤200:基于所述误差参数组的参数初值,对所述误差参数组对应的惯性传感器的各项误差分别进行标定,并自动判定对应的标定结果是否为已完成状态。Step 200: Based on the initial parameter values of the error parameter group, calibrate the errors of the inertial sensor corresponding to the error parameter group respectively, and automatically determine whether the corresponding calibration result is in a completed state.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,通过根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,能够实现加速度计的零速区间检测的精确、快速判别,能够有效提高加速度计的零速区间检测的效率及精确度,进而能够有效提高加速度计现场标定误差参数的效率及精度;且由于不需要采用机器学习等方式,因此不需要进行复杂运算,也不需要采用大量数据训练,因此能够更进一步地提高加速度计现场标定误差参数的效率;通过自动判定惯性传感器的误差标定结果是否为已完成状态,能够有效解决标定完成状态需要人工判定造成标定效率低下、标定时间长的问题,进而能够更进一步提高加速度计现场标定误差参数的效率,并能够有效提高加速度计现场标定误差参数的自动化程度及可靠性。From the above description, it can be seen that the accelerometer field calibration method provided in the embodiment of the present application can realize accurate and rapid judgment of the zero-speed interval detection of the accelerometer by detecting whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method, and can effectively improve the efficiency and accuracy of the zero-speed interval detection of the accelerometer, thereby effectively improving the efficiency and accuracy of the error parameters of the accelerometer field calibration; and since there is no need to adopt machine learning and other methods, there is no need to perform complex calculations, nor is there a need to use a large amount of data training, so the efficiency of the accelerometer field calibration error parameters can be further improved; by automatically determining whether the error calibration result of the inertial sensor is in a completed state, it can effectively solve the problem of low calibration efficiency and long calibration time caused by the need for manual determination of the calibration completion state, thereby further improving the efficiency of the accelerometer field calibration error parameters, and can effectively improve the degree of automation and reliability of the accelerometer field calibration error parameters.
为了进一步有效提高加速度计的零速区间检测的效率及精确度,在本申请提供的一种加速度计现场标定方法的实施例中,参见图2,所述加速度计现场标定方法的步骤100具体包含有如下内容:In order to further effectively improve the efficiency and accuracy of the zero-speed interval detection of the accelerometer, in an embodiment of an accelerometer field calibration method provided in the present application, referring to FIG. 2 , step 100 of the accelerometer field calibration method specifically includes the following contents:
步骤110:根据无人机当前的加速度差分模值、角速度差分模值和加速度方差获取该无人机当前的零速区间检测结果。Step 110: Obtain the current zero-speed interval detection result of the drone according to the current acceleration differential modulus, angular velocity differential modulus and acceleration variance of the drone.
步骤120:基于有限状态机筛除所述零速区间检测结果中的毛刺数据,以得到对应的目标检测结果。Step 120: Screening out burr data in the zero-speed interval detection result based on a finite state machine to obtain a corresponding target detection result.
可以理解的是,在实际情况下,由于加速度计和陀螺仪在运动与静止状态切换过程中数据跳变比较激烈,导致静态区间存在判断失误问题,多准则的零速区间判断存在部分毛刺现象。为此提出了零速区间检测状态机通过去除了零速区间时间长度小于1.5秒的数据(即毛刺数据),提升了零速区间检测的准确性。It is understandable that in actual situations, due to the intense data jumps of the accelerometer and gyroscope during the switching between motion and static states, there are misjudgment problems in the static interval, and there are some glitches in the multi-criteria zero-speed interval judgment. For this reason, a zero-speed interval detection state machine is proposed to improve the accuracy of zero-speed interval detection by removing data with a zero-speed interval time length of less than 1.5 seconds (i.e., glitch data).
步骤130:若所述目标检测结果显示所述无人机当前处于旋转后静止状态,则获取该无人机的加速度计当前待标定的误差参数组的参数初值。Step 130: If the target detection result shows that the UAV is currently in a stationary state after rotation, the initial parameter values of the error parameter group to be calibrated of the accelerometer of the UAV are obtained.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,通过根据无人机当前的加速度差分模值、角速度差分模值和加速度方差获取该无人机当前的零速区间检测结果,能够进一步实现加速度计的零速区间检测的精确、快速判别,能够进一步有效提高加速度计的零速区间检测的效率及精确度,进而能够有效提高加速度计现场标定误差参数的效率及精度;通过基于有限状态机对所述零速区间检测结果进行数据筛选,以得到对应的目标检测结果,能够有效去除零速区间的毛刺数据(例如:时间长度小于1.5 秒的数据),进一步提升零速区间检测的准确性。From the above description, it can be seen that the accelerometer field calibration method provided in the embodiment of the present application can further realize the accurate and rapid judgment of the zero-speed interval detection of the accelerometer by obtaining the current zero-speed interval detection result of the drone according to the current acceleration differential modulus, angular velocity differential modulus and acceleration variance of the drone, and can further effectively improve the efficiency and accuracy of the zero-speed interval detection of the accelerometer, thereby effectively improving the efficiency and accuracy of the accelerometer field calibration error parameters; by performing data screening on the zero-speed interval detection result based on a finite state machine to obtain the corresponding target detection result, the burr data of the zero-speed interval (for example: data with a time length of less than 1.5 seconds) can be effectively removed, further improving the accuracy of the zero-speed interval detection.
为了进一步降低零速区间检测过程的计算复杂度,并提高检测效率,在本申请提供的一种加速度计现场标定方法的实施例中,所述加速度计现场标定方法的步骤110具体包含有如下内容:In order to further reduce the computational complexity of the zero-speed interval detection process and improve the detection efficiency, in an embodiment of an accelerometer field calibration method provided in the present application, step 110 of the accelerometer field calibration method specifically includes the following contents:
步骤111:获取所述无人机当前的加速度差分模值和角速度差分模值。Step 111: Obtain the current acceleration differential modulus and angular velocity differential modulus of the UAV.
步骤112:判断所述加速度差分模值和角速度差分模值是否均小于各自对应的阈值,若是,则执行步骤113。Step 112: Determine whether the acceleration differential modulus and the angular velocity differential modulus are both smaller than their corresponding thresholds; if so, execute step 113.
步骤113:获取所述无人机当前的加速度方差。Step 113: Obtain the current acceleration variance of the drone.
步骤114:判断所述加速度方差是否小于对应的阈值,若是,则执行步骤115。Step 114: Determine whether the acceleration variance is less than a corresponding threshold value, and if so, execute step 115.
步骤115:获取该无人机当前的零速区间检测结果。Step 115: Obtain the current zero-speed interval detection result of the drone.
具体来说,针对传统现场标定方法中存在零速区间检测精度差、计算复杂等问题,提出了一种基于多准则的有限状态机零速区间检测方法,基于加速度和角速度的差分模值、加速度方差3个判定准则,判断是否处于零速状态。Specifically, in response to the problems of poor zero-speed interval detection accuracy and complex calculation in traditional on-site calibration methods, a zero-speed interval detection method based on a finite state machine with multiple criteria was proposed. The method judged whether the vehicle was in a zero-speed state based on three criteria: the differential modulus of acceleration and angular velocity and the acceleration variance.
为了降低不必要计算,当差分模值判断为非静止状态,则不需要进一步计算方差;当差分模值判断为静止状态,根据方差维度进一步确定是否为静止状态。In order to reduce unnecessary calculations, when the differential modulus value is judged to be a non-stationary state, there is no need to further calculate the variance; when the differential modulus value is judged to be a stationary state, whether it is a stationary state is further determined based on the variance dimension.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,通过先判断所述加速度差分模值和角速度差分模值是否均小于各自对应的阈值,若是,则获取所述无人机当前的加速度方差,能够降低不必要计算,当差分模值判断为非静止状态,则不需要进一步计算方差;当差分模值判断为静止状态,根据方差维度进一步确定是否为静止状态,进而能够进一步降低零速区间检测过程的计算复杂度,并提高检测效率。From the above description, it can be seen that the accelerometer on-site calibration method provided in the embodiment of the present application first determines whether the acceleration differential modulus and the angular velocity differential modulus are both less than their respective corresponding thresholds. If so, the current acceleration variance of the drone is obtained, which can reduce unnecessary calculations. When the differential modulus is judged to be a non-stationary state, there is no need to further calculate the variance; when the differential modulus is judged to be a stationary state, it is further determined whether it is a stationary state based on the variance dimension, thereby further reducing the computational complexity of the zero-speed interval detection process and improving the detection efficiency.
为了进一步提高标定误差的全面性及有效性,在本申请提供的一种加速度计现场标定方法的实施例中,所述加速度计现场标定方法中的所述误差参数组中包含有:所述无人机的惯性传感器的非正交轴误差旋转角度、零点偏移和尺度参数。In order to further improve the comprehensiveness and effectiveness of the calibration error, in an embodiment of an accelerometer field calibration method provided in the present application, the error parameter group in the accelerometer field calibration method includes: non-orthogonal axis error rotation angle, zero point offset and scale parameter of the inertial sensor of the drone.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,所述误差参数组中包含有:所述无人机的惯性传感器的非正交轴误差旋转角度、零点偏移和尺度参数,能够进一步提高标定误差的全面性及有效性,进而能够有效提高MEMS定位精度。From the above description, it can be seen that the accelerometer on-site calibration method provided in the embodiment of the present application, the error parameter group includes: the non-orthogonal axis error rotation angle, zero point offset and scale parameters of the inertial sensor of the drone, which can further improve the comprehensiveness and effectiveness of the calibration error, and thus can effectively improve the MEMS positioning accuracy.
为了提高对所述误差参数组对应的惯性传感器的各项误差分别进行标定的效率及可靠性,在本申请提供的一种加速度计现场标定方法的实施例中,参见图2,所述加速度计现场标定方法的步骤110之前还具体包含有如下内容:In order to improve the efficiency and reliability of calibrating the errors of the inertial sensor corresponding to the error parameter group, in an embodiment of an accelerometer field calibration method provided in the present application, referring to FIG. 2 , the accelerometer field calibration method further specifically includes the following contents before step 110:
步骤010:根据无人机所在地的当地纬度值和当地海拔高度值确定该无人机的当地重力加速度。Step 010: Determine the local gravity acceleration of the UAV according to the local latitude value and the local altitude value of the location of the UAV.
步骤020:建立所述无人机的加速度计的误差模型。Step 020: Establish an error model of the accelerometer of the drone.
相对应的,参见图2,所述加速度计现场标定方法的步骤200具体包含有如下内容:Correspondingly, referring to FIG. 2 , step 200 of the accelerometer on-site calibration method specifically includes the following contents:
步骤210:将所述无人机的惯性传感器的非正交轴误差旋转角度的初值设置为0。Step 210: setting the initial value of the non-orthogonal axis error rotation angle of the inertial sensor of the drone to 0.
步骤220:对所述加速度计的误差模型进行简化处理,并基于对有的简化处理结果生成所述惯性传感器的零点偏移的初值。Step 220: Simplify the error model of the accelerometer, and generate an initial value of the zero offset of the inertial sensor based on the simplified processing result.
步骤230:根据所述当地重力加速度生成所述惯性传感器的尺度参数的初值。Step 230: Generate an initial value of a scale parameter of the inertial sensor according to the local gravity acceleration.
步骤240:基于所述非正交轴误差旋转角度的初值、所述零点偏移的初值和所述尺度参数的初值生成误差参数组的参数初值。Step 240: Generate initial values of parameters of the error parameter group based on the initial value of the non-orthogonal axis error rotation angle, the initial value of the zero point offset and the initial value of the scale parameter.
步骤250:采用所述误差参数组的参数初值对所述非正交轴误差旋转角度、所述零点偏移及所述尺度参数分别进行标定。Step 250: using the initial parameter values of the error parameter group to calibrate the non-orthogonal axis error rotation angle, the zero point offset and the scale parameter respectively.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,通过预先获取重力加速度和误差模型,并对所述加速度计的误差模型进行简化处理,并基于对有的简化处理结果生成所述惯性传感器的零点偏移的初值;以及,根据所述当地重力加速度生成所述惯性传感器的尺度参数的初值,能够有效提高对所述误差参数组对应的惯性传感器的各项误差分别进行标定的效率及可靠性,以进一步提高加速度计现场标定的效率及可靠性。From the above description, it can be seen that the accelerometer field calibration method provided in the embodiment of the present application, by pre-acquiring the gravity acceleration and the error model, and simplifying the error model of the accelerometer, and generating the initial value of the zero point offset of the inertial sensor based on the simplified processing result; and, generating the initial value of the scale parameter of the inertial sensor according to the local gravity acceleration, can effectively improve the efficiency and reliability of calibrating each error of the inertial sensor corresponding to the error parameter group, so as to further improve the efficiency and reliability of the accelerometer field calibration.
为了解决计算过程中高斯牛顿计算步长过程中出现海森矩阵(Hessian)非正定不可逆的问题,在本申请提供的一种加速度计现场标定方法的实施例中,所述加速度计现场标定方法的步骤250具体包含有如下内容:In order to solve the problem that the Hessian matrix (Hessian) is non-positive definite and irreversible in the Gauss-Newton calculation step process during the calculation process, in an embodiment of an accelerometer field calibration method provided by the present application, step 250 of the accelerometer field calibration method specifically includes the following content:
步骤251:获取所述误差参数组的非线性最小二乘回归拟合优化函数。Step 251: Obtain a nonlinear least squares regression fitting optimization function of the error parameter group.
步骤252:基于信赖域Dogleg算法对所述非线性最小二乘回归拟合优化函数进行优化,并基于所述误差参数组的参数初值对优化后的非线性最小二乘回归拟合优化函数进行迭代,以得到所述非正交轴误差旋转角度、所述零点偏移及所述尺度参数对应的标定结果。Step 252: Optimize the nonlinear least squares regression fitting optimization function based on the trust region Dogleg algorithm, and iterate the optimized nonlinear least squares regression fitting optimization function based on the initial parameter values of the error parameter group to obtain the calibration results corresponding to the non-orthogonal axis error rotation angle, the zero point offset and the scale parameter.
可以理解的是,所述信赖域Dogleg算法具体可以指信赖域算法中的Dogleg算法,信赖域算法(Trust-region methods)又称为TR方法,它是一种最优化方法,能够保证最优化方法总体收敛。It can be understood that the trust-region Dogleg algorithm may specifically refer to the Dogleg algorithm in the trust-region algorithm. The trust-region algorithm (Trust-region methods) is also called the TR method, which is an optimization method that can ensure the overall convergence of the optimization method.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,通过基于信赖域Dogleg算法对所述非线性最小二乘回归拟合优化函数进行优化,并基于所述误差参数组的参数初值对优化后的非线性最小二乘回归拟合优化函数进行迭代,能够有效解决计算过程中高斯牛顿计算步长过程中出现海森矩阵(Hessian)非正定不可逆的问题,确保了角速度计标定参数迭代搜索过程的稳定性。From the above description, it can be seen that the accelerometer field calibration method provided in the embodiment of the present application optimizes the nonlinear least squares regression fitting optimization function based on the trust region Dogleg algorithm, and iterates the optimized nonlinear least squares regression fitting optimization function based on the initial parameter values of the error parameter group. It can effectively solve the problem of non-positive definite and irreversible Hessian matrix (Hessian) in the Gauss-Newton calculation step process during the calculation process, thereby ensuring the stability of the iterative search process of the angular velocity meter calibration parameters.
为了提高对所述误差参数组对应的惯性传感器的各项误差分别进行标定的效率及可靠性,在本申请提供的一种加速度计现场标定方法的实施例中,参见图2,所述加速度计现场标定方法的步骤200中的250之后还具体包含有如下内容:In order to improve the efficiency and reliability of calibrating the errors of the inertial sensor corresponding to the error parameter group, in an embodiment of an accelerometer field calibration method provided in the present application, referring to FIG. 2 , the accelerometer field calibration method further specifically includes the following contents after step 250 in step 200:
步骤260:基于预设的标定精度因子,自动判定所述惯性传感器的各项误差对应的标定结果是否为已完成状态。Step 260: Based on a preset calibration accuracy factor, automatically determine whether the calibration results corresponding to the various errors of the inertial sensor are in a completed state.
从上述描述可知,本申请实施例提供的加速度计现场标定方法,通过基于预设的标定精度因子,自动判定所述惯性传感器的各项误差对应的标定结果是否为已完成状态,相对于直接采用残差平方和的标定精度评定方式,所提出的基于标定精度因子的标定状态判别标定与零速区间大小M无关,可以满足不同大小零速区间的标定精度评估,更具有实用价值。From the above description, it can be seen that the accelerometer field calibration method provided in the embodiment of the present application automatically determines whether the calibration results corresponding to the various errors of the inertial sensor are in a completed state based on a preset calibration accuracy factor. Compared with the calibration accuracy assessment method that directly adopts the residual sum of squares, the proposed calibration state judgment calibration based on the calibration accuracy factor is independent of the zero-speed interval size M, can meet the calibration accuracy assessment of zero-speed intervals of different sizes, and is more practical.
针对上述加速度计现场标定方法的实施例,本申请还提供一种用于实现该加速度计现场标定方法的加速度计现场标定装置,参见图3,所述加速度计现场标定装置具体包含有如下内容:In view of the embodiment of the above-mentioned accelerometer field calibration method, the present application also provides an accelerometer field calibration device for implementing the accelerometer field calibration method. Referring to FIG. 3 , the accelerometer field calibration device specifically includes the following contents:
零速区间检测模块10,用于根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,若是,则获取该无人机的加速度计当前待标定的误差参数组的参数初值;The zero-speed interval detection module 10 is used to detect whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method, and if so, obtain the initial value of the error parameter group of the accelerometer of the drone to be calibrated;
误差标定及结果判定模块20,用于基于所述误差参数组的参数初值,对所述误差参数组对应的惯性传感器的各项误差分别进行标定,并自动判定对应的标定结果是否为已完成状态。The error calibration and result determination module 20 is used to calibrate the various errors of the inertial sensor corresponding to the error parameter group based on the initial parameter values of the error parameter group, and automatically determine whether the corresponding calibration result is in a completed state.
从上述描述可知,本申请实施例提供的加速度计现场标定装置,通过根据预设的多准则的零速区间检测方式检测无人机当前是否处于旋转后静止状态,能够实现加速度计的零速区间检测的精确、快速判别,能够有效提高加速度计的零速区间检测的效率及精确度,进而能够有效提高加速度计现场标定误差参数的效率及精度;且由于不需要采用机器学习等方式,因此不需要进行复杂运算,也不需要采用大量数据训练,因此能够更进一步地提高加速度计现场标定误差参数的效率;通过自动判定惯性传感器的误差标定结果是否为已完成状态,能够有效解决标定完成状态需要人工判定造成标定效率低下、标定时间长的问题,进而能够更进一步提高加速度计现场标定误差参数的效率,并能够有效提高加速度计现场标定误差参数的自动化程度及可靠性。From the above description, it can be seen that the accelerometer field calibration device provided in the embodiment of the present application can detect whether the drone is currently in a stationary state after rotation according to a preset multi-criteria zero-speed interval detection method, thereby realizing accurate and rapid judgment of the zero-speed interval detection of the accelerometer, and can effectively improve the efficiency and accuracy of the zero-speed interval detection of the accelerometer, thereby effectively improving the efficiency and accuracy of the accelerometer field calibration error parameters; and since there is no need to adopt machine learning and other methods, there is no need to perform complex calculations, nor is there a need to use a large amount of data training, so the efficiency of the accelerometer field calibration error parameters can be further improved; by automatically determining whether the error calibration result of the inertial sensor is in a completed state, it can effectively solve the problem of low calibration efficiency and long calibration time caused by the need for manual determination of the calibration completion state, thereby further improving the efficiency of the accelerometer field calibration error parameters, and can effectively improve the degree of automation and reliability of the accelerometer field calibration error parameters.
另外,为了进一步说明本申请上述提及的加速度计现场标定方法,本申请还提供一种加速度计现场标定方法的具体应用实例以进一步说明,具体为一种基于有限状态机与精度因子的加速度计现场标定方法,具体说明如下:In addition, in order to further illustrate the accelerometer field calibration method mentioned above in this application, this application also provides a specific application example of the accelerometer field calibration method for further explanation, specifically an accelerometer field calibration method based on a finite state machine and precision factor, which is specifically described as follows:
针对现有的加速度计现场标定方法存在的检测精度差而导致标定参数精度差、检测过程复杂或耗时长而导致的检测效率低等问题,本申请提出一种基于多准则的零速区间检测方法,实现加速度计的零速区间精确、快速判别;针对现有现场标定方法中标定完成状态需要人工判定造成标定效率低下、标定时间长的问题,提出了标定精度因子,对标定状态是否完成进行自动判别。In view of the problems existing in the field calibration methods of accelerometers, such as poor detection accuracy resulting in poor calibration parameter accuracy, and low detection efficiency due to complex or time-consuming detection process, the present application proposes a zero-speed interval detection method based on multiple criteria to achieve accurate and rapid determination of the zero-speed interval of the accelerometer; in view of the problem that in the existing field calibration methods, the calibration completion status needs to be manually determined, resulting in low calibration efficiency and long calibration time, a calibration accuracy factor is proposed to automatically determine whether the calibration status is completed.
参见图4,基于有限状态机与精度因子的加速度计现场标定方法的整体标定流程如下:Referring to FIG4 , the overall calibration process of the accelerometer field calibration method based on the finite state machine and precision factor is as follows:
(一)当地正常重力加速度gl和加速度计误差模型(I) Local normal gravity acceleration g l and accelerometer error model
当地重力加速度gl通常可采用全球水准体表面来确定正常重力场公式近似得到。当地正常重力场公式为:The local gravity acceleration g l can usually be approximated by using the global level surface to determine the normal gravity field formula. The local normal gravity field formula is:
gl=ge[1-0.0053sin2φ+3.0159×10-6sin2(2φ)]-3.0828×10-6h (1)g l =g e [1-0.0053sin 2 φ+3.0159×10 -6 sin 2 (2φ)]-3.0828×10 -6 h (1)
其中,ge为赤道的重力加速度值、φ为当地纬度值、h为当地海拔高度值。Among them, g e is the gravitational acceleration value at the equator, φ is the local latitude value, and h is the local altitude value.
低成本的加速度计的误差模型可表示为:The error model of a low-cost accelerometer can be expressed as:
aI=TaSMa(aO+ba+va) (2)a I =T a SM a (a O + ba +v a ) (2)
其中,aI为正交坐标系IC下的加速度,aO为实际加速度计坐标系AC下的加速度,为加速度计测量噪声,通常假设服从0均值高斯分布,SMa为尺度矩阵, ba为零偏向量。漂移ba通常随时间缓慢变化,通常建模为随机游走,在现场标定过程中,由于标定时间较短,可认为ba是常值。Where aI is the acceleration in the orthogonal coordinate system IC, aO is the acceleration in the actual accelerometer coordinate system AC, is the accelerometer measurement noise, which is usually assumed to obey a zero-mean Gaussian distribution, SMa is the scale matrix, and Ba is the zero bias vector. The drift Ba usually changes slowly over time and is usually modeled as a random walk. During the on-site calibration process, Ba can be considered a constant due to the short calibration time.
(二)基于多准则的有限状态机零速区间检测方法(II) Zero-speed interval detection method based on finite state machine with multiple criteria
针对传统现场标定方法中存在零速区间检测精度差、计算复杂等问题,提出了一种基于多准则的有限状态机零速区间检测方法,基于加速度和角速度的差分模值、加速度方差3个判定准则,判断是否处于零速状态。Aiming at the problems of poor detection accuracy and complex calculation of zero-speed interval in traditional on-site calibration methods, a zero-speed interval detection method based on a finite state machine with multiple criteria was proposed. The method judged whether the vehicle was in the zero-speed state based on three criteria: the differential modulus of acceleration and angular velocity and the acceleration variance.
为了降低不必要计算,当差分模值判断为非静止状态,则不需要进一步计算方差;当差分模值判断为静止状态,根据方差维度进一步确定是否为静止状态,综上所述,基于多准则的零速区间检测的算法流程图如图5所示。In order to reduce unnecessary calculations, when the differential modulus value is judged to be a non-stationary state, there is no need to further calculate the variance; when the differential modulus value is judged to be a stationary state, whether it is a stationary state is further determined according to the variance dimension. In summary, the algorithm flow chart of zero-speed interval detection based on multiple criteria is shown in Figure 5.
以加速度计为例,对基于差分的无人机运动状态判定有效性进行分析,首先对公式 (2)相邻两个采样时刻作差可以得到:Taking the accelerometer as an example, the effectiveness of the differential-based UAV motion state determination is analyzed. First, the difference between two adjacent sampling moments in formula (2) can be obtained:
在无人机静止状态下等式左边应为0向量,因为矩阵SMaTa不为零矩阵,因此可以得到:When the drone is stationary, the left side of the equation should be a 0 vector, because the matrix SM a T a is not a zero matrix, so we can get:
在无人机静止状态下,上式满足不等式:When the drone is stationary, the above equation satisfies the inequality:
其中tha为无人机静止状态判断阈值,其选取与加速度计的随机游走和高斯白噪声等相关联。Where th a is the threshold for judging the stationary state of the drone, and its selection is related to the random walk and Gaussian white noise of the accelerometer.
3种判定准则检测方法如下:The three criteria for detection are as follows:
(1)加速度计差分模值(1) Accelerometer differential modulus
无人机在静止状态下,加速度计的输出值差分模值应小于设定的阈值tha,可以得到t时刻的加速度计差分输出值模值为:When the drone is stationary, the differential modulus of the accelerometer output value should be less than the set threshold value th a , and the differential modulus of the accelerometer output value at time t can be obtained. for:
则判断无人机是否静止状态准则可表示为:The criterion for judging whether the drone is stationary can be expressed as:
(2)加速度计方差(2) Accelerometer variance
无人机在静止条件下,加速度计输出值的方差应小于设定的阈值通过加速度计的样本方差近似加速度计方差,可以得到:When the drone is stationary, the variance of the accelerometer output value should be less than the set threshold By approximating the accelerometer variance with the sample variance of the accelerometer, we can obtain:
其中w为窗口大小,为窗口内平均值,定义为:Where w is the window size, is the average value within the window, defined as:
则判断无人机是否静止状态准则可表示为:The criterion for judging whether the drone is stationary can be expressed as:
(3)陀螺仪差分模值(3) Gyroscope differential modulus
无人机在静止条件下,陀螺仪的输出值差分模值应小于设定的阈值thη,可以得到t时刻的加速度计差分输出值模值为:When the drone is stationary, the differential modulus of the gyroscope output value should be less than the set threshold th η , and the differential output modulus of the accelerometer at time t can be obtained for:
则判断无人机是否静止状态准则可表示为:The criterion for judging whether the drone is stationary can be expressed as:
其中,图5中差分模值的判断准则为和的逻辑与。在实际情况下,由于加速度计和陀螺仪在运动与静止状态切换过程中数据跳变比较激烈,导致静态区间存在判断失误问题,参见图6,多准则的零速区间判断存在部分毛刺现象。为此提出了零速区间检测状态机,状态转移如图7所示,通过去除了零速区间时间长度小于1.5秒的数据,提升了零速区间检测的准确性。Among them, the judgment criterion of the differential modulus value in Figure 5 is and In actual situations, due to the intense data jumps of the accelerometer and gyroscope during the switching between motion and static states, there are misjudgment problems in the static interval. See Figure 6. There are some glitches in the multi-criteria zero-speed interval judgment. For this reason, a zero-speed interval detection state machine is proposed. The state transition is shown in Figure 7. By removing the data with a zero-speed interval time length of less than 1.5 seconds, the accuracy of zero-speed interval detection is improved.
(三)零点偏移和尺度参数初值(III) Zero point offset and initial value of scale parameters
针对信赖域Dogleg算法参数估计精度与误差参数初值设定相关,通常加速度计的非正交轴误差较小,非正交旋转角度在0附近,所以可以选择非正交轴误差旋转角度的初值为0,即αyz=αzy=αzx=0。因此,在初值确定过程中,可以简化公式(2)的加速度计误差模型为:The parameter estimation accuracy of the trust region Dogleg algorithm is related to the initial value setting of the error parameter. Usually, the non-orthogonal axis error of the accelerometer is small, and the non-orthogonal rotation angle is near 0, so the initial value of the non-orthogonal axis error rotation angle can be selected as 0, that is, α yz = α zy = α zx = 0. Therefore, in the process of determining the initial value, the accelerometer error model of formula (2) can be simplified as:
当加速度计竖直向上与重力加速度方向一致时,由于尺度参数和不为0,则零点偏移初值为:When the accelerometer is pointing vertically upward in the same direction as the gravity acceleration, due to the scale parameter and If it is not 0, the initial value of zero offset is:
然后根据当地重力加速度确定尺度参数和 Then the scale parameter is determined according to the local gravitational acceleration and
(四)基于信赖域Dogleg的加速度现场标定方法(IV) Acceleration field calibration method based on trust region Dogleg
加速度计标定需要估计零偏、尺度和非正交轴偏差,共9个参数:Accelerometer calibration requires estimation of zero bias, scale, and non-orthogonal axis deviation, a total of 9 parameters:
非线性最小二乘回归拟合优化函数,如公式(17)所示:The nonlinear least squares regression fitting optimization function is shown in formula (17):
式中||·||2表示欧几里得范数,M为零速区间内采样点数量,表示k时刻加速度计采样值,gl为当地重力加速度。Where ||·|| 2 represents the Euclidean norm, M is the number of sampling points in the zero-speed interval, represents the accelerometer sampling value at time k, and g l is the local gravity acceleration.
针对计算过程中高斯牛顿计算步长过程中出现海森矩阵(Hessian)非正定不可逆的问题,基于奇异值分解法(Singular Value Decomposition,SVD),提出了改进的信赖域Dogleg算法,确保了角速度计标定参数迭代搜索过程的稳定性。Aiming at the problem that the Hessian matrix is non-positive definite and irreversible during the Gauss-Newton calculation step, an improved trust region Dogleg algorithm is proposed based on the singular value decomposition (SVD) method to ensure the stability of the iterative search process of the angular velocity meter calibration parameters.
根据信赖域Dogleg算法,定义函数F(ea)为:According to the trust region Dogleg algorithm, the function F(e a ) is defined as:
F(ea)=[f1(ea) f2(ea) …fM(ea)] (18)F(e a )=[f 1 (e a ) f 2 (e a ) ...f M (e a )] (18)
其中函数fk(ea)定义为:The function f k (e a ) is defined as:
则公式(17)对应的优化问题等价为:Then the optimization problem corresponding to formula (17) is equivalent to:
其中,信赖域Dogleg算法迭代过程如表1所示。The iterative process of the trust region Dogleg algorithm is shown in Table 1.
表1Table 1
其中迭代终止条件可以选取无穷小的阈值th1,th2,th3,例如10-11,阈值的选取与最终迭代精度无关。The iteration termination condition may be selected as infinitesimal thresholds th 1 , th 2 , th 3 , such as 10 −11 . The selection of the thresholds has nothing to do with the final iteration accuracy.
(五)基于标定精度因子的标定状态判别(V) Calibration status determination based on calibration accuracy factor
传统方法常采用基于残差平方和的判定方法,但是残差平方和大小与零速区间采样数M有关,无法正确表征标定误差。为了实现对加速度计参数标定能力进行评价,实现标定状态的自动判别。首先分析公式(17)中残差的统计特性,推导残差的期望,证明期望与M间关系,提出了标定精度因子,实现了标定状态的自动判别。Traditional methods often use a judgment method based on the residual sum of squares, but the size of the residual sum of squares is related to the number of zero-speed interval sampling M, and cannot correctly characterize the calibration error. In order to evaluate the calibration capability of accelerometer parameters and realize automatic discrimination of calibration status, the statistical characteristics of the residual in formula (17) are first analyzed, the expectation of the residual is derived, the relationship between the expectation and M is proved, the calibration accuracy factor is proposed, and the automatic discrimination of the calibration status is realized.
根据加速度计的误差模型,假定满足独立零均值同方差的高斯分布,则校正后的应满足高斯分布,即其中定义为:According to the accelerometer error model, it is assumed that Satisfying the independent zero mean homoscedastic Gaussian distribution, the corrected Should satisfy Gaussian distribution, that is in Defined as:
通常情况下,尺度非常接近于1,为此可近似等价为由于校正后XYZ轴的均值不一致,且在标定过程中个,无法确定重力加速度在XYZ轴上的真实投影,因此不具备解析形式的概率密度函数。为此分析了残差平方和的均值,基于该均值与M之间关系,提出了无关零速区间大小的标定精度因子,用于标定状态判断。Usually, the scale is very close to 1, so It can be approximately equivalent to Since the mean values of the XYZ axes are inconsistent after correction, and the true projection of the gravity acceleration on the XYZ axes cannot be determined during the calibration process, The probability density function does not have an analytical form. For this reason, the mean of the residual sum of squares is analyzed, and based on the relationship between the mean and M, a calibration accuracy factor that is independent of the size of the zero-speed interval is proposed for calibration state judgment.
定义标定精度因子为r:Define the calibration precision factor as r:
标定精度因子与零速区间大小M无关,可以满足不同大小零速区间的标定精度评估,相对于直接采用残差平方和,更具有实用价值。标定精度因子越小,则表示标定精度越高。当标定精度因子下降平缓时,可以认为标定完成。The calibration precision factor has nothing to do with the size of the zero-speed interval M, and can meet the calibration precision evaluation of zero-speed intervals of different sizes. Compared with directly using the residual sum of squares, it has more practical value. The smaller the calibration precision factor, the higher the calibration precision. When the calibration precision factor decreases gently, the calibration can be considered completed.
综上所述,本申请应用实例确地判断出零速空间,减少毛刺影响,具体为基于多准则的有限状态机零速区间检测方法可以更加精确地判断出零速空间;且本申请应用实例相对于直接采用残差平方和的标定精度评定方式,所提出的基于标定精度因子的标定状态判别标定与零速区间大小M无关,可以满足不同大小零速区间的标定精度评估,更具有实用价值,是一种更加有效,实用的标定精度因子的标定状态判断方法。To sum up, the application example of the present application can accurately determine the zero-speed space and reduce the influence of burrs. Specifically, the zero-speed interval detection method of the finite state machine based on multiple criteria can more accurately determine the zero-speed space; and compared with the calibration accuracy assessment method that directly adopts the residual sum of squares, the calibration state judgment method based on the calibration accuracy factor proposed in the application example of the present application is independent of the zero-speed interval size M, can meet the calibration accuracy assessment of zero-speed intervals of different sizes, has more practical value, and is a more effective and practical calibration state judgment method of the calibration accuracy factor.
本申请实施例还提供了一种计算机设备(也即电子设备),该计算机设备可以包括处理器、存储器、接收器及发送器,处理器用于执行上述实施例提及的加速度计现场标定方法,其中处理器和存储器可以通过总线或者其他方式连接,以通过总线连接为例。该接收器可通过有线或无线方式与处理器、存储器连接。所述计算机设备与加速度计现场标定装置之间通信连接,以自所述无线多媒体传感器网络中的传感器接收实时运动数据,并自所述视频采集装置接收原始视频序列。The embodiment of the present application also provides a computer device (i.e., an electronic device), which may include a processor, a memory, a receiver, and a transmitter, wherein the processor is used to execute the accelerometer field calibration method mentioned in the above embodiment, wherein the processor and the memory may be connected via a bus or other means, with the bus connection being taken as an example. The receiver may be connected to the processor and the memory via a wired or wireless manner. The computer device is communicatively connected to the accelerometer field calibration device to receive real-time motion data from sensors in the wireless multimedia sensor network, and to receive original video sequences from the video acquisition device.
处理器可以为中央处理器(Central Processing Unit,CPU)。处理器还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array, FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。The processor may be a central processing unit (CPU). The processor may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or a combination of the above chips.
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的加速度计现场标定方法对应的程序指令/模块。处理器通过运行存储在存储器中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的加速度计现场标定方法。As a non-transient computer-readable storage medium, the memory can be used to store non-transient software programs, non-transient computer executable programs and modules, such as the program instructions/modules corresponding to the accelerometer field calibration method in the embodiment of the present application. The processor executes various functional applications and data processing of the processor by running the non-transient software programs, instructions and modules stored in the memory, that is, the accelerometer field calibration method in the above method embodiment is implemented.
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory may include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application required by at least one function; the data storage area may store data created by the processor, etc. In addition, the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one disk storage device, a flash memory device, or other non-transitory solid-state storage device. In some embodiments, the memory may optionally include a memory remotely arranged relative to the processor, and these remote memories may be connected to the processor via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
所述一个或者多个模块存储在所述存储器中,当被所述处理器执行时,执行实施例中的加速度计现场标定方法。The one or more modules are stored in the memory, and when executed by the processor, the accelerometer field calibration method in the embodiment is executed.
在本申请的一些实施例中,用户设备可以包括处理器、存储器和收发单元,该收发单元可包括接收器和发送器,处理器、存储器、接收器和发送器可通过总线系统连接,存储器用于存储计算机指令,处理器用于执行存储器中存储的计算机指令,以控制收发单元收发信号。In some embodiments of the present application, the user equipment may include a processor, a memory, and a transceiver unit, which may include a receiver and a transmitter. The processor, memory, receiver, and transmitter may be connected through a bus system. The memory is used to store computer instructions, and the processor is used to execute the computer instructions stored in the memory to control the transceiver unit to send and receive signals.
作为一种实现方式,本申请中接收器和发送器的功能可以考虑通过收发电路或者收发的专用芯片来实现,处理器可以考虑通过专用处理芯片、处理电路或通用芯片实现。As an implementation method, the functions of the receiver and the transmitter in the present application can be considered to be implemented through a transceiver circuit or a dedicated chip for transceiver, and the processor can be considered to be implemented through a dedicated processing chip, a processing circuit or a general chip.
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的服务器。即将实现处理器,接收器和发送器功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器,接收器和发送器的功能。As another implementation method, it is possible to use a general-purpose computer to implement the server provided in the embodiment of the present application, that is, to store the program code for implementing the functions of the processor, receiver, and transmitter in a memory, and the general-purpose processor implements the functions of the processor, receiver, and transmitter by executing the code in the memory.
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时以实现前述加速度计现场标定方法的步骤。该计算机可读存储介质可以是有形存储介质,诸如随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、软盘、硬盘、可移动存储盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质。The embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned accelerometer field calibration method are implemented. The computer-readable storage medium can be a tangible storage medium, such as a random access memory (RAM), a memory, a read-only memory (ROM), an electrically programmable ROM, an electrically erasable programmable ROM, a register, a floppy disk, a hard disk, a removable storage disk, a CD-ROM, or any other form of storage medium known in the technical field.
本领域普通技术人员应该可以明白,结合本文中所公开的实施方式描述的各示例性的组成部分、系统和方法,能够以硬件、软件或者二者的结合来实现。具体究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。It should be understood by those skilled in the art that the exemplary components, systems and methods described in conjunction with the embodiments disclosed herein can be implemented in hardware, software or a combination of the two. Whether it is specifically performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but this implementation should not be considered to be beyond the scope of this application. When implemented in hardware, it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, etc. When implemented in software, the elements of this application are programs or code segments used to perform the required tasks. The program or code segment can be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link by a data signal carried in a carrier.
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。It should be clear that the present application is not limited to the specific configuration and processing described above and shown in the figures. For the sake of simplicity, a detailed description of the known method is omitted here. In the above embodiments, several specific steps are described and shown as examples. However, the method process of the present application is not limited to the specific steps described and shown, and those skilled in the art can make various changes, modifications and additions, or change the order between the steps after understanding the spirit of the present application.
本申请中,针对一个实施方式描述和/或例示的特征,可以在一个或更多个其它实施方式中以相同方式或以类似方式使用,和/或与其他实施方式的特征相结合或代替其他实施方式的特征。In the present application, features described and/or illustrated for one embodiment may be used in the same manner or in a similar manner in one or more other embodiments, and/or combined with features of other embodiments or replace features of other embodiments.
以上所述仅为本申请的优选实施例,并不用于限制本申请,对于本领域的技术人员来说,本申请实施例可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above description is only the preferred embodiment of the present application and is not intended to limit the present application. For those skilled in the art, the embodiments of the present application may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application shall be included in the protection scope of the present application.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210100948.9A CN114689901B (en) | 2022-01-27 | 2022-01-27 | Accelerometer field calibration method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210100948.9A CN114689901B (en) | 2022-01-27 | 2022-01-27 | Accelerometer field calibration method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114689901A CN114689901A (en) | 2022-07-01 |
CN114689901B true CN114689901B (en) | 2023-09-05 |
Family
ID=82137280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210100948.9A Active CN114689901B (en) | 2022-01-27 | 2022-01-27 | Accelerometer field calibration method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114689901B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115230775B (en) * | 2022-07-27 | 2023-05-30 | 诺优信息技术(上海)有限公司 | Train running state data processing method and device and electronic equipment |
CN116147704A (en) * | 2023-03-02 | 2023-05-23 | 清华大学 | Environmental parameter correction method, device and system, electronic equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108592952A (en) * | 2018-06-01 | 2018-09-28 | 北京航空航天大学 | The method for demarcating more MIMU errors simultaneously with positive and negative times of rate based on lever arm compensation |
CN109084806A (en) * | 2018-09-21 | 2018-12-25 | 苏州大学 | Scalar domain MEMS inertia system scaling method |
CN110567492A (en) * | 2019-09-03 | 2019-12-13 | 兰州交通大学 | System-level calibration method for low-cost MEMS inertial sensors |
CN111721288A (en) * | 2020-06-19 | 2020-09-29 | 哈尔滨工业大学 | A MEMS device zero offset correction method, device and storage medium |
CN112945271A (en) * | 2021-01-27 | 2021-06-11 | 苏州大学 | Magnetometer information-assisted MEMS gyroscope calibration method and system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9810549B2 (en) * | 2011-01-06 | 2017-11-07 | University Of Utah Research Foundation | Systems, methods, and apparatus for calibration of and three-dimensional tracking of intermittent motion with an inertial measurement unit |
-
2022
- 2022-01-27 CN CN202210100948.9A patent/CN114689901B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108592952A (en) * | 2018-06-01 | 2018-09-28 | 北京航空航天大学 | The method for demarcating more MIMU errors simultaneously with positive and negative times of rate based on lever arm compensation |
CN109084806A (en) * | 2018-09-21 | 2018-12-25 | 苏州大学 | Scalar domain MEMS inertia system scaling method |
CN110567492A (en) * | 2019-09-03 | 2019-12-13 | 兰州交通大学 | System-level calibration method for low-cost MEMS inertial sensors |
CN111721288A (en) * | 2020-06-19 | 2020-09-29 | 哈尔滨工业大学 | A MEMS device zero offset correction method, device and storage medium |
CN112945271A (en) * | 2021-01-27 | 2021-06-11 | 苏州大学 | Magnetometer information-assisted MEMS gyroscope calibration method and system |
Non-Patent Citations (1)
Title |
---|
Martin J. Jørgensen.IMU Calibration and validation in a factory,remote on land and at sea.《IEEE》.2014,1-22. * |
Also Published As
Publication number | Publication date |
---|---|
CN114689901A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114689901B (en) | Accelerometer field calibration method and device | |
CN112285676B (en) | Laser radar and IMU external parameter calibration method and device | |
CN110163087B (en) | Face gesture recognition method and system | |
US9639999B2 (en) | System and method for estimating speed of a vehicle | |
CN108020813B (en) | Positioning method, positioning device and electronic device | |
US10082427B2 (en) | Measurement data collecting system, terminal device, server device, measurement data collecting method, and non-transitory computer readable storage medium | |
WO2024001916A1 (en) | Scanner orientation determination method and apparatus, device, and storage medium | |
CN112461199B (en) | NBIoT-based antenna attitude detection method and terminal | |
CN114199236B (en) | Method, device, electronic device and autonomous driving vehicle for processing positioning data | |
CN110211189A (en) | ToF camera depth error modeling bearing calibration and device | |
CN112566170B (en) | Network quality assessment method, device, server and storage medium | |
US20180157794A1 (en) | Latent Space Harmonization for Predictive Modeling | |
CN117191080A (en) | Calibration method, device, equipment and storage medium for camera and IMU external parameters | |
CN111914744A (en) | Temperature measurement method and system for portable temperature inspection | |
CN117953152A (en) | Three-dimensional engineering model optimization method based on unmanned aerial vehicle photography | |
CN116540274A (en) | An adaptive integrated navigation method and device, electronic equipment and storage medium | |
CN112804727B (en) | Channel access method and device based on attitude sensing in floating LPWAN | |
CN115655305A (en) | External parameter calibration method and device, computing equipment, storage medium and vehicle | |
CN116430069A (en) | Machine vision fluid flow velocity measuring method, device, computer equipment and storage medium | |
CN116777816A (en) | Image data processing method and device and electronic equipment | |
WO2019069905A1 (en) | Information processing device, control method, and program | |
CN104462187B (en) | Gunz Validation of Data method based on maximum likelihood ratio | |
CN115037703A (en) | Data processing method, data processing apparatus, computer storage medium, and computer program product | |
CN112036504A (en) | Temperature measurement model training method, device, equipment and storage medium | |
CN111442756B (en) | Method and device for measuring unmanned aerial vehicle shaking angle based on laser array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |