CN114622073B - 一种利用亚温淬火提高含硼钢低温冲击韧性的方法 - Google Patents
一种利用亚温淬火提高含硼钢低温冲击韧性的方法 Download PDFInfo
- Publication number
- CN114622073B CN114622073B CN202210221983.6A CN202210221983A CN114622073B CN 114622073 B CN114622073 B CN 114622073B CN 202210221983 A CN202210221983 A CN 202210221983A CN 114622073 B CN114622073 B CN 114622073B
- Authority
- CN
- China
- Prior art keywords
- temperature
- quenching
- equal
- less
- heat preservation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010791 quenching Methods 0.000 title claims abstract description 58
- 230000000171 quenching effect Effects 0.000 title claims abstract description 58
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 55
- 239000010959 steel Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 41
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910052796 boron Inorganic materials 0.000 title claims abstract description 17
- 238000005496 tempering Methods 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 25
- 238000004321 preservation Methods 0.000 claims description 39
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000002893 slag Substances 0.000 claims description 10
- 238000007664 blowing Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000007670 refining Methods 0.000 claims description 6
- 229910001566 austenite Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 4
- 238000006477 desulfuration reaction Methods 0.000 claims description 4
- 230000023556 desulfurization Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000010079 rubber tapping Methods 0.000 claims description 4
- 238000002791 soaking Methods 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910000604 Ferrochrome Inorganic materials 0.000 claims description 2
- 229910001309 Ferromolybdenum Inorganic materials 0.000 claims description 2
- 229910000592 Ferroniobium Inorganic materials 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 238000009749 continuous casting Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 230000003009 desulfurizing effect Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- 238000007667 floating Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 238000000265 homogenisation Methods 0.000 claims description 2
- 239000013072 incoming material Substances 0.000 claims description 2
- ZFGFKQDDQUAJQP-UHFFFAOYSA-N iron niobium Chemical compound [Fe].[Fe].[Nb] ZFGFKQDDQUAJQP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims description 2
- 239000006104 solid solution Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 238000009849 vacuum degassing Methods 0.000 claims description 2
- 238000009489 vacuum treatment Methods 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明公开了一种利用亚温淬火提高含硼钢低温冲击韧性的方法,主要解决的技术问题是提高含硼钢低温冲击韧性及其稳定性,即在常规调质处理(淬火+高温回火)工艺的基础上增加一次亚温淬火工艺来改善钢板的低温冲击韧性,采用本发明生产的钢板具有优异的低温冲击韧性,‑40℃下横向冲击功:181J~225J,满足用户的技术要求,且冲击性能稳定性提升。
Description
技术领域
本发明涉及冶金板材生产技术领域,尤其涉及一种利用亚温淬火提高含硼钢低温冲击韧性的方法。
背景技术
水力发电作为清洁能源,具有可再生、无污染、运行费用低、便于进行电力调峰等特点,有利于提高资源利用率。在传统能源日益紧张的情况下,世界各国普便优先大力开发水电,利用水资源。随着国家大型水电工程的大力发展及水电站的装机容量和水头等数值越来越大,用于制造大型水电站压力管道、肋板、岔管和蜗壳等专用水电钢向高强度大厚度方向发展,为使钢板性能均匀稳定各大钢厂基本采用调质工艺生产水电用钢,随着钢板厚度的增加,其淬透性逐渐减弱,钢板强度难以满足标准要求。为了提高厚钢板的淬透性,通常添加微量的硼元素来提高淬透性。随着硼元素的添加,钢板的强度大幅提升,但是低温冲击韧性明显降低,甚至不满足标准要求。如何提高含硼钢的低温冲击韧性亟待解决。亚温淬火,即钢板在两相区温度保温适当时间进行淬火,淬火后组织为马氏体+少量铁素体。
发明内容
本发明的目的是提供一种利用亚温淬火提高含硼钢低温冲击韧性的方法,在常规调质处理(淬火+高温回火)工艺的基础上增加亚温淬火工艺来提高钢板的低温冲击韧性。
为解决上述技术问题,本发明采用如下技术方案:
本发明一种利用亚温淬火提高含硼钢低温冲击韧性的方法,包括:
(1)首先对来料铁水进行脱硫预处理,脱硫后扒渣,保证脱硫后铁水尽可能少的带渣,保证预处理后S含量≤0.005%;
(2)转炉冶炼,采用自产低硫废钢,镍板合金随废钢一同加入,转炉底吹气体采用全程吹氩模式,保证出钢温度≥1620℃;
(3)LF炉外精炼+RH真空脱气,LF精炼保证白渣形成时间,渣白后加入铌铁、铬铁、钼铁调整到目标成分;RH精炼阶段主要对钢水进行脱气、促进夹杂上浮,保证纯脱气时间大于5分钟,真空处理20分钟后复压破真空进行钙处理,并且在钙处理结束后,要保证软吹时间≥10min;
(4)板坯连铸,拉速控制在0.80~1.2m/min,采用电磁搅拌和轻压下保证铸坯质量;
(5)板坯加热,严格控制板坯在炉时间、均热时间及出炉温度,保证奥氏体均匀化和合金成分充分固溶,同时避免晶粒过分长大;在炉时间240~300min,均热时间30~60min,出炉温度1200±20℃;
(6)一次除磷、轧制和冷却,板坯出炉后进行一次除磷,保证高压水嘴正常开启无堵塞,除磷压力不小于20MPa;粗轧以尽可能少的道次完成展宽,单道次相对压下率至少2道控制在14%以上,粗轧保证再结晶区轧制,充分细化奥氏体晶粒,终轧温度不小于1050℃;精轧开轧温度不大于950℃,至少2道次相对压下率14%以上,保证未再结晶区轧制,为后续相变做组织和能量准备,精轧的终轧温度设定为810℃~850℃;冷却模式采用二级系统自学习计算结果,终冷温度为630℃~650℃;
(7)常规调质热处理工艺:淬火温度910℃~920℃,保温时间20min;回火温度600℃~620℃,保温时间20min~40min;
(8)增加亚温淬火热处理工艺,即在常规淬火中增加亚温淬火,随后进行高温回火:淬火温度910℃~920℃,保温时间20min,亚温淬火温度865℃~875℃,保温时间20min;回火温度600℃~620℃,保温时间20~40min。
进一步的,所述含硼钢的化学成分按质量百分比计算为C:≤0.08%,Si:≤0.30%,Mn:≤1.50%,P:≤0.010%,S≤0.005%,Alt:0.020~0.040%,Nb:≤0.060%,Ti:≤0.030%,V:≤0.050%,Cr:≤0.50%,Mo:≤0.50%,Ni:≤0.6%,Cu≤0.5%,B≤0.0030%,其余为Fe及不可避免夹杂。
进一步的,钢板成品厚度20.0mm,热处理工艺:淬火温度910℃,保温时间20min,亚温淬火温度865℃,保温时间20min,回火温度620℃,保温时间20min。
进一步的,钢板成品厚度56.0mm,热处理工艺:淬火温度910℃,保温时间20min,亚温淬火温度870℃,保温时间20min,回火温度620℃,保温时间30min。
进一步的,钢板成品厚度70.0mm,热处理工艺:淬火温度920℃,保温时间20min,亚温淬火温度875℃,保温时间20min,回火温度600℃,保温时间30min。
与现有技术相比,本发明的有益技术效果:
采用本发明的方法生产的钢板组织均匀细小,晶粒度约13级,显微组织为回火索氏体+少量铁素体+微量残余奥氏体,具有优异的低温冲击韧性,且各项性能均满足用户的技术要求。且采用本发明方法制备的钢板可满足更高强度更大厚度水电用钢的需求,具有广阔的市场前景。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为对比例冲击断口形貌;
图2为实施例2冲击断口形貌。
具体实施方式
以下通过具体对比例和实施例对本发明作更详细的描述。实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何限制。
本发明旨在常规调质处理(淬火+高温回火)工艺的基础上增加一次亚温淬火工艺来改善钢板的低温冲击韧性,故本发明对比例和实施例钢板化学成分相同,具体见表1。同时由于对比例与实施例调质热处理前工艺路线基本一致,故不再赘述,以下只对调质热处理工艺及增加亚温淬火工艺进行描述。
对比例
钢板成品厚度38.0mm,调质热处理工艺参数:淬火温度910℃,保温20min,回火温度620℃,保温时间30min。(板厚1/4处取样进行力学性能检测)。
实施例1
钢板成品厚度20.0mm,热处理工艺:淬火温度910℃,保温时间20min,亚温淬火温度865℃,保温时间20min,回火温度620℃,保温时间20min。(钢板全厚度取样进行力学性能检测)。
实施例2
钢板成品厚度56.0mm,热处理工艺:淬火温度910℃,保温时间20min,亚温淬火温度870℃,保温时间20min,回火温度620℃,保温时间30min。(板厚1/4处取样进行力学性能检测)。
实施例3
成品厚度70.0mm,热处理工艺:淬火温度920℃,保温时间20min,亚温淬火温度875℃,保温时间20min,回火温度600℃,保温时间30min。(板厚1/4处取样进行力学性能检测)。
表1本发明对比例和实施例的化学成分(wt%)
C | Si | Mn | P | S | Alt | Nb | Ti | V | Cr | Mo | Ni | Cu | B |
0.075 | 0.25 | 1.34 | 0.008 | 0.005 | 0.045 | 0.040 | 0.019 | 0.045 | 0.45 | 0.36 | 0.50 | 0.19 | 0.0015 |
对比例和本发明实施例的钢板进行力学性能检验,检验结果见表2。
表2本发明对比例和实施例的力学性能
由表2数据可知,对比例和实施例的屈服强度、抗拉强度、延伸率及180℃冷弯性能指标均能满足用户技术要求。但对比例-40℃横向低温冲击功较低,不满足标准要求,且冲击功数值稳定性差;采用本发明(实施例1~3)生产的钢板-40℃横向低温冲击功较高,满足技术要求,冲击功数值稳定性好。
图1和2分别为本发明对比例和实施例2钢板的冲击断口形貌,可见,对比例冲击断口呈解理状,属脆性断裂,冲击功较低;实施例2冲击断口呈韧窝状,属韧性断裂,冲击功较高。
本发明所要解决的技术问题是提高含硼钢低温冲击韧性及其稳定性,即在常规调质处理(淬火+高温回火)工艺的基础上增加一次亚温淬火工艺来改善钢板的低温冲击韧性。采用本发明生产的钢板具有优异的低温冲击韧性,-40℃下横向冲击功:181J~225J,满足用户的技术要求,且冲击性能稳定性提升。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (4)
1.一种利用亚温淬火提高含硼钢低温冲击韧性的方法,其特征在于,包括:
(1)首先对来料铁水进行脱硫预处理,脱硫后扒渣,保证脱硫后铁水尽可能少的带渣,保证预处理后S含量≤0.005%;
(2)转炉冶炼,采用自产低硫废钢,镍板合金随废钢一同加入,转炉底吹气体采用全程吹氩模式,保证出钢温度≥1620℃;
(3)LF炉外精炼+ RH真空脱气,LF精炼保证白渣形成时间,渣白后加入铌铁、铬铁、钼铁调整到目标成分;RH精炼阶段主要对钢水进行脱气、促进夹杂上浮,保证纯脱气时间大于5分钟,真空处理20分钟后复压破真空进行钙处理,并且在钙处理结束后,要保证软吹时间≥10min;
(4)板坯连铸,拉速控制在0.80~1.2m/min,采用电磁搅拌和轻压下保证铸坯质量;
(5)板坯加热,严格控制板坯在炉时间、均热时间及出炉温度,保证奥氏体均匀化和合金成分充分固溶,同时避免晶粒过分长大;在炉时间240~300min,均热时间30~60min,出炉温度1200±20℃;
(6)一次除磷、轧制和冷却,板坯出炉后进行一次除磷,保证高压水嘴正常开启无堵塞,除磷压力不小于20MPa;粗轧以尽可能少的道次完成展宽,单道次相对压下率至少2道控制在14%以上,粗轧保证再结晶区轧制,充分细化奥氏体晶粒,终轧温度不小于1050℃;精轧开轧温度不大于950℃,至少2道次相对压下率14%以上,保证未再结晶区轧制,为后续相变做组织和能量准备,精轧的终轧温度设定为810℃~850℃;冷却模式采用二级系统自学习计算结果,终冷温度为630℃~650℃;
(7)常规调质热处理工艺:淬火温度910℃~920℃,保温时间20min;回火温度600℃~620℃,保温时间20 min~40min;
(8)增加亚温淬火热处理工艺,即在常规淬火中增加亚温淬火,随后进行高温回火:淬火温度910℃~920℃,保温时间20min,亚温淬火温度865℃~875℃,保温时间20min;回火温度600℃~620℃,保温时间20~40min;
所述含硼钢的化学成分按质量百分比计算为C:≤0.08%,Si:≤0.30%,Mn:≤1.50%,P:≤0.010%,S≤0.005%,Alt:0.020~0.040%,Nb: ≤0.060%,Ti: ≤0.030%,V:≤0.050%,Cr:≤0.50%,Mo:≤0.50%,Ni:≤0.6%,Cu≤0.5%,B≤0.0030%,其余为Fe及不可避免夹杂。
2.根据权利要求1所述的利用亚温淬火提高含硼钢低温冲击韧性的方法,其特征在于,钢板成品厚度20.0mm,热处理工艺:淬火温度910℃,保温时间20min,亚温淬火温度865℃,保温时间20min,回火温度620℃,保温时间20min。
3.根据权利要求1所述的利用亚温淬火提高含硼钢低温冲击韧性的方法,其特征在于,钢板成品厚度56.0mm,热处理工艺:淬火温度910℃,保温时间20min,亚温淬火温度870℃,保温时间20min,回火温度620℃,保温时间30min。
4.根据权利要求1所述的利用亚温淬火提高含硼钢低温冲击韧性的方法,其特征在于,钢板成品厚度70.0mm,热处理工艺:淬火温度920℃,保温时间20min,亚温淬火温度875℃,保温时间20min,回火温度600℃,保温时间30min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210221983.6A CN114622073B (zh) | 2022-03-09 | 2022-03-09 | 一种利用亚温淬火提高含硼钢低温冲击韧性的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210221983.6A CN114622073B (zh) | 2022-03-09 | 2022-03-09 | 一种利用亚温淬火提高含硼钢低温冲击韧性的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114622073A CN114622073A (zh) | 2022-06-14 |
CN114622073B true CN114622073B (zh) | 2024-02-23 |
Family
ID=81901029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210221983.6A Active CN114622073B (zh) | 2022-03-09 | 2022-03-09 | 一种利用亚温淬火提高含硼钢低温冲击韧性的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114622073B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115216608A (zh) * | 2022-07-28 | 2022-10-21 | 湖南华菱湘潭钢铁有限公司 | Q420级高耐蚀高强度近海结构用调质钢板的生产方法 |
CN115852100A (zh) * | 2022-10-25 | 2023-03-28 | 包头钢铁(集团)有限责任公司 | 一种改善厚规格耐候钢低温冲击韧性的热处理方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101876001A (zh) * | 2009-11-25 | 2010-11-03 | 首钢总公司 | 一种提高高强度厚钢板低温冲击韧性的方法 |
CN101880831A (zh) * | 2010-06-13 | 2010-11-10 | 东北大学 | 一种高强度高韧性低合金耐磨钢及其制造方法 |
CN109112419A (zh) * | 2017-06-26 | 2019-01-01 | 鞍钢股份有限公司 | 海洋工程用调质eh550特厚钢板及其制造方法 |
WO2020087961A1 (zh) * | 2018-10-29 | 2020-05-07 | 南京钢铁股份有限公司 | 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法 |
CN111118257A (zh) * | 2020-01-16 | 2020-05-08 | 包头钢铁(集团)有限责任公司 | 改善含硼厚规格水电用钢板心部冲击韧性的热处理方法 |
CN111139348A (zh) * | 2019-12-14 | 2020-05-12 | 张家港广大特材股份有限公司 | 一种提高大截面低合金高强钢锻件芯部冲击韧性的热处理方法 |
CN111809025A (zh) * | 2020-06-18 | 2020-10-23 | 无锡宏达重工股份有限公司 | 一种14Cr1Mo的热处理工艺 |
CN112430713A (zh) * | 2019-08-24 | 2021-03-02 | 兰州兰石集团有限公司铸锻分公司 | 一种适用于低温条件的矿用车架的热处理工艺 |
CN113106351A (zh) * | 2021-04-20 | 2021-07-13 | 吉安锐迈管道配件有限公司 | 一种超低温9Ni钢及其制备工艺 |
CN114058793A (zh) * | 2021-10-27 | 2022-02-18 | 舞阳钢铁有限责任公司 | 一种降低超高强度海工钢eh890屈强比的热处理方法 |
-
2022
- 2022-03-09 CN CN202210221983.6A patent/CN114622073B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101876001A (zh) * | 2009-11-25 | 2010-11-03 | 首钢总公司 | 一种提高高强度厚钢板低温冲击韧性的方法 |
CN101880831A (zh) * | 2010-06-13 | 2010-11-10 | 东北大学 | 一种高强度高韧性低合金耐磨钢及其制造方法 |
CN109112419A (zh) * | 2017-06-26 | 2019-01-01 | 鞍钢股份有限公司 | 海洋工程用调质eh550特厚钢板及其制造方法 |
WO2020087961A1 (zh) * | 2018-10-29 | 2020-05-07 | 南京钢铁股份有限公司 | 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法 |
CN112430713A (zh) * | 2019-08-24 | 2021-03-02 | 兰州兰石集团有限公司铸锻分公司 | 一种适用于低温条件的矿用车架的热处理工艺 |
CN111139348A (zh) * | 2019-12-14 | 2020-05-12 | 张家港广大特材股份有限公司 | 一种提高大截面低合金高强钢锻件芯部冲击韧性的热处理方法 |
CN111118257A (zh) * | 2020-01-16 | 2020-05-08 | 包头钢铁(集团)有限责任公司 | 改善含硼厚规格水电用钢板心部冲击韧性的热处理方法 |
CN111809025A (zh) * | 2020-06-18 | 2020-10-23 | 无锡宏达重工股份有限公司 | 一种14Cr1Mo的热处理工艺 |
CN113106351A (zh) * | 2021-04-20 | 2021-07-13 | 吉安锐迈管道配件有限公司 | 一种超低温9Ni钢及其制备工艺 |
CN114058793A (zh) * | 2021-10-27 | 2022-02-18 | 舞阳钢铁有限责任公司 | 一种降低超高强度海工钢eh890屈强比的热处理方法 |
Non-Patent Citations (1)
Title |
---|
上海特别市社会局.钢铁热处理.冶金工业出版社,1982,第189页. * |
Also Published As
Publication number | Publication date |
---|---|
CN114622073A (zh) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103131956B (zh) | 一种抗拉强度达800MPa以上的高强韧钢板及其制造方法 | |
CN102676945B (zh) | 一种水电工程用易焊接调质高强韧性钢板及其生产方法 | |
CN109628828B (zh) | 一种低屈强比超厚水电高强度钢板及其制造方法 | |
CN114622073B (zh) | 一种利用亚温淬火提高含硼钢低温冲击韧性的方法 | |
CN113817963A (zh) | 一种1000MPa级低焊接裂纹敏感性钢板及其生产方法 | |
CN114134301B (zh) | 一种1000MPa级水电用钢板的两火次轧制方法 | |
CN112501496B (zh) | 一种在线淬火型双相低屈强比钢板及其生产方法 | |
CN106521358B (zh) | 一种抗拉强度800MPa水电钢的生产方法 | |
CN104674130A (zh) | 大厚度抗层状撕裂调质高强钢板的生产方法 | |
CN101514435A (zh) | 低温韧性优良且稳定的管线钢及其热轧板卷轧制方法 | |
CN113528936A (zh) | 一种采用异型坯生产dh36海洋工程结构用热轧h型钢的方法 | |
CN111893383A (zh) | 一种卡簧用钢盘条及其制备方法 | |
CN109518079A (zh) | 一种临氢设备用15CrMoR钢板的生产方法 | |
CN106399840A (zh) | 低成本低屈强比调质型q690e钢板及生产方法 | |
CN105969963A (zh) | 一种提升设备轨道用合金结构钢板的生产方法 | |
CN103114254A (zh) | 一种核电站机械模块支撑件用高强韧钢板及其制造方法 | |
CN102899563A (zh) | 一种超高强钢板的生产方法 | |
CN109628847A (zh) | 一种正火s355nl-z35特厚钢板及制造方法 | |
CN104818436A (zh) | 屈服620MPa级水电工程用热轧钢板及其生产方法 | |
CN116987968B (zh) | 高温气冷堆压板构件用极限宽规格核电钢板及制备方法 | |
CN116287979B (zh) | 一种1100MPa级兼具耐磨损耐腐蚀稀土宽厚钢板及其生产方法 | |
CN111218614A (zh) | 一种易切削连杆用钢及其制造方法 | |
CN102925804A (zh) | 一种超高强钢板的生产方法 | |
CN109913752B (zh) | 一种极寒环境用x80m管线钢及生产方法 | |
CN112795840A (zh) | 一种690MPa级钢板及其生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |