[go: up one dir, main page]

CN114657130A - Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof - Google Patents

Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof Download PDF

Info

Publication number
CN114657130A
CN114657130A CN202011525773.3A CN202011525773A CN114657130A CN 114657130 A CN114657130 A CN 114657130A CN 202011525773 A CN202011525773 A CN 202011525773A CN 114657130 A CN114657130 A CN 114657130A
Authority
CN
China
Prior art keywords
shrna
hla
pluripotent stem
seq
mir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011525773.3A
Other languages
Chinese (zh)
Inventor
王淋立
陈月花
莫健
杨建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Future Intelligent Regenerative Medicine Research Institute Guangzhou Co ltd
Original Assignee
Future Intelligent Regenerative Medicine Research Institute Guangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Future Intelligent Regenerative Medicine Research Institute Guangzhou Co ltd filed Critical Future Intelligent Regenerative Medicine Research Institute Guangzhou Co ltd
Priority to CN202011525773.3A priority Critical patent/CN114657130A/en
Publication of CN114657130A publication Critical patent/CN114657130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0611Primordial germ cells, e.g. embryonic germ cells [EG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering nucleic acids [NA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Plant Pathology (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)

Abstract

本发明公开了一种表达VEGF‑A靶向抑制因子的多能干细胞及其衍生物与应用。该多能干细胞或其衍生物的基因组中导入VEGF‑A抑制因子的表达序列,所述VEGF‑A抑制因子为靶向VEGF‑A的shRNA和/或shRNA‑miR中的至少一种。VEGF‑A多能干细胞或其衍生物表达的VEGF‑A抑制因子被外泌体包裹后,外泌体携带VEGF‑A抑制因子与靶细胞结合,释放其包含的VEGF‑A抑制因子,从而阻断VEGF‑A通路,解除免疫抑制,激活免疫系统,能够有效清除肿瘤细胞和治疗黄斑变性疾病。The invention discloses a pluripotent stem cell expressing a VEGF-A targeting inhibitor and its derivative and application. An expression sequence of a VEGF-A inhibitor is introduced into the genome of the pluripotent stem cell or its derivative, and the VEGF-A inhibitor is at least one of shRNA and/or shRNA-miR targeting VEGF-A. After the VEGF-A inhibitory factor expressed by VEGF-A pluripotent stem cells or their derivatives is encapsulated by exosomes, the exosomes carry the VEGF-A inhibitory factor and bind to the target cells, releasing the VEGF-A inhibitory factor contained in the exosomes, thereby preventing the VEGF-A inhibitory factor. Blocking the VEGF-A pathway, releasing immunosuppression and activating the immune system can effectively remove tumor cells and treat macular degeneration.

Description

一种表达VEGF-A靶向抑制因子的多能干细胞及其衍生物与 应用A pluripotent stem cell expressing VEGF-A targeting inhibitor and its derivative and application

技术领域technical field

本发明属于基因工程技术领域,具体涉及一种表达VEGF-A靶向抑制因子的多能干细胞及其衍生物与应用。The invention belongs to the technical field of genetic engineering, and in particular relates to a pluripotent stem cell expressing a VEGF-A targeting inhibitor, a derivative thereof and an application thereof.

背景技术Background technique

VEGF-A(血管内皮生长因子A)是PDGF/VEGF生长因子家族的成员。VEGF-A编码一种肝素结合蛋白,该蛋白以二硫键连接的同型二聚体的形式存在。现有技术表面,VEGF-A在血管生成、血管发生和内皮细胞生长中均有一定的作用,可以诱导内皮细胞增殖、促进细胞迁移、抑制凋亡并诱导血管通透性,对于生理和病理性血管生成都是必需的。VEGF-A基因在许多已知的肿瘤中上调表达,其表达与肿瘤分期和进展相关。VEGF-A (vascular endothelial growth factor A) is a member of the PDGF/VEGF family of growth factors. VEGF-A encodes a heparin-binding protein that exists as a disulfide-linked homodimer. According to the prior art, VEGF-A has a certain role in angiogenesis, angiogenesis and endothelial cell growth, and can induce endothelial cell proliferation, promote cell migration, inhibit apoptosis and induce vascular permeability. Angiogenesis is required. The VEGF-A gene is upregulated in many known tumors, and its expression correlates with tumor stage and progression.

另一方面,在细胞治疗领域,同种异体的免疫兼容问题依然是一大难题。近年已有许多报道通过敲除B2M、CIITA等基因,实现HLA-I和HLA-II细胞表面或本身基因的缺失表达,进而使细胞具备免疫耐受或逃逸T/B细胞特异性免疫应答,产生免疫兼容的通用型PSCs,为更广泛的通用型PSCs源细胞、组织、器官应用奠定了重要的基础。也有报道细胞过表达CTLA4-Ig、PD-L1从而抑制同种异的免疫排斥。然而,这些方案要么免疫兼容不彻底,仍有通过其他途径发生同种异体的免疫排斥;要么彻底消除同种异体免疫排斥应答,但使供体源移植物的细胞本身同时丧失了抗原提呈的能力,这给受体带来了极大的致瘤性和病毒感染等疾病的风险。On the other hand, in the field of cell therapy, the issue of allogeneic immunocompatibility is still a major problem. In recent years, there have been many reports that by knocking out B2M, CIITA and other genes, the expression of HLA-I and HLA-II cells surface or their own genes is lost, so that cells have immune tolerance or escape T/B cell-specific immune responses, resulting in The immune-compatible universal PSCs have laid an important foundation for the wider application of universal PSC-derived cells, tissues and organs. It has also been reported that cells overexpress CTLA4-Ig and PD-L1 to inhibit allogeneic immune rejection. However, these regimens are either not fully immune compatible, and allogeneic immune rejection still occurs through other means; or they completely eliminate the allogeneic immune rejection response, but the cells of the donor-derived graft lose their antigen-presenting ability at the same time. capacity, which poses a great risk to the receptor for diseases such as tumorigenicity and viral infection.

为此,也有报道,不直接敲除B2M,而敲除HLA-A、HLA-B或一并敲除CIITA的同时,保留HLA-C,并构建12个覆盖人群超过90%的HLA-C免疫配型抗原,以此达到移植物的细胞仍具备一定程度的抗原提呈功能,并且同时能够通过HLA-C抑制NK细胞的固有免疫应答。但这类细胞,一来,HLA-I类抗原提呈的抗原类型缩小了三分之二以上,能够提呈的抗原完整性极大地不可逆的缩小,对于各种肿瘤、病毒以及其他疾病抗原的提呈具有极大的偏向性,仍然保留了相当程度的致瘤和病毒感染等疾病的风险,在CIITA同时敲除的情况下其致病风险更高;二来,12种高频率免疫配型的HLA-C抗原种族差异很大,通过我们核实计算部分地区仅能占到70%的比例,而世界上多个人口大国目前尚未有权威的大样本量的HLA数据展示,这样制备出来的通用型PSCs使用仍受到巨大的配型空缺考验;第三,这种方法会经历数次反复的基因编辑工作,按每次基因编辑至少两轮单细胞分离培养计,整个过程至少需要六轮以上的单细胞分离培养,这些流程不可避免且极大概率地因多次基因编辑脱靶或染色质不稳定或因大量单细胞传代增殖造成细胞各种不可预测的突变,进而诱发致癌、代谢疾病等各种问题。由此可见,这类免疫兼容方案亦为“过渡时期”的权宜之计,仍有许多问题没有更好的解决。For this reason, it has also been reported that, instead of directly knocking out B2M, HLA-A, HLA-B or CIITA are knocked out together, while retaining HLA-C, and constructing 12 HLA-C immune systems that cover more than 90% of the population. Matching antigens, so that the transplanted cells still have a certain degree of antigen presentation function, and at the same time can inhibit the innate immune response of NK cells through HLA-C. However, the types of antigens presented by HLA-I antigens have been reduced by more than two-thirds, and the integrity of the antigens that can be presented has been greatly and irreversibly reduced. For various tumors, viruses and other disease antigens The presentation is highly biased, and still retains a considerable degree of risk of tumorigenicity and viral infection, and its pathogenic risk is higher when CIITA is knocked out at the same time; secondly, 12 high-frequency immune matching The HLA-C antigens of HLA-C antigens vary greatly by ethnicity. Through our verification and calculation, some regions can only account for 70% of the proportion, and many countries with large populations in the world currently do not have authoritative large-scale HLA data display. The use of type PSCs is still subject to the huge matching vacancy test; thirdly, this method will undergo several iterations of gene editing work. Based on at least two rounds of single-cell isolation and culture for each gene editing, the whole process requires at least more than six rounds of single-cell isolation and culture. Cell isolation and culture, these processes are inevitably and highly likely to cause various unpredictable mutations in cells due to multiple off-target gene editing or chromatin instability or due to a large number of single-cell passages and proliferations, and then induce various problems such as carcinogenesis and metabolic diseases . It can be seen that this type of immunocompatibility program is also an expedient measure in the "transition period", and there are still many problems that have not been better resolved.

此外,还有人设计通过诱导自杀基因在供体组织、细胞致病后诱导杀死,这样做的后果将产生严重的组织坏死、细胞因子风暴等不可预知的疾病风险问题,并且这类设计的细胞杀死后将不复存在合适的供体细胞、组织和器官又是一大难题。In addition, some people have designed suicide genes to induce killing after the donor tissue and cells become diseased. The consequences of doing so will cause severe tissue necrosis, cytokine storms and other unpredictable disease risk problems, and such designed cells Another problem is that after killing, there will be no suitable donor cells, tissues and organs.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种多能干细胞或其衍生物;The object of the present invention is to provide a pluripotent stem cell or a derivative thereof;

本发明的另一目的在于提供所述多能干细胞或其衍生物及其分泌的外泌体在制备黄斑变性治疗制剂或药物中的应用。Another object of the present invention is to provide applications of the pluripotent stem cells or derivatives thereof and the exosomes secreted by them in the preparation of macular degeneration treatment preparations or medicines.

本发明的另一目的在于提供一种外泌体。Another object of the present invention is to provide an exosome.

本发明所采取的技术方案是:The technical scheme adopted by the present invention is:

本发明的第一个方面,提供:A first aspect of the present invention provides:

一种多能干细胞或其衍生物,该多能干细胞或其衍生物包含VEGF-A靶向抑制因子,所述VEGF-A靶向抑制因子包括表达VEGF-A的shRNA和shRNA-miR中的至少一种;所述表达VEGF-A的shRNA和shRNA-miR的序列优选插入于所述多能干细胞或其衍生物的基因组中。A pluripotent stem cell or a derivative thereof, the pluripotent stem cell or a derivative thereof comprising a VEGF-A targeting inhibitor, the VEGF-A targeting inhibitor comprising at least one of VEGF-A-expressing shRNA and shRNA-miR A; the sequences of the VEGF-A-expressing shRNA and shRNA-miR are preferably inserted into the genome of the pluripotent stem cell or a derivative thereof.

发明人发现,在多能干细胞或其衍生物中导入VEGF-A抑制因子的表达序列后,多能干细胞或其衍生物中分泌的靶向VEGF-A的VEGF-A抑制因子,这些抑制因子与靶细胞结合,能够有效清除肿瘤细胞和抑制黄斑变性。The inventors found that after the expression sequence of VEGF-A inhibitory factor was introduced into pluripotent stem cells or derivatives thereof, the VEGF-A inhibitory factors targeting VEGF-A secreted in pluripotent stem cells or their derivatives were similar to Binding to target cells can effectively remove tumor cells and inhibit macular degeneration.

进一步地,所述靶向VEGF-A的shRNA和shRNA-miR的序列如SEQ ID NO.1~SEQ IDNO.2所示。Further, the sequences of the VEGF-A-targeting shRNA and shRNA-miR are shown in SEQ ID NO.1 to SEQ ID NO.2.

本发明的第二个方面,提供:A second aspect of the present invention provides:

一种多能干细胞或其衍生物,该多能干细胞或其衍生物包含VEGF-A靶向抑制因子,所述VEGF-A靶向抑制因子包括表达VEGF-A的shRNA和shRNA-miR中的至少一种;所述表达VEGF-A的shRNA和shRNA-miR的序列优选插入于所述多能干细胞或其衍生物的基因组中;A pluripotent stem cell or a derivative thereof, the pluripotent stem cell or a derivative thereof comprising a VEGF-A targeting inhibitor, the VEGF-A targeting inhibitor comprising at least one of VEGF-A-expressing shRNA and shRNA-miR One; the sequences of the shRNA and shRNA-miR expressing VEGF-A are preferably inserted into the genome of the pluripotent stem cell or a derivative thereof;

所述多能干细胞或其衍生物基因组的B2M基因和/或CIITA基因被敲除。The B2M gene and/or the CIITA gene of the genome of the pluripotent stem cell or its derivative is knocked out.

当B2M和CIITA基因被敲除后,其完全消除HLA-I和HLA-II类分子产生的影响,因此,其肿瘤和黄斑变性治疗效果最佳。When the B2M and CIITA genes were knocked out, they completely eliminated the effects of HLA-I and HLA-II molecules, so their tumor and macular degeneration treatments were the best.

本发明的第三个方面,提供:A third aspect of the present invention provides:

一种多能干细胞或其衍生物,该多能干细胞或其衍生物包含VEGF-A靶向抑制因子,所述VEGF-A靶向抑制因子包括表达VEGF-A的shRNA和shRNA-miR中的至少一种;所述表达VEGF-A的shRNA和shRNA-miR的序列优选插入于所述多能干细胞或其衍生物的基因组中;A pluripotent stem cell or a derivative thereof, the pluripotent stem cell or a derivative thereof comprising a VEGF-A targeting inhibitor, the VEGF-A targeting inhibitor comprising at least one of VEGF-A-expressing shRNA and shRNA-miR One; the sequences of the shRNA and shRNA-miR expressing VEGF-A are preferably inserted into the genome of the pluripotent stem cell or a derivative thereof;

上述多能干细胞或其衍生物的基因组中导入有第一核酸分子;且,上述多能干细胞或其衍生物中的免疫应答相关基因的3’UTR区域导入有第二核酸分子;上述第一核酸分子编码介导RNA干扰的小核酸分子,上述小核酸分子特异性靶向第二核酸分子的转录产物,且上述小核酸分子不靶向所述多能干细胞或其衍生物的任何其他的mRNA或lncRNA。A first nucleic acid molecule is introduced into the genome of the above-mentioned pluripotent stem cell or its derivative; and a second nucleic acid molecule is introduced into the 3'UTR region of the immune response-related gene in the above-mentioned pluripotent stem cell or its derivative; the above-mentioned first nucleic acid The molecule encodes a small nucleic acid molecule that mediates RNA interference, the small nucleic acid molecule specifically targets the transcription product of the second nucleic acid molecule, and the small nucleic acid molecule does not target any other mRNA or mRNA of the pluripotent stem cell or its derivative. lncRNAs.

本技术方案中,所述第一核酸分子编码的小核酸分子能够与免疫应答相关基因3’UTR区域导入的第二核酸分子的转录产物特异性结合,从而启动RNA干扰程序,将免疫应答相关基因的mRNA降解或沉默,从而阻断免疫应答相关基因的表达,进而使得此类细胞具有免疫兼容的特性,可以消除或者降低同种异体免疫排斥应答反应。而且,该RNA干扰程序只作用于此类被改造过的多能干细胞或其衍生物,因此,当此类细胞或衍生物被移植到受体中时,由第一核酸分子编码的小核酸分子与免疫应答相关基因的3’UTR处导入的第二核酸分子所介导的免疫应答相关基因的RNA干扰,只作用于供体细胞,而不会对受体的细胞的基因组产生干扰。In this technical solution, the small nucleic acid molecule encoded by the first nucleic acid molecule can specifically bind to the transcription product of the second nucleic acid molecule introduced into the 3'UTR region of the immune response-related gene, thereby starting the RNA interference program, and the immune response-related gene The mRNA is degraded or silenced, thereby blocking the expression of immune response-related genes, thereby making such cells immune-compatible, which can eliminate or reduce the allogeneic immune rejection response. Furthermore, the RNA interference program acts only on such engineered pluripotent stem cells or derivatives thereof, so that when such cells or derivatives are transplanted into the recipient, the small nucleic acid molecule encoded by the first nucleic acid molecule The RNA interference of the immune response-related gene mediated by the second nucleic acid molecule introduced at the 3'UTR of the immune response-related gene only acts on the donor cell, and does not interfere with the genome of the recipient's cell.

进一步地,上述小核酸分子包括短干扰核酸、短干扰RNA、双链RNA,优选为miRNA、shRNA、shRNA-miR中的至少一种。Further, the above-mentioned small nucleic acid molecules include short interfering nucleic acid, short interfering RNA, and double-stranded RNA, preferably at least one of miRNA, shRNA, and shRNA-miR.

进一步地,上述多能干细胞或其衍生物来源于人类;上述小核酸分子的序列为不靶向人类任何mRNA或lncRNA的非人类物种的随机序列。Further, the above-mentioned pluripotent stem cells or derivatives thereof are derived from humans; the sequences of the above-mentioned small nucleic acid molecules are random sequences of non-human species that do not target any human mRNA or lncRNA.

上述小核酸分子优选来源于秀丽隐杆线虫。例如:The aforementioned small nucleic acid molecules are preferably derived from Caenorhabditis elegans. E.g:

5’-TTGTACTACACAAAAGTACTG-3’(SEQ ID NO.101);5'-TTGTACTACACAAAAGTACTG-3' (SEQ ID NO. 101);

5’-TCACAACCTCCTAGAAAGAGTAGA-3’(SEQ ID NO.102)。5'-TCACAACCTCCTAGAAAGAGTAGA-3' (SEQ ID NO. 102).

进一步地,上述第二核酸分子包括至少3个重复的小核酸分子序列的反向互补序列,优选为6~10个重复的小核酸分子序列的反向互补序列。Further, the above-mentioned second nucleic acid molecule includes at least 3 repeating reverse complement sequences of small nucleic acid molecule sequences, preferably 6-10 repeating reverse complement sequences of small nucleic acid molecule sequences.

进一步地,所述多能干细胞或其衍生物的基因组中还导入有诱导型基因表达系统,用于调控第一核酸分子的表达。Further, an inducible gene expression system is also introduced into the genome of the pluripotent stem cell or its derivative for regulating the expression of the first nucleic acid molecule.

本技术方案中,诱导型基因表达系统受外源诱导物的调控,通过调整外源诱导物的添加量、持续作用时间、种类来控制诱导型基因表达系统的开启与关闭,从而控制小核酸分子的表达量。In this technical solution, the inducible gene expression system is regulated by the exogenous inducer, and the opening and closing of the inducible gene expression system is controlled by adjusting the addition amount, duration and type of the exogenous inducer, thereby controlling the small nucleic acid molecule expression.

当诱导型基因表达系统开启时,正常表达的小核酸分子和免疫应答相关基因3’UTR区域导入的第二核酸分子的转录产物特异性结合,从而启动RNA干扰程序,将免疫应答相关基因的mRNA降解或沉默,从而阻断免疫应答相关基因的表达。因此,此类细胞或衍生物被移植到受体中时,可以消除或者降低同种异体免疫排斥应答,提高移植物与受体之间的免疫兼容能力。When the inducible gene expression system is turned on, the normally expressed small nucleic acid molecule specifically binds to the transcription product of the second nucleic acid molecule introduced into the 3'UTR region of the immune response-related gene, thereby initiating the RNA interference program and converting the mRNA of the immune response-related gene Degradation or silencing, thereby blocking the expression of immune response-related genes. Therefore, when such cells or derivatives are transplanted into the recipient, the allogeneic immune rejection response can be eliminated or reduced, and the immunocompatibility between the transplant and the recipient can be improved.

当移植物发生病变后,可以通过添加外源诱导物来关闭诱导型基因表达系统,进而关闭小核酸分子的表达,中止小分子核酸对免疫应答相关基因mRNA的干扰作用,恢复免疫应答相关基因的正常表达,进而恢复移植物细胞的抗原提呈能力,使受体能够清除病变的移植物,从而提高了这类多能干细胞或其衍生物的临床安全性,极大地扩展其在临床应用的价值。When the graft becomes diseased, the inducible gene expression system can be turned off by adding an exogenous inducer, thereby turning off the expression of small nucleic acid molecules, stopping the interference of small nucleic acid molecules on the mRNA of immune response-related genes, and restoring the expression of immune response-related genes. Normal expression, thereby restoring the antigen-presenting ability of the graft cells, enabling the recipient to clear the diseased graft, thereby improving the clinical safety of such pluripotent stem cells or their derivatives, and greatly expanding their value in clinical applications .

而且,该RNA干扰程序只作用于此类被改造过的多能干细胞或其衍生物,因此,当此类细胞或衍生物被移植到受体中时,由第一核酸分子编码的小核酸分子与免疫应答相关基因的3’UTR处导入的第二核酸分子所介导的免疫应答相关基因的RNA干扰,只作用于供体细胞,而不会对受体的细胞的基因组产生干扰。Furthermore, the RNA interference program acts only on such engineered pluripotent stem cells or derivatives thereof, so that when such cells or derivatives are transplanted into the recipient, the small nucleic acid molecule encoded by the first nucleic acid molecule The RNA interference of the immune response-related gene mediated by the second nucleic acid molecule introduced at the 3'UTR of the immune response-related gene only acts on the donor cell, and does not interfere with the genome of the recipient's cell.

本发明的第四个方面,提供:A fourth aspect of the present invention provides:

一种多能干细胞或其衍生物,该多能干细胞或其衍生物包含VEGF-A靶向抑制因子,所述VEGF-A靶向抑制因子包括表达VEGF-A的shRNA和shRNA-miR中的至少一种;所述表达VEGF-A的shRNA和shRNA-miR的序列优选插入于所述多能干细胞或其衍生物的基因组中。A pluripotent stem cell or a derivative thereof, the pluripotent stem cell or a derivative thereof comprising a VEGF-A targeting inhibitor, the VEGF-A targeting inhibitor comprising at least one of VEGF-A-expressing shRNA and shRNA-miR A; the sequences of the VEGF-A-expressing shRNA and shRNA-miR are preferably inserted into the genome of the pluripotent stem cell or a derivative thereof.

上述多能干细胞或其衍生物的基因组中还导入至少一种免疫兼容分子的表达序列,上述免疫兼容分子用于调控多能干细胞细胞或其衍生物中与免疫应答相关的基因的表达。The genome of the above-mentioned pluripotent stem cells or their derivatives is also introduced with an expression sequence of at least one immune-compatible molecule, and the above-mentioned immune-compatible molecules are used to regulate the expression of genes related to immune response in the pluripotent stem cells or their derivatives.

本技术方案中,免疫兼容分子可以调控多能干细胞或其衍生物中与免疫应答相关的基因的表达,因而此类多能干细胞或其衍生物的免疫源性低,将其移植到受体中时,可以消除或者降低同种异体免疫排斥应答,提高移植物与受体之间的免疫兼容能力。移植物可以在受体内源源不断地表达靶向VEGF-A的shRNA/shRNA-miR,这些抑制因子被外泌体包裹后,外泌体携带其与靶细胞结合,进而将其释放,从而阻断VEGF-A通路,解除免疫抑制,激活免疫系统,能够有效清除肿瘤细胞和改善黄斑变性。In this technical solution, the immune-compatible molecules can regulate the expression of genes related to immune response in pluripotent stem cells or their derivatives, so such pluripotent stem cells or their derivatives have low immunogenicity, and they are transplanted into recipients. It can eliminate or reduce the allogeneic immune rejection response and improve the immune compatibility between the graft and the recipient. The graft can continuously express shRNA/shRNA-miR targeting VEGF-A in the recipient. After these inhibitory factors are encapsulated by exosomes, the exosomes carry them to bind to the target cells, and then release them, thereby preventing the inhibition of VEGF-A. Blocking the VEGF-A pathway, relieves immunosuppression, activates the immune system, can effectively remove tumor cells and improve macular degeneration.

进一步地,所述多能干细胞或其衍生物的基因组中还导入有诱导型基因表达系统,用于调控免疫兼容分子的表达。Further, an inducible gene expression system is also introduced into the genome of the pluripotent stem cells or their derivatives for regulating the expression of immune compatible molecules.

本技术方案中,诱导型基因表达系统受外源诱导物的调控,通过调整外源诱导物的添加量、持续作用时间、种类来控制诱导型基因表达系统的开启与关闭,进一步控制免疫兼容分子表达序列的表达量,从而实现多能干细胞或其衍生物免疫兼容的可逆性调控。当免疫兼容分子正常表达时,多能干细胞或其衍生物中与免疫应答相关的基因的表达被抑制或过表达,从而使得进行同种异体细胞治疗时,可以消除或者降低同种异体免疫排斥应答,提高供体细胞与受体之间的免疫兼容能力。而当供体细胞发生病变时,可通过外源诱导物诱导关闭免疫兼容分子的表达,从而可逆地使供体细胞表面重新表达HLAⅠ类分子,恢复供体细胞的抗原提呈能力,进而受体免疫系统通过识别不匹配的HLAⅠ类分子或通过交叉HLAⅠ类分子抗原提呈(经典非兼容HLA之间的抗原提呈/识别)突变的分子,使受体能够清除病变的细胞,从而提高了这类通用型多能干细胞或其衍生物的临床安全性,极大地扩展其在临床应用的价值。In this technical solution, the inducible gene expression system is regulated by the exogenous inducer, and the opening and closing of the inducible gene expression system is controlled by adjusting the addition amount, duration and type of the exogenous inducer, and the immune compatible molecules are further controlled. The expression level of the expressed sequence can be reversibly regulated by the immunocompatibility of pluripotent stem cells or their derivatives. When immune-compatible molecules are normally expressed, the expression of genes related to immune response in pluripotent stem cells or their derivatives is inhibited or overexpressed, so that allogeneic cell therapy can eliminate or reduce the allogeneic immune rejection response. , to improve the immune compatibility between donor cells and recipients. When the donor cell becomes diseased, the expression of immune-compatible molecules can be induced to shut down by exogenous inducers, thereby reversibly re-expressing HLA class I molecules on the surface of the donor cell, restoring the antigen-presenting ability of the donor cell, and then accepting the receptor. The immune system increases this risk by recognizing mismatched HLA class I molecules or mutated molecules through cross-HLA class I antigen presentation (antigen presentation/recognition between classically incompatible HLAs), enabling receptors to clear diseased cells. The clinical safety of general-purpose pluripotent stem cells or their derivatives greatly expands their value in clinical applications.

关于本发明的第三个和第四个方面,进一步地,所述与免疫应答相关的基因包括:Regarding the third and fourth aspects of the present invention, further, the genes related to immune response include:

(1)主要组织相容性复合体基因,包括HLA-A、HLA-B、HLA-C、HLA-DRA、HLA-DRB1、HLA-DRB3、HLA-DRB4、HLA-DRB5、HLA-DQA1、HLA-DQB1、HLA-DPA1和HLA-DPB1中的至少一种;(1) Major histocompatibility complex genes, including HLA-A, HLA-B, HLA-C, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA - at least one of DQB1, HLA-DPAl and HLA-DPB1;

(2)主要组织相容性复合体相关基因,包括B2M和CIITA中的至少一种。(2) Major histocompatibility complex-related genes, including at least one of B2M and CIITA.

关于本发明的第四个方面,进一步地,所述免疫兼容分子包括以下的至少一种:Regarding the fourth aspect of the present invention, further, the immunocompatible molecule includes at least one of the following:

(1)免疫耐受相关基因,包括CD47和HLA-G中的至少一种;(1) Immune tolerance-related genes, including at least one of CD47 and HLA-G;

(2)HLA-C类分子,包括人群中比例合计超过90%的HLA-C复等位基因,或者超过90%的HLA-C复等位基因与B2M构成的融合蛋白基因;(2) HLA-C class molecules, including HLA-C multiple alleles with a proportion of more than 90% in the population, or fusion protein genes composed of more than 90% of HLA-C multiple alleles and B2M;

(3)靶向主要组织相容性复合体基因的shRNA和/或shRNA-miR,上述主要组织相容性复合体基因包括HLA-A、HLA-B、HLA-C、HLA-DRA、HLA-DRB1、HLA-DRB3、HLA-DRB4、HLA-DRB5、HLA-DQA1、HLA-DQB1、HLA-DPA1和HLA-DPB1中的至少一种;(3) shRNA and/or shRNA-miR targeting major histocompatibility complex genes, including HLA-A, HLA-B, HLA-C, HLA-DRA, HLA- at least one of DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1;

(4)靶向主要组织相容性复合体相关基因的shRNA和/或shRNA-miR,上述主要组织相容性复合体相关基因包括B2M和CIITA中的至少一种。(4) shRNA and/or shRNA-miR targeting major histocompatibility complex-related genes, the major histocompatibility complex-related genes including at least one of B2M and CIITA.

更进一步地,上述靶向B2M的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.9~SEQ ID NO.11中的一种;Further, the target sequence of the above-mentioned B2M-targeting shRNA and/or shRNA-miR is selected from one of SEQ ID NO.9 to SEQ ID NO.11;

靶向CIITA的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.12~SEQ ID NO.14中的一种;The target sequence of shRNA and/or shRNA-miR targeting CIITA is selected from one of SEQ ID NO.12 to SEQ ID NO.14;

靶向HLA-A的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.15~SEQ ID NO.17中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-A is selected from one of SEQ ID NO.15 to SEQ ID NO.17;

靶向HLA-B的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.18~SEQ ID NO.20中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-B is selected from one of SEQ ID NO.18-SEQ ID NO.20;

靶向HLA-C的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.21~SEQ ID NO.23中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-C is selected from one of SEQ ID NO.21 to SEQ ID NO.23;

靶向HLA-DRA的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.24~SEQ IDNO.26中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DRA is selected from one of SEQ ID NO.24 to SEQ ID NO.26;

靶向HLA-DRB1的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.27~SEQ IDNO.29中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DRB1 is selected from one of SEQ ID NO.27-SEQ ID NO.29;

靶向HLA-DRB3的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.30~SEQ IDNO.31中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DRB3 is selected from one of SEQ ID NO.30 to SEQ ID NO.31;

靶向HLA-DRB4的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.32~SEQ IDNO.34中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DRB4 is selected from one of SEQ ID NO.32 to SEQ ID NO.34;

靶向HLA-DRB5的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.35~SEQ IDNO.37中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DRB5 is selected from one of SEQ ID NO.35-SEQ ID NO.37;

靶向HLA-DQA1的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.38~SEQ IDNO.40中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DQA1 is selected from one of SEQ ID NO.38 to SEQ ID NO.40;

靶向HLA-DQB1的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.41~SEQ IDNO.43中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DQB1 is selected from one of SEQ ID NO.41 to SEQ ID NO.43;

靶向HLA-DPA1的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.44~SEQ IDNO.46中的一种;The target sequence of shRNA and/or shRNA-miR targeting HLA-DPA1 is selected from one of SEQ ID NO.44 to SEQ ID NO.46;

靶向HLA-DPB1的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.47~SEQ IDNO.49中的一种。The target sequence of the shRNA and/or shRNA-miR targeting HLA-DPB1 is selected from one of SEQ ID NO. 47 to SEQ ID NO. 49.

关于本发明的第一个至第四个方面,更进一步地,所述多能干细胞或其衍生物的基因组中还导入shRNA和/或miRNA加工复合体相关基因和/或抗干扰素效应分子,其中:shRNA和/或miRNA加工复合体相关基因包括Drosha、Ago1、Ago2、Dicer1、Exportin-5、TRBP(TARBP2)、PACT(PRKRA)、DGCR8中的至少一种;上述抗干扰素效应分子为靶向PKR、2-5As、IRF-3和IRF-7中的至少一种的shRNA和/或shRNA-miR。Regarding the first to fourth aspects of the present invention, further, shRNA and/or miRNA processing complex-related genes and/or anti-interferon effector molecules are introduced into the genome of the pluripotent stem cells or their derivatives, Wherein: shRNA and/or miRNA processing complex-related genes include at least one of Drosha, Ago1, Ago2, Dicer1, Exportin-5, TRBP (TARBP2), PACT (PRKRA), and DGCR8; the above-mentioned anti-interferon effector molecule is the target shRNA and/or shRNA-miR directed to at least one of PKR, 2-5As, IRF-3, and IRF-7.

更进一步地,上述靶向PKR的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.50~SEQ ID NO.52中的一种;Further, the target sequence of the above-mentioned PKR-targeting shRNA and/or shRNA-miR is selected from one of SEQ ID NO.50-SEQ ID NO.52;

靶向2-5As的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.53~SEQ ID NO.61中的一种;The target sequence of shRNA and/or shRNA-miR targeting 2-5As is selected from one of SEQ ID NO.53 to SEQ ID NO.61;

靶向IRF-3的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.62~SEQ ID NO.64中的一种;The target sequence of shRNA and/or shRNA-miR targeting IRF-3 is selected from one of SEQ ID NO.62-SEQ ID NO.64;

靶向IRF-7的shRNA和/或shRNA-miR的靶序列选自SEQ ID NO.65~SEQ ID NO.67中的一种。The target sequence of shRNA and/or shRNA-miR targeting IRF-7 is selected from one of SEQ ID NO.65-SEQ ID NO.67.

关于本发明的第三个和第四个方面,所述诱导型基因表达系统包括Tet-Off系统、二聚体诱导表达系统中的至少一种。Regarding the third and fourth aspects of the present invention, the inducible gene expression system includes at least one of the Tet-Off system and the dimer inducible expression system.

当采用的诱导型基因表达系统为Tet-Off系统时,可通过添加外源诱导物四环素(Doxycycline,Dox)来控制细胞或其衍生物中小核酸分子的表达。当所述的多能干细胞或其衍生物被移植到供体中后,甚至可以通过调整Dox的添加量,来逐步降低小核酸分子的表达量,使得细胞能够逐步地表达低浓度的免疫相关基因来刺激供体,从而使得供体对移植的细胞或其衍生物逐步产生耐受,最终达到稳定的耐受。通常情况下,Dox的添加量为0-100uM。When the inducible gene expression system used is the Tet-Off system, the expression of small nucleic acid molecules in cells or derivatives thereof can be controlled by adding an exogenous inducer tetracycline (Doxycycline, Dox). When the pluripotent stem cells or their derivatives are transplanted into the donor, the expression of small nucleic acid molecules can even be gradually reduced by adjusting the amount of Dox added, so that the cells can gradually express low concentrations of immune-related genes To stimulate the donor, so that the donor gradually develops tolerance to the transplanted cells or their derivatives, and finally achieves a stable tolerance. Typically, Dox is added in an amount of 0-100uM.

关于本发明的第一个至第四个方面,更进一步地,上述多能干细胞或其衍生物的基因组还导入外泌体加工合成基因,所述外泌体加工合成基因包括STEAP3、Syndevan-4、L-天冬氨酸氧化酶片段、CD63-L7Ae和Cx43 S368A中的至少一种。Regarding the first to fourth aspects of the present invention, further, the genome of the above-mentioned pluripotent stem cells or their derivatives is further introduced into exosome processing and synthesis genes, and the exosome processing and synthesis genes include STEAP3, Syndevan-4 , at least one of L-aspartate oxidase fragment, CD63-L7Ae and Cx43 S368A.

在干细胞或其衍生物的基因组中导入外泌体加工合成基因可以提高外泌体的分泌效率,及其对shRNA、shRNA-miR和加工成熟的siRNA的包裹效率。The introduction of exosome processing synthetic genes into the genome of stem cells or their derivatives can improve the secretion efficiency of exosomes and their encapsulation efficiency for shRNA, shRNA-miR and processed siRNA.

二聚体诱导表达系统具体指:运用二聚化的诱导剂或者二聚体在无活性的融合蛋白上重组有活性的转录因子。最常用的体系是将天然产物雷帕霉素(rapamydn)或者无生物活性的类似物作为二聚化的药物。雷帕霉素(或类似物)同胞质蛋白FKBP12(FKBP与FK506结合的蛋白)和一种大的丝-苏氨酸蛋白激酶,称为FRAP(FRBP-雷帕霉素相关蛋白,即mTOR(哺乳动物的雷帕霉素靶点))有高度亲和性,又与这两种蛋白质相结合的功能,因此作为异源性二聚体将这两种蛋白质聚到一起。为调控靶基因转录,将DNA结合区域融合到一个或多个FKBP结构域,将转录抑制域融合到FRAP的93位氨基酸部位,称为FRB,这样足以结合FKBP-雷帕霉素复合物。只有在雷帕霉素存在的情况下,这两种融合蛋白才能发生二聚化。因而抑制具有与DNA结合区域相结合的位点的基因进行转录。The dimer-inducible expression system specifically refers to: using a dimerization inducer or dimer to reconstitute an active transcription factor on an inactive fusion protein. The most commonly used system uses the natural product rapamydn or a biologically inactive analog as the dimerized drug. Rapamycin (or analog) homoplasmic protein FKBP12 (the protein that FKBP binds to FK506) and a large serine-threonine protein kinase called FRAP (FRBP-rapamycin-associated protein, or mTOR ( The mammalian target of rapamycin)) has a high affinity and has the function of combining with these two proteins, so the two proteins are brought together as a heterodimer. To regulate target gene transcription, a DNA binding domain is fused to one or more FKBP domains, and a transcriptional repression domain is fused to amino acid 93 of FRAP, called FRB, which is sufficient to bind the FKBP-rapamycin complex. The two fusion proteins dimerized only in the presence of rapamycin. Transcription of genes with sites that bind to the DNA binding region is thus inhibited.

关于本发明的第一个至第四个方面,更进一步地,所述靶向VEGF-A的shRNA和/或shRNA-miR、主要组织相容性复合体基因、主要组织相容性复合体相关基因、抗干扰素效应分子的表达框架如下:Regarding the first to fourth aspects of the present invention, further, the VEGF-A targeting shRNA and/or shRNA-miR, major histocompatibility complex gene, major histocompatibility complex related The expression framework of genes and anti-interferon effector molecules is as follows:

所述shRNA表达框架:自5’到3’依次包括shRNA序列、茎环序列、shRNA序列的反向互补序列、Poly T;Described shRNA expression frame: from 5 ' to 3 ' sequentially comprises shRNA sequence, stem-loop sequence, the reverse complement of shRNA sequence, Poly T;

其中,所述shRNA序列、茎环序列与所述shRNA序列的反向互补序列形成发夹结构;Poly T为RNA聚合酶III的转录终止子;Wherein, the shRNA sequence, the stem-loop sequence and the reverse complementary sequence of the shRNA sequence form a hairpin structure; Poly T is the transcription terminator of RNA polymerase III;

shRNA-miR表达框架:使用shRNA-miR序列替换所述shRNA表达框架中的shRNA靶序列得到。shRNA-miR expression framework: obtained by replacing the shRNA target sequence in the shRNA expression framework with the shRNA-miR sequence.

关于本发明的第一个至第四个方面,更进一步地,所述VEGF-A抑制因子的表达序列、第一核酸分子、免疫兼容分子的表达序列、shRNA和/或miRNA加工复合体相关基因、抗干扰素效应分子、诱导型基因表达系统、外泌体加工合成基因的导入采用病毒载体干扰、非病毒载体转染或基因编辑的方法,所述基因编辑的方法优选为基因敲入。Regarding the first to fourth aspects of the present invention, further, the expression sequence of the VEGF-A inhibitor, the first nucleic acid molecule, the expression sequence of the immunocompatible molecule, the shRNA and/or the miRNA processing complex-related gene , Anti-interferon effector molecules, inducible gene expression systems, and exosome processing synthetic genes are introduced by viral vector interference, non-viral vector transfection or gene editing, and the gene editing method is preferably gene knock-in.

关于本发明的第一个至第四个方面,更进一步地,所述VEGF-A抑制因子的表达序列、免疫兼容分子的表达序列、shRNA和/或miRNA加工复合体相关基因、抗干扰素效应分子、诱导型基因表达系统、外泌体加工合成基因的导入位点为基因组安全位点,优选为AAVS1安全位点、eGSH安全位点、H11安全位点中的一种或多种。Regarding the first to fourth aspects of the present invention, further, the expression sequence of the VEGF-A inhibitor, the expression sequence of the immune compatible molecule, the shRNA and/or miRNA processing complex related genes, the anti-interferon effect The introduction site of molecules, inducible gene expression systems, and exosome processing synthetic genes is a genome safety site, preferably one or more of the AAVS1 safety site, eGSH safety site, and H11 safety site.

关于本发明的第一个至第四个方面,更进一步地,所述多能干细胞包括胚胎干细胞、胚胎生殖细胞、胚胎癌细胞、或者诱导多能干细胞;Regarding the first to fourth aspects of the present invention, further, the pluripotent stem cells include embryonic stem cells, embryonic germ cells, embryonic cancer cells, or induced pluripotent stem cells;

所述多能干细胞衍生物包括多能干细胞所分化的成体干细胞、各胚层细胞或组织、器官;The pluripotent stem cell derivatives include adult stem cells differentiated from pluripotent stem cells, cells of each germ layer or tissues and organs;

所述成体干细胞包括间充质干细胞或者神经干细胞。The adult stem cells include mesenchymal stem cells or neural stem cells.

本发明的第五个方面,提供:A fifth aspect of the present invention provides:

上述多能干细胞或其衍生物及其分泌的外泌体在制备黄斑变性治疗制剂或药物中的应用。Use of the above-mentioned pluripotent stem cells or derivatives thereof and exosomes secreted by them in the preparation of macular degeneration treatment preparations or medicines.

本发明的第六个方面,提供:A sixth aspect of the present invention provides:

一种外泌体,由上述的多能干细胞或其衍生物分泌得到。An exosome is secreted from the above-mentioned pluripotent stem cells or derivatives thereof.

本发明的有益效果是:The beneficial effects of the present invention are:

1.本发明第一个方面所提供的多能干细胞或其衍生物,可应用于自体细胞诱导的iPSCs或者MSCs低免疫源性细胞。其通过在自体细胞诱导的iPSCs基因组中导入靶向VEGF-A的VEGF-A抑制因子的shRNA/shRNA-miR的表达序列后,iPSCs能够大量表达靶向VEGF-A的shRNA/shRNA-miR,并被细胞分泌的外泌体包裹。外泌体携带这些抑制因子与靶细胞结合,进而将其释放,从而阻断VEGF-A通路,解除免疫抑制,激活免疫系统,并恢复T细胞活性,使其能够有效清除肿瘤细胞。1. The pluripotent stem cells or derivatives thereof provided in the first aspect of the present invention can be applied to iPSCs or MSCs low-immunogenic cells induced by autologous cells. After introducing the expression sequence of shRNA/shRNA-miR targeting VEGF-A inhibitory factor of VEGF-A into the genome of iPSCs induced by autologous cells, iPSCs can express shRNA/shRNA-miR targeting VEGF-A in large quantities, and Encapsulated by exosomes secreted by cells. The exosomes carry these inhibitory factors to bind to target cells and release them, thereby blocking the VEGF-A pathway, relieving immunosuppression, activating the immune system, and restoring T cell activity, enabling it to effectively remove tumor cells.

2.本发明第二个方面所提供的多能干细胞或其衍生物,还可以应用于同种异体细胞治疗。由于本发明中的多能干细胞或其衍生物中的B2M、CIITA基因被敲除,因而此类多能干细胞或其衍生物的免疫源性低,当其被移植到受体中时,由第一核酸分子编码的小核酸分子与第二核酸分子的转录产物所介导的针对免疫应答相关基因的RNA干扰,只作用于供体细胞,而不会对受体的细胞的基因组产生干扰。提高移植物与受体之间的免疫兼容能力。移植物可以在受体内源源不断地表达靶向VEGF-A的shRNA/shRNA-miR,这些抑制因子被外泌体包裹后,外泌体携带其与靶细胞结合,进而将其释放,从而阻断VEGF-A通路,解除免疫抑制,激活免疫系统,能够有效清除肿瘤细胞和改善黄斑变性。2. The pluripotent stem cells or derivatives thereof provided in the second aspect of the present invention can also be applied to allogeneic cell therapy. Since the B2M and CIITA genes in the pluripotent stem cells or their derivatives of the present invention are knocked out, the immunogenicity of such pluripotent stem cells or their derivatives is low. The RNA interference mediated by the transcription product of the small nucleic acid molecule encoded by one nucleic acid molecule and the transcription product of the second nucleic acid molecule against immune response-related genes only acts on the donor cells, and does not interfere with the genome of the recipient cells. Improve immunocompatibility between graft and recipient. The graft can continuously express shRNA/shRNA-miR targeting VEGF-A in the recipient. After these inhibitory factors are encapsulated by exosomes, the exosomes carry them to bind to the target cells, and then release them, thereby preventing the inhibition of VEGF-A. Blocking the VEGF-A pathway, relieves immunosuppression, activates the immune system, can effectively remove tumor cells and improve macular degeneration.

3.本发明第三个方面所提供的多能干细胞或其衍生物具有免疫兼容的特性,可以消除或者降低同种异体免疫排斥应答反应。而且,该多能干细胞或其衍生物的RNA干扰程序只作用于此类被改造过的多能干细胞或其衍生物。因此,当此类细胞或衍生物被移植到受体中时,由第一核酸分子编码的小核酸分子与第二核酸分子的转录产物所介导的针对免疫应答相关基因的RNA干扰,只作用于供体细胞,而不会对受体细胞的基因组产生干扰。该多能干细胞或其衍生物的基因组中还导入有诱导型基因表达系统,用于调控第一核酸分子的表达,从而实现此类多能干细胞或其衍生物的免疫兼容可逆。3. The pluripotent stem cells or derivatives thereof provided in the third aspect of the present invention have the characteristic of immune compatibility, and can eliminate or reduce the allogeneic immune rejection response. Moreover, the RNA interference program of the pluripotent stem cells or derivatives thereof only acts on such engineered pluripotent stem cells or derivatives thereof. Therefore, when such cells or derivatives are transplanted into recipients, the RNA interference mediated by the transcription products of the small nucleic acid molecule encoded by the first nucleic acid molecule and the transcription product of the second nucleic acid molecule against genes involved in the immune response only affects the in the donor cell without interfering with the genome of the recipient cell. An inducible gene expression system is also introduced into the genome of the pluripotent stem cell or its derivative, which is used to regulate the expression of the first nucleic acid molecule, so as to realize the immunocompatibility and reversibility of the pluripotent stem cell or its derivative.

4.本发明第四个方面所提供的多能干细胞或其衍生物,其基因组中导入了免疫兼容分子表达序列,因而此类多能干细胞或其衍生物的免疫源性低,当其被移植到受体中时,由第一核酸分子编码的小核酸分子与第二核酸分子的转录产物所介导的针对免疫应答相关基因的RNA干扰,只作用于供体细胞,而不会对受体的细胞的基因组产生干扰。提高移植物与受体之间的免疫兼容能力。移植物可以在受体内源源不断地表达靶向VEGF-A的shRNA/shRNA-miR,这些抑制因子被外泌体包裹后,外泌体携带其与靶细胞结合,进而将其释放,从而阻断VEGF-A通路,解除免疫抑制,激活免疫系统,能够有效清除肿瘤细胞和改善黄斑变性。4. The pluripotent stem cells or derivatives thereof provided in the fourth aspect of the present invention have an immunocompatibility molecule expression sequence introduced into their genome, so such pluripotent stem cells or their derivatives have low immunogenicity, and when they are transplanted When it reaches the recipient, the RNA interference mediated by the transcription product of the small nucleic acid molecule encoded by the first nucleic acid molecule and the transcription product of the second nucleic acid molecule against immune response-related genes only acts on the donor cells and does not affect the recipient. interfere with the genome of the cell. Improve immunocompatibility between graft and recipient. The graft can continuously express shRNA/shRNA-miR targeting VEGF-A in the recipient. After these inhibitory factors are encapsulated by exosomes, the exosomes carry them to bind to the target cells, and then release them, thereby preventing the inhibition of VEGF-A. Blocking the VEGF-A pathway, relieves immunosuppression, activates the immune system, can effectively remove tumor cells and improve macular degeneration.

更进一步地,本发明第四个方面所提供的多能干细胞或其衍生物的基因组中还导入了诱导型基因表达系统,诱导型基因表达系统可以调控免疫兼容分子的表达,而诱导型基因表达系统受外源诱导物的调控,通过调整外源诱导物的添加量、持续作用时间、种类来控制诱导型基因表达系统的开启与关闭,进一步控制免疫兼容分子表达序列的表达量,从而实现多能干细胞或其衍生物免疫兼容的可逆性调控。当诱导型基因表达系统开启时,正常表达的小分子核酸和免疫应答相关基因3’UTR区域导入的第二核酸分子的转录产物特异性结合,从而启动RNA干扰程序,将免疫应答相关基因的mRNA降解或沉默,从而阻断免疫应答相关基因的表达。因此,此类细胞或衍生物被移植到受体中时,可以消除或者降低同种异体免疫排斥应答,提高移植物与受体之间的免疫兼容能力。当移植物发生病变后,可以通过添加外源诱导物来关闭诱导型基因表达系统,从而停止小核酸分子的表达及小分子核酸对免疫应答相关基因mRNA的干扰作用,恢复免疫相关基因的正常表达,进而恢复移植物细胞的抗原提呈能力,使受体能够清除病变的移植物,从而提高了这类多能干细胞或其衍生物的临床安全性,极大地扩展其在临床应用的价值。Furthermore, the genome of the pluripotent stem cells or their derivatives provided by the fourth aspect of the present invention also introduces an inducible gene expression system, and the inducible gene expression system can regulate the expression of immune-compatible molecules, while the inducible gene expression system can regulate the expression of immune-compatible molecules. The system is regulated by exogenous inducers. By adjusting the addition amount, duration, and type of exogenous inducers, the inducible gene expression system is controlled on and off, and the expression of immune-compatible molecular expression sequences is further controlled, so as to achieve multiple Reversible regulation of immunocompatibility in competent stem cells or their derivatives. When the inducible gene expression system is turned on, the normally expressed small molecule nucleic acid specifically binds to the transcription product of the second nucleic acid molecule introduced into the 3'UTR region of the immune response-related gene, thereby initiating the RNA interference program and converting the mRNA of the immune response-related gene Degradation or silencing, thereby blocking the expression of immune response-related genes. Therefore, when such cells or derivatives are transplanted into the recipient, the allogeneic immune rejection response can be eliminated or reduced, and the immunocompatibility between the transplant and the recipient can be improved. When the graft becomes diseased, the inducible gene expression system can be turned off by adding an exogenous inducer, thereby stopping the expression of small nucleic acid molecules and the interference of small nucleic acid molecules on the mRNA of immune response-related genes, and restoring the normal expression of immune-related genes. , thereby restoring the antigen-presenting ability of the graft cells, enabling the recipient to remove the diseased graft, thereby improving the clinical safety of such pluripotent stem cells or their derivatives, and greatly expanding their value in clinical applications.

5.本发明中的多能干细胞或其衍生物还可以通过调整外源诱导物的添加量、持续作用时间,来逐步降低多能干细胞或其衍生物中小核酸分子的表达量,使得供体细胞能够逐步地表达低浓度的免疫相关基因来刺激供体,从而使得供体对移植的细胞或其衍生物逐步产生耐受,最终达到稳定的耐受。此时,即使移植物细胞表面表达不匹配的HLAⅠ类分子,也能够被受体免疫系统兼容。5. The pluripotent stem cells or their derivatives in the present invention can also gradually reduce the expression of small nucleic acid molecules in the pluripotent stem cells or their derivatives by adjusting the amount of exogenous inducers and the duration of action, so that the donor cells It can gradually express low concentrations of immune-related genes to stimulate the donor, so that the donor gradually develops tolerance to the transplanted cells or their derivatives, and finally achieves a stable tolerance. At this time, even if the graft cell surface expresses mismatched HLA class I molecules, it can be compatible with the recipient immune system.

附图说明Description of drawings

图1为Cas9(D10A)的质粒图谱。Figure 1 shows the plasmid map of Cas9 (D10A).

图2为sgRNA Clone AAVS1-1的质粒图谱。Figure 2 is the plasmid map of sgRNA Clone AAVS1-1.

图3为sgRNA Clone AAVS1-2的质粒图谱。Figure 3 is the plasmid map of sgRNA Clone AAVS1-2.

图4为sgRNA clone B2M-1的质粒图谱。Figure 4 is the plasmid map of sgRNA clone B2M-1.

图5为sgRNA clone B2M-2的质粒图谱。Figure 5 is the plasmid map of sgRNA clone B2M-2.

图6为sgRNA clone B2M-3的质粒图谱。Figure 6 is the plasmid map of sgRNA clone B2M-3.

图7为sgRNA clone B2M-4的质粒图谱。Figure 7 is the plasmid map of sgRNA clone B2M-4.

图8为sgRNA clone CIITA-1的质粒图谱。Figure 8 is the plasmid map of sgRNA clone CIITA-1.

图9为sgRNA clone CIITA-2的质粒图谱。Figure 9 is the plasmid map of sgRNA clone CIITA-2.

图10为sgRNA clone CIITA-3的质粒图谱。Figure 10 is the plasmid map of sgRNA clone CIITA-3.

图11为sgRNA clone CIITA-4的质粒图谱。Figure 11 is the plasmid map of sgRNA clone CIITA-4.

图12为AAVS1 KI Vector(shRNA,组成型)的质粒图谱。Figure 12 is a plasmid map of AAVS1 KI Vector (shRNA, constitutive).

图13为AAVS1 KI Vector(shRNA,诱导型)的质粒图谱。Figure 13 is a plasmid map of AAVS1 KI Vector (shRNA, inducible).

图14为AAVS1 KI Vector(shRNA-miR,组成型)的质粒图谱。Figure 14 is a plasmid map of AAVS1 KI Vector (shRNA-miR, constitutive).

图15为AAVS1 KI Vector(shRNA-miR,诱导型)的质粒图谱。Figure 15 is a plasmid map of AAVS1 KI Vector (shRNA-miR, inducible).

图16为B2M KI Vector的质粒图谱。Figure 16 is a plasmid map of B2M KI Vector.

图17为CIITA KI Vector的质粒图谱。Figure 17 is a plasmid map of CIITA KI Vector.

具体实施方式Detailed ways

为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。In order to make the invention purpose, technical solutions and technical effects of the present invention clearer, the present invention will be further described in detail below with reference to the specific embodiments. It should be understood that the specific embodiments described in this specification are only for explaining the present invention, rather than for limiting the present invention.

所使用的实验材料和试剂,若无特别说明,均为常规可从商业途径所获得的耗材和试剂。The experimental materials and reagents used, unless otherwise specified, are conventional consumables and reagents that can be obtained from commercial sources.

实验材料:Experimental Materials:

1.VEGF-A靶向抑制因子的选择1. Selection of VEGF-A Targeting Inhibitors

VEGF-A靶向抑制因子:靶向VEGF-A的shRNA或shRNA-miR。VEGF-A targeting inhibitor: shRNA or shRNA-miR targeting VEGF-A.

本发明实施例中使用的靶向VEGF-A的shRNA或shRNA-miR序列的靶序列如表1所示。The target sequences of the VEGF-A-targeting shRNA or shRNA-miR sequences used in the examples of the present invention are shown in Table 1.

表1靶向VEGF-A的shRNA或shRNA-miR序列的靶序列Table 1 Target sequences of shRNA or shRNA-miR sequences targeting VEGF-A

Figure BDA0002850549370000071
Figure BDA0002850549370000071

Figure BDA0002850549370000081
Figure BDA0002850549370000081

2.小核酸分子的构建2. Construction of small nucleic acid molecules

小核酸分子的序列为不靶向人类任何mRNA或lncRNA的非人类物种的随机序列,优选来源于秀丽隐杆线虫。The sequence of the small nucleic acid molecule is a random sequence of a non-human species that does not target any mRNA or lncRNA in humans, preferably derived from Caenorhabditis elegans.

本实施例所采用的小核酸分子的序列为The sequence of the small nucleic acid molecule used in this example is

5’-TTGTACTACACAAAAGTACTG-3’(SEQ ID NO.101);5'-TTGTACTACACAAAAGTACTG-3' (SEQ ID NO. 101);

根据上述小核酸分子设计第一核酸分子和第二核酸分子,分别如下:The first nucleic acid molecule and the second nucleic acid molecule are designed according to the above-mentioned small nucleic acid molecules, respectively as follows:

第一核酸分子(即小核酸分子的shRNA表达框架或shRNA-miR表达框架):First nucleic acid molecule (ie, shRNA expression framework or shRNA-miR expression framework for small nucleic acid molecules):

(1)小核酸分子的shRNA表达框架的序列组成为:(1) The sequence composition of the shRNA expression framework of the small nucleic acid molecule is:

5’-CCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGCTCGGTACCCGGGTCGAGGTAGGCGTGTACGGTGGGAGGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTGCTAGCGCCACC(SEQ ID NO.3)N1...N21TTCAAGAGA(SEQ ID NO.4)N22...N42TTTTTT-3’。5'-CCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGCTCGGTACCCGGGTCGAGGTAGGCGTGTACGGTGGGAGGCCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTGCTAGCGCCACC(SEQ ID NO.3)N 1 ...N 21 TTCAAGAGA(SEQ ID NO.4)N 22 ...N 42 TTTTTT-3'。

其中,in,

a)N1...N21为上述小核酸分子序列,N22...N42为上述小核酸分子序列的反向互补序列; a ) N1... N21 are the above-mentioned small nucleic acid molecule sequences, and N22 ... N42 are the reverse complementary sequences of the above-mentioned small nucleic acid molecule sequences;

b)如果质粒需要表达多个基因的shRNA,则每个基因分对应一个shRNA表达框架,然后无缝连接起来;b) If the plasmid needs to express shRNA of multiple genes, each gene corresponds to a shRNA expression frame, and then seamlessly connected;

c)带不同抗性基因的组成型shRNA质粒,只有抗性基因不同,其它序列一样;c) Constitutive shRNA plasmids with different resistance genes, only the resistance genes are different, and other sequences are the same;

d)N表示A或T或G或C碱基。d) N represents A or T or G or C base.

(2)小核酸分子的shRNA-miR表达框架:将小核酸分子序列替换microRNA-30或者microRNA-155中的靶序列得到。具体序列如下:(2) shRNA-miR expression framework of small nucleic acid molecule: obtained by replacing the target sequence in microRNA-30 or microRNA-155 with the sequence of small nucleic acid molecule. The specific sequence is as follows:

5’-GAGGCTTCAGTACTTTACAGAATCGTTGCCTGCACATCTTGGAAACACTTGCTGGGATTACTTCTTCAGGTTAACCCAACAGAAGGCTAAAGAAGGTATATTGCTGTTGACAGTGAGCG(SEQ ID NO.5)M1N1...N21TAGTGAAGCCACAGATGTA(SEQ ID NO.6)N22...N42M2TGCCTACTGCCTCGGACTTCAAGGGGCTACTTTAGGAGCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATCTCTTTGATACATTTTTACAAAGCTGAATTAAAATGGTATAAAT-3’(SEQ ID NO.7)。5'-GAGGCTTCAGTACTTTACAGAATCGTTGCCTGCACATCTTGGAAACACTTGCTGGGATTACTTCTTCAGGTTAACCCAACAGAAGGCTAAAGAAGGTATATTGCTGTTGACAGTGAGCG(SEQ ID NO.5)M 1 N 1 ...N 21 TAGTGAAGCCACAGATGTA(SEQ ID NO.6)N 22 ...N 42 M 2 TGCCTACTGCCTCGGACTTCAAGGGGCTACTTTAGGAGCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATCTCTTTGATACATTTTTACAAAGCTGAATTAAAATGGTATAAAT-3'(SEQ ID NO.7)。

其中,in,

a)N1...N21为小核酸分子序列,N22...N42为小核酸分子序列的反向互补序列; a ) N1... N21 is the sequence of the small nucleic acid molecule, and N22 ... N42 is the reverse complementary sequence of the sequence of the small nucleic acid molecule;

b)如果质粒需要表达多个基因的shRNA-miR,则每个基因分对应一个shRNA-miR表达框架,然后无缝连接起来;b) If the plasmid needs to express shRNA-miRs of multiple genes, each gene corresponds to one shRNA-miR expression frame, and then they are seamlessly connected;

c)带不同抗性基因的组成型shRNA-miR质粒,只有抗性基因不同,其它序列一样;c) Constitutive shRNA-miR plasmids with different resistance genes, only the resistance genes are different, and other sequences are the same;

d)N表示A或T或G或C碱基,M碱基表示A或C碱基;d) N represents A or T or G or C base, and M base represents A or C base;

e)若N1为G碱基,则M1为A碱基;否则M1为C碱基;e) if N 1 is a G base, then M 1 is an A base; otherwise, M 1 is a C base;

f)M1碱基与M2碱基互补。f) The M1 base is complementary to the M2 base.

第二核酸分子:包括至少3个重复的小核酸分子序列的反向互补序列,优选为6~10个重复的小核酸分子序列的反向互补序列。小核酸分子序列的反向互补序列可通过随机的Linker序列连接。The second nucleic acid molecule: includes at least 3 repeats of the reverse complement of the sequence of the small nucleic acid molecule, preferably the reverse complement of the sequence of 6 to 10 repeats of the small nucleic acid molecule. Reverse complements of small nucleic acid molecule sequences can be linked by random Linker sequences.

作为本发明的一个实施例,所述第二核酸分子由开头10nt的随机序列、及8个重复的小核酸分子序列的反向互补序列通过随机的linker序列(CGTA)连接而成:As an embodiment of the present invention, the second nucleic acid molecule is formed by connecting the random sequence of the first 10 nt and the reverse complementary sequence of 8 repeated small nucleic acid molecule sequences through a random linker sequence (CGTA):

5’-atTCTAGATACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTA-3’(SEQID NO.8)。5'-atTCTAGATACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTACAGTACTTTTGTGTAGTACAACGTA-3' (SEQ ID NO. 8).

3.免疫兼容分子的选择3. Selection of Immunocompatible Molecules

本发明实施例中使用的免疫兼容分子的种类及序列如表2和表3所示。The types and sequences of the immunocompatible molecules used in the examples of the present invention are shown in Table 2 and Table 3.

表2免疫兼容分子的种类及作用Table 2 Types and functions of immunocompatible molecules

Figure BDA0002850549370000091
Figure BDA0002850549370000091

Figure BDA0002850549370000101
Figure BDA0002850549370000101

表3免疫兼容分子的靶序列Table 3 Target sequences of immunocompatible molecules

Figure BDA0002850549370000102
Figure BDA0002850549370000102

Figure BDA0002850549370000111
Figure BDA0002850549370000111

Figure BDA0002850549370000121
Figure BDA0002850549370000121

Figure BDA0002850549370000131
Figure BDA0002850549370000131

下面表8-表9各实验组别的shRNA或shRNA-miR免疫兼容分子序列均为采用表3中的靶序列构建得到的shRNA或shRNA-miR免疫兼容分子。本领域的技术人员可以理解:以其他靶序列构建得到的shRNA或shRNA-miR免疫兼容分子同样可以实现本发明的技术效果,均落入本发明权利要求的保护范围。The shRNA or shRNA-miR immune-compatible molecule sequences of each experimental group in Tables 8 to 9 below are all shRNA or shRNA-miR immune-compatible molecules constructed by using the target sequences in Table 3. Those skilled in the art can understand that shRNA or shRNA-miR immune-compatible molecules constructed with other target sequences can also achieve the technical effects of the present invention, which all fall within the protection scope of the claims of the present invention.

4.shRNA/miRNA加工复合体基因和抗干扰素效应分子的选择4. Selection of shRNA/miRNA processing complex genes and anti-interferon effector molecules

(1)shRNA/miRNA加工复合体基因的选择(1) Selection of shRNA/miRNA processing complex genes

本发明中使用的shRNA/miRNA加工复合体基因包括可诱导关闭表达的shRNA和/或miRNA加工机器。所述可诱导关闭表达的shRNA和/或miRNA加工机器具体包括:Drosha(Accession number:NM_001100412)、Ago1(Accession number:NM_012199)、Ago2(Accession number:NM_001164623)、Dicer1(Accession number:NM_001195573)、Exportin-5(Accession number:NM_020750)、TRBP(Accession number:NM_134323)、PACT(Accession number:NM_003690)和DGCR8(Accession number:NM_022720)。The shRNA/miRNA processing complex genes used in the present invention include shRNA and/or miRNA processing machinery that can inducibly shut down expression. The inducible shRNA and/or miRNA processing machines specifically include: Drosha (Accession number: NM_001100412), Ago1 (Accession number: NM_012199), Ago2 (Accession number: NM_001164623), Dicer1 (Accession number: NM_001195573), Exportin -5 (Accession number: NM_020750), TRBP (Accession number: NM_134323), PACT (Accession number: NM_003690), and DGCR8 (Accession number: NM_022720).

(2)抗干扰素效应分子的选择(2) Selection of anti-interferon effector molecules

本发明中使用的抗干扰素效应分子包括可诱导关闭表达的针对抑制PKR、2-5As、IRF-3和IRF-7基因的shRNA和/或shRNA-miR表达序列,以降低dsRNA诱发的干扰素反应,从而避免产生细胞毒性。The anti-interferon effector molecules used in the present invention include shRNA and/or shRNA-miR expression sequences for inhibiting PKR, 2-5As, IRF-3 and IRF-7 genes that can induce shut down expression to reduce dsRNA-induced interferon reaction to avoid cytotoxicity.

其中,所述抗干扰素效应分子的靶序列如表4所示。The target sequences of the anti-interferon effector molecules are shown in Table 4.

表4抗干扰素效应分子的靶序列Table 4 Target sequences of anti-interferon effector molecules

Figure BDA0002850549370000132
Figure BDA0002850549370000132

Figure BDA0002850549370000141
Figure BDA0002850549370000141

下面表8-表9各实验组别的抗干扰素效应分子序列均为采用表4中的靶序列构建得到的shRNA或shRNA-miR。本领域的技术人员可以理解:以其他靶序列构建得到的shRNA或shRNA-miR抗干扰素效应分子同样可以实现本发明的技术效果,均落入本发明权利要求的保护范围。The anti-interferon effector molecule sequences of each experimental group in Tables 8 to 9 below are all shRNAs or shRNA-miRs constructed by using the target sequences in Table 4. Those skilled in the art can understand that shRNA or shRNA-miR anti-interferon effector molecules constructed with other target sequences can also achieve the technical effects of the present invention, which all fall within the protection scope of the claims of the present invention.

5.外泌体加工合成基因的选择5. Selection of synthetic genes for exosome processing

外泌体加工合成基因选自STEAP3(NM_182915)、Syndecan-4(NM_002999)、L-天冬氨酸氧化酶片段(SEQ ID NO.68)、CD63-L7Ae(SEQ ID NO.69)和Cx43 S368A中的至少一种。其中,Cx43 S368A由Cx43(NM_000165)的第368位的S(丝氨酸)突变为A(丙氨酸))所得。The exosome processing synthesis gene is selected from STEAP3 (NM_182915), Syndecan-4 (NM_002999), L-aspartate oxidase fragment (SEQ ID NO.68), CD63-L7Ae (SEQ ID NO.69) and Cx43 S368A at least one of them. Among them, Cx43 S368A is obtained by mutating S (serine) at position 368 of Cx43 (NM_000165) to A (alanine).

6.干细胞载体的选择6. Selection of Stem Cell Carriers

本发明实施例中的干细胞载体为多能干细胞,所述多能干细胞可选自胚胎干细胞(ESCs)、诱导多能干细胞(iPSCs)以及其他形式的多能干细胞,例如hPSCs-MSCs、NSCs、EBs细胞。The stem cell carrier in the embodiment of the present invention is pluripotent stem cells, and the pluripotent stem cells can be selected from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and other forms of pluripotent stem cells, such as hPSCs-MSCs, NSCs, EBs cell.

其中,所述多能干细胞的制备方法如下:Wherein, the preparation method of described pluripotent stem cells is as follows:

ESCs:可选用HN4细胞,购自上海中科院。ESCs: HN4 cells can be used, purchased from Shanghai Chinese Academy of Sciences.

iPSCs:使用episomal-iPSCs诱导系统(6F/BM1-4C),pE3.1-OG--KS和pE3.1-L-Myc--hmiR302 cluster经电转进入体细胞中,RM1培养基培养2天,用含2uM Parnate的BioCISO-BM1培养基培养2天,用含2uM Parnate、0.25mM sodium butyrate、3uM CHIR99021和0.5uM PD03254901的BioCISO-BM1培养基培养2天,然后用不含其它物质的BioCISO培养基继续培养至17天左右,挑取iPSCs克隆细胞,所挑取的iPSCs克隆细胞经纯化、消化、传代以获得稳定的iPSCs。具体构建方法参见:Stem Cell Res Ther.2017Nov 2;8(1):245。iPSCs: Using episomal-iPSCs induction system (6F/BM1-4C), pE3.1-OG--KS and pE3.1-L-Myc--hmiR302 cluster were electroporated into somatic cells, cultured in RM1 medium for 2 days, BioCISO-BM1 medium containing 2uM Parnate for 2 days, BioCISO-BM1 medium containing 2uM Parnate, 0.25mM sodium butyrate, 3uM CHIR99021 and 0.5uM PD03254901 for 2 days, then BioCISO medium without other substances Continue to culture for about 17 days, pick iPSCs cloned cells, and the picked iPSCs cloned cells are purified, digested, and passaged to obtain stable iPSCs. For the specific construction method, please refer to: Stem Cell Res Ther. 2017Nov 2;8(1):245.

hPSCs-MSCs:将iPSCs用含10uM TGFβ抑制剂SB431542的BioCISO培养基培养25天,直至80-90细胞汇合度时进行消化传代(2mg/mL Dispase),1:3传代到Matrigel包被的培养板中,接着ESC-MSC培养基(knockout DMEM培养基,含10%KSR、NEAA、双抗、谷氨酰胺、β-巯基乙醇、10ng/mL bFGF和SB-431542)进行培养,每天换液,连续培养20天,直至80-90细胞汇合度时进行传代(1:3传代),具体构建方法参见:Proc Natl Acad Sci U S A.2015;112(2):530-535。hPSCs-MSCs: iPSCs were cultured in BioCISO medium containing 10uM TGFβ inhibitor SB431542 for 25 days, digested and passaged (2mg/mL Dispase) until 80-90 cell confluency, and passaged 1:3 to Matrigel-coated culture plates medium, followed by ESC-MSC medium (knockout DMEM medium, containing 10% KSR, NEAA, double antibody, glutamine, β-mercaptoethanol, 10 ng/mL bFGF and SB-431542) for culture, and the medium was changed every day for continuous The cells were cultured for 20 days and passaged until the confluence of 80-90 cells (1:3 passage). For the specific construction method, please refer to: Proc Natl Acad Sci US A. 2015; 112(2):530-535.

NSCs:将iPSCs用诱导培养基(knockout DMEM培养基,含10%KSR,含TGF-β抑制剂,BMP4抑制剂)培养14天,挑取玫瑰花环状的神经细胞至低粘附培养板中进行培养。低粘附培养板中的培养基包括比例为1:1的DMEM/F12(含1%N2,Invitrogen)和Neurobasal培养基(含2%B27,Invitrogen)、以及20ng/ml bFGF和20ng/ml EGF。使用Accutase进行消化传代。具体构建方法参见:FASEB J.2014;28(11):4642-4656。NSCs: iPSCs were cultured with induction medium (knockout DMEM medium, containing 10% KSR, containing TGF-β inhibitor, BMP4 inhibitor) for 14 days, and rosette-shaped neurons were picked into low-adherence culture plates to cultivate. Medium in low-adherence plates included DMEM/F12 (with 1% N2, Invitrogen) and Neurobasal medium (with 2% B27, Invitrogen) in a ratio of 1:1, and 20ng/ml bFGF and 20ng/ml EGF . Digestion passages were performed using Accutase. For the specific construction method, please refer to: FASEB J. 2014; 28(11): 4642-4656.

EBs细胞:将细胞汇合度达到95%的iPSCs使用BioC-PDE1消化6min,用机械刮传法将细胞刮成块状,沉降细胞团块。将沉降的细胞团块转移到低粘附培养板中使用BioCISO-EB1培养7天,隔天换液。7天后转移到Matrigel包被的培养板中使用BioCISO培养基进行贴壁培养7天,即可获得具有内、中、外三胚层结构的拟胚体(EBs)。具体构建方法参见:StemCell Res Ther.2017Nov 2;8(1):245。EBs cells: iPSCs with a cell confluency of 95% were digested with BioC-PDE1 for 6 min, and the cells were scraped into clumps by mechanical scraping method to settle the cell clumps. The settled cell clumps were transferred to low-adherence plates and incubated with BioCISO-EB1 for 7 days, with medium changes every other day. After 7 days, the cells were transferred to Matrigel-coated culture plates and cultured in BioCISO medium for 7 days to obtain embryoid bodies (EBs) with inner, middle and outer germ layers. For the specific construction method, please refer to: StemCell Res Ther. 2017Nov 2;8(1):245.

所述多能干细胞衍生物还包括多能干细胞所分化的成体干细胞、各胚层细胞或组织、器官;所述成体干细胞包括间充质干细胞或者神经干细胞。The pluripotent stem cell derivatives also include adult stem cells differentiated from pluripotent stem cells, cells of each germ layer, tissues, and organs; and the adult stem cells include mesenchymal stem cells or neural stem cells.

构建质粒载体:Construct the plasmid vector:

本发明实施例中使用的质粒载体包括:Cas9(D10A)质粒、sgRNA质粒、Donor片段。The plasmid vectors used in the examples of the present invention include: Cas9 (D10A) plasmid, sgRNA plasmid, and Donor fragment.

上述质粒中的基因编辑均采用CRISPR-Cas9基因编辑系统,使用的Cas 9蛋白为Cas 9(D10A),Cas 9(D10A)与sgRNA结合,sgRNA负责特异识别靶序列(细胞载体的基因组DNA),然后Cas 9(D10A)对该靶序列进行单链切割。基因组DNA发生双链断裂(DNA DoubleStrand Break,DSB),必须有两组Cas 9(D10A)/sgRNA分别对细胞载体的基因组DNA的两条链进行切割,且切割的距离不能太远。Cas 9(D10A)/sgRNA方案与Cas 9/sgRNA方案相比,优点是特异性更高,脱靶的概率更低。The gene editing in the above plasmids adopts the CRISPR-Cas9 gene editing system, and the Cas 9 protein used is Cas 9 (D10A), and Cas 9 (D10A) is combined with sgRNA, and the sgRNA is responsible for the specific recognition of the target sequence (genomic DNA of the cell vector), Cas 9 (D10A) then single-stranded cleavage of the target sequence. Genomic DNA double-strand break (DNA DoubleStrand Break, DSB), there must be two sets of Cas 9 (D10A)/sgRNA to cut the two strands of the genomic DNA of the cell vector respectively, and the cutting distance should not be too far. The advantages of Cas 9(D10A)/sgRNA protocol compared with Cas 9/sgRNA protocol are higher specificity and lower probability of off-target.

其中,所述sgRNA的具体序列为:Wherein, the specific sequence of the sgRNA is:

sgRNA-AAVS1-1:5’-TATAAGGTGGTCCCAGCTCG-3’(SEQ ID NO.70);sgRNA-AAVS1-1: 5'-TATAAGGTGGTCCCAGCTCG-3' (SEQ ID NO. 70);

sgRNA-AAVS1-2:5’-AGGGCCGGTTAATGTGGCTC-3’(SEQ ID NO.71);sgRNA-AAVS1-2: 5'-AGGGCCGGTTAATGTGGCTC-3' (SEQ ID NO. 71);

sgRNA-B2M-1:5’-CTCCTGTTATATTCTAGAAC-3’(SEQ ID NO.72);sgRNA-B2M-1: 5'-CTCCTGTTATATTCTAGAAC-3' (SEQ ID NO. 72);

sgRNA-B2M-2:5’-TTTCAGCATCAATGTACCCT-3’(SEQ ID NO.73);sgRNA-B2M-2: 5'-TTTCAGCATCAATGTACCCT-3' (SEQ ID NO. 73);

sgRNA-B2M-3:5’-CGCGAGCACAGCTAAGGCCA-3’(SEQ ID NO.74);sgRNA-B2M-3: 5'-CGCGAGCACAGCTAAGGCCA-3' (SEQ ID NO. 74);

sgRNA-B2M-4:5’–ACTCTCTCTTTCTGGCCTGG-3’(SEQ ID NO.75);sgRNA-B2M-4: 5'-ACTCTCTCTTTCTGGCCTGG-3' (SEQ ID NO. 75);

sgRNA-CIITA-1:5’-GGCACTCAGAAGACACTGAT-3’(SEQ ID NO.76);sgRNA-CIITA-1: 5'-GGCACTCAGAAGACACTGAT-3' (SEQ ID NO. 76);

sgRNA-CIITA-2:5’–AAGGTGTCTGGTCGGAGAGC-3’(SEQ ID NO.77);sgRNA-CIITA-2: 5'-AAGGTGTCTGGTCGGAGAGC-3' (SEQ ID NO. 77);

sgRNA-CIITA-3:5’–ACCCAGCAGGGCGTGGAGCC-3’(SEQ ID NO.78);sgRNA-CIITA-3: 5'-ACCCAGCAGGGGCGTGGAGCC-3' (SEQ ID NO. 78);

sgRNA-CIITA-4:5’–GTCAGAGCCCCAAGGTAAAA-3’(SEQ ID NO.79)。sgRNA-CIITA-4: 5'-GTCAGAGCCCCAAGGTAAAA-3' (SEQ ID NO. 79).

构建上述质粒载体的具体方法为:The specific method of constructing the above-mentioned plasmid vector is:

(1)Cas9(D10A)质粒:直接从Addgene(Plasmid 41816,Addgene)订购获得。(1) Cas9 (D10A) plasmid: directly ordered from Addgene (Plasmid 41816, Addgene).

(2)sgRNA质粒:通过在原始空白质粒(Plasmid 41824,Addgene)中分别放入不同的靶序列构建得到。(2) sgRNA plasmid: constructed by adding different target sequences into the original blank plasmid (Plasmid 41824, Addgene).

其中,放入sgRNA质粒中的靶序列包括上述的免疫兼容分子的序列、shRNA/miRNA加工复合体基因的序列、抗干扰素效应分子的序列、外泌体加工合成基因的序列。Wherein, the target sequence put into the sgRNA plasmid includes the sequence of the above-mentioned immune compatible molecule, the sequence of the shRNA/miRNA processing complex gene, the sequence of the anti-interferon effector molecule, and the sequence of the exosome processing synthesis gene.

(3)Donor片段(KI质粒):(3) Donor fragment (KI plasmid):

a)设计PCR引物,以pUC18质粒(Takara,Code No.3218)为模板,使用高保真酶(南京诺唯赞生物,P505-d1)通过PCR的方法扩增得到Amp(R)-pUC origin片段;a) Design PCR primers, take pUC18 plasmid (Takara, Code No.3218) as template, use high-fidelity enzyme (Nanjing Novozymes, P505-d1) to amplify the Amp(R)-pUC origin fragment by PCR method ;

b)提取人细胞的基因组DNA并设计对应的引物,然后以人的基因组DNA为模板,使用高保真酶通过PCR的方法扩增得到重组臂;b) extracting the genomic DNA of human cells and designing corresponding primers, then using the human genomic DNA as a template, using a high-fidelity enzyme to amplify the recombinant arm by PCR;

c)设计KI(Knock-in)质粒元件的PCR扩增引物,然后以含该KI质粒元件的质粒为模板,使用高保真酶扩增得到KI质粒元件(亚克隆);c) Design the PCR amplification primers of the KI (Knock-in) plasmid element, and then use the plasmid containing the KI plasmid element as a template to amplify the KI plasmid element (subcloning) using a high-fidelity enzyme;

d)使用多片段重组酶(南京诺唯赞生物,C113-02)或overlap PCR连接上述扩增得到的Amp(R)-pUC origin片段、重组臂、KI质粒元件,形成一个完整的环状质粒。d) Use multi-fragment recombinase (Nanjing Novozan, C113-02) or overlap PCR to connect the amplified Amp(R)-pUC origin fragment, recombination arm, and KI plasmid element to form a complete circular plasmid .

其中,所述重组臂包括B2M重组臂、CIITA重组臂、AAVS1重组臂。Wherein, the recombination arm includes B2M recombination arm, CIITA recombination arm, and AAVS1 recombination arm.

所述B2M重组臂的序列如B2M-HR-L(SEQ ID NO.80)和B2M-HR-R(SEQ ID NO.81)所示。The sequences of the B2M recombination arms are shown in B2M-HR-L (SEQ ID NO. 80) and B2M-HR-R (SEQ ID NO. 81).

所述CIITA重组臂的序列如CIITA-HR-L(SEQ ID NO.82)和CIITA-HR-R(SEQ IDNO.83)所示。The sequences of the CIITA recombination arms are shown in CIITA-HR-L (SEQ ID NO. 82) and CIITA-HR-R (SEQ ID NO. 83).

所述AAVS1重组臂的序列如AAVS1-HR-L(SEQ ID NO.84)和AAVS1-HR-R(SEQ IDNO.85)所示。The sequences of the AAVS1 recombination arms are shown in AAVS1-HR-L (SEQ ID NO. 84) and AAVS1-HR-R (SEQ ID NO. 85).

本发明实施例制备得到的质粒可根据质粒中的表达框架类型分为组成型质粒和诱导型质粒。The plasmids prepared in the embodiments of the present invention can be classified into constitutive plasmids and inducible plasmids according to the type of expression framework in the plasmid.

上述组成型质粒中的表达框架包括shRNA组成型表达框架、shRNAmiR组成型表达框架。酶切上述组成型质粒获取的Donor片段,在敲入干细胞载体基因组DNA后,该片段的表达功能不可以进行调控。The expression frameworks in the above-mentioned constitutive plasmids include shRNA constitutive expression frameworks and shRNAmiR constitutive expression frameworks. The Donor fragment obtained by enzyme cleavage of the above constitutive plasmid, after knocking into the stem cell vector genomic DNA, the expression function of the fragment cannot be regulated.

上述诱导型质粒中的表达框架包括shRNA诱导型表达框架、shRNAmiR诱导型表达框架。酶切上述诱导型质粒获取的Donor片段,敲入干细胞载体基因组DNA后,该片段的表达功能可以通过添加诱导物的方法来调控,相当于对表达功能添加了一个开启或者关闭的开关。The expression frameworks in the above-mentioned inducible plasmids include shRNA-inducible expression frameworks and shRNAmiR-inducible expression frameworks. After digesting the Donor fragment obtained from the above inducible plasmid and knocking in the genomic DNA of the stem cell vector, the expression function of the fragment can be regulated by adding an inducer, which is equivalent to adding an on or off switch to the expression function.

上述表达框架的具体序列要求与结构组成如下所示。The specific sequence requirements and structural composition of the above expression frameworks are shown below.

(1)shRNA组成型表达框架的序列组成为:(1) The sequence composition of the shRNA constitutive expression framework is:

5’-GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACgctagcgccacc(SEQ ID NO.86)N1...N21TTCAAGAGAN22...N42TTTTTT-3’;5'-GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACgctagcgccacc(SEQ ID NO.86)N 1 ...N 21 TTCAAGAGAN 22 ...N 42 TTTTTT-3';

其中,in,

a)N1...N21为上述靶序列的shRNA靶序列,N22...N42为上述靶序列的shRNA靶序列的反向互补序列; a ) N1... N21 is the shRNA target sequence of the above target sequence, N22 ... N42 is the reverse complement of the shRNA target sequence of the above target sequence;

b)当使用上述shRNA组成型表达框架构建的质粒需要表达多个基因的shRNA时,则每个基因分别对应一个shRNA表达框架,然后无缝连接起来;b) when the plasmid constructed using the above-mentioned shRNA constitutive expression framework needs to express the shRNA of multiple genes, then each gene corresponds to a shRNA expression framework, and then seamlessly connects;

c)当上述shRNA组成型表达框架需要带不同抗性基因时,所述shRNA组成型表达框架中只有抗性基因序列不同,其它序列均保持一样;c) When the above-mentioned shRNA constitutive expression framework needs to carry different resistance genes, only the resistance gene sequences in the shRNA constitutive expression framework are different, and other sequences remain the same;

d)N表示A或T或G或C碱基。d) N represents A or T or G or C base.

(2)shRNAmiR组成型表达框架的序列组成为:(2) The sequence composition of the shRNAmiR constitutive expression framework is:

5’-GAGGCTTCAGTACTTTACAGAATCGTTGCCTGCACATCTTGGAAACACTTGCTGGGATTACTTCTTCAGGTTAACCCAACAGAAGGCTAAAGAAGGTATATTGCTGTTGACAGTGAGCGM1N1...N21TAGTGAAGCCACAGATGTAN22...N42M2TGCCTACTGCCTCGGACTTCAAGGGGCTACTTTAGGAGCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATCTCTTTGATACATTTTTACAAAGCTGAATTAAAATGGTATAAAT-3’;5'-GAGGCTTCAGTACTTTACAGAATCGTTGCCTGCACATCTTGGAAACACTTGCTGGGATTACTTCTTCAGGTTAACCCAACAGAAGGCTAAAGAAGGTATATTGCTGTTGACAGTGAGCGM 1 N 1 ...N 21 TAGTGAAGCCACAGATGTAN 22 ...N 42 M 2 TGCCTACTGCCTCGGACTTCAAGGGGCTACTTTAGGAGCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATCTCTTTGATACATTTTTACAAAGCTGAATTAAAATGGTATAAAT-3';

其中,in,

g)N1...N21为上述靶序列的shRNAmiR靶序列,N22...N42为上述靶序列的shRNAmiR靶序列的反向互补序列;g) N1 ... N21 are the shRNAmiR target sequences of the above target sequences, and N22...N42 are the reverse complementary sequences of the shRNAmiR target sequences of the above target sequences;

h)当使用上述shRNAmiR组成型表达框架构建的质粒需要表达多个基因的shRNAmiR时,则每个基因分别对应一个shRNAmiR表达框架,然后无缝连接起来;H) when the plasmid constructed using the above-mentioned shRNAmiR constitutive expression framework needs to express the shRNAmiR of multiple genes, then each gene corresponds to a shRNAmiR expression framework, and then seamlessly connected;

i)当上述shRNAmiR组成型表达框架需要带不同抗性基因时,所述shRNAmiR组成型表达框架中只有抗性基因序列不同,其它序列均保持一样;i) When the above-mentioned shRNAmiR constitutive expression framework needs to carry different resistance genes, only the resistance gene sequences in the shRNAmiR constitutive expression framework are different, and other sequences remain the same;

j)N表示A或T或G或C碱基,M碱基表示A或C碱基;j) N represents A or T or G or C base, and M base represents A or C base;

k)若N1为G碱基,则M1为A碱基;否则M1为C碱基;k) if N 1 is a G base, then M 1 is an A base; otherwise, M 1 is a C base;

l)M1碱基与M2碱基互补。 1 ) The M1 base is complementary to the M2 base.

(3)shRNA诱导型表达框架的序列组成为:(3) The sequence composition of the shRNA-inducible expression framework is:

5’-GAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTGGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagtttaccactccctatcagtgatagagaaaagtgaaagtcgagctcggtacccgggtcgaggtaggcgtgtacggtgggaggcctatataagcagagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctgctagcgccacc(SEQ ID NO.87)N1...N21TTCAAGAGAN22...N42TTTTTT-3’;5'-(SEQ ID NO. 87) N 1 ...N 21 TTCAAGAGAN 22 ... N 42 TTTTTT-3';

其中,in,

e)N1...N21为上述对应靶序列的shRNA靶序列,N22...N42为上述对应靶序列的shRNA靶序列和/或小核酸分子的反向互补序列;e) N1... N21 are the shRNA target sequences corresponding to the above target sequences, and N22 ... N42 are the shRNA target sequences corresponding to the above target sequences and/or the reverse complementary sequences of the small nucleic acid molecules;

f)当使用上述shRNA组成型表达框架构建的质粒需要表达多个基因的shRNA时,则每个基因分别对应一个shRNA表达框架,然后无缝连接起来;f) when the plasmid constructed using the above-mentioned shRNA constitutive expression framework needs to express the shRNA of multiple genes, then each gene corresponds to an shRNA expression framework, which is then seamlessly connected;

g)当上述shRNA组成型表达框架需要带不同抗性基因时,所述shRNA组成型表达框架中只有抗性基因序列不同,其它序列均保持一样;g) When the above-mentioned shRNA constitutive expression framework needs to carry different resistance genes, only the resistance gene sequences in the shRNA constitutive expression framework are different, and other sequences remain the same;

h)N表示A或T或G或C碱基。h) N represents A or T or G or C base.

(4)shRNAmiR诱导型表达框架的序列组成如shRNAmiR组成型表达框架的序列组成所示。(4) The sequence composition of the shRNAmiR-inducible expression framework is shown in the sequence composition of the shRNAmiR constitutive expression framework.

上述方法构建的Cas9(D10A)质粒图谱如图1所示,AAVS1安全位点的sgRNA质粒图谱如图2-3所示,B2M基因的sgRNA质粒图谱如图4-7所示,CIITA基因的sgRNA质粒图谱如图8-11所示,构建的AAVS1 KI质粒图谱(组成型和诱导型)如图12-15所示,B2M KI质粒图谱如图16所示,CIITA KI质粒图谱如图17所示。The Cas9 (D10A) plasmid map constructed by the above method is shown in Figure 1, the sgRNA plasmid map of the AAVS1 safety site is shown in Figure 2-3, the sgRNA plasmid map of the B2M gene is shown in Figure 4-7, and the sgRNA of the CIITA gene is shown in Figure 4-7. The plasmid map is shown in Figure 8-11, the constructed AAVS1 KI plasmid map (constitutive and inducible) is shown in Figure 12-15, the B2M KI plasmid map is shown in Figure 16, and the CIITA KI plasmid map is shown in Figure 17 .

构建干细胞载体:Construction of stem cell vectors:

本发明技术方案中,在上述的干细胞载体的基因组中敲入的安全位点包括AAVS1安全位点、eGSH安全位点、H11安全位点。In the technical solution of the present invention, the safety sites knocked into in the genome of the stem cell vector include the AAVS1 safety site, the eGSH safety site, and the H11 safety site.

AAVS1基因敲入的单细胞克隆操作包括以下步骤:The single-cell cloning operation for AAVS1 gene knock-in includes the following steps:

a)电转程序:a) Electric transfer procedure:

供体细胞准备:人多能干细胞;Donor cell preparation: human pluripotent stem cells;

试剂盒:Human Stem Cell

Figure BDA0002850549370000171
Kit 1;Kit: Human Stem Cell
Figure BDA0002850549370000171
Kit
1;

仪器:电转仪;Instrument: electroporator;

培养基:BioCISO;Medium: BioCISO;

诱导质粒:上述实施例构建的相应质粒。Induction plasmid: the corresponding plasmid constructed in the above example.

b)电转后的人多能干细胞进行含G418和puro的双抗生素培养基进行筛选。b) The electrotransformed human pluripotent stem cells were screened in double antibiotic medium containing G418 and puro.

c)进行单细胞克隆筛选及培养,获得单细胞克隆株。c) Screening and culturing single-cell clones to obtain single-cell clones.

d)将获得的单细胞克隆株进行培养。d) Culturing the obtained single-cell clone.

其中,单细胞克隆株培养试剂包括:Among them, the single-cell clone culture reagents include:

培养基为:BioCISO培养基、300μg/ml G418和0.5μg/ml puro。培养基需提前置于室温,避光条件放置30~60分钟,直至恢复到室温,但不可以置于37℃进行预热,以避免生物分子活性降低。The media were: BioCISO medium, 300 μg/ml G418 and 0.5 μg/ml puro. The medium should be placed at room temperature in advance, and placed in the dark for 30 to 60 minutes until it returns to room temperature, but it should not be preheated at 37 °C to avoid the reduction of biomolecular activity.

基质胶:hESC级Matrigel。传代或复苏细胞前,将Matrigel工作液加入细胞培养瓶皿中并摇匀,确保Matrigel完全没过培养瓶皿底部,且在使用前任意一处Matrigel都不能干掉。为保证细胞能够更好的贴壁和存活,Matrigel放入37℃培养箱包被时间:1:100XMatrigel不能低于0.5小时;1:200X Matrigel不能低于2小时。Matrigel: hESC grade Matrigel. Before passaging or resuscitating cells, add the Matrigel working solution to the cell culture flask and shake well to ensure that the Matrigel completely covers the bottom of the culture flask, and that the Matrigel cannot be dried anywhere before use. In order to ensure better adherence and survival of cells, Matrigel should be placed in a 37°C incubator for wrapping time: 1:100X Matrigel should not be less than 0.5 hours; 1:200X Matrigel should not be less than 2 hours.

消化液:使用DPBS溶解EDTA至终浓度为0.5mM,pH7.4。所述EDTA不能使用水稀释,否则细胞会因渗透压降低而死亡。Digestion solution: dissolve EDTA in DPBS to a final concentration of 0.5mM, pH 7.4. The EDTA cannot be diluted with water, otherwise the cells will die due to reduced osmotic pressure.

冻存液:60%BioCISO、30%ESCs级FBS和10%DMSO。Freezing medium: 60% BioCISO, 30% ESCs-grade FBS and 10% DMSO.

单细胞克隆株培养步骤采用本领域常规维持传代培养过程。The single-cell clone culture step adopts the routine maintenance subculture process in the art.

其中,传代最佳时刻为细胞整体汇合度达到80%~90%。Among them, the best time for passage is when the overall confluence of cells reaches 80% to 90%.

传代最佳比例为1:4~1:7,传代后次日最佳汇合度应维持在20%~30%。The optimal ratio of passage is 1:4 to 1:7, and the optimal confluency the next day after passage should be maintained at 20% to 30%.

本发明中的具体传代操作步骤如下:The concrete passage steps in the present invention are as follows:

a)弃去包被好的细胞培养瓶皿中的Matrigel,加入适量上述培养基放入37℃、5%CO2培养箱中孵育;a) Discard the Matrigel in the coated cell culture flask, add an appropriate amount of the above-mentioned medium and incubate in a 37°C, 5% CO 2 incubator;

b)待细胞符合上述传代要求,弃去培养基上清,加入适量的0.5mM EDTA消化液到细胞瓶皿中;b) When the cells meet the above passage requirements, discard the medium supernatant, and add an appropriate amount of 0.5mM EDTA digestion solution to the cell flask dish;

c)将细胞放入37℃、5%CO2培养箱中孵育5~10分钟(消化至镜下观察到大部分细胞收缩变圆但还未漂浮即可),吹打细胞使其从壁上脱离,将细胞悬液吸到离心管内,200g离心5分钟;c) Incubate the cells in a 37°C, 5% CO 2 incubator for 5 to 10 minutes (digested until most of the cells are contracted and rounded but have not floated under the microscope), and the cells are detached from the wall by pipetting , suck the cell suspension into a centrifuge tube and centrifuge at 200g for 5 minutes;

d)离心后,弃去上清,用培养基重悬细胞,反复吹打细胞至混匀,然后将细胞转移至包被有Matrigel的瓶皿中,摇匀,镜下观察无异常后,摇匀置于37℃、5%CO2培养箱中进行培养;d) After centrifugation, discard the supernatant, resuspend the cells with medium, pipetting the cells repeatedly to mix, then transfer the cells to a Matrigel-coated bottle, shake well, and shake well after observing no abnormality under the microscope Culture in a 37°C, 5% CO2 incubator;

e)次日观察细胞贴壁存活状态,吸掉培养基,每天按时换液。e) Observe the cell adherent survival state the next day, aspirate the medium, and change the medium on time every day.

基因敲入检测方法:Gene knock-in detection method:

1.单细胞克隆AAVS1基因敲入检测。1. Single-cell clone AAVS1 gene knock-in detection.

(1)AAVS1基因敲入检测说明。(1) Description of AAVS1 gene knock-in detection.

检测原理:Detection principle:

PCR检测经过基因敲入处理的细胞,测试该细胞是否为纯合子。由于两个Donor片段只有抗性基因的序列具有差异性,因此要判断该细胞是否为纯合子(两条染色体分别敲入不同抗性基因的Donor片段),就需要检测该细胞的基因组是否含有两种抗性基因的Donor片段,只有双敲入的细胞才有可能是正确的纯合子。Knock-in treated cells are tested for homozygosity by PCR. Since the two Donor fragments only have differences in the sequence of the resistance gene, to determine whether the cell is homozygous (two chromosomes knock-in the Donor fragments of different resistance genes respectively), it is necessary to detect whether the genome of the cell contains two genes. The Donor fragment of the resistance gene, only double knock-in cells may be correct homozygous.

检测方法:Detection method:

在Donor质粒(KI质粒)内部(非重组臂部分)设计一条引物,然后在细胞的基因组(非重组臂部分)设计另一条引物。如果Donor片段在基因组能够正确插入,就会有目的条带出现,否则无目的条带出现。One primer was designed inside the Donor plasmid (KI plasmid) (non-recombination arm part), and then another primer was designed in the genome of the cell (non-recombination arm part). If the Donor fragment can be inserted correctly in the genome, there will be a target band, otherwise no target band will appear.

其中,上述引物的具体序列及扩增条件如下表所示。The specific sequences and amplification conditions of the above primers are shown in the following table.

表5AAVS1基因敲入检测引物的具体序列及扩增条件Table 5 Specific sequences and amplification conditions of primers for AAVS1 gene knock-in detection

Figure BDA0002850549370000181
Figure BDA0002850549370000181

Figure BDA0002850549370000191
Figure BDA0002850549370000191

(2)B2M和CIITA基因敲入检测说明。(2) Description of B2M and CIITA gene knock-in detection.

B2M和CIITA基因3’UTR处第二核酸分子敲入的检测方法与AAVS1的检测原理相同,采用的PCR检测条件如表6和7所示。The detection method of the second nucleic acid molecule knock-in at the 3'UTR of B2M and CIITA genes is the same as that of AAVS1, and the PCR detection conditions used are shown in Tables 6 and 7.

表6B2M基因敲入检测引物的具体序列及扩增条件Table 6 Specific sequences and amplification conditions of primers for B2M gene knock-in detection

Figure BDA0002850549370000192
Figure BDA0002850549370000192

表7CIITA基因敲入检测引物的具体序列及扩增条件Table 7 Specific sequences and amplification conditions of primers for CIITA gene knock-in detection

Figure BDA0002850549370000193
Figure BDA0002850549370000193

利用本领域常规技术将选取的质粒敲入干细胞载体基因组:The selected plasmid is knocked into the stem cell vector genome using conventional techniques in the art:

按照下述表8和表9中的分组,分别将VEGF-A靶向抑制因子的序列、免疫兼容分子的序列、shRNA/miRNA加工复合体基因的序列、抗干扰素效应分子的序列、外泌体加工合成基因采用本领域常规技术敲入到所述干细胞载体安全位点中,获得不同类型的组成型干细胞表达载体和诱导型干细胞表达载体,以检测其表达可行性。According to the groups in Tables 8 and 9 below, the sequences of VEGF-A targeting inhibitors, immune-compatible molecules, shRNA/miRNA processing complex genes, anti-interferon effector molecules, exocytosis The body-processed synthetic gene is knocked into the safe site of the stem cell vector using conventional techniques in the art, and different types of constitutive stem cell expression vectors and inducible stem cell expression vectors are obtained to test the feasibility of their expression.

表8组成型敲入表达实验分组Table 8 Grouping of constitutive knock-in expression experiments

Figure BDA0002850549370000201
Figure BDA0002850549370000201

其中,“+”号表示基因或核酸序列的敲入,“-”号表示基因敲除。Among them, the "+" sign indicates the knock-in of a gene or nucleic acid sequence, and the "-" sign indicates the gene knock-out.

总体原则:靶向抑制因子的shRNA(或shRNA-miR)放入对应质粒的shRNA(或shRNA-miR)表达框架2内,其余抑制因子的shRNA(或shRNA-miR)放入对应质粒的shRNA(或shRNA-miR)表达框架1内,基因序列放入MCS内。General principle: The shRNA (or shRNA-miR) targeting the inhibitor is placed in the shRNA (or shRNA-miR) expression framework 2 of the corresponding plasmid, and the shRNA (or shRNA-miR) of the remaining inhibitor is placed in the shRNA (or shRNA-miR) of the corresponding plasmid. or shRNA-miR) expression framework 1, the gene sequence is placed in the MCS.

B2M-3’UTR-miRNA-locus或CIITA-3’UTR-miRNA -locus即第二核酸分子(SEQ IDNO.8),分别敲入B2M和CIITA基因的3’UTR区域。B2M-3'UTR-miRNA-locus or CIITA-3'UTR-miRNA-locus, the second nucleic acid molecule (SEQ ID NO. 8), was knocked into the 3'UTR region of the B2M and CIITA genes, respectively.

B2M/CIITA-3’UTR-shRNA为小核酸分子的shRNA表达框架,也即第一核酸分子,特异性靶向B2M基因和CIITA基因3’UTR区域第二核酸分子的转录产物,敲入位点为基因组安全位点AAVS1。B2M/CIITA-3'UTR-shRNA is the shRNA expression framework of small nucleic acid molecules, that is, the first nucleic acid molecule, which specifically targets the transcription product of the second nucleic acid molecule in the 3'UTR region of the B2M gene and CIITA gene, and the knock-in site AAVS1 is the genomic safety site.

B2M/CIITA-3’UTR-shRNA-miR为小核酸分子的shRNA-miR表达框架,也即第一核酸分子,靶向B2M基因和CIITA基因3’UTR区域第二核酸分子的转录产物,敲入位点为基因组安全位点AAVS1。B2M/CIITA-3'UTR-shRNA-miR is the shRNA-miR expression framework of small nucleic acid molecules, that is, the first nucleic acid molecule, targeting the transcription product of the second nucleic acid molecule in the 3'UTR region of the B2M gene and CIITA gene, knock-in The site is the genomic safety site AAVS1.

CD47表示CD47表达序列,其敲入位点为基因组安全位点AAVS1。CD47 represents the CD47 expression sequence, and its knock-in site is the genomic safety site AAVS1.

若表达框或者MCS需要插入多个片段,可先使用EMCV IRESwt(SEQ ID NO.100)连接起来,然后插入。If the expression cassette or MCS needs to insert multiple fragments, EMCV IRESwt (SEQ ID NO. 100) can be used to connect and then insert.

基因敲入的sgRNA质粒为:sgRNA clone B2M-1、sgRNA clone B2M-2,、sgRNAclone CIITA-1和sgRNA clone CIITA-2。The sgRNA plasmids for gene knock-in are: sgRNA clone B2M-1, sgRNA clone B2M-2, sgRNAclone CIITA-1 and sgRNA clone CIITA-2.

基因敲除使用的sgRNA质粒为:sgRNA clone B2M-3、sgRNA clone B2M-4、sgRNAclone CIITA-3、sgRNA clone CIITA-4。The sgRNA plasmids used for gene knockout are: sgRNA clone B2M-3, sgRNA clone B2M-4, sgRNAclone CIITA-3, sgRNA clone CIITA-4.

(1)Aa1分组:(1) Aa1 grouping:

AAVS1 KI Vector(shRNA,组成型)质粒的shRNA表达框架2放入靶向VEGF-A的shRNA序列。The shRNA expression framework 2 of the AAVS1 KI Vector (shRNA, constitutive) plasmid was placed into the shRNA sequence targeting VEGF-A.

(2)Aa2分组:(2) Aa2 grouping:

AAVS1 KI Vector(shRNA,组成型)质粒的shRNA表达框架2放入靶向VEGF-A的shRNA序列,shRNA表达框架1放入其余的shRNA序列(包括B2M/CIITA-3’UTR-shRNA的靶序列),MCS放入基因序列。The shRNA expression frame 2 of the AAVS1 KI Vector (shRNA, constitutive) plasmid was placed into the shRNA sequence targeting VEGF-A, and the shRNA expression frame 1 was placed into the remaining shRNA sequences (including the target sequence of B2M/CIITA-3'UTR-shRNA). ), the MCS is placed into the gene sequence.

B2M KI Vector放入B2M-3’UTR-miRNA-locus。The B2M KI Vector was placed into the B2M-3'UTR-miRNA-locus.

CIITA KI Vector放入CIITA-3’UTR-miRNA-locus。CIITA KI Vector was put into CIITA-3'UTR-miRNA-locus.

(3)Aa3分组:(3) Aa3 grouping:

AAVS1 KI Vector(shRNA,组成型)质粒的shRNA表达框架2放入靶向VEGF-A的shRNA序列,shRNA表达框架1放入其余的shRNA靶序列,敲除B2M和CIITA,MCS放入基因序列。The shRNA expression framework 2 of the AAVS1 KI Vector (shRNA, constitutive) plasmid was placed into the shRNA sequence targeting VEGF-A, the shRNA expression framework 1 was placed into the remaining shRNA target sequences, B2M and CIITA were knocked out, and MCS was placed in the gene sequence.

(4)Aa4分组:(4) Aa4 grouping:

AAVS1 KI Vector(shRNA,组成型)质粒的shRNA表达框架2放入靶向VEGF-A的shRNA序列,shRNA表达框架1放入其余的shRNA靶序列,MCS放入基因序列。The shRNA expression framework 2 of the AAVS1 KI Vector (shRNA, constitutive) plasmid is placed into the shRNA sequence targeting VEGF-A, the shRNA expression framework 1 is placed into the remaining shRNA target sequences, and the MCS is placed into the gene sequence.

(5)Ab1分组:(5) Ab1 grouping:

AAVS1 KI Vector(shRNA-miR,组成型)质粒的shRNA-miR表达框架2放入靶向VEGF-A的shRNA-miR序列。The shRNA-miR expression framework 2 of the AAVS1 KI Vector (shRNA-miR, constitutive) plasmid was placed into the shRNA-miR sequence targeting VEGF-A.

(6)Ab2分组:(6) Ab2 grouping:

AAVS1 KI Vector(shRNA-miR,组成型)质粒的shRNA-miR表达框架2放入靶向VEGF-A的shRNA-miR序列,shRNA-miR表达框架1放入其余的shRNA-miR靶序列(包括B2M/CIITA-3’UTR-shRNA-miR的靶序列),MCS放入基因序列。The shRNA-miR expression framework 2 of the AAVS1 KI Vector (shRNA-miR, constitutive) plasmid was placed into the shRNA-miR sequence targeting VEGF-A, and the shRNA-miR expression framework 1 was placed into the remaining shRNA-miR target sequences (including B2M /CIITA-3'UTR-shRNA-miR target sequence), MCS into the gene sequence.

B2M KI Vector放入B2M-3’UTR-miRNA-locus。The B2M KI Vector was placed into the B2M-3'UTR-miRNA-locus.

CIITA KI Vector放入CIITA-3’UTR-miRNA-locus。CIITA KI Vector was put into CIITA-3'UTR-miRNA-locus.

(7)Ab3分组:(7) Ab3 grouping:

AAVS1 KI Vector(shRNA-miR,组成型)质粒的shRNA-miR表达框架2放入靶向VEGF-A的shRNA-miR序列,shRNA-miR表达框架1放入其余的shRNA-miR靶序列,敲除B2M和CIITA,MCS放入基因序列。The shRNA-miR expression framework 2 of the AAVS1 KI Vector (shRNA-miR, constitutive) plasmid was placed into the shRNA-miR sequence targeting VEGF-A, and the shRNA-miR expression framework 1 was placed into the remaining shRNA-miR target sequences, knocked out B2M and CIITA, MCS into the gene sequence.

(8)Ab4分组:(8) Ab4 grouping:

AAVS1 KI Vector(shRNA-miR,组成型)质粒的shRNA-miR表达框架2放入靶向VEGF-A的shRNA-miR序列,shRNA-miR表达框架1放入其余的shRNA-miR靶序列,MCS放入基因序列。The shRNA-miR expression frame 2 of the AAVS1 KI Vector (shRNA-miR, constitutive) plasmid is placed into the shRNA-miR sequence targeting VEGF-A, the shRNA-miR expression frame 1 is placed into the remaining shRNA-miR target sequences, and the MCS is placed into the gene sequence.

表9诱导型敲入表达实验分组Table 9 Groups of inducible knock-in expression experiments

Figure BDA0002850549370000211
Figure BDA0002850549370000211

Figure BDA0002850549370000221
Figure BDA0002850549370000221

其中,“+”号表示基因或核酸序列的敲入,“-”号表示基因敲除。Among them, the "+" sign indicates the knock-in of a gene or nucleic acid sequence, and the "-" sign indicates the gene knock-out.

总体原则如上述组成型敲入表达实验分组所示。The general principle is shown in the above grouping of constitutive knock-in expression experiments.

(1)B1分组:(1) Group B1:

AAVS1 KI Vector(shRNA,诱导型)质粒的shRNA表达框架2放入靶向VEGF-A的shRNA序列,shRNA表达框架1放入其余的shRNA靶序列(包括B2M/CIITA-3’UTR-shRNA的靶序列),MCS放入基因序列。加入Tet-Off系统诱导系统。The shRNA expression frame 2 of the AAVS1 KI Vector (shRNA, inducible) plasmid is placed into the shRNA sequence targeting VEGF-A, and the shRNA expression frame 1 is placed into the remaining shRNA target sequences (including the target of B2M/CIITA-3'UTR-shRNA). sequence), the MCS is placed into the gene sequence. Add the Tet-Off system to induce the system.

B2M KI Vector放入B2M-3’UTR-miRNA-locus。The B2M KI Vector was placed into the B2M-3'UTR-miRNA-locus.

CIITA KI Vector放入CIITA-3’UTR-miRNA-locus。CIITA KI Vector was put into CIITA-3'UTR-miRNA-locus.

(2)B2分组:(2) Group B2:

AAVS1 KI Vector(shRNA-miR,诱导型)质粒的shRNA-miR表达框架2放入靶向VEGF-A的shRNA-miR序列,shRNA-miR表达框架1放入其余的shRNA-miR靶序列(包括B2M/CIITA-3’UTR-shRNA-miR的靶序列),MCS放入基因序列。加入Tet-Off系统诱导系统。The shRNA-miR expression frame 2 of the AAVS1 KI Vector (shRNA-miR, inducible) plasmid is placed into the shRNA-miR sequence targeting VEGF-A, and the shRNA-miR expression frame 1 is placed into the remaining shRNA-miR target sequences (including B2M /CIITA-3'UTR-shRNA-miR target sequence), MCS into the gene sequence. Add the Tet-Off system to induce the system.

B2M KI Vector放入B2M-3’UTR-miRNA-locus。The B2M KI Vector was placed into the B2M-3'UTR-miRNA-locus.

CIITA KI Vector放入CIITA-3’UTR-miRNA-locus。CIITA KI Vector was put into CIITA-3'UTR-miRNA-locus.

(3)B3分组:(3) Group B3:

AAVS1 KI Vector(shRNA,诱导型)质粒的shRNA表达框架2放入靶向VEGF-A的shRNA序列,shRNA表达框架1放入其余的shRNA靶序列(包括B2M/CIITA-3’UTR-shRNA的靶序列),MCS放入基因序列。加入Tet-Off系统诱导系统。The shRNA expression frame 2 of the AAVS1 KI Vector (shRNA, inducible) plasmid is placed into the shRNA sequence targeting VEGF-A, and the shRNA expression frame 1 is placed into the remaining shRNA target sequences (including the target of B2M/CIITA-3'UTR-shRNA). sequence), the MCS is placed into the gene sequence. Add the Tet-Off system to induce the system.

(4)B4分组:(4) Group B4:

AAVS1 KI Vector(shRNA-miR,诱导型)质粒的shRNA-miR表达框架2放入靶向VEGF-A的shRNA-miR序列,shRNA-miR表达框架1放入其余的shRNA-miR靶序列(包括B2M/CIITA-3’UTR-shRNA-miR的靶序列),MCS放入基因序列。加入Tet-Off系统诱导系统。The shRNA-miR expression frame 2 of the AAVS1 KI Vector (shRNA-miR, inducible) plasmid is placed into the shRNA-miR sequence targeting VEGF-A, and the shRNA-miR expression frame 1 is placed into the remaining shRNA-miR target sequences (including B2M /CIITA-3'UTR-shRNA-miR target sequence), MCS into the gene sequence. Add the Tet-Off system to induce the system.

其中,上述组成型和诱导型敲入在进行免疫兼容改造的时候,可以先在hPSCs上进行进行改造,改造完成后再分化成多能干细胞的衍生物进行运用;也可以在hPSCs分化成多能干细胞的衍生物后再进行免疫兼容改造。Among them, the above-mentioned constitutive and inducible knock-in can be transformed into hPSCs first, and then differentiated into derivatives of pluripotent stem cells for use when undergoing immune-compatible transformation; Derivatives of stem cells are then immunocompatibly engineered.

本发明中的Tet-Off系统具体为:The Tet-Off system in the present invention is specifically:

在没有四环素存在时,tTA蛋白持续作用在tet启动子上,使基因持续表达。在需要转基因保持在一个持续表达状态下,该系统是非常有用。加入四环素时,四环素可使tTA蛋白的结构变化,使其不能与启动子结合,从而使其驱动的基因表达水平下降。为了使该系统保持“关闭”状态,必须连续添加四环素。In the absence of tetracycline, the tTA protein continues to act on the tet promoter, allowing the gene to continue to be expressed. This system is very useful where transgenes need to be maintained in a state of continuous expression. When tetracycline is added, tetracycline can change the structure of the tTA protein so that it cannot bind to the promoter, thereby reducing the level of gene expression it drives. To keep this system "off", tetracycline must be added continuously.

Tet-Off系统以及一种或多种免疫兼容分子的序列敲入多能干细胞的基因组安全位点处,通过四环素的添加与否精准开启或关闭免疫兼容分子的表达,从而可逆调控多能干细胞或其衍生物中主要组织相容性复合体相关基因的表达。The Tet-Off system and the sequence of one or more immune-compatible molecules are knocked into the genome safety site of pluripotent stem cells, and the expression of immune-compatible molecules can be accurately turned on or off by the addition of tetracycline, thereby reversibly regulating pluripotent stem cells or Expression of major histocompatibility complex-related genes in its derivatives.

表达VEGF-A靶向抑制因子的多能干细胞或其衍生物对VEGF-A的抑制效果检测:Detection of the inhibitory effect of pluripotent stem cells or their derivatives expressing VEGF-A targeting inhibitor on VEGF-A:

将表8和表9各实验组方案敲入iPSCs、MSCs、NSCs、EBs细胞的基因组安全位点,37℃,0.5%CO2培养箱培养,收集培养基上清,含有敲入外泌体加工合成基因序列的细胞利用外泌体提取试剂盒(BestBio,lot#BB-3901)提取培养上清中的外泌体。培养上清37℃条件下3000g离心15min,收集上清后在37℃条件下10000g离心20min,收集上清,按4:1比例加入提取液A,上下颠倒1min,37℃过夜。4℃条件下10000g离心60min,收集沉淀即可。The protocols of each experimental group in Table 8 and Table 9 were knocked into the genomic safety sites of iPSCs, MSCs, NSCs, and EBs cells, cultured at 37°C in a 0.5% CO 2 incubator, and the supernatant of the medium was collected, containing the knock-in exosome processing. Cells with synthetic gene sequences were used to extract exosomes from the culture supernatant using an exosome extraction kit (BestBio, lot #BB-3901). The culture supernatant was centrifuged at 3000g for 15min at 37°C, the supernatant was collected and centrifuged at 10,000g for 20min at 37°C to collect the supernatant, add extract A at a ratio of 4:1, invert upside down for 1min, and overnight at 37°C. Centrifuge at 10,000 g for 60 min at 4°C, and collect the precipitate.

再利用流式细胞计量测定法对多能干细胞表达的VEGF-A抑制因子的阻断效果进行测试。在CHO细胞的培养基中添加含VEGF-A抑制因子的外泌体,并对表达VEGF-A的CHO细胞进行培养72h。消化成单个细胞并用PBS洗涤细胞2次后,将FITC标记的VEGF-A抗体融合蛋白加入到试管中,37℃温育30分钟。使用流式细胞仪进行流式细胞计量分析。根据染色的平均荧光强度(MFI),即可测量出多能干细胞表达的VEGF-A抑制因子抑制CHO细胞表达VEGF-A的效果。The blocking effect of VEGF-A inhibitory factor expressed by pluripotent stem cells was then tested by flow cytometry. The exosomes containing VEGF-A inhibitor were added to the medium of CHO cells, and the CHO cells expressing VEGF-A were cultured for 72 h. After being digested into single cells and washed twice with PBS, the FITC-labeled VEGF-A antibody fusion protein was added to the test tube and incubated at 37°C for 30 minutes. Flow cytometric analysis was performed using a flow cytometer. According to the mean fluorescence intensity (MFI) of staining, the effect of VEGF-A inhibitor expressed by pluripotent stem cells on inhibiting the expression of VEGF-A by CHO cells can be measured.

N(对照)组是指没有添加VEGF-A抑制因子或含VEGF-A抑制因子的外泌体进行培养的表达VEGF-A的CHO细胞。Group N (control) refers to VEGF-A-expressing CHO cells cultured without the addition of VEGF-A inhibitor or exosomes containing VEGF-A inhibitor.

各实验组的检测结果如表10所示。The test results of each experimental group are shown in Table 10.

表10流式细胞计量检测表达VEGF-A的细胞的VEGF-A表达结果Table 10 VEGF-A expression results of cells expressing VEGF-A detected by flow cytometry

Figure BDA0002850549370000231
Figure BDA0002850549370000231

Figure BDA0002850549370000241
Figure BDA0002850549370000241

独立样本T检验(*p<0.01)。Independent sample t-test (*p<0.01).

从上表可以看出,本发明的多能干细胞或其衍生物所表达的被外泌体包裹的VEGF-A抑制因子能有效抑制靶细胞的VEGF-A表达。而且其抑制程度在各组中表达相对恒定,所以多能干细胞衍生物所表达的VEGF-A抑制因子不受细胞分化形态及其他外源基因(免疫兼容改造)所影响。It can be seen from the above table that the VEGF-A inhibitory factor encapsulated by exosomes expressed by the pluripotent stem cells or derivatives thereof of the present invention can effectively inhibit the expression of VEGF-A in target cells. Moreover, the degree of inhibition was relatively constant in each group, so the VEGF-A inhibitory factor expressed by pluripotent stem cell derivatives was not affected by cell differentiation morphology and other exogenous genes (immunocompatible transformation).

表达VEGF-A靶向抑制因子的多能干细胞或其衍生物的抗肿瘤细胞迁移效果检测:Detection of anti-tumor cell migration effect of pluripotent stem cells or their derivatives expressing VEGF-A targeting inhibitor:

从所述表达VEGF-A靶向抑制因子的多能干细胞或其衍生物的培养上清中提取含VEGF-A靶向抑制因子的外泌体,添加到不含血清的基础培养基中对肿瘤细胞hepG2进行饥饿培养12小时,消化肿瘤细胞hepG2并用含VEGF-A抑制因子的外泌体的不含血清的基础培养基重悬计数,将细胞数调整为1X106cells/mL。取100μL细胞接种于24孔板的8.0μm的Transwell小室的上室内,下室加入含15%FBS的基础培养液500μL,在37℃、5%CO2条件下培养24h。对照组则使用不表达VEGF-A抗体的多能干细胞及其衍生物的培养上清,其余操作与实验组相同。将试验组和对照组中的滤膜上层的细胞用棉签抹去,甲醇固定5min,用Giemsa染料染色15min。10倍物镜下选择上下左右中5个不同视野的穿膜细胞进行计数,计算平均值。VEGF-A targeting inhibitor-containing exosomes are extracted from the culture supernatant of the VEGF-A targeting inhibitory factor-expressing pluripotent stem cells or derivatives thereof, and added to serum-free basal medium to treat tumors. HepG2 cells were starved for 12 hours, and tumor cells hepG2 were digested and resuspended in serum-free basal medium containing VEGF-A inhibitory exosomes to adjust the cell number to 1X10 6 cells/mL. 100 μL of cells were seeded into the upper chamber of an 8.0 μm Transwell chamber of a 24-well plate, and 500 μL of basal medium containing 15% FBS was added to the lower chamber, and cultured at 37° C. and 5% CO 2 for 24 h. The control group used the culture supernatant of pluripotent stem cells and their derivatives that did not express VEGF-A antibody, and other operations were the same as the experimental group. The cells on the upper layer of the filter membrane in the experimental group and the control group were wiped with cotton swabs, fixed with methanol for 5 min, and stained with Giemsa dye for 15 min. Under the 10x objective lens, the transmembrane cells in 5 different fields of view in the upper, lower, left and right are selected for counting, and the average value is calculated.

各组的检测结果如表11所示。The test results of each group are shown in Table 11.

表11各组表达的VEGF-A靶向抑制因子对肿瘤细胞迁移的影响Table 11 Effects of VEGF-A targeting inhibitor expressed in each group on tumor cell migration

Figure BDA0002850549370000242
Figure BDA0002850549370000242

Figure BDA0002850549370000251
Figure BDA0002850549370000251

独立样本T检验(*p<0.01)。Independent sample t-test (*p<0.01).

通过以上实验,可以证明本发明制备的多能干细胞或其衍生物所表达的被外泌体包裹的VEGF-A抑制因子能有效阻碍肿瘤细胞的迁移。Through the above experiments, it can be proved that the VEGF-A inhibitory factor encapsulated by exosomes expressed by the pluripotent stem cells or derivatives thereof prepared by the present invention can effectively inhibit the migration of tumor cells.

表达VEGF-A靶向抑制因子的多能干细胞在多种肿瘤治疗中的应用:The application of pluripotent stem cells expressing VEGF-A targeted inhibitory factors in the treatment of various tumors:

选择B2M和CIITA基因敲除方案组(Aa3)的免疫兼容细胞(MSCs)中进行测试。Selected B2M and CIITA knockout protocol group (Aa3) immune-compatible cells (MSCs) were tested.

在人源化NSG小鼠肿瘤模型中,注射各组实验细胞,观察其对RCC肾癌,MC结肠癌,NIC肺癌的治疗的效果。为避免免疫兼容问题,所使用的免疫细胞与hPSCs源衍生物均来源于同一人的。In the humanized NSG mouse tumor model, each group of experimental cells was injected to observe the therapeutic effect on RCC kidney cancer, MC colon cancer, and NIC lung cancer. To avoid immunocompatibility issues, the immune cells and hPSCs-derived derivatives used were all derived from the same human.

具体步骤包括:Specific steps include:

在人源化NSG小鼠(The Jackson Laboratory(JAX))中,对其右腋下皮下注射5×106肿瘤(RCC肾癌,MC结肠癌,NIC肺癌)细胞,待肿瘤长到60mm3大小时,进行尾静脉注射200uL PBS(含人免疫细胞和1×106的表达被外泌体包裹的VEGF-A抑制因子的多能干细胞衍生物)进行肿瘤治疗,其中只注射含人免疫细胞的组作为对照组。20天后处死小鼠,然后比较各组之间肿瘤大小,并进行差异性统计分析。In humanized NSG mice (The Jackson Laboratory (JAX)), 5×10 6 tumor (RCC kidney cancer, MC colon cancer, NIC lung cancer) cells were subcutaneously injected into the right axilla, and the tumors grew to 60 mm in size. 200uL of PBS (containing human immune cells and 1×10 6 pluripotent stem cell derivatives expressing exosome-encapsulated VEGF-A inhibitory factor) for tumor treatment, in which only human immune cells were injected. group as the control group. After 20 days, the mice were sacrificed, and then the tumor size between the groups was compared and the statistical analysis of differences was performed.

结果如表12所示。The results are shown in Table 12.

表12各实验组多能干细胞或其衍生物对多种肿瘤的抗肿瘤效果Table 12 Anti-tumor effects of pluripotent stem cells or their derivatives in each experimental group on various tumors

Figure BDA0002850549370000252
Figure BDA0002850549370000252

Figure BDA0002850549370000261
Figure BDA0002850549370000261

独立样本T检验(*p<0.01)。Independent sample t-test (*p<0.01).

通过以上实验,可以证明本发明制备的表达VEGF-A抑制因子的干细胞或其衍生物能有效阻断VEGF-A而起到抗肿瘤作用。Through the above experiments, it can be proved that the VEGF-A inhibitory factor-expressing stem cells or their derivatives prepared by the present invention can effectively block VEGF-A and play an anti-tumor effect.

表达靶向VEGF-A抑制因子的多能干细胞的在肿瘤模型中免疫兼容性测试:Immunocompatibility testing of pluripotent stem cells expressing targeted VEGF-A inhibitors in tumor models:

利用MSCs的低免疫源性的特点,在人源化NSG小鼠肿瘤模型中,对其进行注射能够表达VEGF-A抑制因子(靶向VEGF-A的shRNA)的hPSCs源免疫兼容MSCs,观察其肿瘤(NIC肺癌)治疗的效果。其中,所使用的免疫细胞与hPSCs源MSCs来源于为非同一人。Taking advantage of the low immunogenicity of MSCs, in a humanized NSG mouse tumor model, they were injected with hPSCs-derived immune-compatible MSCs capable of expressing VEGF-A inhibitory factor (shRNA targeting VEGF-A), and the results were observed. Effect of tumor (NIC lung cancer) therapy. Among them, the used immune cells and hPSCs-derived MSCs are not from the same person.

对照组为未注射MSCs细胞的NSG小鼠肿瘤模型;The control group was the NSG mouse tumor model without MSCs injection;

加Dox组为:从注射表达抑制因子的细胞开始,持续在小鼠饮食中添加0.5mg/mL的Dox饲养小鼠,直至试验结束。Add Dox group: starting from the injection of cells expressing inhibitory factors, continue to add 0.5 mg/mL Dox to the mouse diet to feed the mice until the end of the experiment.

结果如表13所示。The results are shown in Table 13.

表13免疫兼容分子诱导型表达组的可逆性表达测试结果Table 13 The reversible expression test results of the immune-compatible molecule-inducible expression group

Figure BDA0002850549370000262
Figure BDA0002850549370000262

Figure BDA0002850549370000271
Figure BDA0002850549370000271

独立样本T检验(*p<0.01)。Independent sample t-test (*p<0.01).

以上实验表明:仅表达抑制因子的MSCs(组2),具有低免疫源性,可以在异体内存在一定时间,所以其能够发挥一定的肿瘤治疗效果,而进行免疫兼容改造的(组3-7,包括组成型和可逆诱导型免疫兼容),其免疫兼容效果更佳,比没有经免疫兼容改造的MSCs在体内存在时间更长(或能做到长期共存),其发挥肿瘤治疗效果更佳,而组4为B2M和CIITA基因敲除组,其完全消除HLA-I和HLA-II类分子产生的影响,因此其肿瘤治疗效果最佳。但由于其组成型免疫兼容改造(基因敲入/敲除),无法在移植物产生变异或不需要时进行清除,从而有组6-9方案设定。组8-9中在进行注射表达抑制因子细胞进入小鼠的同时,对小鼠使用Dox诱导剂(一直使用),注射表达抑制因子细胞的小鼠的免疫兼容效果将被消除,其在体内存在时间与未经免疫兼容改造的MSCs相当,其肿瘤治疗效果也与未经免疫兼容改造的MSCs相当。The above experiments show that: MSCs expressing only inhibitory factors (group 2) have low immunogenicity and can exist in the allogene for a certain period of time, so they can exert a certain tumor therapeutic effect, while the immunocompatibility transformation (groups 3-7) , including constitutive and reversible inducible immune compatibility), its immune compatibility effect is better, and its existence in the body is longer than that of MSCs without immune compatibility modification (or can achieve long-term coexistence), and its tumor treatment effect is better, And group 4 is the B2M and CIITA gene knockout group, which completely eliminates the effects of HLA-I and HLA-II molecules, so its tumor treatment effect is the best. However, due to its constitutive immune-compatible modification (gene knock-in/knock-out), it cannot be cleared when the graft is mutated or not needed, so there is a group 6-9 protocol setting. In groups 8-9, when the inhibitor-expressing cells were injected into the mice, the Dox inducer (always used) was administered to the mice, and the immune-compatibility effect of the mice injected with the inhibitor-expressing cells was eliminated, which existed in vivo. The time is comparable to that of MSCs without immunocompatibility modification, and the tumor treatment effect is also comparable to that of MSCs without immunocompatibility modification.

表达靶向VEGF-A抑制因子的多能干细胞对黄斑变性的治疗效果测试:Test of the therapeutic effect of pluripotent stem cells expressing targeting VEGF-A inhibitor on macular degeneration:

选择B2M和CIITA基因敲除方案组(Aa3)的免疫兼容细胞中进行测试。Select B2M and CIITA gene knockout protocol group (Aa3) immunocompatible cells for testing.

构建黄斑变性小鼠模型:Construction of a macular degeneration mouse model:

在人源化NSG小鼠(The Jackson Laboratory(JAX))中,注射同一供体的人免疫细胞来重建小鼠的免疫系统。2周后,通过视网膜激光损伤脉络膜新生血管(choroidalneovascularization,CNV)的方法建立黄斑变性疾病小鼠。In humanized NSG mice (The Jackson Laboratory (JAX)), human immune cells from the same donor were injected to reconstitute the immune system of the mice. After 2 weeks, macular degeneration mice were established by retinal laser injury choroidal neovascularization (CNV).

具体构建方法如下:对小鼠模型使用0.3%戊巴比妥钠进行腹腔内注射麻醉,注射量按每kg注射45mg,用0.5%托比卡胺+0.5%盐酸去氧肾上腺素点眼散瞳。在裂隙灯下,通过前置镜用532nm倍顿Nd:YAG激光(光斑直径75lrm,曝光时间100ms,能量180mW),距视盘约1-1.5PD,在视乳头周围击射视网膜,每眼击射8-10个点,避免直接击射视网膜血管。随后,用200uL PBS(含106的表达VEGF-A抑制因子的多能干细胞衍生物,此多能干细胞衍生物与人免疫细胞来源同一供体)进行尾静脉注射,诱导出黄斑变性疾病。The specific construction method is as follows: the mouse model was anesthetized by intraperitoneal injection of 0.3% sodium pentobarbital, the injection volume was 45 mg per kg, and the eyes were dilated with 0.5% tropicamide + 0.5% phenylephrine hydrochloride. Under the slit lamp, use a 532nm double-ton Nd:YAG laser (spot diameter 75lrm, exposure time 100ms, energy 180mW) through the front mirror, about 1-1.5PD from the optic disc, shoot the retina around the optic disc, and shoot each eye 8-10 points, avoiding direct shots of retinal vessels. Subsequently, 200 uL of PBS (containing 10 6 of VEGF-A inhibitor-expressing pluripotent stem cell derivatives, which are derived from the same donor as human immune cells) was injected into the tail vein to induce macular degeneration.

检测方法:采用眼底血管造影(FFA),将20%荧光素钠用注射用水稀释成2%荧光素钠,经腹腔注射,注射量为0.3mL,使用海德堡眼底荧光血管造影(FFA)仪记录造影过程。通过CNV形成率来判断治疗效果。Detection method: Fundus angiography (FFA) was used, 20% sodium fluorescein was diluted with water for injection into 2% sodium fluorescein, injected intraperitoneally with an injection volume of 0.3 mL, and the angiography was recorded using a Heidelberg fundus fluorescein angiography (FFA) instrument. process. The treatment effect was judged by the CNV formation rate.

其中,本实施例中所述表达VEGF-A抑制因子的多能干细胞衍生物为表达靶向VEGF-A的shRNA的hPSCs及hPSCs源衍生物(hPSCs-MSCs、hPSCs-NSCs、hPSCs-EBs)。The pluripotent stem cell derivatives expressing VEGF-A inhibitory factors in this example are hPSCs and hPSCs-derived derivatives (hPSCs-MSCs, hPSCs-NSCs, hPSCs-EBs) expressing shRNA targeting VEGF-A.

CNV的形成率根据FFA荧光渗漏强度积分来判断。The formation rate of CNV was judged according to the integral of FFA fluorescence leakage intensity.

公式如下:The formula is as follows:

Figure BDA0002850549370000272
Figure BDA0002850549370000272

荧光素渗漏强度判断参考Takehana分级标准,即:The intensity of fluorescein leakage is judged with reference to the Takehana grading standard, namely:

0级:无荧光渗漏;Grade 0: no fluorescent leakage;

1级:轻度荧光渗漏;Grade 1: mild fluorescent leakage;

2级:中度荧光渗漏;Grade 2: moderate fluorescence leakage;

3级:强荧光渗漏。Grade 3: Strong fluorescent leakage.

荧光渗漏强度积分计算:Integral calculation of fluorescence leakage intensity:

每个激光斑总积分设为3分,0级计0分;1级计1分;2级计2分;3级计3分。The total score of each laser spot is set to 3 points, with 0 points for level 0; 1 point for level 1; 2 points for level 2; and 3 points for level 3.

结果如表14所示。The results are shown in Table 14.

表14表达VEGF-A抑制因子的多能干细胞及其衍生物的黄斑变性治疗效果Table 14. Therapeutic effect of VEGF-A inhibitory factor-expressing pluripotent stem cells and their derivatives on macular degeneration

Figure BDA0002850549370000281
Figure BDA0002850549370000281

独立样本T检验(*p<0.01)。Independent sample t-test (*p<0.01).

结果表明,本发明制备的表达VEGF-A抑制因子的干细胞或其衍生物能有效阻断VEGF-A而起到黄斑变性疾病治疗作用。The results show that the VEGF-A inhibitory factor-expressing stem cells or derivatives thereof prepared by the present invention can effectively block VEGF-A and play a therapeutic role in macular degeneration.

表达靶向VEGF-A抑制因子的多能干细胞的在黄斑变性模型中免疫兼容性测试:Immunocompatibility testing of pluripotent stem cells expressing targeted VEGF-A inhibitors in a macular degeneration model:

利用MSCs的低免疫源性的特点,在人源化NSG小鼠黄斑变性模型中,对其进行注射能够表达VEGF-A抑制因子(靶向VEGF-A的shRNA)的hPSCs源免疫兼容MSCs,观察其黄斑变性治疗的效果。其中,所使用的免疫细胞与hPSCs源MSCs来源于为非同一人。Taking advantage of the low immunogenicity of MSCs, in a humanized NSG mouse model of macular degeneration, they were injected with hPSCs-derived immune-compatible MSCs capable of expressing VEGF-A inhibitor (shRNA targeting VEGF-A). Its macular degeneration treatment effect. Among them, the used immune cells and hPSCs-derived MSCs are not from the same person.

对照组为未注射MSCs细胞的NSG小鼠黄斑变性模型;The control group was the NSG mouse macular degeneration model without MSCs injection;

加Dox组为:从注射表达抑制因子的细胞开始,持续在小鼠饮食中添加0.5mg/mL的Dox饲养小鼠,直至试验结束。Add Dox group: starting from the injection of cells expressing inhibitory factors, continue to add 0.5 mg/mL Dox to the mouse diet to feed the mice until the end of the experiment.

结果如表15所示。The results are shown in Table 15.

表15免疫兼容分子诱导型表达组的可逆性表达测试结果Table 15 The reversible expression test results of the immune-compatible molecule-inducible expression group

Figure BDA0002850549370000282
Figure BDA0002850549370000282

独立样本T检验(*p<0.01)。Independent sample t-test (*p<0.01).

以上实验表明:仅表达抑制因子的MSCs(组2),具有低免疫源性,可以在异体内存在一定时间,所以其能够发挥一定的黄斑变性治疗效果,而进行免疫兼容改造的(组3-7,包括组成型和可逆诱导型免疫兼容),其免疫兼容效果更佳,比没有经免疫兼容改造的MSCs在体内存在时间更长(或能做到长期共存),其发挥黄斑变性治疗效果更佳,而组4为B2M和CIITA基因敲除组,其完全消除HLA-I和HLA-II类分子产生的影响,因此其黄斑变性治疗效果最佳。但由于其组成型免疫兼容改造(基因敲入/敲除),无法在移植物产生变异或不需要时进行清除,从而有组6-9方案设定。组8-9中在进行注射表达抑制因子细胞进入小鼠的同时,对小鼠使用Dox诱导剂(一直使用),注射表达抑制因子细胞的小鼠的免疫兼容效果将被消除,其在体内存在时间与未经免疫兼容改造的MSCs相当,其黄斑变性治疗效果也与未经免疫兼容改造的MSCs相当。The above experiments show that: MSCs expressing only inhibitory factors (group 2) have low immunogenicity and can exist in the allogene for a certain period of time, so they can exert a certain therapeutic effect on macular degeneration. 7, including constitutive and reversible inducible immune compatibility), its immune compatibility effect is better, and it can exist in the body for a longer time (or can achieve long-term coexistence) than MSCs without immune compatibility modification, and it plays a better role in the treatment of macular degeneration. The group 4 is the B2M and CIITA gene knockout group, which completely eliminates the effects of HLA-I and HLA-II molecules, so the treatment effect of macular degeneration is the best. However, due to its constitutive immune-compatible modification (gene knock-in/knock-out), it cannot be cleared when the graft is mutated or not needed, so there is a group 6-9 protocol setting. In groups 8-9, when the inhibitor-expressing cells were injected into the mice, the Dox inducer (always used) was administered to the mice, and the immune-compatibility effect of the mice injected with the inhibitor-expressing cells was eliminated, which existed in vivo. The time is comparable to that of MSCs without immunocompatibility modification, and the treatment effect of macular degeneration is also comparable to that of MSCs without immunocompatibility modification.

所述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The described embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the described embodiments, and any other changes, modifications, substitutions, Combinations and simplifications should all be equivalent replacement modes, which are all included in the protection scope of the present invention.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 未来智人再生医学研究院(广州)有限公司<110> Future Homo sapiens Regenerative Medicine Research Institute (Guangzhou) Co., Ltd.

王淋立Wang Linli

<120> 一种表达VEGF-A靶向抑制因子的多能干细胞及其衍生物与应用<120> A pluripotent stem cell expressing VEGF-A targeting inhibitor and its derivative and application

<130><130>

<160> 102<160> 102

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 1<400> 1

gagtacatct tcaagccatc c 21gagtacatct tcaagccatc c 21

<210> 2<210> 2

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 2<400> 2

gcagattatg cggatcaaac c 21gcagattatg cggatcaaac c 21

<210> 3<210> 3

<211> 315<211> 315

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 3<400> 3

ccactcccta tcagtgatag agaaaagtga aagtcgagtt taccactccc tatcagtgat 60ccactcccta tcagtgatag agaaaagtga aagtcgagtt taccactccc tatcagtgat 60

agagaaaagt gaaagtcgag tttaccactc cctatcagtg atagagaaaa gtgaaagtcg 120agagaaaagt gaaagtcgag tttaccactc cctatcagtg atagagaaaa gtgaaagtcg 120

agtttaccac tccctatcag tgatagagaa aagtgaaagt cgagctcggt acccgggtcg 180agtttaccac tccctatcag tgatagagaa aagtgaaagt cgagctcggt acccgggtcg 180

aggtaggcgt gtacggtggg aggcctatat aagcagagct cgtttagtga accgtcagat 240aggtaggcgt gtacggtggg aggcctatat aagcagagct cgtttagtga accgtcagat 240

cgcctggaga cgccatccac gctgttttga cctccataga agacaccggg accgatccag 300cgcctggaga cgccatccac gctgttttga cctccataga agacaccggg accgatccag 300

cctgctagcg ccacc 315cctgctagcg ccacc 315

<210> 4<210> 4

<211> 9<211> 9

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 4<400> 4

ttcaagaga 9ttcaagaga 9

<210> 5<210> 5

<211> 119<211> 119

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 5<400> 5

gaggcttcag tactttacag aatcgttgcc tgcacatctt ggaaacactt gctgggatta 60gaggcttcag tactttacag aatcgttgcc tgcacatctt ggaaacactt gctgggatta 60

cttcttcagg ttaacccaac agaaggctaa agaaggtata ttgctgttga cagtgagcg 119cttcttcagg ttaacccaac agaaggctaa agaaggtata ttgctgttga cagtgagcg 119

<210> 6<210> 6

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 6<400> 6

tagtgaagcc acagatgta 19tagtgaagcc acagatgta 19

<210> 7<210> 7

<211> 119<211> 119

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 7<400> 7

tgcctactgc ctcggacttc aaggggctac tttaggagca attatcttgt ttactaaaac 60tgcctactgc ctcggacttc aaggggctac tttaggagca attatcttgt ttactaaaac 60

tgaatacctt gctatctctt tgatacattt ttacaaagct gaattaaaat ggtataaat 119tgaatacctt gctatctctt tgatacattt ttacaaagct gaattaaaat ggtataaat 119

<210> 8<210> 8

<211> 210<211> 210

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 8<400> 8

attctagata cagtactttt gtgtagtaca acgtacagta cttttgtgta gtacaacgta 60attctagata cagtactttt gtgtagtaca acgtacagta cttttgtgta gtacaacgta 60

cagtactttt gtgtagtaca acgtacagta cttttgtgta gtacaacgta cagtactttt 120cagtactttt gtgtagtaca acgtacagta cttttgtgta gtacaacgta cagtactttt 120

gtgtagtaca acgtacagta cttttgtgta gtacaacgta cagtactttt gtgtagtaca 180gtgtagtaca acgtacagta cttttgtgta gtacaacgta cagtactttt gtgtagtaca 180

acgtacagta cttttgtgta gtacaacgta 210acgtacagta cttttgtgta gtacaacgta 210

<210> 9<210> 9

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 9<400> 9

gggagcagag aattctctta t 21gggagcagag aattctctta t 21

<210> 10<210> 10

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 10<400> 10

ggagcagaga attctcttat c 21ggagcagaga attctcttat c 21

<210> 11<210> 11

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 11<400> 11

gagcagagaa ttctcttatc c 21gagcagagaa ttctcttatc c 21

<210> 12<210> 12

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 12<400> 12

gctacctgga gcttcttaac a 21gctacctgga gcttcttaac a 21

<210> 13<210> 13

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 13<400> 13

ggagcttctt aacagcgatg c 21ggagcttctt aacagcgatg c 21

<210> 14<210> 14

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 14<400> 14

gggtctccag tatattcatc t 21gggtctccag tatattcatc t 21

<210> 15<210> 15

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 15<400> 15

gctcccactc catgaggtat t 21gctcccactc catgaggtat t 21

<210> 16<210> 16

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 16<400> 16

ggtatttctt cacatccgtg t 21ggtatttctt cacatccgtg t 21

<210> 17<210> 17

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 17<400> 17

aggagacacg gaatgtgaag g 21aggagacacg gaatgtgaag g 21

<210> 18<210> 18

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 18<400> 18

gctcccactc catgaggtat t 21gctcccactc catgaggtat t 21

<210> 19<210> 19

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 19<400> 19

ggtatttcta cacctccgtg t 21ggtatttcta cacctccgtg t 21

<210> 20<210> 20

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 20<400> 20

ggaccggaac acacagatct a 21ggaccggaac acacagatct a 21

<210> 21<210> 21

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 21<400> 21

ttcttacttc cctaatgaag t 21ttcttacttc cctaatgaag t 21

<210> 22<210> 22

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 22<400> 22

aagttaagaa cctgaatata a 21aagttaagaa cctgaatata a 21

<210> 23<210> 23

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 23<400> 23

aacctgaata taaatttgtg t 21aacctgaata taaatttgtg t 21

<210> 24<210> 24

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 24<400> 24

gggtctggtg ggcatcatta t 21gggtctggtg ggcatcatta t 21

<210> 25<210> 25

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 25<400> 25

ggtctggtgg gcatcattat t 21ggtctggtgg gcatcattat t 21

<210> 26<210> 26

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 26<400> 26

gcatcattat tgggaccatc t 21gcatcattat tgggaccatc t 21

<210> 27<210> 27

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 27<400> 27

gatgaccaca ttcaaggaag a 21gatgaccaca ttcaaggaag a 21

<210> 28<210> 28

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 28<400> 28

gaccacattc aaggaagaac t 21gaccacattc aaggaagaac t 21

<210> 29<210> 29

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 29<400> 29

gctttcctgc ttggcagtta t 21gctttcctgc ttggcagtta t 21

<210> 30<210> 30

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 30<400> 30

gcgtaagtct gagtgtcatt t 21gcgtaagtct gagtgtcatt t 21

<210> 31<210> 31

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 31<400> 31

gacaatttaa ggaagaatct t 21gacaatttaa ggaagaatct t 21

<210> 32<210> 32

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 32<400> 32

ggccatagtt ctccctgatt g 21ggccatagtt ctccctgatt g 21

<210> 33<210> 33

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 33<400> 33

gccatagttc tccctgattg a 21gccatagttc tccctgattg a 21

<210> 34<210> 34

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 34<400> 34

gcagatgacc acattcaagg a 21gcagatgacc acattcaagg a 21

<210> 35<210> 35

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 35<400> 35

gcagcaggat aagtatgagt g 21gcagcaggat aagtatgagt g 21

<210> 36<210> 36

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 36<400> 36

gcaggataag tatgagtgtc a 21gcaggataag tatgagtgtc a 21

<210> 37<210> 37

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 37<400> 37

ggttcctgca cagagacatc t 21ggttcctgca cagagacatc t 21

<210> 38<210> 38

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 38<400> 38

ggatgtggaa cccacagata c 21ggatgtggaa cccacagata c 21

<210> 39<210> 39

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 39<400> 39

gatgtggaac ccacagatac a 21gatgtggaac ccacagatac a 21

<210> 40<210> 40

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 40<400> 40

gtggaaccca cagatacaga g 21gtggaaccca cagatacaga g 21

<210> 41<210> 41

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 41<400> 41

gggtagcaac tgtcaccttg a 21gggtagcaac tgtcaccttg a 21

<210> 42<210> 42

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 42<400> 42

ggatttcgtg ttccagttta a 21ggatttcgtg ttccagttta a 21

<210> 43<210> 43

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 43<400> 43

gcatgtgcta cttcaccaac g 21gcatgtgcta cttcaccaac g 21

<210> 44<210> 44

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 44<400> 44

gctcacagtc atcaattata g 21gctcacagtc atcaattata g 21

<210> 45<210> 45

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 45<400> 45

gccctgaaga cagaatgttc c 21gccctgaaga cagaatgttc c 21

<210> 46<210> 46

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 46<400> 46

gcggaccatg tgtcaactta t 21gcggaccatg tgtcaactta t 21

<210> 47<210> 47

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 47<400> 47

gcctgatagg acccatattc c 21gcctgatagg acccatattc c 21

<210> 48<210> 48

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 48<400> 48

gcatccaata gacgtcattt g 21gcatccaata gacgtcattt g 21

<210> 49<210> 49

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 49<400> 49

gcgtcactgg cacagatata a 21gcgtcactgg cacagatata a 21

<210> 50<210> 50

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 50<400> 50

ggatggattt gattatgatc c 21ggatggattt gattatgatc c 21

<210> 51<210> 51

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 51<400> 51

ggaccttgga acaatggatt g 21ggaccttgga acaatggatt g 21

<210> 52<210> 52

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 52<400> 52

gctaattctt gctgaacttc t 21gctaattctt gctgaacttc t 21

<210> 53<210> 53

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 53<400> 53

gcagttctgt tgccactctc t 21gcagttctgt tgccactctc t 21

<210> 54<210> 54

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 54<400> 54

gggagagttc atccaggaaa t 21gggagagttc atccaggaaa t 21

<210> 55<210> 55

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 55<400> 55

ggagagttca tccaggaaat t 21ggagagttca tccaggaaat t 21

<210> 56<210> 56

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 56<400> 56

gggttggttt atccaggaat a 21gggttggttt atccaggaat a 21

<210> 57<210> 57

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 57<400> 57

ggatcagaag agaagccaac g 21ggatcagaag agaagccaac g 21

<210> 58<210> 58

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 58<400> 58

ggttcaccat ccaggtgttc a 21ggttcaccat ccaggtgttc a 21

<210> 59<210> 59

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 59<400> 59

ggaggaactt tgtgaacatt c 21ggaggaactt tgtgaacatt c 21

<210> 60<210> 60

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 60<400> 60

gctgtaagaa ggatgctttc a 21gctgtaagaa ggatgctttc a 21

<210> 61<210> 61

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 61<400> 61

gctgcaggca ggattgtttc a 21gctgcaggca ggattgtttc a 21

<210> 62<210> 62

<211> 19<211> 19

<212> DNA<212> DNA

<213> human<213> human

<400> 62<400> 62

gcctcgagtt tgagagcta 19gcctcgagtt tgagagcta 19

<210> 63<210> 63

<211> 19<211> 19

<212> DNA<212> DNA

<213> human<213> human

<400> 63<400> 63

agacattctg gatgagtta 19agacattctg gatgagtta 19

<210> 64<210> 64

<211> 19<211> 19

<212> DNA<212> DNA

<213> human<213> human

<400> 64<400> 64

gggtctgtta cccaaagaa 19gggtctgtta cccaaagaa 19

<210> 65<210> 65

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 65<400> 65

ggacactggt tcaacacctg t 21ggacactggt tcaacacctg t 21

<210> 66<210> 66

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 66<400> 66

ggttcaacac ctgtgacttc a 21ggttcaacac ctgtgacttc a 21

<210> 67<210> 67

<211> 21<211> 21

<212> DNA<212> DNA

<213> human<213> human

<400> 67<400> 67

acctgtgact tcatgtgtgc g 21acctgtgact tcatgtgtgc g 21

<210> 68<210> 68

<211> 1607<211> 1607

<212> DNA<212> DNA

<213> human<213> human

<400> 68<400> 68

atgaatactc tccctgaaca ttcatgtgac gtgttgatta tcggtagcgg cgcagccgga 60atgaatactc tccctgaaca ttcatgtgac gtgttgatta tcggtagcgg cgcagccgga 60

ctttcactgg cgctacgcct ggctgaccag catcaggtca tcgttctaag taaggccggt 120ctttcactgg cgctacgcct ggctgaccag catcaggtca tcgttctaag taaggccggt 120

aacgaggttc aacattttat gcccagggcg gtattgccgc cgtgtttgat aaactgacag 180aacgaggttc aacattttat gcccagggcg gtattgccgc cgtgtttgat aaactgacag 180

cattgactcg catgtggaag acacattgat tgccggggct ggtatttgcg atcgccatgc 240cattgactcg catgtggaag acacattgat tgccggggct ggtatttgcg atcgccatgc 240

agttgaattt gtcgccagca atgcacgatc ctgtgtgcaa tggctaatcg accagggggt 300agttgaattt gtcgccagca atgcacgatc ctgtgtgcaa tggctaatcg accagggggt 300

gttgtttgat acccacattc aaccgaatgg cgaagaaagt taccatctga cccgtgaagg 360gttgtttgat acccacattc aaccgaatgg cgaagaaagt taccatctga cccgtgaagg 360

tggacatagt caccgtcgta ttcttcatgc cgccgacgcc accggtagag aagtagaaac 420tggacatagt caccgtcgta ttcttcatgc cgccgacgcc accggtagag aagtagaaac 420

cacgctggtg agcaaggcgc tgaaccatcc gaatattcgc gtgctggagc gcagcaacgc 480cacgctggtg agcaaggcgc tgaaccatcc gaatattcgc gtgctggagc gcagcaacgc 480

ggttgatctg attgtttctg acaaaattgg cctgccgggc acgcgacggg ttgttggcgc 540ggttgatctg attgtttctg acaaaattgg cctgccgggc acgcgacggg ttgttggcgc 540

gtgggtatgg aaccgtaata aagaaacggt ggaaacctgc cacgcaaaag cggtggtgct 600gtgggtatgg aaccgtaata aagaaacggt ggaaacctgc cacgcaaaag cggtggtgct 600

ggcaaccggc ggtgcgtcga aggtttatca gtacaccacc aatccggata tttcttctgg 660ggcaaccggc ggtgcgtcga aggtttatca gtacaccacc aatccggata tttcttctgg 660

cgatggcatt gctatggcgt ggcgcgcagg ctgccggttg ccaatctcga tttaatcagt 720cgatggcatt gctatggcgt ggcgcgcagg ctgccggttg ccaatctcga tttaatcagt 720

tccaccctac cgcgctatat cacccacagg cacgcaattt cctgttaaca gaagcactgc 780tccaccctac cgcgctatat cacccacagg cacgcaattt cctgttaaca gaagcactgc 780

gcggcgaggc gcttatctca agcgcccgga tggtacgcgt ttatccgatt ttgatgagcg 840gcggcgaggc gcttatctca agcgcccgga tggtacgcgt ttatccgatt ttgatgagcg 840

cggcgaactg ccccgcgcga tattgtcgcc cgcgccattg accatgaaat gaaacgcctc 900cggcgaactg ccccgcgcga tattgtcgcc cgcgccattg accatgaaat gaaacgcctc 900

ggcgcagatt gtatgttcct tgatatcagc cataagcccg ccgattttat tcgccagcat 960ggcgcagatt gtatgttcct tgatatcagc cataagcccg ccgattttat tcgccagcat 960

ttcccgatga tttatgaaaa gctgctcggg ctgggattga tctcacacaa gaaccggtac 1020ttcccgatga tttatgaaaa gctgctcggg ctgggattga tctcacacaa gaaccggtac 1020

cgattgtgcc tgctgcacat tatacctgcg gtggtgtaat ggttgatgat catgggcgta 1080cgattgtgcc tgctgcacat tatacctgcg gtggtgtaat ggttgatgat catgggcgta 1080

cggacgtcga gggcttgtat gccattggcg aggtgagtta taccggctta cacggcgcta 1140cggacgtcga gggcttgtat gccattggcg aggtgagtta taccggctta cacggcgcta 1140

accgcatggc ctcgaattca ttgctggagt gtctggtcta tggctggtcg gcggcggaag 1200accgcatggc ctcgaattca ttgctggagt gtctggtcta tggctggtcg gcggcggaag 1200

atatcaccag acgtatgcct tatgcccacg acatcagtac gttaccgccg tgggatgaaa 1260atatcaccag acgtatgcct tatgcccacg acatcagtac gttaccgccg tgggatgaaa 1260

gccgcgttga gaaccctgac gaacggtagt aattcagcat aactggcacg agctacgtct 1320gccgcgttga gaaccctgac gaacggtagt aattcagcat aactggcacg agctacgtct 1320

gtttatgtgg gattacgttg gcattgtgcg cacaacgaag cgcctggaac gcgccctgcg 1380gtttatgtgg gattacgttg gcattgtgcg cacaacgaag cgcctggaac gcgccctgcg 1380

gcggataacc atgctccaac aagaaataga cgaatattac gcccatttcc gcgtctcaaa 1440gcggataacc atgctccaac aagaaataga cgaatattac gcccatttcc gcgtctcaaa 1440

taatttgctg gagctgcgta atctggtaca ggttgccgag ttgattgttc gctgtgcaat 1500taatttgctg gagctgcgta atctggtaca ggttgccgag ttgattgttc gctgtgcaat 1500

gatgcgtaaa gagagtcggg gttgcatttc acgctggatt atccggaact gctcacccat 1560gatgcgtaaa gagagtcggg gttgcatttc acgctggatt atccggaact gctcacccat 1560

tccggtccgt cgatccttcc cccggcaatc attacataaa cagataa 1607tccggtccgt cgatccttcc cccggcaatc attacataaa cagataa 1607

<210> 69<210> 69

<211> 411<211> 411

<212> DNA<212> DNA

<213> human<213> human

<400> 69<400> 69

ggaagtggtg ccggcaccgg cggcatgtac gtgcgcttcg aggtgcccga ggacatgcag 60ggaagtggtg ccggcaccgg cggcatgtac gtgcgcttcg aggtgcccga ggacatgcag 60

aacgaggccc tgagcctgct ggaaaaagtg cgcgagagcg gcaaagtgaa gaagggcacc 120aacgaggccc tgagcctgct ggaaaaagtg cgcgagagcg gcaaagtgaa gaagggcacc 120

aacgaaacca ccaaggccgt ggaacggggc ctggccaagc tggtgtatat cgccgaggac 180aacgaaacca ccaaggccgt ggaacggggc ctggccaagc tggtgtatat cgccgaggac 180

gtggaccccc ccgagattgt ggcccatctg cccctgctgt gcgaagagaa gaacgtgccc 240gtggaccccc ccgagattgt ggcccatctg cccctgctgt gcgaagagaa gaacgtgccc 240

tacatctacg tgaagtccaa gaacgacctg ggcagagccg tgggcatcga ggtgccatgt 300tacatctacg tgaagtccaa gaacgacctg ggcagagccg tgggcatcga ggtgccatgt 300

gcctctgccg ccatcatcaa cgagggcgag ctgcggaaag aactgggcag cctggtggaa 360gcctctgccg ccatcatcaa cgagggcgag ctgcggaaag aactgggcag cctggtggaa 360

aagatcaagg gcctgcagaa gggttccggt ggatccggtt ccggacgggc t 411aagatcaagg gcctgcagaa gggttccggt ggatccggtt ccggacgggc t 411

<210> 70<210> 70

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 70<400> 70

tataaggtgg tcccagctcg 20tataaggtgg tcccagctcg 20

<210> 71<210> 71

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 71<400> 71

agggccggtt aatgtggctc 20agggccggtt aatgtggctc 20

<210> 72<210> 72

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 72<400> 72

ctcctgttat attctagaac 20ctcctgttat attctagaac 20

<210> 73<210> 73

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 73<400> 73

tttcagcatc aatgtaccct 20tttcagcatc aatgtaccct 20

<210> 74<210> 74

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 74<400> 74

cgcgagcaca gctaaggcca 20cgcgagcaca gctaaggcca 20

<210> 75<210> 75

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 75<400> 75

actctctctt tctggcctgg 20actctctctt tctggcctgg 20

<210> 76<210> 76

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 76<400> 76

ggcactcaga agacactgat 20ggcactcaga agacactgat 20

<210> 77<210> 77

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 77<400> 77

aaggtgtctg gtcggagagc 20aaggtgtctg gtcggagagc 20

<210> 78<210> 78

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 78<400> 78

acccagcagg gcgtggagcc 20acccagcagg gcgtggagcc 20

<210> 79<210> 79

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 79<400> 79

gtcagagccc caaggtaaaa 20gtcagagccc caaggtaaaa 20

<210> 80<210> 80

<211> 900<211> 900

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 80<400> 80

cctggacttc tccagtactt tctggctgga ttggtatctg aggctagtag gaagggcttg 60cctggacttc tccagtactt tctggctgga ttggtatctg aggctagtag gaagggcttg 60

ttcctgctgg gtagctctaa acaatgtatt catgggtagg aacagcagcc tattctgcca 120ttcctgctgg gtagctctaa acaatgtatt catgggtagg aacagcagcc tattctgcca 120

gccttatttc taaccatttt agacatttgt tagtacatgg tattttaaaa gtaaaactta 180gccttatttc taaccatttt agacatttgt tagtacatgg tattttaaaa gtaaaactta 180

atgtcttcct tttttttctc cactgtcttt ttcatagatc gagacatgta agcagcatca 240atgtcttcct ttttttttctc cactgtcttt ttcatagatc gagacatgta agcagcatca 240

tggaggtaag tttttgacct tgagaaaatg tttttgtttc actgtcctga ggactattta 300tggaggtaag tttttgacct tgagaaaatg ttttttgtttc actgtcctga ggactattta 300

tagacagctc taacatgata accctcacta tgtggagaac attgacagag taacatttta 360tagacagctc taacatgata accctcacta tgtggagaac attgacagag taacatttta 360

gcagggaaag aagaatccta cagggtcatg ttcccttctc ctgtggagtg gcatgaagaa 420gcagggaaag aagaatccta cagggtcatg ttcccttctc ctgtggagtg gcatgaagaa 420

ggtgtatggc cccaggtatg gccatattac tgaccctcta cagagagggc aaaggaactg 480ggtgtatggc cccaggtatg gccatattac tgaccctcta cagagagggc aaaggaactg 480

ccagtatggt attgcaggat aaaggcaggt ggttacccac attacctgca aggctttgat 540ccagtatggt attgcaggat aaaggcaggt ggttacccac attacctgca aggctttgat 540

ctttcttctg ccatttccac attggacatc tctgctgagg agagaaaatg aaccactctt 600ctttcttctg ccatttccac attggacatc tctgctgagg agagaaaatg aaccactctt 600

ttcctttgta taatgttgtt ttattcttca gacagaagag aggagttata cagctctgca 660ttcctttgta taatgttgtt ttattcttca gacagaagag aggagttata cagctctgca 660

gacatcccat tcctgtatgg ggactgtgtt tgcctcttag aggttcccag gccactagag 720gacatcccat tcctgtatgg ggactgtgtt tgcctcttag aggttcccag gccactagag 720

gagataaagg gaaacagatt gttataactt gatataatga tactataata gatgtaacta 780gagataaagg gaaacagatt gttataactt gatataatga tactataata gatgtaacta 780

caaggagctc cagaagcaag agagagggag gaacttggac ttctctgcat ctttagttgg 840caaggagctc cagaagcaag agagagggag gaacttggac ttctctgcat ctttagttgg 840

agtccaaagg cttttcaatg aaattctact gcccagggta cattgatgct gaaaccccat 900agtccaaagg cttttcaatg aaattctact gcccagggta cattgatgct gaaaccccat 900

<210> 81<210> 81

<211> 900<211> 900

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 81<400> 81

tcaaatctcc tgttatattc tagaacaggg aattgatttg ggagagcatc aggaaggtgg 60tcaaatctcc tgttatattc tagaacaggg aattgatttg ggagagcatc aggaaggtgg 60

atgatctgcc cagtcacact gttagtaaat tgtagagcca ggacctgaac tctaatatag 120atgatctgcc cagtcacact gttagtaaat tgtagagcca ggacctgaac tctaatatag 120

tcatgtgtta cttaatgacg gggacatgtt ctgagaaatg cttacacaaa cctaggtgtt 180tcatgtgtta cttaatgacg gggacatgtt ctgagaaatg cttacacaaa cctaggtgtt 180

gtagcctact acacgcatag gctacatggt atagcctatt gctcctagac tacaaacctg 240gtagcctact acacgcatag gctacatggt atagcctatt gctcctagac tacaaacctg 240

tacagcctgt tactgtactg aatactgtgg gcagttgtaa cacaatggta agtatttgtg 300tacagcctgt tactgtactg aatactgtgg gcagttgtaa cacaatggta agtatttgtg 300

tatctaaaca tagaagttgc agtaaaaata tgctatttta atcttatgag accactgtca 360tatctaaaca tagaagttgc agtaaaaata tgctatttta atcttatgag accactgtca 360

tatatacagt ccatcattga ccaaaacatc atatcagcat tttttcttct aagattttgg 420tatatacagt ccatcattga ccaaaacatc atatcagcat ttttttcttct aagattttgg 420

gagcaccaaa gggatacact aacaggatat actctttata atgggtttgg agaactgtct 480gagcaccaaa gggatacact aacaggatat actctttata atgggtttgg agaactgtct 480

gcagctactt cttttaaaaa ggtgatctac acagtagaaa ttagacaagt ttggtaatga 540gcagctactt cttttaaaaa ggtgatctac acagtagaaa ttagacaagt ttggtaatga 540

gatctgcaat ccaaataaaa taaattcatt gctaaccttt ttcttttctt ttcaggtttg 600gatctgcaat ccaaataaaa taaattcatt gctaaccttt ttcttttctt ttcaggtttg 600

aagatgccgc atttggattg gatgaattcc aaattctgct tgcttgcttt ttaatattga 660aagatgccgc atttggattg gatgaattcc aaattctgct tgcttgcttt ttaatattga 660

tatgcttata cacttacact ttatgcacaa aatgtagggt tataataatg ttaacatgga 720tatgcttata cacttacact ttatgcacaa aatgtagggt tataataatg ttaacatgga 720

catgatcttc tttataattc tactttgagt gctgtctcca tgtttgatgt atctgagcag 780catgatcttc tttataattc tactttgagt gctgtctcca tgtttgatgt atctgagcag 780

gttgctccac aggtagctct aggagggctg gcaacttaga ggtggggagc agagaattct 840gttgctccac aggtagctct aggagggctg gcaacttaga ggtggggagc agagaattct 840

cttatccaac atcaacatct tggtcagatt tgaactcttc aatctcttgc actcaaagct 900cttatccaac atcaacatct tggtcagatt tgaactcttc aatctcttgc actcaaagct 900

<210> 82<210> 82

<211> 900<211> 900

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 82<400> 82

cttgacaagt ctcctgctcc tcactatgaa gatcactgtc ccccagccct gtgctccccg 60cttgacaagt ctcctgctcc tcactatgaa gatcactgtc ccccagccct gtgctccccg 60

cactgtgctg cacgtccacc tccattccac tgcccctccc atccccccat cttgatagca 120cactgtgctg cacgtccacc tccattccac tgcccctccc atccccccat cttgatagca 120

cccttcccag gtgtcaagct gcccctccta gagtgtcctg cctaaacccc ctctcctggc 180cccttcccag gtgtcaagct gcccctccta gagtgtcctg cctaaacccc ctctcctggc 180

tcctcccgct acagcatgtt ctctgaggac actaaccacg ctggaccttg aactgggtac 240tcctcccgct acagcatgtt ctctgaggac actaaccacg ctggaccttg aactgggtac 240

ttgtggacac agctcttctc caggctgtat cccatgagcc tcagcatcct ggcacccggc 300ttgtggacac agctcttctc caggctgtat cccatgagcc tcagcatcct ggcacccggc 300

ccctgctggt tcagggttgg cccctgcccg gctgcggaat gaaccacatc ttgctctgct 360ccctgctggt tcagggttgg cccctgcccg gctgcggaat gaaccacatc ttgctctgct 360

gacagacaca ggcccggctc caggctcctt tagcgcccag ttgggtggat gcctggtggc 420gacagacaca ggcccggctc caggctcctt tagcgcccag ttgggtggat gcctggtggc 420

agctgcggtc cacccaggag ccccgaggcc ttctctgaag gacattgcgg acagccacgg 480agctgcggtc cacccaggag ccccgaggcc ttctctgaag gacattgcgg acagccacgg 480

ccaggccaga gggagtgaca gaggcagccc cattctgcct gcccaggccc ctgccaccct 540ccaggccaga gggagtgaca gaggcagccc cattctgcct gcccaggccc ctgccaccct 540

ggggagaaag tacttctttt tttttatttt tagacagagt ctcactgttg cccaggctgg 600ggggagaaag tacttctttt tttttatttt tagacagagt ctcactgttg cccaggctgg 600

cgtgcagtgg tgcgatctgg gttcactgca acctccgcct cttgggttca agcgattctt 660cgtgcagtgg tgcgatctgg gttcactgca acctccgcct cttgggttca agcgattctt 660

ctgcttcagc ctcccgagta gctgggacta caggcaccca ccatcatgtc tggctaattt 720ctgcttcagc ctcccgagta gctgggacta caggcaccca ccatcatgtc tggctaattt 720

ttcattttta gtagagacag ggttttgcca tgttggccag gctggtctca aactcttgac 780ttcattttta gtagagacag ggttttgcca tgttggccag gctggtctca aactcttgac 780

ctcaggtgat ccacccacct cagcctccca aagtgctggg attacaagcg tgagccactg 840ctcaggtgat ccacccacct cagcctccca aagtgctggg attacaagcg tgagccactg 840

caccgggcca cagagaaagt acttctccac cctgctctcc gaccagacac cttgacaggg 900caccgggcca cagagaaagt acttctccac cctgctctcc gaccagacac cttgacaggg 900

<210> 83<210> 83

<211> 900<211> 900

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 83<400> 83

cacaccgggc actcagaaga cactgatggg caacccccag cctgctaatt ccccagattg 60cacaccgggc actcagaaga cactgatggg caacccccag cctgctaatt ccccagattg 60

caacaggctg ggcttcagtg gcagctgctt ttgtctatgg gactcaatgc actgacattg 120caacaggctg ggcttcagtg gcagctgctt ttgtctatgg gactcaatgc actgacattg 120

ttggccaaag ccaaagctag gcctggccag atgcaccagc ccttagcagg gaaacagcta 180ttggccaaag ccaaagctag gcctggccag atgcaccagc ccttagcagg gaaacagcta 180

atgggacact aatggggcgg tgagagggga acagactgga agcacagctt catttcctgt 240atgggacact aatggggcgg tgagagggga acagactgga agcacagctt catttcctgt 240

gtcttttttc actacattat aaatgtctct ttaatgtcac aggcaggtcc agggtttgag 300gtctttttttc actacattat aaatgtctct ttaatgtcac aggcaggtcc agggtttgag 300

ttcataccct gttaccattt tggggtaccc actgctctgg ttatctaata tgtaacaagc 360ttcataccct gttaccattt tggggtaccc actgctctgg ttatctaata tgtaacaagc 360

caccccaaat catagtggct taaaacaaca ctcacattta ttctgctcac atatctgtca 420caccccaaat catagtggct taaaacaaca ctcacattta ttctgctcac atatctgtca 420

tttgagcagg gctcagcggg gacagctcct tctgtcctac tctgtgtcag gtggggcagc 480tttgagcagg gctcagcggg gacagctcct tctgtcctac tctgtgtcag gtggggcagc 480

ttgagggttg ggctggtgtc acctgaagac tcattcttct gtacgtctga caggcaatgc 540ttgagggttg ggctggtgtc acctgaagac tcattcttct gtacgtctga caggcaatgc 540

tggctgttgg ctgggggcct cagtgccact acggaatagt tggctaggac ccctccatgt 600tggctgttgg ctgggggcct cagtgccact acggaatagt tggctaggac ccctccatgt 600

gggctagttg ggcttcctca tagtatggtg gctgggttgg agggtgtccc aaaaagaaag 660gggctagttg ggcttcctca tagtatggtg gctgggttgg agggtgtccc aaaaagaaag 660

gaggggatag agagagacca cttttcataa cctagcctta gaagtcacac agtattactt 720gaggggatag agagagacca cttttcataa cctagcctta gaagtcacac agtattactt 720

ctgctacata tatatgtttt aagaggcagg gtctcactct gtcgcccagt ctggaatgca 780ctgctacata tatatgtttt aagaggcagg gtctcactct gtcgcccagt ctggaatgca 780

gtggtatgat cacggctcac tgcagcctca acctcctggg ctaagtgatc ctcccacctc 840gtggtatgat cacggctcac tgcagcctca acctcctggg ctaagtgatc ctcccacctc 840

agcctcccga atagctggga ctacaggtgt gagtcaccaa gcccagttaa tctttagttt 900agcctcccga atagctggga ctacaggtgt gagtcaccaa gcccagttaa tctttagttt 900

<210> 84<210> 84

<211> 804<211> 804

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 84<400> 84

tgctttctct gacctgcatt ctctcccctg ggcctgtgcc gctttctgtc tgcagcttgt 60tgctttctct gacctgcatt ctctcccctg ggcctgtgcc gctttctgtc tgcagcttgt 60

ggcctgggtc acctctacgg ctggcccaga tccttccctg ccgcctcctt caggttccgt 120ggcctgggtc acctctacgg ctggcccaga tccttccctg ccgcctcctt caggttccgt 120

cttcctccac tccctcttcc ccttgctctc tgctgtgttg ctgcccaagg atgctctttc 180cttcctccac tccctcttcc ccttgctctc tgctgtgttg ctgcccaagg atgctctttc 180

cggagcactt ccttctcggc gctgcaccac gtgatgtcct ctgagcggat cctccccgtg 240cggagcactt ccttctcggc gctgcaccac gtgatgtcct ctgagcggat cctccccgtg 240

tctgggtcct ctccgggcat ctctcctccc tcacccaacc ccatgccgtc ttcactcgct 300tctgggtcct ctccgggcat ctctcctccc tcacccaacc ccatgccgtc ttcactcgct 300

gggttccctt ttccttctcc ttctggggcc tgtgccatct ctcgtttctt aggatggcct 360gggttccctt ttccttctcc ttctggggcc tgtgccatct ctcgtttctt aggatggcct 360

tctccgacgg atgtctccct tgcgtcccgc ctccccttct tgtaggcctg catcatcacc 420tctccgacgg atgtctccct tgcgtcccgc ctccccttct tgtaggcctg catcatcacc 420

gtttttctgg acaaccccaa agtaccccgt ctccctggct ttagccacct ctccatcctc 480gtttttctgg acaaccccaa agtaccccgt ctccctggct ttagccacct ctccatcctc 480

ttgctttctt tgcctggaca ccccgttctc ctgtggattc gggtcacctc tcactccttt 540ttgctttctt tgcctggaca ccccgttctc ctgtggattc gggtcacctc tcactccttt 540

catttgggca gctcccctac cccccttacc tctctagtct gtgctagctc ttccagcccc 600catttgggca gctcccctac cccccttacc tctctagtct gtgctagctc ttccagcccc 600

ctgtcatggc atcttccagg ggtccgagag ctcagctagt cttcttcctc caacccgggc 660ctgtcatggc atcttccagg ggtccgagag ctcagctagt cttcttcctc caacccgggc 660

ccctatgtcc acttcaggac agcatgtttg ctgcctccag ggatcctgtg tccccgagct 720ccctatgtcc acttcaggac agcatgtttg ctgcctccag ggatcctgtg tccccgagct 720

gggaccacct tatattccca gggccggtta atgtggctct ggttctgggt acttttatct 780gggaccacct tatattccca gggccggtta atgtggctct ggttctgggt acttttatct 780

gtcccctcca ccccacagtg gggc 804gtcccctcca ccccacagtg gggc 804

<210> 85<210> 85

<211> 837<211> 837

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 85<400> 85

actagggaca ggattggtga cagaaaagcc ccatccttag gcctcctcct tcctagtctc 60actagggaca ggattggtga cagaaaagcc ccatccttag gcctcctcct tcctagtctc 60

ctgatattgg gtctaacccc cacctcctgt taggcagatt ccttatctgg tgacacaccc 120ctgatattgg gtctaacccc cacctcctgt taggcagatt ccttatctgg tgacacaccc 120

ccatttcctg gagccatctc tctccttgcc agaacctcta aggtttgctt acgatggagc 180ccatttcctg gagccatctc tctccttgcc agaacctcta aggtttgctt acgatggagc 180

cagagaggat cctgggaggg agagcttggc agggggtggg agggaagggg gggatgcgtg 240cagagaggat cctgggaggg agagcttggc agggggtggg agggaagggg gggatgcgtg 240

acctgcccgg ttctcagtgg ccaccctgcg ctaccctctc ccagaacctg agctgctctg 300acctgcccgg ttctcagtgg ccaccctgcg ctaccctctc ccagaacctg agctgctctg 300

acgcggccgt ctggtgcgtt tcactgatcc tggtgctgca gcttccttac acttcccaag 360acgcggccgt ctggtgcgtt tcactgatcc tggtgctgca gcttccttac acttcccaag 360

aggagaagca gtttggaaaa acaaaatcag aataagttgg tcctgagttc taactttggc 420aggagaagca gtttggaaaa acaaaatcag aataagttgg tcctgagttc taactttggc 420

tcttcacctt tctagtcccc aatttatatt gttcctccgt gcgtcagttt tacctgtgag 480tcttcacctt tctagtcccc aatttattatt gttcctccgt gcgtcagttt tacctgtgag 480

ataaggccag tagccagccc cgtcctggca gggctgtggt gaggaggggg gtgtccgtgt 540ataaggccag tagccagccc cgtcctggca gggctgtggt gaggaggggg gtgtccgtgt 540

ggaaaactcc ctttgtgaga atggtgcgtc ctaggtgttc accaggtcgt ggccgcctct 600ggaaaactcc ctttgtgaga atggtgcgtc ctaggtgttc accaggtcgt ggccgcctct 600

actccctttc tctttctcca tccttctttc cttaaagagt ccccagtgct atctgggaca 660actccctttc tctttctcca tccttctttc cttaaagagt ccccagtgct atctgggaca 660

tattcctccg cccagagcag ggtcccgctt ccctaaggcc ctgctctggg cttctgggtt 720tattcctccg cccagagcag ggtcccgctt ccctaaggcc ctgctctggg cttctgggtt 720

tgagtccttg gcaagcccag gagaggcgct caggcttccc tgtccccctt cctcgtccac 780tgagtccttg gcaagcccag gagaggcgct caggcttccc tgtccccctt cctcgtccac 780

catctcatgc ccctggctct cctgcccctt ccctacaggg gttcctggct ctgctct 837catctcatgc ccctggctct cctgcccctt ccctacaggg gttcctggct ctgctct 837

<210> 86<210> 86

<211> 253<211> 253

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 86<400> 86

gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60

ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120

aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180

atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240

cgctagcgcc acc 253cgctagcgcc acc 253

<210> 87<210> 87

<211> 686<211> 686

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 87<400> 87

gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60

ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120

aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180

atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240

ctttaccact ccctatcagt gatagagaaa agtgaaagtc gagtttacca ctccctatca 300ctttaccact ccctatcagt gatagagaaa agtgaaagtc gagtttacca ctccctatca 300

gtgatagaga aaagtgaaag tcgagtttac cactccctat cagtgataga gaaaagtgaa 360gtgatagaga aaagtgaaag tcgagtttac cactccctat cagtgataga gaaaagtgaa 360

agtcgagttt accactccct atcagtgata gagaaaagtg aaagtcgagt ttaccactcc 420agtcgagttt accactccct atcagtgata gagaaaagtg aaagtcgagt ttaccactcc 420

ctatcagtga tagagaaaag tgaaagtcga gtttaccact ccctatcagt gatagagaaa 480ctatcagtga tagagaaaag tgaaagtcga gtttaccact ccctatcagt gatagagaaa 480

agtgaaagtc gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagctcgg 540agtgaaagtc gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagctcgg 540

tacccgggtc gaggtaggcg tgtacggtgg gaggcctata taagcagagc tcgtttagtg 600tacccgggtc gaggtaggcg tgtacggtgg gaggcctata taagcagagc tcgtttagtg 600

aaccgtcaga tcgcctggag acgccatcca cgctgttttg acctccatag aagacaccgg 660aaccgtcaga tcgcctggag acgccatcca cgctgttttg acctccatag aagacaccgg 660

gaccgatcca gcctgctagc gccacc 686gaccgatcca gcctgctagc gccacc 686

<210> 88<210> 88

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 88<400> 88

ccatagctca gtctggtcta tc 22ccatagctca gtctggtcta tc 22

<210> 89<210> 89

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 89<400> 89

ctcttcgtcc agatcatcct ga 22ctcttcgtcc agatcatcct ga 22

<210> 90<210> 90

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 90<400> 90

ccatagctca gtctggtcta tc 22ccatagctca gtctggtcta tc 22

<210> 91<210> 91

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 91<400> 91

cacaccttgc cgatgtcgag 20cacaccttgc cgatgtcgag 20

<210> 92<210> 92

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 92<400> 92

gcactgaacg aacatctcaa gaag 24gcactgaacg aacatctcaa gaag 24

<210> 93<210> 93

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 93<400> 93

ctcttcgtcc agatcatcct ga 22ctcttcgtcc agatcatcct ga 22

<210> 94<210> 94

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 94<400> 94

gcactgaacg aacatctcaa gaag 24gcactgaacg aacatctcaa gaag 24

<210> 95<210> 95

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 95<400> 95

cacaccttgc cgatgtcgag 20cacaccttgc cgatgtcgag 20

<210> 96<210> 96

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 96<400> 96

tgctccgggt ttgtctcaga tg 22tgctccgggt ttgtctcaga tg 22

<210> 97<210> 97

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 97<400> 97

ctcttcgtcc agatcatcct ga 22ctcttcgtcc agatcatcct ga 22

<210> 98<210> 98

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 98<400> 98

tgctccgggt ttgtctcaga tg 22tgctccgggt ttgtctcaga tg 22

<210> 99<210> 99

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 99<400> 99

cacaccttgc cgatgtcgag 20cacaccttgc cgatgtcgag 20

<210> 100<210> 100

<211> 590<211> 590

<212> DNA<212> DNA

<213> 人工序列<213> Artificial sequences

<400> 100<400> 100

cccctctccc tccccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg 60cccctctccc tccccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg 60

tgcgtttgtc tatatgttat tttccaccat attgccgtct tttggcaatg tgagggcccg 120tgcgtttgtc tatatgttat tttccaccat attgccgtct tttggcaatg tgagggcccg 120

gaaacctggc cctgtcttct tgacgagcat tcctaggggt ctttcccctc tcgccaaagg 180gaaacctggc cctgtcttct tgacgagcat tcctaggggt ctttcccctc tcgccaaagg 180

aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt cttgaagaca 240aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt cttgaagaca 240

aacaacgtct gtagcgaccc tttgcaggca gcggaacccc ccacctggcg acaggtgcct 300aacaacgtct gtagcgaccc tttgcaggca gcggaacccc ccacctggcg acaggtgcct 300

ctgcggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcca 360ctgcggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcca 360

cgttgtgagt tggatagttg tggaaagagt caaatggctc tcctcaagcg tattcaacaa 420cgttgtgagt tggatagttg tggaaagagt caaatggctc tcctcaagcg tattcaacaa 420

ggggctgaag gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg 480ggggctgaag gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg 480

cacatgcttt acatgtgttt agtcgaggtt aaaaaaacgt ctaggccccc cgaaccacgg 540cacatgcttt acatgtgttt agtcgaggtt aaaaaaacgt ctaggccccc cgaaccacgg 540

ggacgtggtt ttcctttgaa aaacacgatg ataatatggc cacaaccatg 590ggacgtggtt ttcctttgaa aaacacgatg ataatatggc cacaaccatg 590

<210> 101<210> 101

<211> 21<211> 21

<212> DNA<212> DNA

<213> Caenorhabditis elegans<213> Caenorhabditis elegans

<400> 101<400> 101

ttgtactaca caaaagtact g 21ttgtactaca caaaagtact g 21

<210> 102<210> 102

<211> 24<211> 24

<212> DNA<212> DNA

<213> Caenorhabditis elegans<213> Caenorhabditis elegans

<400> 102<400> 102

tcacaacctc ctagaaagag taga 24tcacaacctc ctagaaagag taga 24

Claims (22)

1. A pluripotent stem cell or a derivative thereof, comprising a VEGF-A targeted inhibitor, wherein the VEGF-A targeted inhibitor comprises at least one of shRNA and shRNA-miR expressing VEGF-A; the sequences of the shRNA and shRNA-miR expressing VEGF-A are preferably inserted into the genome of the pluripotent stem cell or the derivative thereof.
2. The pluripotent stem cell or the derivative thereof according to claim 1, wherein the sequences of the shRNA and shRNA-miR targeting VEGF-A are shown in SEQ ID No. 1-SEQ ID No. 2.
3. The pluripotent stem cell or derivative thereof according to claim 1, wherein the B2M gene and/or the CIITA gene of the genome of the pluripotent stem cell or derivative thereof is knocked out.
4. The pluripotent stem cell or the derivative thereof according to claim 1, wherein: the genome of the pluripotent stem cell or the derivative thereof is also introduced with a first nucleic acid molecule;
and, a second nucleic acid molecule is further introduced into the 3' UTR region of the immune response-associated gene in the pluripotent stem cell or a derivative thereof;
the first nucleic acid molecule encodes a small nucleic acid molecule that mediates RNA interference, which small nucleic acid molecule specifically targets the transcript of the second nucleic acid molecule, and which small nucleic acid molecule does not target any other mRNA or incrna of the pluripotent stem cell or a derivative thereof.
5. The pluripotent stem cell or the derivative thereof according to claim 4, wherein the small nucleic acid molecule comprises at least one of a short interfering nucleic acid, a short interfering RNA, a double-stranded RNA, preferably miRNA, shRNA-miR.
6. The pluripotent stem cells or the derivatives thereof according to claim 5, wherein the pluripotent stem cells or the derivatives thereof are derived from a human; the sequence of the small nucleic acid molecule is a random sequence of a non-human species that does not target any mRNA or incrna of a human.
7. The pluripotent stem cell or the derivative thereof according to claim 4, wherein the second nucleic acid molecule comprises the reverse complement of at least 3 repeats of the sequence of the small nucleic acid molecule, preferably 6 to 10 repeats of the sequence of the small nucleic acid molecule.
8. The pluripotent stem cells or the derivatives thereof according to claim 1, wherein the genome of the pluripotent stem cells or the derivatives thereof further comprises an expression sequence of at least one immune-compatible molecule for regulating the expression of genes associated with an immune response in the pluripotent stem cells or the derivatives thereof.
9. The pluripotent stem cell or the derivative thereof according to claim 4 or 8, wherein the genes associated with the immune response comprise:
(1) major histocompatibility complex genes including at least one of HLA-A, HLA-B, HLA-C, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB 1;
(2) major histocompatibility complex-associated genes including at least one of B2M and CIITA.
10. The pluripotent stem cell or derivative thereof of claim 8, wherein the immune-compatible molecule comprises at least one of:
(1) an immune tolerance-related gene including at least one of CD47 and HLA-G;
(2) HLA-C molecules, including HLA-C multiple alleles of which the proportion in the population is over 90 percent in total, or fusion protein genes consisting of the HLA-C multiple alleles of which the proportion is over 90 percent and B2M;
(3) shRNA and/or shRNA-miR targeting major histocompatibility complex genes including at least one of HLA-A, HLA-B, HLA-C, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB 1;
(4) shRNA and/or shRNA-miR targeting a major histocompatibility complex-associated gene that includes at least one of B2M and CIITA.
11. The pluripotent stem cell or derivative thereof of claim 10, wherein:
the target sequence of the shRNA and/or shRNA-miR targeting B2M is selected from one of SEQ ID NO. 9-SEQ ID NO. 11;
the target sequence of the shRNA and/or shRNA-miR of the targeting CIITA is selected from one of SEQ ID NO. 12-SEQ ID NO. 14;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-A is selected from one of SEQ ID NO. 15-SEQ ID NO. 17;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-B is selected from one of SEQ ID NO. 18-SEQ ID NO. 20;
the target sequence of the target HLA-C shRNA and/or shRNA-miR is selected from one of SEQ ID NO. 21-SEQ ID NO. 23;
the target sequence of the shRNA and/or shRNA-miR of the targeted HLA-DRA is selected from one of SEQ ID NO. 24-SEQ ID NO. 26;
the target sequence of the shRNA and/or shRNA-miR targeting HLA-DRB1 is selected from one of SEQ ID NO. 27-SEQ ID NO. 29;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-DRB3 is selected from one of SEQ ID NO. 30-SEQ ID NO. 31;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-DRB4 is selected from one of SEQ ID NO. 32-SEQ ID NO. 34;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-DRB5 is selected from one of SEQ ID NO. 35-SEQ ID NO. 37;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-DQA1 is selected from one of SEQ ID NO. 38-SEQ ID NO. 40;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-DQB1 is selected from one of SEQ ID NO. 41-SEQ ID NO. 43;
the target sequence of the shRNA and/or shRNA-miR of the target HLA-DPA1 is selected from one of SEQ ID NO. 44-SEQ ID NO. 46; the target sequence of the shRNA and/or shRNA-miR of the target HLA-DPB1 is selected from one of SEQ ID NO. 47-SEQ ID NO. 49.
12. The pluripotent stem cell or the derivative thereof according to any one of claims 1 to 11, wherein a shRNA and/or miRNA processing complex-associated gene and/or an anti-interferon effector molecule is further introduced into the genome of the pluripotent stem cell or the derivative thereof, wherein: the shRNA and/or miRNA processing complex related gene comprises at least one of Drosha, Ago1, Ago2, Dicer1, Exportin-5, TRBP (TARBP2), PACT (PRKRA) and DGCR 8; the anti-interferon effector molecule is shRNA and/or shRNA-miR of at least one of target PKR, 2-5As, IRF-3 and IRF-7.
13. The pluripotent stem cell or the derivative thereof according to claim 12, wherein the target sequence of the shRNA and/or shRNA-miR targeting the PKR is selected from one of SEQ ID No.50 to SEQ ID No. 52;
the target sequence of the shRNA and/or shRNA-miR targeting 2-5As is selected from one of SEQ ID NO. 53-SEQ ID NO. 61;
the target sequence of the shRNA and/or shRNA-miR of the targeted IRF-3 is selected from one of SEQ ID NO. 62-SEQ ID NO. 64;
the target sequence of the shRNA and/or shRNA-miR of the target IRF-7 is selected from one of SEQ ID NO. 65-SEQ ID NO. 67.
14. The pluripotent stem cells or derivatives thereof of claim 2, 11 or 13, wherein the expression frameworks of the VEGF-a targeting shRNA and/or shRNA-miR, major histocompatibility complex gene, major histocompatibility complex-related gene, anti-interferon effector molecule are as follows:
the shRNA expression framework is as follows: the gene sequence sequentially comprises an shRNA target sequence, a stem-loop sequence, a reverse complementary sequence of the shRNA target sequence and Poly T from 5 'to 3';
wherein the shRNA target sequence, the stem-loop sequence and the reverse complementary sequence of the shRNA target sequence form a hairpin structure; poly T is a transcription terminator of RNA polymerase III;
shRNA-miR expression framework: and replacing the shRNA target sequence in the shRNA expression frame by using the shRNA-miR target sequence.
15. The pluripotent stem cell or the derivative thereof according to claim 4, 8 or 12, wherein an inducible gene expression system is further introduced into the genome of the pluripotent stem cell or the derivative thereof for regulating the expression of the first nucleic acid molecule and/or the immune-compatible molecule and/or the shRNA and/or the miRNA processing complex-associated gene and/or the anti-interferon effector molecule.
16. The pluripotent stem cells or derivatives thereof according to claim 15, wherein the inducible gene expression system comprises at least one of a Tet-Off system, a dimer inducible expression system.
17. The pluripotent stem cell or derivative thereof according to any one of claims 1 to 16, wherein the genome of the pluripotent stem cell or derivative thereof further comprises an exosome-processing synthetic gene comprising at least one of STEAP3, Syndevan-4, an L-aspartate oxidase fragment, CD63-L7Ae and Cx 43S 368A.
18. The pluripotent stem cell or the derivative thereof according to any one of claims 1 to 17, wherein the VEGF-a inhibitory factor expression sequence, the first nucleic acid molecule, the immune-compatible molecule expression sequence, the shRNA and/or miRNA processing complex-associated gene, the anti-interferon effector molecule, the inducible gene expression system, the exosome processing synthetic gene are introduced by viral vector interference, non-viral vector transfection or gene editing, preferably by knock-in.
19. The pluripotent stem cell or the derivative thereof according to any one of claims 1 to 17, wherein the VEGF-a inhibitory factor expression sequence, the immune-compatible molecule expression sequence, the shRNA and/or miRNA processing complex-associated gene, the anti-interferon effector molecule, the inducible gene expression system, the exosome processing synthetic gene are introduced at a genome-safe site, preferably at one or more of an AAVS 1-safe site, an eGSH-safe site, and an H11-safe site.
20. The pluripotent stem cell or derivative thereof of any one of claims 1 to 19, wherein:
the pluripotent stem cells comprise embryonic stem cells, embryonic germ cells, embryonic cancer cells, or induced pluripotent stem cells;
the pluripotent stem cell derivative comprises adult stem cells differentiated by the pluripotent stem cells, cells of each germ layer or tissues and organs;
the adult stem cells include mesenchymal stem cells or neural stem cells.
21. Use of the pluripotent stem cells or derivatives thereof and exosomes secreted therefrom of claim 20 for the preparation of a macular degeneration therapeutic agent or medicament.
22. An exosome secreted from the pluripotent stem cell or derivative thereof of any one of claims 1 to 20.
CN202011525773.3A 2020-12-22 2020-12-22 Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof Pending CN114657130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011525773.3A CN114657130A (en) 2020-12-22 2020-12-22 Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011525773.3A CN114657130A (en) 2020-12-22 2020-12-22 Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof

Publications (1)

Publication Number Publication Date
CN114657130A true CN114657130A (en) 2022-06-24

Family

ID=82025580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011525773.3A Pending CN114657130A (en) 2020-12-22 2020-12-22 Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof

Country Status (1)

Country Link
CN (1) CN114657130A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150056225A1 (en) * 2012-04-17 2015-02-26 University Of Washington Through Its Center For Commercialization HLA Class II Deficient Cells, HLA Class I Deficient Cells Capable of Expressing HLA Class II Proteins, and Uses Thereof
CN108368520A (en) * 2015-11-04 2018-08-03 菲特治疗公司 Genome engineering of pluripotent cells
US20180273906A1 (en) * 2014-04-17 2018-09-27 Muhammad Ashraf Microvesicle and stem cell compositions for therapeutic applications
WO2018208971A1 (en) * 2017-05-10 2018-11-15 University Of Louisville Research Foundation, Inc. Compositions comprising engineered embryonic stem cell-derived exosomes and method of use therefor
CN108904799A (en) * 2018-07-09 2018-11-30 夏荣木 A kind of anti-tumor agent and the method for preparation
CN110249045A (en) * 2016-11-24 2019-09-17 剑桥企业有限公司 Controllable transcription
US20200038453A1 (en) * 2018-04-29 2020-02-06 City Of Hope Neural stem cell-mediated cancer treatment
CN110819592A (en) * 2018-08-13 2020-02-21 赛元生物科技(杭州)有限公司 Universal donor stem cell and preparation method thereof
CN110996975A (en) * 2017-04-13 2020-04-10 森迪生物科学公司 Combination Cancer Immunotherapy
CN111386123A (en) * 2017-11-22 2020-07-07 布里格姆及妇女医院股份有限公司 MSC-expressed immunomodulators combined with CAR-T for cancer therapy
WO2020168317A2 (en) * 2019-02-15 2020-08-20 President And Fellows Of Harvard College Universal donor stem cells and related methods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150056225A1 (en) * 2012-04-17 2015-02-26 University Of Washington Through Its Center For Commercialization HLA Class II Deficient Cells, HLA Class I Deficient Cells Capable of Expressing HLA Class II Proteins, and Uses Thereof
US20180273906A1 (en) * 2014-04-17 2018-09-27 Muhammad Ashraf Microvesicle and stem cell compositions for therapeutic applications
CN108368520A (en) * 2015-11-04 2018-08-03 菲特治疗公司 Genome engineering of pluripotent cells
CN110249045A (en) * 2016-11-24 2019-09-17 剑桥企业有限公司 Controllable transcription
CN110996975A (en) * 2017-04-13 2020-04-10 森迪生物科学公司 Combination Cancer Immunotherapy
WO2018208971A1 (en) * 2017-05-10 2018-11-15 University Of Louisville Research Foundation, Inc. Compositions comprising engineered embryonic stem cell-derived exosomes and method of use therefor
CN111386123A (en) * 2017-11-22 2020-07-07 布里格姆及妇女医院股份有限公司 MSC-expressed immunomodulators combined with CAR-T for cancer therapy
US20200038453A1 (en) * 2018-04-29 2020-02-06 City Of Hope Neural stem cell-mediated cancer treatment
CN108904799A (en) * 2018-07-09 2018-11-30 夏荣木 A kind of anti-tumor agent and the method for preparation
CN110819592A (en) * 2018-08-13 2020-02-21 赛元生物科技(杭州)有限公司 Universal donor stem cell and preparation method thereof
WO2020168317A2 (en) * 2019-02-15 2020-08-20 President And Fellows Of Harvard College Universal donor stem cells and related methods

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JAFARI D ET AL: "Designer Exosomes: A New Platform for Biotechnology Therapeutics", BIODRUGS, vol. 34, no. 5, 31 August 2020 (2020-08-31) *
LESPAGNOL A ET AL.: "Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice", CELL DEATH DIFFER, vol. 15, no. 11, 30 November 2008 (2008-11-30), XP093007436, DOI: 10.1038/cdd.2008.104 *
ROUCOURT, B. ET AL: "Heparanase activates the syndecan-syntenin-ALIX exosome pathway", CELL RES, no. 25, 31 December 2015 (2015-12-31) *
STEM CELLS: "Concise review: stem cells as an emerging platform for antibody therapy of cancer", FRANK R T等, vol. 28, no. 11, 31 December 2010 (2010-12-31) *
宋小龙等: "VEGF-A与心血管疾病相关性疾病的研究进展", 临床检验杂志, vol. 8, no. 3, 30 September 2019 (2019-09-30), pages 196 *
汲晓沛等: "负性协同刺激分子B7-H4在C3H10T1/2移植治疗EAE中作用机制的研究", 万方学术, 14 November 2015 (2015-11-14) *

Similar Documents

Publication Publication Date Title
CN104046593A (en) Human cell with low immunogenicity and preparation method thereof
WO2022037481A1 (en) Immunologically compatible and reversible universal pluripotent stem cell and application thereof
CN114657133A (en) A pluripotent stem cell expressing shRNA and/or shRNA-miR targeting IL-4Rα
EP4041864A1 (en) Cells with sustained transgene expression
CN114645021A (en) Pluripotent stem cell expressing targeted CD47 inhibitory factor, derivative and application thereof
CN114657135A (en) Pluripotent stem cell expressing Tim-3 targeted inhibitory factor, derivative and application thereof
CN114107211A (en) Pluripotent stem cell and derivative thereof
CN114657130A (en) Pluripotent stem cell expressing VEGF-A targeted inhibitory factor, derivative and application thereof
CN114657136A (en) Pluripotent stem cell expressing shRNA and/or shRNA-miR of target PCSK9 or derivative thereof
WO2016171625A1 (en) Targeting telomerase for cell therapy
CN114657131A (en) A pluripotent stem cell expressing urate oxidase or a derivative thereof
CN114525255A (en) Pluripotent stem cell derivative for expressing IL-11 and application thereof
CN114645020A (en) Pluripotent stem cell expressing targeted NR4A1 inhibitory factor, and derivative and application thereof
CN114426953A (en) Pluripotent stem cell derivative for expressing IL-12 and application thereof
CN114657132A (en) A pluripotent stem cell expressing Siglec-15 targeting inhibitor and its derivatives and applications
CN114657139A (en) Pluripotent stem cell expressing LAG-3 targeted inhibitory factor, derivative and application thereof
CN114645018A (en) A pluripotent stem cell expressing CD38 targeting inhibitor and its derivative and application
CN114717232A (en) Pluripotent stem cells expressing targeted inhibitor of IRF-1 and their derivatives and applications
CN114457029A (en) A pluripotent stem cell expressing VEGF-A blocker or its derivative and application
CN114717193A (en) Pluripotent stem cell expressing shRNA and/or shRNA-miR targeting B7-H5 or derivative thereof
CN114717192A (en) A pluripotent stem cell expressing Amyloidβ targeting inhibitor and its derivatives and applications
CN114657137A (en) A pluripotent stem cell or a derivative thereof expressing shRNA and/or shRNA-miR targeting BTLA
CN114657134A (en) A pluripotent stem cell or a derivative thereof expressing shRNA and/or shRNA-miR targeting IgE
CN114657138A (en) Pluripotent stem cell expressing shRNA and/or shRNA-miR targeting B7-H4 or derivative thereof
CN114350611A (en) Pluripotent stem cells expressing effector RNA molecules targeting PD-1/PD-L1 and derivatives thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination