CN114649322B - Micro LED display device and preparation method - Google Patents
Micro LED display device and preparation method Download PDFInfo
- Publication number
- CN114649322B CN114649322B CN202210552675.1A CN202210552675A CN114649322B CN 114649322 B CN114649322 B CN 114649322B CN 202210552675 A CN202210552675 A CN 202210552675A CN 114649322 B CN114649322 B CN 114649322B
- Authority
- CN
- China
- Prior art keywords
- layer
- passivation layer
- passivation
- display device
- doped semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000002161 passivation Methods 0.000 claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000004065 semiconductor Substances 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 32
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000000576 coating method Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- 238000002310 reflectometry Methods 0.000 claims description 13
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229920001486 SU-8 photoresist Polymers 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- 230000000717 retained effect Effects 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 230000002269 spontaneous effect Effects 0.000 abstract description 6
- 230000005855 radiation Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 430
- 238000010586 diagram Methods 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000000151 deposition Methods 0.000 description 7
- 238000001312 dry etching Methods 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- 229910002601 GaN Inorganic materials 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000012811 non-conductive material Substances 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/16—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于Micro-LED制造技术领域,具体涉及一种Micro LED显示器件及制备方法。The invention belongs to the technical field of Micro-LED manufacturing, and in particular relates to a Micro LED display device and a preparation method.
背景技术Background technique
Micro LED用于微显示行业(比如AR/VR等),因为像素间距非常小,从而会引发串扰的问题,也就是说,当像素点的发光,会有一部分漏到相邻的像素点,导致色彩纯度下降。目前有一些技术,比如谐振腔技术,可以一定程度缓解串扰的问题,但因为Micro LED发光是自发辐射,而不像激光器一样是受激辐射,依然有一部分光会从侧壁漏出,从而引发串扰的问题。Micro LEDs are used in the micro-display industry (such as AR/VR, etc.), because the pixel pitch is very small, which will cause crosstalk problems. That is to say, when a pixel emits light, part of it leaks to adjacent pixels, resulting in Color purity decreases. At present, there are some technologies, such as resonant cavity technology, which can alleviate the problem of crosstalk to a certain extent. However, because Micro LED emits light by spontaneous radiation, not stimulated radiation like lasers, some light will still leak from the sidewall, causing crosstalk. The problem.
发明内容SUMMARY OF THE INVENTION
发明目的:本发明的目的在于提供一种Micro LED显示器件,通过在LED单元侧壁设置反光层,阻止相邻像素间串扰,提高出光功率;本发明的另一目的在于提供上述MicroLED显示器件的制备方法。Purpose of the invention: The purpose of the present invention is to provide a Micro LED display device. By arranging a reflective layer on the side wall of the LED unit, the crosstalk between adjacent pixels is prevented and the light output power is improved; Preparation.
技术方案:为实现上述发明目的,Micro LED显示器件的制备方法,包括:Technical solution: In order to achieve the above purpose of the invention, the preparation method of the Micro LED display device includes:
提供驱动面板,所述驱动面板包括多个第一触点;providing a drive panel including a plurality of first contacts;
提供LED单元,所述LED单元阵列排布于所述驱动面板上,通过所述第一触点单独被驱动;所述LED单元具有出光面以及与所述出光面连接的侧面;an LED unit is provided, the LED unit array is arranged on the driving panel, and is driven independently by the first contact; the LED unit has a light emitting surface and a side surface connected with the light emitting surface;
形成钝化层,所述钝化层位于所述LED单元上,包括位于所述出光面上的第一钝化层、位于所述侧面上的与所述第一钝化层一体连接的第二钝化层以及位于相邻的LED单元之间的与所述第二钝化层一体连接的第三钝化层;A passivation layer is formed, the passivation layer is located on the LED unit, including a first passivation layer located on the light emitting surface, a second passivation layer located on the side surface and integrally connected with the first passivation layer a passivation layer and a third passivation layer located between adjacent LED units and integrally connected with the second passivation layer;
在所述第一钝化层上设置用于露出所述出光面的第一开孔;A first opening for exposing the light emitting surface is provided on the first passivation layer;
形成牺牲层,所述牺牲层位于所述第一钝化层上并覆盖所述第一开孔;forming a sacrificial layer, the sacrificial layer is located on the first passivation layer and covers the first opening;
形成反光层,包括位于所述牺牲层上的第一反光层和位于所述第二钝化层和所述第三钝化层上的第二反光层,所述第一反光层和所述第二反光层彼此断开;剥离所述牺牲层,保留所述第二反光层,并露出所述第一钝化层和所述第一开孔。A reflective layer is formed, including a first reflective layer on the sacrificial layer and a second reflective layer on the second passivation layer and the third passivation layer, the first reflective layer and the first reflective layer The two light-reflecting layers are disconnected from each other; the sacrificial layer is peeled off, the second light-reflecting layer is retained, and the first passivation layer and the first opening are exposed.
在一些实施例中,所述提供LED单元的步骤,包括:In some embodiments, the step of providing the LED unit includes:
提供衬底,所述衬底上设置有LED外延层;providing a substrate on which an LED epitaxial layer is provided;
将所述驱动面板与所述LED外延层键合,在所述驱动面板和所述LED外延层之间形成键合层;bonding the driving panel and the LED epitaxial layer, and forming a bonding layer between the driving panel and the LED epitaxial layer;
将所述LED外延层刻蚀成台阶结构,所述台阶结构包括第一掺杂型半导体层、第二掺杂型半导体层和位于两者之间的有源层;所述出光面位于所述第二掺杂型半导体层上且位于所述台阶结构顶端;所述台阶结构至少使相邻的LED单元的第二掺杂型半导体层相互断开且电隔离。The LED epitaxial layer is etched into a stepped structure, and the stepped structure includes a first doped semiconductor layer, a second doped semiconductor layer and an active layer located therebetween; the light exit surface is located on the The second doped semiconductor layer is located on the top of the step structure; the step structure at least separates and electrically isolates the second doped semiconductor layers of adjacent LED units from each other.
在一些实施例中,所述台阶结构使相邻的LED单元的第二掺杂型半导体层、有源层、第一掺杂型半导体层均相互断开且电隔离;In some embodiments, the step structure enables the second doped semiconductor layer, the active layer, and the first doped semiconductor layer of adjacent LED units to be disconnected and electrically isolated from each other;
所述键合层的材质为导电材质,刻蚀所述键合层使相邻所述LED单元之间的所述键合层彼此断开;The material of the bonding layer is a conductive material, and the bonding layers between the adjacent LED units are disconnected from each other by etching the bonding layer;
所述第一触点位于对应所述LED单元下方,所述第一掺杂型半导体层与所述第一触点电性连接使所述LED单元能够被单独驱动。The first contact is located under the corresponding LED unit, and the first doped semiconductor layer is electrically connected to the first contact so that the LED unit can be driven independently.
在一些实施例中,所述第一掺杂型半导体层与所述第一触点电性连接使所述LED单元能够被单独驱动的步骤中,包括:In some embodiments, the step of electrically connecting the first doped semiconductor layer with the first contact so that the LED unit can be driven independently includes:
在所述第一钝化层上设置电极层;所述电极层通过所述第一开孔与所述LED单元的第二掺杂型半导体层电连接,相邻LED单元的所述第二掺杂型半导体层通过所述电极层电连接。An electrode layer is provided on the first passivation layer; the electrode layer is electrically connected to the second doped semiconductor layer of the LED unit through the first opening, and the second doped semiconductor layer of the adjacent LED unit is electrically connected The hetero-type semiconductor layer is electrically connected through the electrode layer.
在一些实施例中,所述在第一钝化层上设置电极层的步骤之前,包括:In some embodiments, before the step of disposing the electrode layer on the first passivation layer, the step includes:
形成绝缘层,所述绝缘层位于所述第一钝化层和所述反光层上,然后在所述第一钝化层上的绝缘层上设置第二开孔并露出所述第一开孔。forming an insulating layer, the insulating layer is located on the first passivation layer and the light-reflecting layer, and then setting a second opening on the insulating layer on the first passivation layer and exposing the first opening .
在一些实施例中,绝缘层作为电学隔离层,如果反光层本身不导电,则该层可以省略;绝缘层材料可以为有机材料或者无机材料。In some embodiments, the insulating layer is used as an electrical isolation layer. If the reflective layer itself is not conductive, this layer can be omitted; the insulating layer material can be an organic material or an inorganic material.
在一些实施例中,所述在第一钝化层上设置电极层的步骤之后,包括:In some embodiments, after the step of disposing the electrode layer on the first passivation layer, it includes:
形成布拉格反射镜,所述布拉格反射镜位于所述电极层上。A Bragg mirror is formed on the electrode layer.
在一些实施例中,所述布拉格反射镜的反射率在50%-70%之间。布拉格反射镜用于提升出光准直性,当所述LED单元的底层设置反射金属时,还要进一步保证布拉格反射镜的反射率小于所述LED单元的底层反射金属的反射率。In some embodiments, the reflectivity of the Bragg mirror is between 50%-70%. The Bragg reflector is used to improve the collimation of light. When the bottom layer of the LED unit is provided with a reflective metal, it is further ensured that the reflectivity of the Bragg reflector is smaller than that of the bottom layer of the LED unit.
在一些实施例中,所述形成牺牲层的步骤,包括:In some embodiments, the step of forming the sacrificial layer includes:
形成牺牲涂层,所述牺牲涂层位于所述第一开孔、所述第一钝化层、所述第二钝化层和所述第三钝化层上;forming a sacrificial coating on the first opening, the first passivation layer, the second passivation layer and the third passivation layer;
对牺牲涂层进行图形化曝光,除去所述第二钝化层和所述第三钝化层上的牺牲涂层,保留所述第一钝化层和所述第一开孔上的牺牲涂层,得到所述牺牲层。performing pattern exposure on the sacrificial coating, removing the sacrificial coating on the second passivation layer and the third passivation layer, and retaining the sacrificial coating on the first passivation layer and the first opening layer to obtain the sacrificial layer.
在一些实施例中,所述牺牲涂层与所述反光层的厚度比大于2:1,优选为大于等于3:1,所述牺牲涂层的厚度需要远厚于反光层的厚度,才能保证后续形成的第一反光层与第二反光层为不连续的结构,从而可以保证第一反光层的直接剥离,且不影响第二反光层的保留。In some embodiments, the thickness ratio of the sacrificial coating to the reflective layer is greater than 2:1, preferably greater than or equal to 3:1, and the thickness of the sacrificial coating needs to be much thicker than that of the reflective layer to ensure The subsequently formed first light-reflecting layer and the second light-reflecting layer are discontinuous structures, so that the direct peeling of the first light-reflecting layer can be ensured without affecting the retention of the second light-reflecting layer.
在一些实施例中,所述牺牲层包括光刻胶、SU-8、聚酰亚胺、SiO2和SiNx中的任意一种。牺牲层的材质一方面要便于直接剥离,另一方面也要保证在剥离过程中不会对LED单元的第一掺杂型半导体层表面造成损伤。In some embodiments, the sacrificial layer includes any one of photoresist, SU-8, polyimide, SiO2 , and SiNx . On the one hand, the material of the sacrificial layer should be convenient for direct peeling off, and on the other hand, it should also ensure that the surface of the first doped semiconductor layer of the LED unit will not be damaged during the peeling process.
在一些实施例中,所述电极层为透明导电薄膜。透明导电薄膜可以作为欧姆接触层以及出光口。In some embodiments, the electrode layer is a transparent conductive film. The transparent conductive film can be used as an ohmic contact layer and a light outlet.
在一些实施例中,所述反光层的反射率大于80%。反光层为金属反光层,金属反光层可以是高反光金属如Al、Ag等,也可以是其他非金属的高反光介质材料。In some embodiments, the reflectivity of the light-reflecting layer is greater than 80%. The reflective layer is a metal reflective layer, and the metal reflective layer can be a highly reflective metal such as Al, Ag, etc., or other non-metallic highly reflective dielectric materials.
在一些实施例中,Micro LED显示器件,包括:In some embodiments, a Micro LED display device includes:
驱动面板,包括多个第一触点;a drive panel, including a plurality of first contacts;
多个LED单元,所述LED单元阵列排布于所述驱动面板上,通过所述第一触点单独被驱动;a plurality of LED units, the LED unit arrays are arranged on the driving panel, and are individually driven through the first contacts;
所述LED单元具有出光面以及与所述出光面连接的侧面;the LED unit has a light emitting surface and a side surface connected with the light emitting surface;
钝化层,包括位于所述出光面上的第一钝化层、位于所述侧面上的与所述第一钝化层一体连接的第二钝化层以及位于相邻的LED单元之间的与所述第二钝化层一体连接的第三钝化层;A passivation layer, comprising a first passivation layer located on the light-emitting surface, a second passivation layer located on the side surface and integrally connected with the first passivation layer, and a passivation layer located between adjacent LED units a third passivation layer integrally connected with the second passivation layer;
第二反光层,位于所述第二钝化层和所述第三钝化层上。A second light-reflecting layer is located on the second passivation layer and the third passivation layer.
在一些实施例中,所述反光层仅形成于所述第二钝化层和所述第三钝化层上;所述反光层与所述第一钝化层不接触。In some embodiments, the light-reflecting layer is formed only on the second passivation layer and the third passivation layer; the light-reflecting layer is not in contact with the first passivation layer.
在一些实施例中,有源层具体可以为多量子阱结构,用于限制电子和空穴载流子到量子阱区域,当电子和空穴发生复合后,载流子发生辐射复合后将发射出光子,把电能转化为光能。In some embodiments, the active layer may be a multi-quantum well structure, which is used to confine electron and hole carriers to the quantum well region. After the electrons and holes recombine, the carriers will be emitted after radiative recombination. It emits photons and converts electrical energy into light energy.
在一些实施例中,所述侧面相对于所述出光面倾斜或垂直。In some embodiments, the side surface is inclined or perpendicular to the light exit surface.
在一些实施例中,所述第一掺杂型半导体层和第二掺杂型半导体层可以包括基于II-VI材料诸如ZnSe或ZnO或III-V材料诸如GaN、AlN、InN、InGaN、GaP、AlInGaP、AlGaAs及其合金的一个或多个层。In some embodiments, the first doped semiconductor layer and the second doped semiconductor layer may include II-VI based materials such as ZnSe or ZnO or III-V materials such as GaN, AlN, InN, InGaN, GaP, One or more layers of AlInGaP, AlGaAs and alloys thereof.
在一些实施例中,包括键合层,所述键合层位于所述驱动面板和所述LED单元之间;In some embodiments, a bonding layer is included, the bonding layer is located between the driving panel and the LED unit;
所述LED单元包括通过刻蚀LED外延层形成的台阶结构;所述台阶结构包括第一掺杂型半导体层、第二掺杂型半导体层和位于两者之间的有源层,所述出光面位于所述第二掺杂型半导体层上且位于所述台阶结构顶端;所述台阶结构至少使相邻的LED单元的第二掺杂型半导体层相互断开且电隔离,The LED unit includes a stepped structure formed by etching the LED epitaxial layer; the stepped structure includes a first doped semiconductor layer, a second doped semiconductor layer and an active layer located therebetween, and the light emitting The surface is located on the second doped semiconductor layer and at the top of the stepped structure; the stepped structure at least separates and electrically isolates the second doped semiconductor layers of adjacent LED units from each other,
在一些实施例中,所述台阶结构还使相邻LED单元之间的所述第一掺杂型半导体层、有源层彼此断开且电隔离;In some embodiments, the step structure further disconnects and electrically isolates the first doped semiconductor layer and the active layer between adjacent LED units;
所述第一触点位于对应的所述LED单元下方,所述第一触点与对应的第一掺杂型半导体层电性连接。The first contact is located under the corresponding LED unit, and the first contact is electrically connected to the corresponding first doped semiconductor layer.
在一些实施例中,键合层用于键合LED单元与驱动电路,键合方式包括粘合剂键合、金属到金属键合、金属氧化物键合、晶圆到晶圆键合等。In some embodiments, the bonding layer is used for bonding the LED unit and the driving circuit, and the bonding method includes adhesive bonding, metal-to-metal bonding, metal-oxide bonding, wafer-to-wafer bonding, and the like.
在一些实施例中,包括电极层,所述电极层位于所述第一钝化层上;In some embodiments, an electrode layer is included on the first passivation layer;
所述电极层通过所述第一开孔与所述第二掺杂型半导体层电性连接,相邻LED单元的所述第二掺杂型半导体层通过所述电极层电连接。The electrode layer is electrically connected to the second doped semiconductor layer through the first opening, and the second doped semiconductor layer of adjacent LED units is electrically connected through the electrode layer.
在一些实施例中,还包括绝缘层,所述绝缘层位于所述第一钝化层和所述反光层上;In some embodiments, an insulating layer is further included, the insulating layer is located on the first passivation layer and the light-reflecting layer;
所述绝缘层上具有露出所述第一开孔的第二开孔,所述电极层通过所述第二开孔与所述绝缘层接触。The insulating layer has second openings exposing the first openings, and the electrode layer is in contact with the insulating layer through the second openings.
在一些实施例中,还包括布拉格反射镜,所述布拉格反射镜位于所述电极层上。In some embodiments, a Bragg mirror is further included on the electrode layer.
在一些实施例中,所述第二开孔的直径不小于所述第一开孔的直径。In some embodiments, the diameter of the second opening is not smaller than the diameter of the first opening.
在一些实施例中,所述驱动面板是硅基CMOS驱动板或薄膜场效应管驱动板。In some embodiments, the driving panel is a silicon-based CMOS driving board or a thin film field effect transistor driving board.
在一些实施例中,所述LED单元的尺寸为0.1~5微米。In some embodiments, the size of the LED unit is 0.1-5 microns.
在一些实施例中,钝化层侧壁的厚度为LED单元的发光波长的四分之一,所述钝化层侧壁的厚度δ满足以下公式:δ=λ/(4×n);In some embodiments, the thickness of the sidewall of the passivation layer is a quarter of the emission wavelength of the LED unit, and the thickness δ of the sidewall of the passivation layer satisfies the following formula: δ=λ/(4×n);
式中,λ为所述LED单元的发光波长,n表示所述钝化层的折射率。In the formula, λ is the emission wavelength of the LED unit, and n is the refractive index of the passivation layer.
有益效果:与现有技术相比,本发明的Micro LED显示器件的制备方法,包括:提供驱动面板,驱动面板包括多个第一触点;提供LED单元,LED单元阵列排布于驱动面板上,通过第一触点单独被驱动;LED单元包括具有出光面以及与出光面连接的侧面;形成钝化层,钝化层位于LED单元上,包括位于出光面上的第一钝化层、位于侧面上的与第一钝化层一体连接的第二钝化层以及位于相邻的LED单元之间的与第二钝化层一体连接的第三钝化层;在第一钝化层上设置用于露出第二掺杂型半导体层的第一开孔;形成牺牲层,牺牲层位于第一钝化层上并覆盖第一开孔;形成反光层,包括位于牺牲层上的第一反光层和位于第二钝化层和第三钝化层上的第二反光层,第一反光层和第二反光层彼此断开;剥离牺牲层,保留第二反光层,并露出第一钝化层和第一开孔。本发明的制备方法通过先沉积牺牲层,然后沉积反光层,最后再去除牺牲层的过程,巧妙的将反光层仅形成于对应LED单元的侧面上,由于牺牲层具有一定厚度,保证了反光层在沉积后为不连续的结构,因此保证了位于牺牲层上的反光层可以随牺牲层一同被剥离,整体工艺简单,直接省略了对具有高反射率的反光层的刻蚀步骤,大幅缩短了在微小尺寸结构的Micro LED显示器件上制备反光层的时间,且不会对LED单元的表面造成损坏,提高了Micro LED显示器件的良品率。本申请采用liftoff剥离工艺形成反光层,降低成本的同时还能起到对LED单元内的自发辐射光子的阻挡效果。Beneficial effects: Compared with the prior art, the preparation method of the Micro LED display device of the present invention includes: providing a driving panel, the driving panel includes a plurality of first contacts; providing LED units, and the LED unit array is arranged on the driving panel , driven separately through the first contact; the LED unit includes a light-emitting surface and a side surface connected to the light-emitting surface; a passivation layer is formed, and the passivation layer is located on the LED unit, including a first passivation layer located on the light-emitting surface, located on the light-emitting surface. a second passivation layer on the side surface integrally connected with the first passivation layer and a third passivation layer located between adjacent LED units and integrally connected with the second passivation layer; provided on the first passivation layer A first opening for exposing the second doped semiconductor layer; forming a sacrificial layer, the sacrificial layer is located on the first passivation layer and covers the first opening; forming a reflective layer, including the first reflective layer on the sacrificial layer and the second reflective layer located on the second passivation layer and the third passivation layer, the first reflective layer and the second reflective layer are disconnected from each other; the sacrificial layer is peeled off, the second reflective layer is retained, and the first passivation layer is exposed and the first opening. In the preparation method of the present invention, through the process of depositing the sacrificial layer first, then depositing the reflective layer, and finally removing the sacrificial layer, the reflective layer is skillfully formed only on the side surface of the corresponding LED unit. Since the sacrificial layer has a certain thickness, the reflective layer is ensured. It is a discontinuous structure after deposition, thus ensuring that the reflective layer on the sacrificial layer can be peeled off together with the sacrificial layer. The overall process is simple, and the etching step of the reflective layer with high reflectivity is directly omitted, which greatly shortens the time. The time required to prepare the light-reflecting layer on the Micro LED display device with micro-sized structure will not cause damage to the surface of the LED unit, which improves the yield of the Micro LED display device. The present application adopts the liftoff stripping process to form the light-reflecting layer, which can reduce the cost and at the same time have the effect of blocking spontaneously radiated photons in the LED unit.
本发明的Micro LED显示器件,包括:驱动面板,包括多个第一触点;多个LED单元,LED单元阵列排布于驱动面板上,通过第一触点单独被驱动;LED单元具有出光面以及与出光面连接的侧面;钝化层,包括位于出光面上的第一钝化层、位于侧面上的与第一钝化层一体连接的第二钝化层以及位于相邻的LED单元之间的与第二钝化层一体连接的第三钝化层;第二反光层,位于第二钝化层和第三钝化层上。本发明的Micro LED显示器件中,通过设置第二反光层,将有源层激发的自发辐射光子进行阻挡,由于第二反光层设置在LED单元的侧面,所以自发辐射光子无法从LED单元的侧面逸出,只能由顶部出射,从而能够完全阻止相邻像素间串扰的发生;由第二反光层反射回来的光子,在LED单元内部多次反射后,并由唯一的出射窗口逸出,大大提升了Micro LED显示器件的出光功率。The Micro LED display device of the present invention includes: a driving panel including a plurality of first contacts; a plurality of LED units, the LED unit arrays are arranged on the driving panel and are driven individually through the first contacts; the LED units have a light emitting surface and a side surface connected with the light-emitting surface; the passivation layer includes a first passivation layer on the light-emitting surface, a second passivation layer on the side surface that is integrally connected with the first passivation layer, and a second passivation layer located between adjacent LED units. The third passivation layer is integrally connected with the second passivation layer in between; the second light-reflecting layer is located on the second passivation layer and the third passivation layer. In the Micro LED display device of the present invention, the spontaneous emission photons excited by the active layer are blocked by providing the second reflective layer. Since the second reflective layer is arranged on the side of the LED unit, the spontaneous radiation photons cannot pass from the side of the LED unit. To escape, it can only be emitted from the top, which can completely prevent the occurrence of crosstalk between adjacent pixels; the photons reflected by the second reflective layer, after multiple reflections inside the LED unit, escape through the only exit window, greatly The light output power of the Micro LED display device is improved.
本申请的Micro LED显示器件还包括绝缘层,绝缘层位于第一钝化层和第二反光层上;通过设置绝缘层一方面可以防止金属材质的反光层与电极层之间的接触,对电磁波的损耗小,另一方面还可以将LED单元产生的热量进行传导,延长LED单元寿命,提高功率输出。The Micro LED display device of the present application also includes an insulating layer, and the insulating layer is located on the first passivation layer and the second reflective layer; on the one hand, the insulating layer can prevent the contact between the reflective layer of metal material and the electrode layer, and the electromagnetic wave On the other hand, the heat generated by the LED unit can be conducted to prolong the life of the LED unit and improve the power output.
附图说明Description of drawings
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。The technical solutions and other beneficial effects of the present invention will be apparent through the detailed description of the specific embodiments of the present invention with reference to the accompanying drawings.
图1示出了根据本申请的一些实施方式的Micro LED显示器件的顶视图;1 shows a top view of a Micro LED display device according to some embodiments of the present application;
图2示出了根据本申请的一些实施方式的Micro LED显示器件的A-A’方向截面示意图;2 shows a schematic cross-sectional view in the direction of A-A' of a Micro LED display device according to some embodiments of the present application;
图3示出了根据本申请的一些实施方式的衬底的A-A’方向截面示意图;Figure 3 shows a schematic cross-sectional view in the direction A-A' of a substrate according to some embodiments of the present application;
图4示出了根据本申请的一些实施方式的驱动面板的A-A’方向截面示意图;4 shows a schematic cross-sectional view in the direction of A-A' of a drive panel according to some embodiments of the present application;
图5示出了根据本申请的一些实施方式的键合层结构示意图;FIG. 5 shows a schematic diagram of a bonding layer structure according to some embodiments of the present application;
图6示出了根据本申请的一些实施方式的键合过程示意图;Figure 6 shows a schematic diagram of a bonding process according to some embodiments of the present application;
图7示出了根据本申请的一些实施方式的LED外延层键合至驱动面板后所得结构的示意图;FIG. 7 shows a schematic diagram of the structure obtained after the LED epitaxial layer is bonded to the driving panel according to some embodiments of the present application;
图8示出了根据本申请的一些实施方式的MESA刻蚀形成台阶结构的示意图;8 shows a schematic diagram of MESA etching to form a step structure according to some embodiments of the present application;
图9示出了根据本申请的一些实施方式的刻蚀键合层后所得结构的示意图;9 shows a schematic diagram of the resulting structure after etching the bonding layer according to some embodiments of the present application;
图10示出了根据本申请的一些实施方式的形成钝化层后所得结构的示意图;10 shows a schematic diagram of the resulting structure after forming a passivation layer according to some embodiments of the present application;
图11示出了根据本申请的一些实施方式的设置第一开孔所得结构的示意图;11 shows a schematic diagram of a structure obtained by disposing a first opening according to some embodiments of the present application;
图12示出了根据本申请的一些实施方式的形成牺牲涂层后所得结构的示意图;12 shows a schematic diagram of the resulting structure after forming a sacrificial coating according to some embodiments of the present application;
图13示出了根据本申请的一些实施方式的形成牺牲层后所得结构的示意图;13 shows a schematic diagram of the resulting structure after forming a sacrificial layer according to some embodiments of the present application;
图14示出了根据本申请的一些实施方式的形成反光层后所得结构的示意图;14 shows a schematic diagram of a structure obtained after forming a light-reflecting layer according to some embodiments of the present application;
图15示出了根据本申请的一些实施方式的剥离牺牲层后所得结构的示意图;15 shows a schematic diagram of the resulting structure after peeling off the sacrificial layer according to some embodiments of the present application;
图16示出了根据本申请的一些实施方式的形成绝缘层所得结构的示意图;16 shows a schematic diagram of the resulting structure of forming an insulating layer according to some embodiments of the present application;
图17示出了根据本申请的一些实施方式的设置第二开孔所得结构的示意图;17 shows a schematic diagram of a structure obtained by providing a second opening according to some embodiments of the present application;
图18示出了根据本申请的一些实施方式的形成电极层所得结构的示意图;18 shows a schematic diagram of the resulting structure of forming an electrode layer according to some embodiments of the present application;
图19示出了根据本申请的一些实施方式的形成布拉格反射镜所得结构的示意图;19 shows a schematic diagram of the resulting structure of forming a Bragg mirror according to some embodiments of the present application;
附图标记:100-Micro LED显示器件,101-驱动面板,102-键合层,103-第一触点,104-钝化层,105-反光层,106-绝缘层,107-电极层,108-布拉格反射镜,109-LED单元,110-第二掺杂型半导体层,111-有源层,112-第一掺杂型半导体层,113-出光面,114-侧面,115-第一开孔,116-牺牲层,117-衬底,118-LED外延层,119-第二开孔,1041-第一钝化层,1042-第二钝化层,1043-第三钝化层,1051-第一反光层,1052-第二反光层,1161-牺牲涂层。Reference numerals: 100-Micro LED display device, 101-driving panel, 102-bonding layer, 103-first contact, 104-passivation layer, 105-reflective layer, 106-insulating layer, 107-electrode layer, 108-Bragg mirror, 109-LED unit, 110-second doped semiconductor layer, 111-active layer, 112-first doped semiconductor layer, 113-light exit surface, 114-side surface, 115-first Opening, 116-sacrificial layer, 117-substrate, 118-LED epitaxial layer, 119-second opening, 1041-first passivation layer, 1042-second passivation layer, 1043-third passivation layer, 1051 - first reflective layer, 1052 - second reflective layer, 1161 - sacrificial coating.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,本发明中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The present disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the present disclosure, specific example components and arrangements are described herein. Of course, they are only examples and are not intended to limit the invention. Furthermore, the present disclosure may repeat reference numerals and/or reference letters in different instances for the purpose of simplicity and clarity and not in itself indicative of a relationship between the various embodiments and/or arrangements discussed. In addition, the present disclosure provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the application of other processes and/or the use of other materials.
通常,可以至少部分地根据上本发明的用法来理解术语。例如,本发明所使用的术语“一个或多个”至少部分地取决于上本发明,可以用于以单数形式描述任何部件、结构或特征,或者可用于以复数形式描述部件、结构或特征的组合。类似地,诸如“一”、“一个”或“该”的术语也可以至少部分地取决于上本发明理解为传达单数用法或传达复数用法。另外,术语“基于…”可以理解为不一定旨在传达一组排他的因素,而是至少部分地取决于上本发明可以代替地允许存在不一定必须明确描述的附加因素。In general, the terms may be understood at least in part in accordance with the usage of the present invention above. For example, as used herein, the term "one or more" may be used to describe any component, structure or feature in the singular or may be used to describe any component, structure or feature in the plural depending at least in part on the invention above. combination. Similarly, terms such as "a," "an," or "the" may also be understood to convey a singular usage or to convey a plural usage depending at least in part on the invention above. Additionally, the term "based on" may be understood as not necessarily intended to convey an exclusive set of factors, but rather, depending at least in part on the above, the invention may instead allow for the presence of additional factors that do not necessarily have to be explicitly described.
应容易理解,本发明中的“在…上”、“在…之上”和“在…上面”的含义应该以最广义的方式解释,使得“在…上”不仅意味着“直接在某物上”,而且还意味着包括存在两者之间的中间部件或层的“在某物上”,并且“在某物之上”或“在某物上面”不仅意味着“在某物之上”或“在某物上面”的含义,而且也包括不存在两者之间的中间部件或层的“在某物之上”或“在某物上面”的含义。It should be readily understood that the meanings of "on", "on" and "on" in the present invention should be interpreted in the broadest sense, so that "on" does not only mean "directly on something "on", but also "on something" including intervening components or layers, and "over something" or "over something" does not only mean "on something" " or "over something", but also includes the meaning "over something" or "over something" in the absence of an intervening member or layer.
此外,为了便于描述,本发明中可能使用诸如“在…下面”、“在…之下”、“下部”、“在…之上”、“上部”等空间相对术语来描述一个元件或部件与附图中所示的另一元件或部件的关系。除了在图中描述的方位之外,空间相对术语还意图涵盖装置在使用或操作中的不同方位。设备可以以其他方式定向旋转90°或以其他定向,并且在本发明中使用的空间相对描述语可以被同样地相应地解释。Furthermore, for ease of description, spatially relative terms such as "below", "under", "lower", "over", "upper" and the like may be used in the present invention to describe an element or component that is different from The relationship of another element or component shown in the drawings. In addition to the orientation depicted in the figures, spatially relative terms are intended to encompass different orientations of the device in use or operation. The device may be otherwise oriented, rotated 90° or at other orientations, and the spatially relative descriptors used in this disclosure may likewise be interpreted accordingly.
本发明中所使用的术语“层”是指包括具有一定厚度的区域的材料部分。层可以在整个下层或上层结构上延伸,或者可以具有小于下层或上层结构的范围的程度。此外,层可以是均质或不均质连续结构的区域,其厚度小于连续结构的厚度。例如,层可以位于连续结构的顶表面和底表面之间或在其之间的任何一对水平平面之间。层可以水平地、垂直地和/或沿着锥形表面延伸。基板可以是一层,可以在其中包括一个或多个层,和/或可以在其上、之上和/或之下具有一个或多个层。一层可以包括多层。例如,半导体层可以包括一个或多个掺杂或未掺杂的半导体层,并且可以具有相同或不同的材料。The term "layer" as used in the present invention refers to a portion of a material comprising a region having a thickness. A layer may extend over the entire underlying or superstructure, or may have an extent that is less than the extent of the underlying or superstructure. Furthermore, a layer may be a region of a homogeneous or heterogeneous continuous structure, the thickness of which is less than the thickness of the continuous structure. For example, a layer may be located between the top and bottom surfaces of the continuous structure or between any pair of horizontal planes therebetween. The layers may extend horizontally, vertically and/or along a tapered surface. The substrate may be a layer, may include one or more layers therein, and/or may have one or more layers on, over, and/or under it. A layer may include multiple layers. For example, the semiconductor layers may include one or more doped or undoped semiconductor layers, and may be of the same or different materials.
图1示出了一些实施方式的Micro LED显示器件100的顶视图,图2示出了图1中沿A-A’方向的Micro LED显示器件100的横截面图。Micro LED显示器件100包括驱动面板101和至少两个LED单元109。LED单元109阵列排布在驱动面板101上,LED单元109为台阶结构,包括第一掺杂型半导体层112、第二掺杂型半导体层110和位于两者之间的有源层111,台阶结构的顶面为出光面113,与出光面113连接的是侧面114,侧面114形成在第二掺杂型半导体层110上;钝化层104形成在LED单元109上,包括第一钝化层1041、第二钝化层1042和第三钝化层1043,第一钝化层1041、第二钝化层1042和第三钝化层1043之间一体连接;第二反光层1052形成在第二钝化层1042和第三钝化层1043上;绝缘层106形成在第二反光层1052上;电极层107形成在绝缘层106上,并通过第一开孔115与LED单元109的第二掺杂型半导体层110电连接。FIG. 1 shows a top view of the Micro
在一些实施例中,驱动面板101可以包括半导体材料,诸如硅、碳化硅、氮化家、锗、砷化镓、磷化钴。在一些实施例中,驱动面板101可以由非导电材料制成,诸如玻璃、塑料或蓝宝石晶片。在一些实施例中,驱动面板101可以具有在其中形成的驱动电路,并且驱动面板101可以是CMOS背板或TFT玻璃基板。驱动电路将电信号提供给LED单元109以控制亮度。在一些实施例中,驱动电路可以包括有源矩阵驱动电路,其中,每个单独的LED单元109都相应于独立的驱动器。In some embodiments, the
参见图2,在驱动面板101和LED单元109之间设置有键合层102,相邻LED单元109之间的键合层102彼此断开,使相邻LED单元109之间不能通过键合层102电连接;键合层102是形成驱动面板101上以键合驱动面板101和LED单元109的粘合材料层。在一些实施例中,键合层102可以包括导电材料,诸如金属或金属合金。在一些实施例中,键合层102可以包括Au、Sn、In、Cu或Ti。在一些实施例中,键合层102可以包括非导电材料,诸如聚酰亚胺PI、聚二甲基硅氧烷PDMS。在一些实施例中,键合层102可以包括光刻胶,诸如SU-8光刻胶。Referring to FIG. 2 , a
在一些实施例中,台阶结构使相邻的LED单元109的第二掺杂型半导体层110相互断开且电隔离,使相邻LED单元109之间的第一掺杂型半导体层112彼此断开且电隔离;第一触点103位于对应LED单元109下方,第一掺杂型半导体层112与第一触点103电性连接使LED单元109能够被单独驱动。In some embodiments, the stepped structure disconnects and electrically isolates the second doped
在一些实施例中,第一掺杂型半导体层112也可以为连续的功能层结构,第一触点103位于相邻的LED单元109之间,LED单元109的第二掺杂型半导体层110与对应的第一触点103电性连接使LED单元109能够被单独驱动;将第二掺杂型半导体层110进行图案化,或者对第二掺杂型半导体层110进行刻蚀形成台面结构,或者对第二掺杂型半导体层110进行离子注入,形成LED单元109。In some embodiments, the first doped
在一些实施例中,每个LED单元109的第一掺杂型半导体层112和第二掺杂型半导体层110之间形成有源层111。在一些实施例中,有源层111为多量子阱层MQW,电子和空穴在量子阱区域复合产生光子,多量子阱处激发的自发辐射光子实现发光。In some embodiments, an
参见图2,LED单元109的侧面114相对于出光面113倾斜,倾斜的角度以实际工艺中的设定为准,即每个LED单元109为梯形结构并组成梯形LED单元109阵列,梯形侧壁有助于提高LED单元109的发光效率,这主要是因为梯形的侧壁能够反射光线并将其重新反射回光提取的侧壁。Referring to FIG. 2 , the
在一些实施例中,第一掺杂型半导体层112和第二掺杂型半导体层110可以包括基于II-VI材料(诸如ZnSe或ZnO)或III-V材料(诸如GaN、AlN、InN、InGaN、GaP、AlInGaP、AlGaAs及其合金)的一个或多个层。In some embodiments, the first doped
在一些实施例中,在LED单元109上设置钝化层104。钝化层104用于保护和隔离LED单元109。在一些实施例中,钝化层104可以包括SiO2、A12O3、SiN或其它合适的材料。在一些实施例中,钝化层104包括聚酰亚胺、SU-8光刻胶或其他可光图案化的聚合物。In some embodiments, a
如图2所示,第二反光层1052形成在第二钝化层1042和第三钝化层1043上,能够将LED单元109中有源层111四处散射的光经过反射从出光面113射出。在一些实施例中,第二反光层1052为金属反射层,金属反射层包括Ag、Al或多层金属。在一些实施例中,第二反光层1052包括布拉格反射层。在一些实施例中,第二反光层1052的反射率大于80%。As shown in FIG. 2 , the second light-reflecting
参见图2,在露出第二掺杂型半导体层110的第一钝化层1041上形成第一开孔115,同时在第一钝化层1041上形成电极层107,电极层107与第二掺杂型半导体层110电连接。在一些实施例中,第一开孔115位于每个LED单元109的中心处。在一些实施例中,电极层107可以是透明导电薄膜,作为欧姆接触层以及出光口。Referring to FIG. 2 , a
在一些实施例中,当多量子阱发光时,从芯片功能区侧壁漏出的光,会被第二反光层1052反射回来,从而只有电极层107可以出光,因此不会对相邻LED单元109产生光串扰。In some embodiments, when the multiple quantum well emits light, the light leaking from the sidewall of the functional area of the chip will be reflected back by the second light-reflecting
图3至图19示出了Micro LED显示器件100结构制备过程中不同阶段的示意图。3 to 19 show schematic diagrams of different stages in the fabrication process of the structure of the Micro
参见图3和图4,提供驱动面板101,在驱动面板101中形成驱动电路,并且驱动电路包括第一触点103;再提供衬底117,在衬底117上形成LED外延层118。3 and 4 , a driving
在一些实施例中,驱动面板101是硅基CMOS背板或薄膜场效应管。硅基CMOS以硅为材料的芯片,在一些实施例中,衬底117是半导体材料,如硅、氮化镓等,或者衬底117是非导电材料,如蓝宝石或玻璃。In some embodiments, the driving
参见图5,驱动面板101上形成键合层102,用于将驱动面板101和衬底117上的LED外延层118键合。Referring to FIG. 5 , a
在一些实施例中,键合层102可以包括导电材料,诸如金属或金属合金。在一些实施例中,键合层102可以包括Au、Sn、In、Cu或Ti。在一些实施例中,键合层102可以包括非导电材料,诸如聚酰亚胺PI、聚二甲基硅氧烷PDMS。在一些实施例中,键合层102可以包括光刻胶,诸如SU-8光刻胶。在一些实施例中,键合层102通过沉积方式形成。In some embodiments, the
参见图6,衬底117上的LED外延层118翻转并通过并键合至驱动面板101上,然后从LED外延层118将衬底117移除。Referring to FIG. 6 , the
在一些实施例中,键合层102可以包括一个或多个层结构,键合方式为金属键合。在一些实施例中,衬底117移除方法包括但不限于激光剥离、干法刻蚀、湿法刻蚀、机械抛光等。In some embodiments, the
参见图7,对翻转后的LED外延层118进行减薄操作,减薄操作包括干法刻蚀、湿法刻蚀或者机械抛光。Referring to FIG. 7 , a thinning operation is performed on the flipped
参见图8,按照图形化掩膜设计MESA图形,对LED外延层118进行刻蚀形成LED单元109,LED单元109为功能化的台阶结构,包括并且该LED外延层118包括第一掺杂型半导体层112、第二掺杂型半导体层110和有源层111。Referring to FIG. 8 , the MESA pattern is designed according to the patterned mask, and the
在一些实施例中,第一掺杂型半导体层112为P型氮化镓,第二掺杂型半导体层110为N型氮化镓,有源层111为多量子阱层。刻蚀包括干法或湿法的方式。In some embodiments, the first doped
在一些实施例中,第二掺杂型半导体层110的深度以第一掺杂型半导体层112可以达到的预定义厚度为准,第一掺杂型半导体层112保留在驱动面板101上;台阶结构至少使相邻的LED单元109的第二掺杂型半导体层110相互断开且电隔离,台阶结构还使相邻LED单元109的第一掺杂型半导体层112彼此断开且电隔离。In some embodiments, the depth of the second doped
参见图9,通过刻蚀键合层102使相邻LED单元109之间不能通过键合层102电连接。Referring to FIG. 9 , the
在一些实施例中,第一触点103位于对应LED单元109下方,第一掺杂型半导体层112与第一触点103电性连接使LED单元109能够被单独驱动。In some embodiments, the
在一些实施例中,由于第一掺杂型半导体层112为P型层,具有难掺杂、载流子浓度低的特点,因此在键合之前,需要在第一掺杂型半导体层112上设置欧姆接触层以及反光层,然后再与键合层102进行金属键合。In some embodiments, since the first doped
参见图10,在LED单元109上形成钝化层104,钝化层104包括第一钝化层1041、第二钝化层1042和第三钝化层1043,第一钝化层1041通过第二钝化层1042与第三钝化层1043相连;第一钝化层1041形成在第二掺杂型半导体层110上,位于LED单元109的出光面113,第二钝化层1042位于LED单元109的侧面114;第三钝化层1043形成在相邻的LED单元109之间。钝化层104可以对LED单元109进行保护。在一些实施例中,钝化层104通过化学气相沉积形成。Referring to FIG. 10, a
在一些实施例中,钝化层104为无机或有机介电材料,对LED单元109进行钝化以及电学隔离。In some embodiments, the
在一些实施例中,钝化层104侧壁的厚度为LED单元109的发光波长的四分之一,钝化层104侧壁的厚度δ满足以下公式:δ=λ/(4×n);式中,λ为所述LED单元109的发光波长,n表示所述钝化层104的折射率。In some embodiments, the thickness of the sidewall of the
在一些实施例中,钝化层104侧壁实际上就是指第二钝化层1042的厚度。当满足上述的厚度设置后,可以形成ODR,即全方面角反射镜。In some embodiments, the sidewall of the
参见图11,在第一钝化层1041上刻蚀形成第一开孔115,用以暴露出光面113。Referring to FIG. 11 , a
在一些实施例中,刻蚀工艺包括干法或湿法刻蚀。In some embodiments, the etching process includes dry or wet etching.
参见图12和图13,在形成第一开孔115的第一钝化层1041、第二钝化层1042和第三钝化层1043上形成牺牲涂层1161,然后对牺牲涂层1161进行图形化曝光,显影除去第二钝化层1042和第三钝化层1043上的牺牲涂层1161,保留第一钝化层1041和第一开孔115上的牺牲涂层1161,得到牺牲层116。Referring to FIGS. 12 and 13 , a
在一些实施例中,牺牲涂层1161与反光层105的厚度比为3:1,牺牲层116包括光刻胶、SU-8、聚酰亚胺、SiO2和SiNx中的任意一种。In some embodiments, the thickness ratio of the
参见图14,在牺牲层116上形成第一反光层1051,并在第二钝化层1042和第三钝化层1043上形成第二反光层1052,由于牺牲层116的厚度大于第一钝化层1041的厚度,因此可以保证第一反光层1051和第二反光层1052不连续。Referring to FIG. 14 , a first light-reflecting
在一些实施例中,形成第一反光层1051和第二反光层1052的方式为沉积,第一反光层1051和第二反光层1052可以是高反光金属如Al,Ag,也可以是其他高反光介质材料,反射率大于80%。In some embodiments, the first
参见图15,将牺牲层116剥离,去除位于牺牲层116上的第一反光层1051,暴露出光面113,保留位于第二钝化层1042和第三钝化层1043上的第二反光层1052。Referring to FIG. 15 , the
参见图16和图17,在第二反光层1052、第一钝化层1041和第一开孔115上形成绝缘层106,然后在第一开孔115对应位置的绝缘层106上刻蚀出第二开孔119,暴露出光面113。Referring to FIGS. 16 and 17 , an insulating
在一些实施例中,绝缘层106材料可以为有机材料或者无机材料,作为电学隔离。一些实施例中,第二开孔119的直径不小于第一开孔115的直径,保证了出光面113不会被绝缘层106遮挡。在一些实施例中,反光层105如果本身不导电,则绝缘层106可以省略。In some embodiments, the insulating
参见图18,在第一开孔115中形成电极层107,电极层107与LED单元109的第二掺杂型半导体层110电性连接,相邻LED单元109的第二掺杂型半导体层110通过电极层107电连接。在一些实施例中,在LED外延层118的中还可以包括电流扩展层,因此电极层107与第二掺杂型半导体层110之间还可以具有电流扩展层等功能层结构,从而可以进一步提高电流的均匀传输性能。在一些实施例中,电极层107在LED单元109上整面涂布,然后一并连接到驱动面板101的公共电极触点上。Referring to FIG. 18 , an
在一些实施例中,电极层107要采用透明材质,如透明导电薄膜等,作为欧姆接触层以及LED单元109的出光口。In some embodiments, the
在一些实施例中,为了提升出光准直性,还可以在出光口沉积布拉格反射镜108,参见图19,布拉格反射镜108位于电极层107上,布拉格反射镜108反射率在50%-70%之间;在一些实施例中,需要在LED单元109的底部设置反射金属,此时需要进一步满足布拉格反射镜108的反射率小于LED单元109的底部的反射金属的反射率。In some embodiments, in order to improve the collimation of the light, a
在一些实施例中,布拉格反射镜108整面涂布于电极层107上。In some embodiments, the entire surface of the
在一些实施例中,当电极层107在LED单元109上整面涂布,以及布拉格反射镜108在电极层107上整面涂布时,电极层107和布拉格反射镜108采用透光材质,如氧化铟锡等。在一些实施例中,第二掺杂型半导体层110可以直接与氧化铟锡结合。In some embodiments, when the
在一些实施例中,通过先沉积牺牲层116,然后沉积第二反光层1052,最后再去除牺牲层116的过程来制备反光层105的剥离工艺直接区别于现有的干法刻蚀或湿法刻蚀工艺。现有的干法刻蚀或湿法刻蚀,实质就是通过光刻胶暴露区域来去掉表层材料的工艺,因此都需要通过光刻对具有高反射率的反光层进行刻蚀,在实际操作过程中,当直接采用基于光刻的刻蚀工艺,由于反光层的反射率一般至少大于80%,所以对光刻胶进行曝光的光线中,没有被光刻胶吸收的部分,几乎全部被反光层105反射回来,从而使光刻的解析度变得很差,无法获得设计的光刻图形来进行刻蚀。但采用基于lift off的剥离技术后,由于牺牲层116可以直接被剥离,因此无需采用基于光刻的干法或湿法刻蚀工艺,使位于牺牲层116上的第一反光层1051可以随牺牲层116一同被剥离,从而省略了对具有高反射率的反光层105的刻蚀步骤。In some embodiments, the lift-off process of preparing the light-reflecting
而第二反光层1052形成于LED单元109的侧面后,由多量子阱处激发的自发辐射光子可以被反光层阻挡,而无法从LED单元109的侧面逸出,只能由顶部的出光面113出射,因此第二反光层1052能够完全阻止相邻像素间串扰的发生;被反光层105反射回来的光子,在LED单元109内部多次反射后,将由唯一的出光面113逸出,也大大提升了出光功率。After the second light-reflecting
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
以上对本发明进行了详细介绍,本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例的技术方案的范围。The present invention has been introduced in detail above, and specific examples are used in the present invention to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the technical solutions and core ideas of the present invention; It should be understood by those of ordinary skill that the technical solutions described in the foregoing embodiments can still be modified, or some of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the various aspects of the present invention. The scope of the technical solution of the embodiment.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210552675.1A CN114649322B (en) | 2022-05-21 | 2022-05-21 | Micro LED display device and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210552675.1A CN114649322B (en) | 2022-05-21 | 2022-05-21 | Micro LED display device and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114649322A CN114649322A (en) | 2022-06-21 |
CN114649322B true CN114649322B (en) | 2022-08-09 |
Family
ID=81996779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210552675.1A Active CN114649322B (en) | 2022-05-21 | 2022-05-21 | Micro LED display device and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114649322B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115498089B (en) * | 2022-11-16 | 2023-02-17 | 镭昱光电科技(苏州)有限公司 | Microdisplay device and manufacturing method |
CN115881711A (en) * | 2022-12-14 | 2023-03-31 | 镭昱光电科技(苏州)有限公司 | Micro LED display device and preparation method thereof |
CN115863497B (en) * | 2023-02-20 | 2023-05-23 | 镭昱光电科技(苏州)有限公司 | Micro LED display device and preparation method thereof |
CN116072800B (en) * | 2023-03-06 | 2023-06-23 | 镭昱光电科技(苏州)有限公司 | Micro-LED display chip and preparation method thereof |
CN116646441B (en) * | 2023-06-16 | 2023-10-10 | 盐城鸿石智能科技有限公司 | Micro display chip and preparation method thereof |
CN116487508B (en) * | 2023-06-21 | 2024-02-06 | 季华实验室 | Micro LED structure based on quantum dots and preparation method thereof |
CN116759497A (en) * | 2023-08-11 | 2023-09-15 | 晶能光电股份有限公司 | MicroLED pixelation method |
WO2025076809A1 (en) * | 2023-10-13 | 2025-04-17 | Jade Bird Display (shanghai) Limited | Micro led display panel |
CN117293158A (en) * | 2023-10-16 | 2023-12-26 | 上海显耀显示科技有限公司 | MICRO LED display panel and manufacturing method thereof |
CN117253902B (en) * | 2023-11-17 | 2024-03-22 | 盐城鸿石智能科技有限公司 | MicroLED with adjustable brightness and preparation method thereof |
CN118352455B (en) * | 2024-06-17 | 2024-11-01 | 镭昱光电科技(苏州)有限公司 | Micro light-emitting diode display device and preparation method thereof |
CN118676287B (en) * | 2024-08-23 | 2024-11-22 | 镭昱光电科技(苏州)有限公司 | Micro-LED display chip, display device and manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11508877B2 (en) * | 2019-03-22 | 2022-11-22 | Genesis Photonics Inc. | Red light emitting diode and manufacturing method thereof |
CN111137845A (en) * | 2019-12-16 | 2020-05-12 | 中芯集成电路制造(绍兴)有限公司 | Method of forming a patterned metal layer |
CN113921556A (en) * | 2021-10-11 | 2022-01-11 | 安徽熙泰智能科技有限公司 | A kind of micro LED device and its manufacturing method |
CN114188459B (en) * | 2021-12-03 | 2024-01-19 | 镭昱光电科技(苏州)有限公司 | Micro light-emitting diode display device and manufacturing method thereof |
-
2022
- 2022-05-21 CN CN202210552675.1A patent/CN114649322B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114649322A (en) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114649322B (en) | Micro LED display device and preparation method | |
CN114628563B (en) | Micro LED display chip and preparation method thereof | |
US10862010B2 (en) | Integrated colour LED micro-display | |
CN109075184B (en) | led | |
US8097897B2 (en) | High-efficiency light-emitting device and manufacturing method thereof | |
CN101636852B (en) | Vertical light emitting diodes and its manufacture method | |
US7518149B2 (en) | Light emitting mesa structures with high aspect ratio and near-parabolic sidewalls | |
TWI390759B (en) | Method for manufacturing a group III nitride device and device manufactured using the same | |
CN100386899C (en) | High-efficiency high-brightness total reflection light-emitting diode and its manufacturing method | |
CN101523623A (en) | Light emitting device including arrayed emitters defined by a photonic crystal | |
CN102931304B (en) | High-efficiency light-emitting device and manufacturing method thereof | |
CN101295760A (en) | led | |
CN108831979B (en) | Broadband and efficient two-dimensional photonic crystal LED flip-chip array chip and preparation method thereof | |
WO2011030789A1 (en) | Light-emitting device | |
CN117276304A (en) | Micro light-emitting diode display device and preparation method thereof | |
CN116565103B (en) | MicroLED microdisplay chip and manufacturing method thereof | |
CN110120450B (en) | Light emitting element | |
KR101203138B1 (en) | Luminous device and the method therefor | |
CN117790652A (en) | Light emitting diode and light emitting device | |
CN102130248A (en) | Light emitting device and manufacturing method thereof | |
CN116259694A (en) | LED chip, manufacturing method thereof and LED display device | |
TW201705538A (en) | Light-emitting element with high efficiency reflective structure | |
KR100551247B1 (en) | Light Emitting Diode Device with High Brightness and High Reliability | |
TW202349740A (en) | Optoelectronic semiconductor device | |
CN117878210A (en) | Light emitting diode and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |