CN110567492A - System-level calibration method for low-cost MEMS inertial sensors - Google Patents
System-level calibration method for low-cost MEMS inertial sensors Download PDFInfo
- Publication number
- CN110567492A CN110567492A CN201910826510.7A CN201910826510A CN110567492A CN 110567492 A CN110567492 A CN 110567492A CN 201910826510 A CN201910826510 A CN 201910826510A CN 110567492 A CN110567492 A CN 110567492A
- Authority
- CN
- China
- Prior art keywords
- axis
- error
- gyroscope
- matrix
- accelerometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 230000008878 coupling Effects 0.000 claims abstract description 15
- 238000010168 coupling process Methods 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims description 65
- 238000009434 installation Methods 0.000 claims description 18
- 238000000354 decomposition reaction Methods 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 14
- 230000001133 acceleration Effects 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 238000012216 screening Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000012795 verification Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P21/00—Testing or calibrating of apparatus or devices covered by the preceding groups
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Navigation (AREA)
Abstract
Description
技术领域technical field
本发明涉及惯性制导领域,具体地,涉及一种低成本MEMS惯性传感器系统级标定方法。The invention relates to the field of inertial guidance, in particular to a system-level calibration method for a low-cost MEMS inertial sensor.
背景技术Background technique
基于微机电系统(Micro-Electro-Mechanical System,MEMS)的惯性传感器具有体积小,成本低,功耗低等特点,因而在各个领域都有着广泛的应用。由于目前对MEMS惯性传感器的误差特性研究分析尚不成熟,针对传感器的刻度误差、安装误差、零偏等误差项无法精确建模,随着时间的推移这些误差项与传感器出厂时标定的参数会有不同,因此在使用过一定时间后需要重新对MEMS惯性传感器的误差参数进行标定。MEMS惯性传感器中误差项较多,且误差模型的建立与分析也较为复杂,对此国内外专家和学者进行了大量的分析和研究。一种方法利用解析法建立了陀螺仪动态误差数学模型,并分析了各个误差的起因及影响;另一方法中利用径向基(Radial basis Function,RBF)神经网络来对陀螺仪的标度因数非线性耦合误差进行补偿,提高陀螺输出的平均精度。对于惯性传感器标定方案的选择,周阳林等在标定过程中引入了三维激光扫描测量技术,实现对传感器之间高精度安置参数的准确估计;再一种方法中混合式惯导系统,并利用其自身旋转机构完成误差参数标定,再一种方法中采用均值分配的解耦方法将加速度计和陀螺仪的斜对称误差对误差方程的影响进行解耦,提高标定精度。Inertial sensors based on Micro-Electro-Mechanical Systems (MEMS) have the characteristics of small size, low cost, and low power consumption, so they are widely used in various fields. Due to the immature research and analysis on the error characteristics of MEMS inertial sensors, the error items such as scale error, installation error, and zero bias of the sensor cannot be accurately modeled. There are differences, so the error parameters of the MEMS inertial sensor need to be calibrated again after a certain period of use. There are many error items in the MEMS inertial sensor, and the establishment and analysis of the error model is also relatively complicated. Experts and scholars at home and abroad have conducted a lot of analysis and research on this. One method uses the analytical method to establish a mathematical model of the dynamic error of the gyroscope, and analyzes the causes and effects of each error; the other method uses the radial basis function (RBF) neural network to adjust the scale factor of the gyroscope. The nonlinear coupling error is compensated to improve the average precision of the gyroscope output. For the selection of inertial sensor calibration schemes, Zhou Yanglin et al. introduced three-dimensional laser scanning measurement technology in the calibration process to achieve accurate estimation of high-precision placement parameters between sensors; another method is the hybrid inertial navigation system, and uses its own The rotating mechanism completes the calibration of the error parameters. In another method, the decoupling method of the mean value distribution is used to decouple the influence of the oblique symmetric error of the accelerometer and the gyroscope on the error equation to improve the calibration accuracy.
常见的标定方式分为分立式标定法和系统标定法两种。分立式标定法对转台的精度要求较高,导致标定成本较大,目前常用系统标定法完成待标参数估计。系统标定法以组合导航系统的导航误差为观测量,将误差参数扩展为系统状态,然后再利用滤波算法进行估计更新。与分立式标定法相比,系统标定法需要合理的编排待标器件的运动轨迹,确保各个待标误差参数被激励,从而能通过组合导航系统输出的状态量进行观测,完成待标参数估计,其中一种惯性测量单元(Inertial Measurement Unit,IMU)24位置连续转停标定方案,通过原位标定识别出加速度计和陀螺仪零偏、标度因数以及加速度计非正交误差共15个误差参数;另外一种方案中采用六位置静止和六位置旋转的标定测试方法,对敏感轴的理论值进行直接解算标定,并验证了该方法对静态误差收敛的有效性;再一种方案中提出一种多位置连续转动标定方案,通过测量每个位置静态导航状态下的速度误差来对全部21个误差参数进行估计,并进行了多次实验验证其有效性。Common calibration methods are divided into two types: discrete calibration method and system calibration method. The discrete calibration method has high requirements on the precision of the turntable, resulting in high calibration costs. At present, the system calibration method is commonly used to complete the estimation of the parameters to be calibrated. The system calibration method takes the navigation error of the integrated navigation system as the observation quantity, expands the error parameters into the system state, and then uses the filtering algorithm to estimate and update. Compared with the discrete calibration method, the system calibration method needs to arrange the motion trajectory of the device to be marked reasonably to ensure that each error parameter to be marked is excited, so that the state quantity output by the integrated navigation system can be observed to complete the parameter estimation to be marked. One of the inertial measurement unit (Inertial Measurement Unit, IMU) 24-position continuous stop calibration scheme, through in-situ calibration to identify 15 error parameters of accelerometer and gyroscope zero bias, scale factor and accelerometer non-orthogonal error ; In another scheme, the six-position stationary and six-position rotating calibration test methods are used to directly solve and calibrate the theoretical value of the sensitive axis, and verify the effectiveness of this method for static error convergence; another scheme proposes A multi-position continuous rotation calibration scheme estimates all 21 error parameters by measuring the speed error of each position under static navigation state, and conducts multiple experiments to verify its effectiveness.
上述研究结果多针对高精度的激光陀螺或者光纤陀螺与加速度构成的惯性测量单元进行标定,较少涉及到精度较低的低成本MEMS惯性测量,从而存在低成本MEMS惯性测量标定准确度差的问题。The above research results mostly focus on the calibration of inertial measurement units composed of high-precision laser gyroscopes or fiber optic gyroscopes and accelerations, and seldom involve low-precision low-cost MEMS inertial measurement, so there is a problem of poor calibration accuracy of low-cost MEMS inertial measurement .
发明内容Contents of the invention
本发明的目的在于,针对上述问题,提出一种低成本MEMS惯性传感器系统级标定方法,以实现提高低成本MEMS惯性测量标定准确度的优点。The object of the present invention is to propose a system-level calibration method for low-cost MEMS inertial sensors to achieve the advantage of improving the calibration accuracy of low-cost MEMS inertial sensors.
为实现上述目的,本发明实施例采用的技术方案是:In order to achieve the above object, the technical solution adopted in the embodiment of the present invention is:
一种低成本MEMS惯性传感器系统级标定方法,包括:A low-cost MEMS inertial sensor system-level calibration method, including:
基于回归模型确定传感器待标参数;Determine the sensor parameters to be marked based on the regression model;
对速度误差微分方程中的陀螺仪误差耦合项进行解耦,得到惯导误差方程;The inertial navigation error equation is obtained by decoupling the gyroscope error coupling term in the velocity error differential equation;
根据确定的所述传感器待标参数和所述惯导误差方程建立卡尔曼滤波器;Establishing a Kalman filter according to the determined parameters of the sensor to be marked and the inertial navigation error equation;
按照设定的运动轨迹激励传感器各输出轴,并采集传感器的原始数据;Excite each output shaft of the sensor according to the set motion trajectory, and collect the original data of the sensor;
将所述原始数据经过小波阈值降噪后导入所述卡尔曼滤波器,从而对待标参数进行估计;Importing the original data into the Kalman filter after wavelet threshold noise reduction, so as to estimate the parameters to be marked;
将估计出的所述待标参数代入惯导误差微分方程,验证标定结果是否准确。Substitute the estimated parameters to be calibrated into the inertial navigation error differential equation to verify whether the calibration results are accurate.
作为本发明实施例的一种具体实现方式,所述基于回归模型确定传感器待标参数,包括:As a specific implementation of the embodiment of the present invention, the determination of the parameters to be marked of the sensor based on the regression model includes:
采集传感器处于设定位置时的输出数据;Collect the output data when the sensor is in the set position;
基于所述输出数据建立回归模型。A regression model is built based on the output data.
作为本发明实施例的一种具体实现方式,所述采集传感器处于特定位置时的输出数据中,所述输出数据,包括:三轴加速度计和三轴陀螺仪数据。As a specific implementation manner of the embodiment of the present invention, the output data of the collecting sensor at a specific position includes: three-axis accelerometer and three-axis gyroscope data.
作为本发明实施例的一种具体实现方式,所述回归模型,包括加速度计回归模型和陀螺仪回归模型;As a specific implementation of the embodiment of the present invention, the regression model includes an accelerometer regression model and a gyroscope regression model;
所述加速度计回归模型为:The accelerometer regression model is:
其中,a、b、c为待估参数,表示加速度计单轴输出值,f表示加速度计敏感轴实际感应的加速度值;Among them, a, b, c are parameters to be estimated, Indicates the single-axis output value of the accelerometer, and f indicates the actual acceleration value sensed by the sensitive axis of the accelerometer;
所述陀螺仪回归模型为:The gyroscope regression model is:
其中,m、n为待估参数,表示陀螺仪单轴输出值,ω表示陀螺仪敏感轴实际感应的角速度值。Among them, m and n are parameters to be estimated, Indicates the single-axis output value of the gyroscope, and ω indicates the angular velocity value actually sensed by the sensitive axis of the gyroscope.
作为本发明实施例的一种具体实现方式,所述设定位置,包括:加速度计设定位置和陀螺仪设定位置;As a specific implementation of the embodiment of the present invention, the set position includes: the set position of the accelerometer and the set position of the gyroscope;
所述加速度计设定位置,包括:x轴朝北,y轴朝西,z轴朝天;或x轴朝北,y轴朝地,z轴朝西;或x轴朝北,y轴朝东,z轴朝地;或x轴朝北,y轴朝天,z轴朝东;或x轴朝北,y轴朝西,z轴朝天;The set position of the accelerometer includes: the x-axis faces north, the y-axis faces west, and the z-axis faces the sky; or the x-axis faces north, the y-axis faces the ground, and the z-axis faces west; or the x-axis faces north, and the y-axis faces east , the z-axis is facing the ground; or the x-axis is facing north, the y-axis is facing the sky, and the z-axis is facing east; or the x-axis is facing north, the y-axis is facing west, and the z-axis is facing the sky;
每个位置静置采集10分钟数据;Static collection of data at each position for 10 minutes;
所述陀螺仪设定位置,包括:传感器绕陀螺仪x轴逆时针每旋转10分钟所处的位置,旋转速度为20°/s。The set position of the gyroscope includes: the position where the sensor rotates counterclockwise around the x-axis of the gyroscope every 10 minutes, and the rotation speed is 20°/s.
作为本发明实施例的一种具体实现方式,所述待标参数,包括:As a specific implementation of the embodiments of the present invention, the parameters to be marked include:
三轴加速度计零偏阵、三轴加速度计安装误差矩阵δLSym/Sksym、三轴加速度计刻度系数误差矩阵δLScal、三轴陀螺仪零偏阵εb、三轴陀螺仪安装误差矩阵δKSym/Sksym和\或三轴陀螺仪刻度系数误差矩阵δKScal,其中所述三轴加速度计安装误差矩阵和三轴陀螺仪安装误差矩阵均包括对称性误差阵和斜对称误差阵。Three-axis accelerometer zero-offset matrix, three-axis accelerometer installation error matrix δL Sym/Sksym , three-axis accelerometer scale coefficient error matrix δL Scal , three-axis gyroscope zero-offset matrix ε b , three-axis gyroscope installation error matrix δK Sym /Sksym and/or the three-axis gyroscope scale coefficient error matrix δK Scal , wherein the three-axis accelerometer installation error matrix and the three-axis gyroscope installation error matrix both include a symmetric error matrix and a skew symmetric error matrix.
作为本发明实施例的一种具体实现方式,所述对速度误差微分方程中的陀螺仪误差耦合项进行解耦,得到惯导误差方程,包括:As a specific implementation of the embodiment of the present invention, the decoupling of the gyroscope error coupling term in the velocity error differential equation to obtain the inertial navigation error equation includes:
将载体坐标系定义与I+δKSksym重合,使得陀螺仪斜对称误差矩阵为零矩阵,从而消除速度误差微分方程中由于陀螺仪斜对称误差产生的耦合项,I表示单位矩阵。The definition of the carrier coordinate system coincides with I+δK Sksym , so that the gyroscope's obliquely symmetric error matrix is a zero matrix, thereby eliminating the coupling term due to the gyroscope's obliquely symmetric error in the velocity error differential equation, and I represents the identity matrix.
作为本发明实施例的一种具体实现方式,所述惯导误差微分方程为:As a specific implementation of the embodiment of the present invention, the inertial navigation error differential equation is:
所述惯导误差微分方程包括速度误差微分方程与失准角微分方程,The inertial navigation error differential equation includes a velocity error differential equation and a misalignment angle differential equation,
其中,ψ表示失准角向量,δv为速度误差向量,δfb为加速度计误差,f为加速度计测量值,为陀螺仪误差,为地球自转角速度,为惯性坐标系到导航坐标系下牵连角速度,为载体坐标系到惯性坐标系的姿态转移矩阵。Among them, ψ represents the misalignment angle vector, δv is the velocity error vector, δf b is the accelerometer error, f is the accelerometer measurement value, is the gyroscope error, is the angular velocity of the earth's rotation, is the angular velocity involved from the inertial coordinate system to the navigation coordinate system, is the attitude transfer matrix from the carrier coordinate system to the inertial coordinate system.
作为本发明实施例的一种具体实现方式,所述建立卡尔曼滤波器,包括:As a specific implementation of the embodiment of the present invention, the establishment of the Kalman filter includes:
设定状态量;Set the state quantity;
基于所述状态量建立状态转移矩阵;Establishing a state transition matrix based on the state quantity;
确定所述状态转移矩阵的量测矩阵。A measurement matrix of the state transition matrix is determined.
作为本发明实施例的一种具体实现方式,所述小波阈值降噪,包括:As a specific implementation of the embodiment of the present invention, the wavelet threshold noise reduction includes:
参数设置;parameter settings;
基于设置的参数进行小波分解;Perform wavelet decomposition based on the set parameters;
通过阈值函数对所述小波分解中的小波系数进行筛选,完成信号去噪;Screening the wavelet coefficients in the wavelet decomposition by a threshold function to complete signal denoising;
基于去噪后的信号进行小波重构;Perform wavelet reconstruction based on the denoised signal;
其中,所述阈值函数为:Wherein, the threshold function is:
式中,ωj,k为分解后的小波系数,k和α为调节系数,且两者恒为正,T为设定的阈值,公式如下:In the formula, ω j, k are decomposed wavelet coefficients, k and α are adjustment coefficients, and both are always positive, T is the set threshold, the formula is as follows:
式中N为信号长度,σ为噪声标准差,j为分解层数。In the formula, N is the signal length, σ is the noise standard deviation, and j is the number of decomposition layers.
本发明的实施例具有以下有益效果:Embodiments of the present invention have the following beneficial effects:
本发明实施例中,利用回归模型确定传感器误差模型中待标参数,再通过速度误差微分方程中的耦合项,通过建立卡尔曼滤波器实现传感器误差参数的辨识,然后将采集的数据经小波阈值降噪后导入所述卡尔曼滤波器,得到估计的待标参数,然后将估计出的待标参数代入惯导误差微分方程,验证标定结果的准确性,从而达到提高低成本MEMS惯性测量标定准确度的目的。In the embodiment of the present invention, the regression model is used to determine the parameters to be marked in the sensor error model, and then through the coupling term in the velocity error differential equation, the identification of the sensor error parameters is realized by establishing a Kalman filter, and then the collected data is passed through the wavelet threshold After noise reduction, import the Kalman filter to obtain the estimated parameters to be calibrated, and then substitute the estimated parameters to be calibrated into the differential equation of inertial navigation error to verify the accuracy of the calibration results, so as to improve the accuracy of low-cost MEMS inertial measurement calibration degree purpose.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1为本发明实施例所述的低成本MEMS惯性传感器系统级标定方法的流程图;Fig. 1 is the flowchart of the low-cost MEMS inertial sensor system-level calibration method described in the embodiment of the present invention;
图2a至图2b为本发明实施例所述的加速度计回归模型验证对比图;Fig. 2a to Fig. 2b are the comparison charts of accelerometer regression model verification described in the embodiment of the present invention;
图3为本发明实施例所述的陀螺仪回归模型验证对比图;Fig. 3 is the gyroscope regression model verification comparison diagram described in the embodiment of the present invention;
图4a至图4b为本发明实施例所述的传感器原始数据降噪效果对比图;Fig. 4a to Fig. 4b are comparison diagrams of noise reduction effect of sensor raw data according to the embodiment of the present invention;
图5a至图5b为本发明实施例所述的传感器原始数据降噪性能分析图;Fig. 5a to Fig. 5b are analysis diagrams of noise reduction performance of sensor raw data according to the embodiment of the present invention;
图6a至图6c为本发明实施例所述的标定结果姿态验证对比图;Figures 6a to 6c are comparison diagrams of posture verification of calibration results described in the embodiment of the present invention;
图7a至图7c为本发明实施例所述的标定结果速度验证对比图。Fig. 7a to Fig. 7c are comparison diagrams of the speed verification of the calibration results described in the embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。The preferred embodiments of the present invention will be described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
如图1所示,一种低成本MEMS惯性传感器系统级标定方法,包括:As shown in Figure 1, a low-cost MEMS inertial sensor system-level calibration method includes:
S101:基于回归模型确定传感器待标参数;S101: Determine the parameters to be marked of the sensor based on the regression model;
S102:对速度误差微分方程中的陀螺仪误差耦合项进行解耦,得到惯导误差方程;S102: Decoupling the gyroscope error coupling term in the velocity error differential equation to obtain an inertial navigation error equation;
S103:根据确定的所述传感器待标参数和所述惯导误差方程建立卡尔曼滤波器;S103: Establish a Kalman filter according to the determined parameters of the sensor to be marked and the inertial navigation error equation;
S104:按照设定的运动轨迹激励传感器各输出轴,并采集传感器的原始数据;S104: excite each output shaft of the sensor according to the set motion trajectory, and collect the original data of the sensor;
S105:将所述原始数据经过小波阈值降噪后导入所述卡尔曼滤波器,从而对待标参数进行估计;S105: Import the original data into the Kalman filter after wavelet threshold denoising, so as to estimate the parameters to be marked;
S106:将估计出的所述待标参数代入惯导误差微分方程,验证标定结果是否准确。S106: Substitute the estimated parameters to be calibrated into the inertial navigation error differential equation to verify whether the calibration result is accurate.
可选的实施例中,基于回归模型确定传感器待标参数,包括:In an optional embodiment, the parameters to be marked of the sensor are determined based on the regression model, including:
采集传感器处于设定位置时的输出数据;Collect the output data when the sensor is in the set position;
基于所述输出数据建立回归模型。A regression model is built based on the output data.
可选的实施例中,所述采集传感器处于特定位置时的输出数据中,所述输出数据,包括:三轴加速度计和三轴陀螺仪数据。In an optional embodiment, in the output data collected when the sensor is at a specific position, the output data includes: data of a three-axis accelerometer and a three-axis gyroscope.
可选的实施例中,所述回归模型,包括加速度计回归模型和陀螺仪回归模型;In an optional embodiment, the regression model includes an accelerometer regression model and a gyroscope regression model;
所述加速度计回归模型为:The accelerometer regression model is:
其中,a、b、c为待估参数,表示加速度计单轴输出值,f表示加速度计敏感轴实际感应的加速度值;Among them, a, b, c are parameters to be estimated, Indicates the single-axis output value of the accelerometer, and f indicates the actual acceleration value sensed by the sensitive axis of the accelerometer;
所述陀螺仪回归模型为:The gyroscope regression model is:
其中,m、n为待估参数,表示陀螺仪单轴输出值,ω表示陀螺仪敏感轴实际感应的角速度值。Among them, m and n are parameters to be estimated, Indicates the single-axis output value of the gyroscope, and ω indicates the angular velocity value actually sensed by the sensitive axis of the gyroscope.
可选的实施例中,所述设定位置,包括:加速度计设定位置和陀螺仪设定位置;In an optional embodiment, the set position includes: an accelerometer set position and a gyroscope set position;
所述加速度计设定位置,包括:x轴朝北,y轴朝西,z轴朝天;或x轴朝北,y轴朝地,z轴朝西;或x轴朝北,y轴朝东,z轴朝地;或x轴朝北,y轴朝天,z轴朝东;或x轴朝北,y轴朝西,z轴朝天;The set position of the accelerometer includes: the x-axis faces north, the y-axis faces west, and the z-axis faces the sky; or the x-axis faces north, the y-axis faces the ground, and the z-axis faces west; or the x-axis faces north, and the y-axis faces east , the z-axis is facing the ground; or the x-axis is facing north, the y-axis is facing the sky, and the z-axis is facing east; or the x-axis is facing north, the y-axis is facing west, and the z-axis is facing the sky;
每个位置静置采集10分钟数据;Static collection of data at each position for 10 minutes;
所述陀螺仪设定位置,包括:传感器绕陀螺仪x轴逆时针每旋转10分钟所处的位置,旋转速度为20°/s。The set position of the gyroscope includes: the position where the sensor rotates counterclockwise around the x-axis of the gyroscope every 10 minutes, and the rotation speed is 20°/s.
在具体的应用场景中,传感器绕陀螺仪x轴逆时针每旋转10分钟采集一次数据。In a specific application scenario, the sensor rotates counterclockwise around the x-axis of the gyroscope to collect data every 10 minutes.
其中,加速度计传感器和陀螺仪传感器均通过最小二乘法完成参数估计Among them, both the accelerometer sensor and the gyroscope sensor complete the parameter estimation by the least square method
可选的实施例中,所述待标参数,包括:In an optional embodiment, the parameters to be marked include:
三轴加速度计零偏阵、三轴加速度计安装误差矩阵δLSym/Sksym、三轴加速度计刻度系数误差矩阵δLScal、三轴陀螺仪零偏阵εb、三轴陀螺仪安装误差矩阵δKSym/Sksym和\或三轴陀螺仪刻度系数误差矩阵δKScal,其中所述三轴加速度计安装误差矩阵和三轴陀螺仪安装误差矩阵均包括对称性误差阵和斜对称误差阵。Three-axis accelerometer zero-offset matrix, three-axis accelerometer installation error matrix δL Sym/Sksym , three-axis accelerometer scale coefficient error matrix δL Scal , three-axis gyroscope zero-offset matrix ε b , three-axis gyroscope installation error matrix δK Sym /Sksym and/or the three-axis gyroscope scale coefficient error matrix δK Scal , wherein the three-axis accelerometer installation error matrix and the three-axis gyroscope installation error matrix both include a symmetric error matrix and a skew symmetric error matrix.
三轴加速度计安装误差矩阵和三轴陀螺仪安装误差矩阵如下所示:The installation error matrix of the three-axis accelerometer and the installation error matrix of the three-axis gyroscope are as follows:
式中下标为Scal的矩阵表示刻度系数误差阵,下标Sym的矩阵表示安装误差中的对称性误差矩阵,下标Sksym的矩阵表示斜对称性误差矩阵。In the formula, the matrix with the subscript Scal represents the scale coefficient error matrix, the matrix with the subscript Sym represents the symmetric error matrix in the installation error, and the matrix with the subscript Sksym represents the skew symmetric error matrix.
可选的实施例中,所述对速度误差微分方程中的陀螺仪误差耦合项进行解耦,得到惯导误差方程,包括:In an optional embodiment, the decoupling of the gyroscope error coupling term in the speed error differential equation to obtain the inertial navigation error equation includes:
将载体坐标系定义与I+δKSksym重合,使得陀螺仪斜对称误差矩阵为零矩阵,从而消除速度误差微分方程中由于陀螺仪斜对称误差产生的耦合项,I表示单位矩阵。The definition of the carrier coordinate system coincides with I+δK Sksym , so that the gyroscope's obliquely symmetric error matrix is a zero matrix, thereby eliminating the coupling term due to the gyroscope's obliquely symmetric error in the velocity error differential equation, and I represents the identity matrix.
可选的实施例中,所述惯导误差微分方程为:In an optional embodiment, the differential equation of the inertial navigation error is:
所述惯导误差微分方程包括速度误差微分方程与失准角微分方程,The inertial navigation error differential equation includes a velocity error differential equation and a misalignment angle differential equation,
为速度误差微分方程,为失准角微分方程。 is the velocity error differential equation, is the misalignment angle differential equation.
其中,ψ表示失准角向量,δv为速度误差向量,δfb为加速度计误差,f为加速度计测量值,为陀螺仪误差,为地球自转角速度,为惯性坐标系到导航坐标系下牵连角速度,为载体坐标系到惯性坐标系的姿态转移矩阵。Among them, ψ represents the misalignment angle vector, δv is the velocity error vector, δf b is the accelerometer error, f is the accelerometer measurement value, is the gyroscope error, is the angular velocity of the earth's rotation, is the angular velocity involved from the inertial coordinate system to the navigation coordinate system, is the attitude transfer matrix from the carrier coordinate system to the inertial coordinate system.
可选的实施例中,所述建立卡尔曼滤波器,包括:In an optional embodiment, the establishment of a Kalman filter includes:
设定状态量;Set the state quantity;
基于所述状态量建立状态转移矩阵;Establishing a state transition matrix based on the state quantity;
确定所述状态转移矩阵的量测矩阵。A measurement matrix of the state transition matrix is determined.
具体的应用场景中,In specific application scenarios,
状态量state quantity
其中,ψ表示失准角向量,δv为速度误差向量,εT和▽T分别为陀螺仪和加速度计的零偏,sω和sa是传感器的刻度系数误差,kSym是陀螺仪安装误差向量,lSym/Sksym为加速度计安装误差向量。Among them, ψ represents the misalignment angle vector, δv is the velocity error vector, ε T and ▽ T are the zero bias of the gyroscope and accelerometer, respectively, s ω and s a are the scale coefficient errors of the sensor, and k Sym is the installation error of the gyroscope Vector, l Sym/Sksym is the accelerometer installation error vector.
状态转移矩阵:State transition matrix:
量测矩阵:Measurement matrix:
H=[03×3 I 03×21],H=[0 3×3 I 0 3×21 ],
其中,量测量为速度误差。where the quantity measure is velocity error.
在具体的应用场景中,按照设定的运动轨迹激励传感器各输出轴,并采集传感器的原始数据中,In a specific application scenario, the output shafts of the sensor are excited according to the set motion trajectory, and the raw data of the sensor is collected,
设定的运动轨迹编排如表1所示,其采用的是文献激光陀螺捷联惯导系统多位置标定方法中提出的19位置法。The set motion trajectory is shown in Table 1, which uses the 19-position method proposed in the multi-position calibration method of the laser gyro strapdown inertial navigation system in the literature.
表1:运动轨迹编排表。Table 1: Motion track layout table.
可选的实施例中,所述小波阈值降噪,包括:In an optional embodiment, the wavelet threshold noise reduction includes:
参数设置;parameter settings;
基于设置的参数进行小波分解;Perform wavelet decomposition based on the set parameters;
通过阈值函数对所述小波分解中的小波系数进行筛选,完成信号去噪;Screening the wavelet coefficients in the wavelet decomposition by a threshold function to complete signal denoising;
基于去噪后的信号进行小波重构。Wavelet reconstruction is performed based on the denoised signal.
在具体的应用场景中:In specific application scenarios:
参数设置初始化:Parameter setting initialization:
小波阈值去噪的分解层数设置为4,陀螺仪小波基选择为:sym4(x轴),coif4(y轴、z轴);加速度计小波基选择为:dmey(x轴、y轴),sym6(z轴);阈值函数参数k设置为1;The number of decomposition layers of wavelet threshold denoising is set to 4, the gyroscope wavelet base is selected as: sym4 (x-axis), coif4 (y-axis, z-axis); the accelerometer wavelet base is selected as: dmey (x-axis, y-axis), sym6(z axis); threshold function parameter k is set to 1;
⑵小波分解,分解方程为:⑵Wavelet decomposition, the decomposition equation is:
式中ωj,k为分解后的小波系数,ψj,k为小波系,f为待分解信号,a为尺度参数,b为平移参数,其中离散的小波系函数ψj,k可写为:where ω j,k is the decomposed wavelet coefficient, ψ j,k is the wavelet system, f is the signal to be decomposed, a is the scale parameter, b is the translation parameter, and the discrete wavelet system function ψ j,k can be written as :
通过阈值函数对小波系数进行筛选,完成信号去噪。阈值函数为:The wavelet coefficients are screened through the threshold function to complete signal denoising. The threshold function is:
式中k和α为调节系数,且两者恒为正,T为设定的阈值,公式如下:In the formula, k and α are the adjustment coefficients, and both are always positive, T is the set threshold, the formula is as follows:
式中N为信号长度,σ为噪声标准差,j为分解层数。In the formula, N is the signal length, σ is the noise standard deviation, and j is the number of decomposition layers.
小波重构,将阈值函数处理后的小波系数还原出有用的信号,小波重构的公式为:Wavelet reconstruction restores useful signals from the wavelet coefficients processed by the threshold function. The formula for wavelet reconstruction is:
X即为降噪处理后的信号,C是一个与信号无关的常数。X is the signal after noise reduction processing, and C is a constant that has nothing to do with the signal.
可选的实施例中,验证标定结果是否准确时采集10分钟传感器处于静止状态的数据进行验证。In an optional embodiment, when verifying whether the calibration result is accurate, the data of the sensor in a static state for 10 minutes is collected for verification.
图2a和图2b为加速度计回归模型验证对比图,对比对象为一次项拟合模型与二次项拟合模型。对比结果可知两个模型对于加速度计输出均是有效的。但在加速度变化率较小的地方,二次项拟合模型效果要优于一次项拟合模型,而在加速度变化较为剧烈的地方,一次项拟合模型的拟合精度要略优于二次项拟合模型。Figure 2a and Figure 2b are comparison diagrams of accelerometer regression model verification, and the comparison objects are the fitting model of the first term and the fitting model of the second term. The comparison results show that both models are valid for the accelerometer output. But in places where the rate of acceleration change is small, the fitting model of the quadratic term is better than the fitting model of the first term, and in places where the acceleration changes are more severe, the fitting accuracy of the fitting model of the first term is slightly better than that of the quadratic term Fit the model.
图3为陀螺仪回归模型验证对比图,采用的模型为一次项拟合模型。拟合数据输出均值与测试数据基本一致,且均接近转台设置转速值,故针对测试用微机械陀螺仪,可以认为输出模型是正确的。Figure 3 is a verification comparison chart of the gyroscope regression model, and the model used is a one-time item fitting model. The output mean value of the fitting data is basically consistent with the test data, and both are close to the set speed value of the turntable, so the output model can be considered to be correct for the micromachined gyroscope used in the test.
图4a和图4b为传感器原始数据降噪效果对比图。降噪过程为:①参数初始化;②小波分解;③计算阈值函数;④阈值筛选;⑤信号重构。由图4a和图4b可知,低成本MEMS传感器输出的原始数据中含有噪声成分较多。Figure 4a and Figure 4b are comparison diagrams of sensor raw data noise reduction effects. The noise reduction process is: ①parameter initialization; ②wavelet decomposition; ③calculation of threshold function; ④threshold screening; ⑤signal reconstruction. It can be seen from Figure 4a and Figure 4b that the raw data output by the low-cost MEMS sensor contains a lot of noise components.
图5a和图5b为传感器原始数据降噪性能分析图,轴陀螺仪输出信息的功率密度从0Hz到2.75Hz范围内均有分布,没有明显的峰值,因而其输出信息中主要成分是全频段的白噪声,经过小波降噪处理后功率密度中出现了明显的峰值,证明小波降噪已基本将白噪声信号滤除;三轴加速度计输出信息中白噪声信号所占比例较小,经过小波降噪处理后功率谱密度进一步向低频段聚集,有效信号占比增加。Figure 5a and Figure 5b are the noise reduction performance analysis diagrams of the original data of the sensor. The power density of the output information of the axial gyroscope is distributed from 0 Hz to 2.75 Hz, and there is no obvious peak value, so the main component of the output information is the whole frequency band. White noise, after the wavelet noise reduction processing, there is an obvious peak in the power density, which proves that the wavelet noise reduction has basically filtered the white noise signal; the proportion of the white noise signal in the output information of the three-axis accelerometer is small, and after After noise processing, the power spectral density is further concentrated to the low frequency band, and the proportion of effective signals increases.
图6a至图6c以及图7a至图7c分别为三个方向上速度误差与姿态误差的对比图,其中不含非线性因数传统标定方法为方法1、不含二阶非线性因数矩阵分解法为方法2、含有二阶非线性因数传统标定方法为方法3、本发明提出的基于矩阵解耦的含有二阶非线性因数标定方法为方法4。由于矩阵分解过程主要是为了消除速度误差模型中加速度和陀螺仪的耦合项,而姿态角误差只与陀螺仪有关,方法1、方法3与方法2、方法4相比其对姿态角影响有限,但相比于标定前,四种方法均可以有效抑制姿态角误差发散,尤其是对于航向角误差发散的抑制效果尤为明显,这对于惯性导航后续速度更新和位置更新会起到积极的作用。对于速度误差来说,矩阵解耦的标定方法消除了速度误差微分方程中与陀螺仪相关的耦合项,标定过程中加速度计误差参数其主要作用,因而其对解算精度提高较为明显。二阶非线性因数对速度误差的影响与加速度计的输出有关,在静态测量过程中,水平方向上的x轴和y轴加速度计输出值主要包含噪声部分,因而对于东向和北向速度误差来说,二阶非线性因数对于误差收敛效果并不明显;在垂直方向上由于加速度计敏感轴一直受到重力加速度的作用,二阶非线性因数在z轴方向的误差抑制效果要明显优于水平方向,但是对于加速度计来说仍旧是与陀螺仪相关的耦合项对误差影响更为明显。Figures 6a to 6c and Figures 7a to 7c are the comparison diagrams of velocity error and attitude error in three directions respectively, where the traditional calibration method without nonlinear factors is method 1, and the matrix decomposition method without second-order nonlinear factors is Method 2. The traditional calibration method containing second-order nonlinear factors is method 3. The matrix decoupling-based calibration method containing second-order nonlinear factors proposed by the present invention is method 4. Since the matrix decomposition process is mainly to eliminate the coupling item of acceleration and gyroscope in the speed error model, and the attitude angle error is only related to the gyroscope, method 1 and method 3 have limited influence on the attitude angle compared with method 2 and method 4. However, compared with before calibration, the four methods can effectively suppress the divergence of attitude angle errors, especially the suppression effect on the divergence of heading angle errors, which will play a positive role in the subsequent speed update and position update of inertial navigation. For the velocity error, the calibration method of matrix decoupling eliminates the coupling term related to the gyroscope in the velocity error differential equation, and the accelerometer error parameter plays a major role in the calibration process, so it significantly improves the solution accuracy. The influence of the second-order nonlinear factor on the velocity error is related to the output of the accelerometer. In the static measurement process, the output values of the x-axis and y-axis accelerometer in the horizontal direction mainly contain noise, so for the east and north velocity errors In other words, the second-order nonlinear factor has no obvious effect on error convergence; in the vertical direction, since the sensitive axis of the accelerometer is always affected by the acceleration of gravity, the error suppression effect of the second-order nonlinear factor in the z-axis direction is significantly better than that in the horizontal direction. , but for the accelerometer, it is still the coupling item related to the gyroscope that has a more obvious influence on the error.
本发明实施例对低成本加速度计和陀螺仪输出模型进行回归分析,选择更适合其输出特质的模型,为后续标定的准确性提供理论基础;The embodiment of the present invention performs regression analysis on the output models of the low-cost accelerometer and gyroscope, selects a model more suitable for its output characteristics, and provides a theoretical basis for the accuracy of subsequent calibration;
对待标传感器的原始数据进行小波降噪处理,提高信号信噪比,保障后续参数估计准确性;Perform wavelet noise reduction processing on the raw data of the target sensor to improve the signal-to-noise ratio and ensure the accuracy of subsequent parameter estimation;
通过合理的定义载体坐标系,完成速度误差微分方程中加速度计误差与陀螺仪误差的解耦,减小待标参数数量,提高标定速度;By reasonably defining the carrier coordinate system, the decoupling of the accelerometer error and the gyroscope error in the velocity error differential equation is completed, reducing the number of parameters to be calibrated and increasing the calibration speed;
经过试验证明,本发明实施例对与低成本MEMS惯性传感器输出速度与位置误差的发散有较好的抑制效果。It has been proved by experiments that the embodiment of the present invention has a better effect of suppressing the divergence of the output speed and position error of the low-cost MEMS inertial sensor.
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be noted that: the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it still The technical solutions recorded in the foregoing embodiments may be modified, or some technical features thereof may be equivalently replaced. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910826510.7A CN110567492A (en) | 2019-09-03 | 2019-09-03 | System-level calibration method for low-cost MEMS inertial sensors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910826510.7A CN110567492A (en) | 2019-09-03 | 2019-09-03 | System-level calibration method for low-cost MEMS inertial sensors |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110567492A true CN110567492A (en) | 2019-12-13 |
Family
ID=68777523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910826510.7A Pending CN110567492A (en) | 2019-09-03 | 2019-09-03 | System-level calibration method for low-cost MEMS inertial sensors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110567492A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111780787A (en) * | 2020-08-25 | 2020-10-16 | 中南大学 | A MEMS inertial group calibration method based on fiber inertial assistance |
CN111811507A (en) * | 2020-04-08 | 2020-10-23 | 北京嘀嘀无限科技发展有限公司 | Method, device, storage medium and electronic device for determining attitude of mobile device |
CN113465595A (en) * | 2021-06-25 | 2021-10-01 | 湖北三江航天万峰科技发展有限公司 | Inertial positioning and orienting equipment inertial unit parameter temperature compensation calibration method |
CN114199279A (en) * | 2021-11-26 | 2022-03-18 | 北京航天自动控制研究所 | Online estimation method of MEMS inertial measurement unit parameters based on high-precision inertial measurement unit in full-scale mode |
CN114239659A (en) * | 2021-12-20 | 2022-03-25 | 西湖大学 | Domain-adaptive inertial sensor denoising algorithm based on meta-learning |
CN114353828A (en) * | 2021-12-23 | 2022-04-15 | 湖南航天机电设备与特种材料研究所 | Laser strapdown inertial measurement unit calibration test device and test method |
CN114689901A (en) * | 2022-01-27 | 2022-07-01 | 北京邮电大学 | Accelerometer on-site calibration method and device |
CN115371731A (en) * | 2022-08-17 | 2022-11-22 | 中国电力科学研究院有限公司 | Multi-parameter sensor, multi-parameter sensor signal decoupling method and decoupling device |
CN117917546A (en) * | 2023-01-28 | 2024-04-23 | 渤海大学 | A method and system for detecting the position of guided ammunition based on MEMS sensor |
CN118858697A (en) * | 2024-09-24 | 2024-10-29 | 东海实验室 | A fast rotation calibration method for MEMS accelerometer |
CN119394335A (en) * | 2025-01-03 | 2025-02-07 | 北京星箭长空测控技术股份有限公司 | A calibration system and calibration method for an inertial measurement unit |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102305636A (en) * | 2011-08-18 | 2012-01-04 | 江苏科技大学 | Rapid alignment method based on nonlinear initial alignment model |
KR20120062519A (en) * | 2010-12-06 | 2012-06-14 | 국방과학연구소 | Device for alignment of inertial navigation system using bias and navigation system thereof |
CN102607594A (en) * | 2012-03-02 | 2012-07-25 | 哈尔滨工程大学 | System-level error parameter field calibration method of strapdown inertial navigation optical fibre gyro |
CN102680005A (en) * | 2012-06-05 | 2012-09-19 | 北京航空航天大学 | System-level calibration method of fiber-optic gyroscope scale factor asymmetric error |
CN103900607A (en) * | 2014-03-06 | 2014-07-02 | 哈尔滨工程大学 | Rotation type strapdown inertial navigation system transposition method based on inertial system |
CN103954299A (en) * | 2014-04-22 | 2014-07-30 | 北京航天控制仪器研究所 | Method for calibrating strapdown inertial combined gyroscope combinant |
US20160033284A1 (en) * | 2014-07-31 | 2016-02-04 | Seiko Epson Corporation | Position calculation method and position calculation device |
CN106767917A (en) * | 2016-12-08 | 2017-05-31 | 中国人民解放军国防科学技术大学 | A kind of oblique redundant inertial navigation system calibrated error model modelling approach |
CN109186630A (en) * | 2018-07-16 | 2019-01-11 | 兰州交通大学 | Based on the MEMS coarse alignment method and system for improving threshold value wavelet de-noising |
-
2019
- 2019-09-03 CN CN201910826510.7A patent/CN110567492A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120062519A (en) * | 2010-12-06 | 2012-06-14 | 국방과학연구소 | Device for alignment of inertial navigation system using bias and navigation system thereof |
CN102305636A (en) * | 2011-08-18 | 2012-01-04 | 江苏科技大学 | Rapid alignment method based on nonlinear initial alignment model |
CN102607594A (en) * | 2012-03-02 | 2012-07-25 | 哈尔滨工程大学 | System-level error parameter field calibration method of strapdown inertial navigation optical fibre gyro |
CN102680005A (en) * | 2012-06-05 | 2012-09-19 | 北京航空航天大学 | System-level calibration method of fiber-optic gyroscope scale factor asymmetric error |
CN103900607A (en) * | 2014-03-06 | 2014-07-02 | 哈尔滨工程大学 | Rotation type strapdown inertial navigation system transposition method based on inertial system |
CN103954299A (en) * | 2014-04-22 | 2014-07-30 | 北京航天控制仪器研究所 | Method for calibrating strapdown inertial combined gyroscope combinant |
US20160033284A1 (en) * | 2014-07-31 | 2016-02-04 | Seiko Epson Corporation | Position calculation method and position calculation device |
CN106767917A (en) * | 2016-12-08 | 2017-05-31 | 中国人民解放军国防科学技术大学 | A kind of oblique redundant inertial navigation system calibrated error model modelling approach |
CN109186630A (en) * | 2018-07-16 | 2019-01-11 | 兰州交通大学 | Based on the MEMS coarse alignment method and system for improving threshold value wavelet de-noising |
Non-Patent Citations (4)
Title |
---|
于家成等: "平台惯导系统初始对准的解耦设计 ", 《航天控制》 * |
吴华丽 等: "基于矩阵分解的惯导安装误差矩阵解耦方法", 《系统工程与电子技术》 * |
徐青杰: "捷联惯导系统标定与初始对准技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
毛奔 编著: "《微惯导系统及应用》", 31 July 2013, 《哈尔滨工程大学出版社》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111811507A (en) * | 2020-04-08 | 2020-10-23 | 北京嘀嘀无限科技发展有限公司 | Method, device, storage medium and electronic device for determining attitude of mobile device |
CN111780787A (en) * | 2020-08-25 | 2020-10-16 | 中南大学 | A MEMS inertial group calibration method based on fiber inertial assistance |
CN111780787B (en) * | 2020-08-25 | 2021-02-19 | 中南大学 | A MEMS inertial group calibration method based on fiber inertial assistance |
CN113465595A (en) * | 2021-06-25 | 2021-10-01 | 湖北三江航天万峰科技发展有限公司 | Inertial positioning and orienting equipment inertial unit parameter temperature compensation calibration method |
CN114199279A (en) * | 2021-11-26 | 2022-03-18 | 北京航天自动控制研究所 | Online estimation method of MEMS inertial measurement unit parameters based on high-precision inertial measurement unit in full-scale mode |
CN114239659A (en) * | 2021-12-20 | 2022-03-25 | 西湖大学 | Domain-adaptive inertial sensor denoising algorithm based on meta-learning |
CN114353828A (en) * | 2021-12-23 | 2022-04-15 | 湖南航天机电设备与特种材料研究所 | Laser strapdown inertial measurement unit calibration test device and test method |
CN114353828B (en) * | 2021-12-23 | 2024-01-16 | 湖南航天机电设备与特种材料研究所 | Laser strapdown inertial measurement unit calibration test device and test method |
CN114689901A (en) * | 2022-01-27 | 2022-07-01 | 北京邮电大学 | Accelerometer on-site calibration method and device |
CN114689901B (en) * | 2022-01-27 | 2023-09-05 | 北京邮电大学 | Accelerometer field calibration method and device |
CN115371731A (en) * | 2022-08-17 | 2022-11-22 | 中国电力科学研究院有限公司 | Multi-parameter sensor, multi-parameter sensor signal decoupling method and decoupling device |
CN117917546A (en) * | 2023-01-28 | 2024-04-23 | 渤海大学 | A method and system for detecting the position of guided ammunition based on MEMS sensor |
CN118858697A (en) * | 2024-09-24 | 2024-10-29 | 东海实验室 | A fast rotation calibration method for MEMS accelerometer |
CN119394335A (en) * | 2025-01-03 | 2025-02-07 | 北京星箭长空测控技术股份有限公司 | A calibration system and calibration method for an inertial measurement unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110567492A (en) | System-level calibration method for low-cost MEMS inertial sensors | |
KR101988786B1 (en) | Initial alignment of inertial navigation devices | |
CN108759845B (en) | Optimization method based on low-cost multi-sensor combined navigation | |
CN106017507B (en) | A kind of used group quick calibrating method of the optical fiber of precision low used in | |
CN101975872B (en) | Method for calibrating zero offset of quartz flexible accelerometer component | |
CN113091770B (en) | Zero offset compensation method of inertial measurement sensor | |
CN110006450A (en) | A calibration method of laser strapdown inertial navigation system on horizontal three-axis turntable | |
WO2001011318A1 (en) | Vibration compensation for sensors | |
CN115046539A (en) | Dynamic calibration method for MEMS electronic compass | |
CN109086250B (en) | Data fusion method for MEMS inertial group with inclined fiber optic gyroscope | |
US11372129B2 (en) | Post-compensation method for motion errors of rotating accelerometer gravity gradiometer | |
CN105157690A (en) | Four-rotor aircraft magnetic compass calibration method | |
WO2020164206A1 (en) | Calibration method for gravity gradiometer of rotating accelerometer | |
CN113790737B (en) | An on-site rapid calibration method for array sensors | |
CN111076748A (en) | Error compensation method and system of horizontal inclinometer based on MEMS accelerometer | |
CN102607596A (en) | Strapdown flexible gyro dynamic random drift error testing method based on difference GPS (global position system) observation | |
CN109855653A (en) | A kind of scaling method after the noise reduction process of redundance type MEMS-IMU | |
CN114370930A (en) | Method for measuring satellite structure micro-angle vibration by using MHD micro-angle vibration sensor | |
CN112461262A (en) | Device and method for correcting errors of three-axis magnetometer | |
CN112363247B (en) | A Post-Compensation Method for Motion Error of Gravity Gradiometer | |
CN106705995A (en) | Calibration method of MEMS gyroscope g value sensitive coefficient | |
CN109084755B (en) | An accelerometer bias estimation method based on gravity apparent velocity and parameter identification | |
Lee et al. | Attitude estimation method of high-spinning body through onboard sensor fusion under uniaxial gyroscope saturation environment | |
CN117782166A (en) | Correction method and device for gyroscope attitude error, electronic equipment and storage medium | |
CN112665610B (en) | Inertial platform error parameter calibration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191213 |
|
RJ01 | Rejection of invention patent application after publication |