CN114670977A - An offshore photovoltaic floating base structure and construction method thereof - Google Patents
An offshore photovoltaic floating base structure and construction method thereof Download PDFInfo
- Publication number
- CN114670977A CN114670977A CN202210367596.3A CN202210367596A CN114670977A CN 114670977 A CN114670977 A CN 114670977A CN 202210367596 A CN202210367596 A CN 202210367596A CN 114670977 A CN114670977 A CN 114670977A
- Authority
- CN
- China
- Prior art keywords
- floating
- horizontal
- floating body
- buoy
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B75/00—Building or assembling floating offshore structures, e.g. semi-submersible platforms, SPAR platforms or wind turbine platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/4453—Floating structures carrying electric power plants for converting solar energy into electric energy
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Civil Engineering (AREA)
- Foundations (AREA)
Abstract
本发明属于海上浮式基础技术领域,公开了一种海上光伏漂浮式基础结构及其施工方法,该基础结构包括外部环状浮体和设置在外部环状浮体所围成区域内的十字浮筒架和内部网状浮体,外部环状浮体和内部网状浮体均由交替布置并且柔性连接的卧式浮筒和立式浮筒构成,外部环状浮体和内部网状浮体下方垂挂有第一阻尼结构,外部环状浮体下方垂挂有第二阻尼结构;基础结构通过锚固系统与海床连接;其施工方法大体按照外部环状浮体、十字浮筒架和内部网状浮体、锚固系统、第二阻尼结构的安装顺序进行。本发明能够充分利用水面空间,且在波浪环境中有效降低水平位移,在具备经济可行性和施工便利性的基础上,最终实现对海上光伏资源最大化使用。
The invention belongs to the technical field of offshore floating foundations, and discloses an offshore photovoltaic floating foundation structure and a construction method thereof. The foundation structure comprises an outer annular floating body, a cross buoy frame arranged in an area surrounded by the outer annular floating body, and The inner mesh floating body, the outer annular floating body and the inner mesh floating body are all composed of horizontal buoys and vertical buoys which are alternately arranged and flexibly connected. A second damping structure hangs below the floating body; the foundation structure is connected to the seabed through an anchoring system; the construction method is generally carried out in accordance with the installation sequence of the external annular floating body, the cross buoy frame and the internal mesh floating body, the anchoring system and the second damping structure . The invention can make full use of the water surface space, effectively reduce the horizontal displacement in the wave environment, and finally realize the maximum use of offshore photovoltaic resources on the basis of economic feasibility and construction convenience.
Description
技术领域technical field
本发明属于海上浮式基础技术领域,具体的说,是涉及一种用于支撑水上光伏发电系统的漂浮式基础结构及其施工方法。The invention belongs to the technical field of offshore floating foundations, and in particular relates to a floating foundation structure for supporting an aquatic photovoltaic power generation system and a construction method thereof.
背景技术Background technique
我国能源活动碳排放量占二氧化碳排放总量的88%左右,加快能源结构绿色低碳转型是推动“碳达峰、碳中和”的关键。如今土地成本日益增加,大面积征地实施光伏发电较困难,发展湖泊、水库、煤炭塌陷区乃至海上等漂浮式光伏项目受到越来越多的关注。与陆上光伏发电相比,海上光伏具有不占用陆上耕地林地面积、提高水域利用率、降低水蒸发等优势。海上光伏存在固定式与漂浮式两种基础型式,与固定式基础结构相比,漂浮式基础结构具有适用水深更大,回收更方便等优点。因此,发展海上光伏并且与海上风电进行互补将是未来海上新能源的重要方向。my country's carbon emissions from energy activities account for about 88% of the total carbon dioxide emissions. Accelerating the green and low-carbon transformation of the energy structure is the key to promoting "carbon peaking and carbon neutrality". Nowadays, the cost of land is increasing, and it is difficult to implement photovoltaic power generation in large-scale land acquisition. The development of floating photovoltaic projects such as lakes, reservoirs, coal subsidence areas and even offshore has received more and more attention. Compared with onshore photovoltaic power generation, offshore photovoltaics have the advantages of not occupying the land area of cultivated land and forest land, improving the utilization rate of water areas, and reducing water evaporation. There are two basic types of offshore photovoltaics: fixed and floating. Compared with fixed basic structures, floating basic structures have the advantages of larger applicable water depth and more convenient recycling. Therefore, developing offshore photovoltaics and complementing offshore wind power will be an important direction for new offshore energy in the future.
由于海洋环境复杂恶劣,海上光伏漂浮式基础结构需要具有足够的强度和较小的刚度来抵御环境荷载。目前存在的漂浮式光伏基础多用于静水条件下,在波浪荷载下存在水平位移较大等问题,缺少降低波浪荷载对结构整体的影响的相关技术。Due to the complex and harsh marine environment, offshore photovoltaic floating infrastructure needs to have sufficient strength and less stiffness to resist environmental loads. The existing floating photovoltaic foundations are mostly used in still water conditions, and there are problems such as large horizontal displacement under wave loads, and there is a lack of relevant technologies to reduce the impact of wave loads on the overall structure.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种海上光伏漂浮式基础结构及其施工方法,该基础结构能够充分利用水面空间,且在波浪环境中有效降低水平位移,在具备经济可行性和施工便利性的基础上,最终实现对海上光伏资源最大化使用。The invention provides an offshore photovoltaic floating base structure and a construction method thereof. The base structure can fully utilize the water surface space and effectively reduce the horizontal displacement in the wave environment. On the basis of economic feasibility and construction convenience, the final To maximize the use of offshore photovoltaic resources.
为了解决上述技术问题,本发明通过以下的技术方案予以实现:In order to solve the above-mentioned technical problems, the present invention is realized through the following technical solutions:
根据本发明的一个方面,提供了一种海上光伏漂浮式基础结构,包括外部环状浮体和内部网状浮体,所述外部环状浮体和所述内部网状浮体均由多个卧式浮筒和多个立式浮筒构成,所述卧式浮筒和所述立式浮筒交替布置并且柔性连接;每个所述卧式浮筒下方设置有第一阻尼结构,所述第一阻尼结构通过第一钢索与所述卧式浮筒连接;According to one aspect of the present invention, there is provided an offshore photovoltaic floating base structure, comprising an outer annular floating body and an inner meshed floating body, both of which are composed of a plurality of horizontal buoys and an inner meshed floating body. A plurality of vertical buoys are formed, the horizontal buoys and the vertical buoys are alternately arranged and connected flexibly; a first damping structure is arranged under each of the horizontal buoys, and the first damping structure passes through a first steel cable connected with the horizontal buoy;
所述外部环状浮体由所述卧式浮筒和所述立式浮筒在平面上连接为环状;所述外部环状浮体所围成的区域内设置有十字浮筒架,所述十字浮筒架的四个端部与所述外部环状浮体刚性连接;所述内部网状浮体设置在所述外部环状浮体与所述十字浮筒架之间,所述内部网状浮体与所述十字浮筒架和所述外部环状浮体均为柔性连接;所述内部网状浮体由所述卧式浮筒和所述立式浮筒在平面上连接为连续的方形网格;The outer annular buoy is connected in a plane by the horizontal buoy and the vertical buoy; a cross buoy frame is arranged in the area enclosed by the outer annular buoy. The four ends are rigidly connected with the outer annular float; the inner mesh float is arranged between the outer annular float and the cross float frame, and the inner mesh float is connected to the cross float frame and the cross float frame. The outer annular buoys are all flexible connections; the inner mesh buoys are connected by the horizontal buoys and the vertical buoys into a continuous square grid on a plane;
所述外部环状浮体下方设置有第二阻尼结构,多个所述第二阻尼结构在环向上均匀布置;所述第二阻尼结构通过第二钢索与所述外部环状浮体中的所述立式浮筒连接,相邻两个所述第二阻尼结构之间间隔有若干所述立式浮筒;A second damping structure is arranged below the outer annular floating body, and a plurality of the second damping structures are evenly arranged in the ring direction; the second damping structure is connected to the The vertical buoys are connected, and a plurality of the vertical buoys are spaced between two adjacent second damping structures;
进一步地,所述卧式浮筒为具有水平方向轴线的圆柱体结构,其长度为6~8m,直径为2~3m;所述立式浮筒为具有竖直方向轴线的圆柱体结构,其长度为2~3m,直径为2~3m。Further, the horizontal buoy is a cylindrical structure with a horizontal axis, its length is 6-8 m, and the diameter is 2-3 m; the vertical buoy is a cylindrical structure with a vertical axis, and its length is 2 to 3m, with a diameter of 2 to 3m.
进一步地,所述外部环状浮体通过环向均布的锚固系统与海床连接。Further, the outer annular floating body is connected to the seabed through a circumferentially uniform anchoring system.
进一步地,所述十字浮筒架的水平截面呈十字形,竖直截面为圆形;所述十字浮筒架具有水平面上相互垂直的第一轴线和第二轴线,所述第一轴线和所述第二轴线交叉点与所述外部环状浮体的圆心重合;所述内部网状浮体中包括沿第一方向连接的卧式浮筒和沿第二方向连接的卧式浮筒,沿第一方向连接的卧式浮筒的轴线与所述十字浮筒架的第一轴线平行且与第二轴线垂直,沿第二方向连接的卧式浮筒的轴线与所述十字浮筒架的第二轴线平行且与第一轴线垂直。Further, the horizontal section of the cross pontoon frame is cross-shaped, and the vertical section is circular; the cross pontoon frame has a first axis and a second axis that are perpendicular to each other on the horizontal plane, the first axis and the The intersection of the two axes coincides with the center of the outer ring-shaped floating body; the inner reticulated floating body includes horizontal buoys connected along the first direction and horizontal buoys connected along the second direction, and the horizontal buoys connected along the first direction The axis of the horizontal pontoon is parallel to the first axis of the cross pontoon frame and perpendicular to the second axis, and the axis of the horizontal pontoon connected in the second direction is parallel to the second axis of the cross pontoon frame and perpendicular to the first axis. .
进一步地,所述内部网状浮体以其卧式浮筒与所述十字浮筒架进行柔性连接,所述内部网状浮体与所述外部环状浮体以两者相靠近的立式浮筒进行柔性连接。Further, the inner mesh buoy is flexibly connected with the cross buoy frame with its horizontal buoy, and the inner mesh buoy and the outer annular buoy are flexibly connected with a vertical buoy that is close to each other.
进一步地,所述第一阻尼结构为边长2~3m的正方体混凝土块;所述第二阻尼结构为边长8~10m的正方体混凝土块。Further, the first damping structure is a cube concrete block with a side length of 2-3 m; the second damping structure is a cube concrete block with a side length of 8-10 m.
进一步地,所述第一阻尼结构通过两条所述第一钢索与所述卧式浮筒连接,两条所述第一钢索的上部固定于所述卧式浮筒底部两端,两条所述第一钢索的下部固定于所述第一阻尼结构的上表面中线两端,该中线与所述卧式浮筒的轴向平行。Further, the first damping structure is connected to the horizontal buoy through two first steel cables, the upper parts of the two first steel cables are fixed on both ends of the bottom of the horizontal buoy, and the two The lower part of the first steel cable is fixed on both ends of the center line of the upper surface of the first damping structure, and the center line is parallel to the axial direction of the horizontal buoy.
进一步地,所述第二阻尼结构通过两条所述第二钢索与所述立式浮筒连接,两条所述第二钢索上部均固定在所述立式浮筒的底面形心位置,下部分别固定在所述第二阻尼结构的顶面对角顶点处。Further, the second damping structure is connected to the vertical buoy through two second steel cables, the upper parts of the two second steel cables are fixed at the centroid position of the bottom surface of the vertical buoy, and the lower They are respectively fixed at the top-to-corner vertices of the second damping structure.
进一步地,所述外部环状浮体和所述内部网状浮体的卧式浮筒用于安装光伏板,所述光伏板通过支撑杆固定在所述卧式浮筒的上方。Further, the horizontal buoys of the outer annular floating body and the inner net-shaped floating body are used for installing photovoltaic panels, and the photovoltaic panels are fixed above the horizontal buoys through support rods.
根据本发明的另一个方面,提供了一种上述海上光伏漂浮式基础结构的施工方法,包括如下步骤:According to another aspect of the present invention, a construction method of the above-mentioned offshore photovoltaic floating infrastructure is provided, comprising the following steps:
(1)将多个所述卧式浮筒和多个所述立式浮筒连接为所述外部环状浮体,并在所述外部环状浮体的所述卧式浮筒下方连接所述第一阻尼结构;(1) Connect a plurality of the horizontal buoys and a plurality of the vertical buoys to form the outer annular buoy, and connect the first damping structure below the horizontal buoys of the outer annular buoy ;
(2)在所述外部环状浮体所围成的区域内安装所述十字浮筒架和所述内部网状浮体,并在所述内部网状浮体的所述卧式浮筒下方连接所述第一阻尼结构;所述内部网状浮体与所述十字浮筒架刚性连接,所述内部网状浮体与所述外部环状浮体柔性连接;(2) Install the cross buoy frame and the inner mesh buoy in the area enclosed by the outer annular buoy, and connect the first buoy below the horizontal buoy of the inner mesh buoy a damping structure; the inner mesh floating body is rigidly connected to the cross buoy frame, and the inner mesh floating body is flexibly connected to the outer annular floating body;
此时,可以在每个所述卧式浮筒上方安装光伏板,并调整所述光伏板的角度;At this time, a photovoltaic panel can be installed above each of the horizontal buoys, and the angle of the photovoltaic panel can be adjusted;
(3)将步骤(2)得到的整体结构下水,并检查所述外部环状浮体、所述十字浮筒架和所述内部网状浮体的气密性;(3) launching the overall structure obtained in step (2), and checking the air tightness of the outer annular floating body, the cross buoy frame and the inner mesh floating body;
(4)在保证气密性的前提下,通过拖船将步骤(3)得到的整体结构运输至目标海域;(4) Under the premise of ensuring air tightness, the overall structure obtained in step (3) is transported to the target sea area by a tugboat;
(5)拖船到达目标海域后抛锚定位,将所述外部环状浮体通过锚固系统与海床连接,并调节所述锚固系统的预张力至设计张力;(5) After the tugboat reaches the target sea area, it is anchored and positioned, the outer annular floating body is connected to the seabed through the anchoring system, and the pretension of the anchoring system is adjusted to the design tension;
(6)在所述外部环状浮体上安装所述第二阻尼结构,使得基础结构达到设计吃水深度。(6) Install the second damping structure on the outer annular floating body so that the basic structure reaches the design draft.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明的海上光伏漂浮式基础结构及其施工方法,通过卧式浮筒和立式浮筒按照特定方式排列提供浮力,并且由阻尼结构使基础结构的运动限制在一定的范围内,能够在保证基础结构整体强度的同时降低基础结构刚度,使基础结构在复杂的海洋环境荷载作用下具有更加良好的运动性能用,同时充分利用了水面空间,保证光伏资源发电效率最大化。The offshore photovoltaic floating base structure and the construction method thereof of the present invention provide buoyancy by arranging the horizontal buoys and the vertical buoys in a specific manner, and the damping structure restricts the movement of the base structure within a certain range, which can ensure the base structure. The overall strength reduces the rigidity of the foundation structure at the same time, so that the foundation structure has better motion performance under the action of complex marine environmental loads, and at the same time makes full use of the water surface space to ensure the maximum power generation efficiency of photovoltaic resources.
附图说明Description of drawings
图1为本发明所提供海上光伏漂浮式基础结构的结构示意图;1 is a schematic structural diagram of an offshore photovoltaic floating infrastructure provided by the present invention;
图2为本发明所提供海上光伏漂浮式基础结构中卧式浮筒、立式浮筒、阻尼结构和光伏板的连接示意图;2 is a schematic diagram of the connection of the horizontal buoy, the vertical buoy, the damping structure and the photovoltaic panel in the offshore photovoltaic floating infrastructure provided by the present invention;
图3为本发明所提供海上光伏漂浮式基础结构的俯视示意图;3 is a schematic top view of the offshore photovoltaic floating infrastructure provided by the present invention;
图4为本发明所提供海上光伏漂浮式基础结构的主视示意图;4 is a schematic front view of an offshore photovoltaic floating infrastructure provided by the present invention;
图5为本发明所提供海上光伏漂浮式基础结构的阵列示意图。FIG. 5 is a schematic diagram of an array of an offshore photovoltaic floating infrastructure provided by the present invention.
上述图中:1、卧式浮筒;2、立式浮筒;3、第一阻尼结构;4、十字浮筒架;5、第一钢索;6、光伏板;7、第二阻尼结构;8、第二钢索;9、锚固系统。In the above figure: 1. Horizontal pontoon; 2. Vertical pontoon; 3. First damping structure; 4. Cross pontoon frame; 5. First steel cable; 6. Photovoltaic panel; 7. Second damping structure; 8. The second steel cable; 9. Anchoring system.
具体实施方式Detailed ways
为能进一步了解本发明的发明内容、特点及效果,兹例举以下实施例,并配合附图详细说明如下:In order to further understand the content, characteristics and effects of the present invention, the following embodiments are exemplified and described in detail with the accompanying drawings as follows:
如图1至图5所示,本发明提供了一种海上光伏漂浮式基础结构,用于布置在光照条件优良的目标海域(通常直径大于100m),以实现对光能资源的充分利用。海上光伏漂浮式基础结构主要包括外部环状浮体、内部网状浮体,第一阻尼结构3,十字浮筒架4,第二阻尼结构7,锚固系统9。As shown in Fig. 1 to Fig. 5, the present invention provides an offshore photovoltaic floating infrastructure, which is arranged in a target sea area (usually greater than 100m in diameter) with excellent lighting conditions, so as to fully utilize light energy resources. The offshore photovoltaic floating base structure mainly includes an external annular floating body, an internal mesh floating body, a
外部环状浮体和内部网状浮体均由多个卧式浮筒1和多个立式浮筒2构成。卧式浮筒1为橡胶或硬塑料材质制成的圆柱体结构,其轴线为水平方向,通常长度为6~8m,直径为2~3m。立式浮筒2为橡胶或硬塑料材质制成的圆柱体结构,其轴线为竖直方向,通常长度为2~3m,直径为2~3m。Both the outer annular buoy and the inner mesh buoy are composed of a plurality of
外部环状浮体由交替布置的卧式浮筒1和立式浮筒2在平面上连接为封闭的环状。交替布置是指每相邻两个卧式浮筒1之间设置一个立式浮筒2,因此外部环状浮体中的卧式浮筒1和立式浮筒2数量相同。优选地,外部环状浮体的直径为50~100m。The outer annular buoy is connected by alternately arranged
十字浮筒架4和内部网状浮体设置在外部环状浮体所围成的区域内,十字浮筒架4作为内部框架对外部环状浮体起到支撑作用,内部网状浮体设置在十字浮筒架4与外部环状浮体之间区域,使得空间利用率及光伏利用率达到最高。The
十字浮筒架4的水平截面呈十字形,竖直截面通常为1~2m直径的圆形。可见,十字浮筒架4具有水平面上相互垂直的第一轴线和第二轴线。十字浮筒架4内部每隔3~5m布置一块分舱板,使十字浮筒架4分成多个舱室,以确保十字浮筒架4在局部破损条件下依旧具备浮稳性。十字浮筒架4的第一轴线和第二轴线交叉点与外部环状浮体的圆心重合,并且十字浮筒架4的四个端部分别与外部环状浮体中的卧式浮筒1或立式浮筒2进行刚性连接,从而起到支撑骨架的作用。The horizontal section of the
内部网状浮体由交替布置的卧式浮筒1和立式浮筒2在平面上连接为连续的方形网格,其方形网格以卧式浮筒1为边且以立式浮筒2为顶点。方形网格的数量根据外部环状浮体与十字浮筒架4之间的区域大小决定。内部网状浮体中包括沿第一方向连接的卧式浮筒1和沿第二方向连接的卧式浮筒1,其中沿第一方向连接的卧式浮筒1的轴线与十字浮筒架4的第一轴线平行且与第二轴线垂直,其中沿第二方向连接的卧式浮筒1的轴线与十字浮筒架4的第二轴线平行且与第一轴线垂直。The inner mesh buoy is connected by alternately arranged
在外部环状浮体和内部网状浮体中,卧式浮筒1与立式浮筒2之间均为通过柔性连接件连接,柔性连接件一端连接在卧式浮筒1端部的中心位置,另一端连接在立式浮筒2最靠近于所连接卧式浮筒1侧壁的轴向中心点。柔性连接件长度优选为1~2m。柔性连接件可以选用钢索、钢丝绳、高强度合成纤维绳索等。In the outer annular buoy and the inner mesh buoy, the
内部网状浮体与十字浮筒架4和外部环状浮体均为柔性连接。作为一种优选的实施方式,内部网状浮体以其卧式浮筒1与十字浮筒架4进行连接,柔性连接件一端固定于内部网状浮体最外侧的卧式浮筒1端部,另一端固定于十字浮筒架4侧壁中部。作为一种优选的实施方式,内部网状浮体和外部环状浮体以两者中相靠近的立式浮筒2进行连接,柔性连接件的两端分别固定于两个立式浮筒2相互最靠近侧壁的轴向中心点。柔性连接件可以选用钢索、钢丝绳、高强度合成纤维绳索等。The inner mesh floating body is flexibly connected to the
上述内部网状浮体、外部环状浮体和十字浮筒架4的连接方式,能够在保证基础结构整体强度的同时降低基础结构刚度,使基础结构在波浪条件多变的环境中也可适用,同时使空间及光伏资源的利用率达到最高。The above-mentioned connection method of the inner mesh floating body, the outer annular floating body and the
第一阻尼结构3一般为边长2~3m的正方体混凝土块,一一对应地在卧式浮筒1下方。外部环状浮体和内部网状浮体中的每个卧式浮筒1通过两条第一钢索5与第一阻尼结构3连接,两条第一钢索5的上部固定于卧式浮筒1底部两端,下部固定于第一阻尼结构3的上表面中线两端,该中线与卧式浮筒1的轴向平行。在波浪荷载作用下,第一阻尼结构3可有效降低卧式浮筒1的水平位移,减小卧式浮筒1在波浪环境中运动响应,起到消波的作用。The first damping
外部环状浮体下方还垂挂有第二阻尼结构7,多个第二阻尼结构7在环向上均匀布置。第二阻尼结构7一般为边长8~10m的正方体混凝土块。第二阻尼结构7通过两条第二钢索8与外部环状浮体中的立式浮筒2连接,两条第二钢索8上部均固定在立式浮筒2的底面形心位置,下部分别固定在第二阻尼结构7的顶面对角顶点处。优选地,相邻两个第二阻尼结构7之间间隔有3~5个立式浮筒2。第二阻尼结构7用于使基础结构的整体重心降低,保证基础结构在复杂的海洋环境下具有稳定性,同时能够减小基础结构整体在波浪荷载下的水平位移。A second damping
外部环状浮体和内部网状浮体上部用于安装光伏发电装置。光伏发电装置的光伏板6一一对应地设置在卧式浮筒1上方,并可以通过支撑杆与卧式浮筒1连接。支撑杆一端与光伏板6底部中心固定,另一端与卧式浮筒1的上表面中间位置固定。每个光伏板6的尺寸以相邻光伏板6之间不遮挡光线来确定。The outer ring-shaped floating body and the upper part of the inner mesh-shaped floating body are used to install photovoltaic power generation devices. The
基础结构连接多个锚固系统9,锚固系统9用于将基础结构的运动限制在一定范围内。锚固系统9包括锚链和位于海床上的锚泊结构,如吸力锚、重力锚等。3~4条锚链沿外部环状浮体环向均布,锚链一端外部环状浮体的立式浮筒2底面形心位置连接,另一端通过锚泊结构固定于海床。The base structure is connected to a plurality of anchoring systems 9, which are used to limit the movement of the base structure within a certain range. The anchoring system 9 includes anchor chains and mooring structures on the seabed, such as suction anchors, gravity anchors, and the like. 3 to 4 anchor chains are evenly distributed in the circumferential direction of the outer annular floating body. One end of the anchor chain is connected at the centroid of the bottom surface of the
本发明实施例提供的一种海上光伏漂浮式基础结构,其施工方法包括如下步骤:An offshore photovoltaic floating base structure provided by an embodiment of the present invention, the construction method of which includes the following steps:
(1)将卧式浮筒1、立式浮筒2连接为外部环状浮体,并在外部环状浮体的卧式浮筒1下方连接第一阻尼结构3。(1) Connect the
(2)在外部环状浮体所围成的区域内安装十字浮筒架4和内部网状浮体,并在内部网状浮体的卧式浮筒1下方连接第一阻尼结构3;其中,十字浮筒架4与外部环状浮体为刚性连接,内部网状浮体与十字浮筒架4和外部环状浮体均为柔性连接。(2) Install the
(3)在每个卧式浮筒1上安装光伏板6,并根据最优发电效率调整光伏板6的角度。(3) Install a
(4)将步骤(3)得到的整体结构下水,并检查外部环状浮体、十字浮筒架4和内部网状浮体的气密性。(4) Launch the overall structure obtained in step (3) into the water, and check the air tightness of the outer annular floating body, the
(5)在保证气密性的前提下,通过拖船将步骤(4)得到的整体结构运输至目标海域。(5) On the premise of ensuring air tightness, the overall structure obtained in step (4) is transported to the target sea area by a tugboat.
(6)拖船到达目标海域后抛锚定位,通过锚固系统9将外部环状浮体与海床连接,并调节锚固系统9的预张力至设计张力;(6) After the tugboat reaches the target sea area, it is anchored and positioned, the external annular floating body is connected to the seabed through the anchoring system 9, and the pretension of the anchoring system 9 is adjusted to the design tension;
(7)在外部环状浮体上安装第二阻尼结构7,使得基础结构在第二阻尼结构7的作用下达到设计吃水深度。(7) Install the second damping
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围之内。Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. Under the inspiration of the present invention, without departing from the scope of the present invention and the protection scope of the claims, personnel can also make many specific transformations, which all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210367596.3A CN114670977B (en) | 2022-04-08 | 2022-04-08 | An offshore photovoltaic floating infrastructure structure and its construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210367596.3A CN114670977B (en) | 2022-04-08 | 2022-04-08 | An offshore photovoltaic floating infrastructure structure and its construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114670977A true CN114670977A (en) | 2022-06-28 |
CN114670977B CN114670977B (en) | 2023-12-19 |
Family
ID=82078227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210367596.3A Active CN114670977B (en) | 2022-04-08 | 2022-04-08 | An offshore photovoltaic floating infrastructure structure and its construction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114670977B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115339578A (en) * | 2022-07-11 | 2022-11-15 | 诺斯曼能源科技(北京)股份有限公司 | Offshore floating body array and reinforcing method thereof |
CN115465421A (en) * | 2022-11-15 | 2022-12-13 | 青岛大学 | Offshore photovoltaic system |
CN116477005A (en) * | 2023-06-21 | 2023-07-25 | 上海海事大学 | A ring-tensioned integrated offshore photovoltaic power generation platform and its installation method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204859072U (en) * | 2015-08-05 | 2015-12-09 | 冯淑珠 | A buoy type floating photovoltaic support connection buckle |
KR101687590B1 (en) * | 2016-01-15 | 2016-12-20 | 전인권 | Floating structure for install solar module on the sea |
CN106788175A (en) * | 2017-02-27 | 2017-05-31 | 山东鑫宏光电科技有限公司 | A kind of cartridge type floating on water surface photovoltaic plate solar TRT |
CN111740687A (en) * | 2020-06-11 | 2020-10-02 | 江苏海上龙源风力发电有限公司 | An intertidal offshore floating photovoltaic system and its construction method |
US20210036653A1 (en) * | 2019-08-02 | 2021-02-04 | Semi Led Co., Ltd. | Floating photovoltaic panel installation structure and buoyancy body for installation of floating photovoltaic panel |
US20210197934A1 (en) * | 2017-10-18 | 2021-07-01 | Seung-Hyuk AN | Tracking-type floating solar power generation device |
-
2022
- 2022-04-08 CN CN202210367596.3A patent/CN114670977B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204859072U (en) * | 2015-08-05 | 2015-12-09 | 冯淑珠 | A buoy type floating photovoltaic support connection buckle |
KR101687590B1 (en) * | 2016-01-15 | 2016-12-20 | 전인권 | Floating structure for install solar module on the sea |
CN106788175A (en) * | 2017-02-27 | 2017-05-31 | 山东鑫宏光电科技有限公司 | A kind of cartridge type floating on water surface photovoltaic plate solar TRT |
US20210197934A1 (en) * | 2017-10-18 | 2021-07-01 | Seung-Hyuk AN | Tracking-type floating solar power generation device |
US20210036653A1 (en) * | 2019-08-02 | 2021-02-04 | Semi Led Co., Ltd. | Floating photovoltaic panel installation structure and buoyancy body for installation of floating photovoltaic panel |
CN111740687A (en) * | 2020-06-11 | 2020-10-02 | 江苏海上龙源风力发电有限公司 | An intertidal offshore floating photovoltaic system and its construction method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115339578A (en) * | 2022-07-11 | 2022-11-15 | 诺斯曼能源科技(北京)股份有限公司 | Offshore floating body array and reinforcing method thereof |
CN115465421A (en) * | 2022-11-15 | 2022-12-13 | 青岛大学 | Offshore photovoltaic system |
CN115465421B (en) * | 2022-11-15 | 2023-03-10 | 青岛大学 | Offshore Photovoltaic System |
CN116477005A (en) * | 2023-06-21 | 2023-07-25 | 上海海事大学 | A ring-tensioned integrated offshore photovoltaic power generation platform and its installation method |
CN116477005B (en) * | 2023-06-21 | 2023-08-18 | 上海海事大学 | Annular stretching integral type offshore photovoltaic power generation platform and installation method |
Also Published As
Publication number | Publication date |
---|---|
CN114670977B (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111232140B (en) | Floating offshore wind power foundation structure with additional net cage | |
CN114670977B (en) | An offshore photovoltaic floating infrastructure structure and its construction method | |
US11149716B2 (en) | Offshore wind-solar-aquaculture integrated floater | |
US9915047B2 (en) | Energy dissipator | |
CN112523969B (en) | Truss inhaul cable type floating offshore wind turbine structure | |
CN111301622A (en) | A movable offshore wind power floating foundation and its operation method | |
US20120139255A1 (en) | Technology for combined offshore floating wind power generation | |
CN113928491B (en) | Deep sea power generation and cultivation system of offshore annular barge type wind turbine | |
CN115465418B (en) | Platform integrating four-floating-body semi-submersible type fan foundation and foldable net cage | |
CN115180082A (en) | Single-column photovoltaic power generation array platform | |
CN210653580U (en) | Offshore wind power platform group with shared mooring | |
CN111391987A (en) | Floating fan equipment for medium depth waters | |
CN213139091U (en) | Annular floating wind power platform | |
CN217416055U (en) | An aquatic photovoltaic polygonal floating infrastructure | |
CN212373618U (en) | Floating type fan equipment in medium-depth water area | |
CN201941953U (en) | Marine combined floating wind power generation platform | |
CN203767042U (en) | Outward floating type tension leg floating wind turbine foundation and offshore wind turbine | |
WO2024011956A1 (en) | Multifunctional integrated platform | |
CN112106710B (en) | Novel integrated development system of float-type fan and aquaculture net case | |
CN113911273A (en) | Deep sea power generation and cultivation system with net cages additionally arranged on offshore barge type wind turbine | |
CN218477610U (en) | Three-column semi-submersible offshore photovoltaic supporting system with outward-expanded platform | |
CN116812075A (en) | Floating single-column wind power platform mooring system | |
CN214092145U (en) | Truss inhaul cable type floating offshore wind turbine structure | |
CN213038418U (en) | Novel all-steel cylindrical foundation structure for offshore wind power | |
CN116123035A (en) | A steel-concrete composite double hexagonal annular floating fan foundation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |