CN114587307B - A non-contact blood pressure detector and method based on capacitive coupling electrode - Google Patents
A non-contact blood pressure detector and method based on capacitive coupling electrode Download PDFInfo
- Publication number
- CN114587307B CN114587307B CN202210251624.5A CN202210251624A CN114587307B CN 114587307 B CN114587307 B CN 114587307B CN 202210251624 A CN202210251624 A CN 202210251624A CN 114587307 B CN114587307 B CN 114587307B
- Authority
- CN
- China
- Prior art keywords
- blood pressure
- capacitive coupling
- module
- impedance
- impedance volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000036772 blood pressure Effects 0.000 title claims abstract description 79
- 230000008878 coupling Effects 0.000 title claims abstract description 74
- 238000010168 coupling process Methods 0.000 title claims abstract description 74
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005259 measurement Methods 0.000 claims abstract description 39
- 238000004364 calculation method Methods 0.000 claims abstract description 28
- 238000012549 training Methods 0.000 claims abstract description 17
- 238000010801 machine learning Methods 0.000 claims abstract description 12
- 230000005540 biological transmission Effects 0.000 claims abstract description 9
- 230000005284 excitation Effects 0.000 claims abstract description 9
- 238000000605 extraction Methods 0.000 claims abstract description 8
- 230000004927 fusion Effects 0.000 claims abstract description 8
- 230000035487 diastolic blood pressure Effects 0.000 claims description 16
- 230000000877 morphologic effect Effects 0.000 claims description 16
- 230000035488 systolic blood pressure Effects 0.000 claims description 14
- 230000000630 rising effect Effects 0.000 claims description 11
- 238000003066 decision tree Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 10
- 238000007637 random forest analysis Methods 0.000 claims description 9
- 210000000748 cardiovascular system Anatomy 0.000 claims description 8
- 238000010586 diagram Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 230000000004 hemodynamic effect Effects 0.000 abstract description 3
- 230000036996 cardiovascular health Effects 0.000 abstract 1
- 230000036541 health Effects 0.000 abstract 1
- 238000009530 blood pressure measurement Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 230000002612 cardiopulmonary effect Effects 0.000 description 3
- 238000013186 photoplethysmography Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000003177 cardiotonic effect Effects 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
- A61B5/02125—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Hematology (AREA)
- Power Engineering (AREA)
- Vascular Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种基于电容耦合电极的非接触血压检测仪及方法,电容耦合激励电极和电容耦合测量电极贴附于人体手臂衣物外侧进行阻抗容积特性检测;电容耦合测量电极与电容耦合参考电极贴附于人体心胸部衣物外侧进行心电图信号检测;心电与阻抗容积信号测量模块用于同步采集电容耦合阻抗容积率(CCIPG)信号和电容耦合心电图(CCECG)信号;数据采集模块用于将接收到的胸导联CCECG、手臂CCIPG信号转化为数字信号并传输给控制器,使得控制器得到测量者的电容耦合心电图波形和阻抗容积率波形图;特征提取模块用于获取脉搏波传导时间(PWTT);阻抗容积特征参数计算模块用于获取人体血流动力学参数;PTT血压计算模块用于计算血压值1;PTT融合阻抗容积参数的机器学习模块用于将人体血流动力学参数与血压值1作为样本数据进行学习训练,进行最终血压模型的建立;血压预测模块用于人体血压值的预测,从而可以实现血压的实时监测与心血管健康状态的分析,不需要将电极直接贴附于皮肤,不会引起测量者的不适,可广泛用于人体健康监测等领域。
The present invention discloses a non-contact blood pressure detector and method based on capacitive coupling electrodes. Capacitive coupling excitation electrodes and capacitive coupling measurement electrodes are attached to the outside of human arm clothing to detect impedance-volume characteristics; capacitive coupling measurement electrodes and capacitive coupling reference electrodes are attached to the outside of human heart and chest clothing to detect electrocardiogram signals; an electrocardiogram and impedance-volume signal measurement module is used to synchronously collect capacitive coupling impedance-volume ratio (CCIPG) signals and capacitive coupling electrocardiogram (CCECG) signals; a data acquisition module is used to convert received chest lead CCECG and arm CCIPG signals into digital signals and transmit them to a controller, so that the controller obtains the capacitive coupling electrocardiogram of the measured person. Electrogram waveform and impedance-volume ratio waveform; feature extraction module is used to obtain pulse wave transmission time (PWTT); impedance-volume feature parameter calculation module is used to obtain human hemodynamic parameters; PTT blood pressure calculation module is used to calculate blood pressure value 1; PTT fusion impedance-volume parameter machine learning module is used to use human hemodynamic parameters and blood pressure value 1 as sample data for learning and training, and to establish the final blood pressure model; blood pressure prediction module is used to predict human blood pressure value, so as to realize real-time monitoring of blood pressure and analysis of cardiovascular health status, without directly attaching electrodes to the skin, which will not cause discomfort to the person being measured, and can be widely used in fields such as human health monitoring.
Description
技术领域Technical Field
本发明涉及的是一种基于电容耦合电极的非接触血压检测仪及方法,可用于人体血压的实时监测与测量,属于医疗器械技术领域。The present invention relates to a non-contact blood pressure detector and method based on capacitive coupling electrodes, which can be used for real-time monitoring and measurement of human blood pressure and belongs to the technical field of medical devices.
背景技术Background Art
血压在生物医学测量中是一种常用而重要的指标。心脏的泵血功能、冠状动脉的血液供应状况、周围血管的阻力和弹性、全身的血容量及血液的物理状态等因素都反映在血压的参数指标中,血压可作为心血管系统状态的指示器。因此,血压参数的检测在临床检查、病人护理,或是在生理研究工作中,血压的测量都提供了一个极为重要的依据。Blood pressure is a common and important indicator in biomedical measurement. The heart's pumping function, the blood supply of the coronary arteries, the resistance and elasticity of peripheral blood vessels, the blood volume of the whole body and the physical state of the blood are all reflected in the parameters of blood pressure. Blood pressure can be used as an indicator of the state of the cardiovascular system. Therefore, the detection of blood pressure parameters provides an extremely important basis for clinical examinations, patient care, or physiological research.
现有的血压测量技术主要分为侵入式测血压和非侵入式测血压两种方式,侵入式血压测量是将导管插入待测部位的血管或心脏内,并把压力传感器放置于导管末端,待测部位血液流动、撞击导管所产生的压力传至导管端部由压力传感器进行感知,从而直接测量出患者的血压,这种方法能准确并连续监测患者的血压,但它必须经皮肤将导管放入血管内,操作难度大且极易造成患者测量部位创口的感染;非侵入式血压测量方式则是利用脉管内压力与血液阻断开通时刻所出现的血流变化间的关系,从体表测出相应的血压值,目前使用广泛的柯氏音法和示波法,都是利用袖带充气加压阻断动脉,随后缓慢放气,在袖带下或动脉的远端检测出脉搏的变化或血流的变化,由血压算法计算收缩压和舒张压,虽然可以避免侵入式对患者造成感染的缺点,但它也只能测量患者该时段的收缩压和舒张压而无法长时间连续记录血压波形。Existing blood pressure measurement technologies are mainly divided into two methods: invasive blood pressure measurement and non-invasive blood pressure measurement. Invasive blood pressure measurement is to insert a catheter into the blood vessel or heart of the measured part, and place a pressure sensor at the end of the catheter. The pressure generated by the blood flow and impact on the catheter in the measured part is transmitted to the end of the catheter and sensed by the pressure sensor, thereby directly measuring the patient's blood pressure. This method can accurately and continuously monitor the patient's blood pressure, but it must insert the catheter into the blood vessel through the skin, which is difficult to operate and can easily cause infection of the patient's measurement site wound; the non-invasive blood pressure measurement method uses the relationship between the intravascular pressure and the blood flow changes that occur at the moment of blood blockage and opening to measure the corresponding blood pressure value from the body surface. The Korotkoff sound method and oscillometric method, which are currently widely used, both use a cuff to inflate and pressurize the artery, then slowly deflate it, detect the change of pulse or blood flow under the cuff or at the distal end of the artery, and calculate the systolic and diastolic pressures by the blood pressure algorithm. Although it can avoid the disadvantage of invasive methods causing infection to patients, it can only measure the systolic and diastolic pressures of patients during this period and cannot continuously record the blood pressure waveform for a long time.
针对侵入式测量不便、存在感染风险以及非侵入式不能长时间连续监测血压的缺点,近年国外多个研究所开始利用光电容积描记法(PPG)检测脉搏波波形特征变化和AgCl湿式电极测心电信号(ECG)的方式,获取脉搏波的传导时间(PTT),从而实现了血压的连续监测。但PPG技术对测量者的要求比较高,同时AgCl湿式电极在使用过程中为了减小接触阻抗,通常需要配合导电胶一块使用,存在准备时间长、刺激人体皮肤、长时间监测的过程中容易脱落等缺点,而且仅仅依靠PTT参数所提取到的舒张压(DBP)误差较大,其检测准确度仍有待于进一步提高。In recent years, many foreign research institutes have begun to use photoplethysmography (PPG) to detect changes in pulse wave waveform characteristics and AgCl wet electrodes to measure electrocardiogram (ECG) signals to obtain the pulse wave conduction time (PTT), thereby achieving continuous blood pressure monitoring. However, PPG technology has high requirements for the measurer. At the same time, in order to reduce contact impedance during use, AgCl wet electrodes usually need to be used with conductive glue. There are disadvantages such as long preparation time, irritation to human skin, and easy to fall off during long-term monitoring. In addition, the diastolic pressure (DBP) extracted by relying solely on PTT parameters has large errors, and its detection accuracy still needs to be further improved.
为解决上述问题,发明公开了一种基于电容耦合电极的非接触血压检测仪及方法。以电容耦合原理为基础设计耦合电极,在不直接接触皮肤的前提下,将人体体表的生物电信号完整的耦合到检测端,进而检测出耦合式胸部心电信号(CCECG)和耦合式手臂阻抗容积率信号(CCIPG),计算脉搏波传导时间,同时结合阻抗血流图的特征参数构建非接触式连续血压预测模型,以此来提高血压测量值的准确度。In order to solve the above problems, the invention discloses a non-contact blood pressure detector and method based on capacitive coupling electrodes. The coupling electrodes are designed based on the capacitive coupling principle. Without direct contact with the skin, the bioelectric signals on the human body surface are fully coupled to the detection end, and then the coupled chest electrocardiogram signal (CCECG) and coupled arm impedance volume ratio signal (CCIPG) are detected, the pulse wave transmission time is calculated, and the characteristic parameters of the impedance blood flow diagram are combined to construct a non-contact continuous blood pressure prediction model, so as to improve the accuracy of blood pressure measurement values.
发明内容Summary of the invention
本发明的目的在于提供一种基于电容耦合电极的非接触血压检测仪及方法,该方法主要以非接触式心电信号和阻抗容积率信号的检测为核心,拓展无创检测血压的研究,可避免电极片直接接触皮肤,并提高血压测量的准确性,建立并优化非接触式连续血压预测的模型。The purpose of the present invention is to provide a non-contact blood pressure detector and method based on capacitive coupling electrodes. The method mainly focuses on the detection of non-contact electrocardiogram signals and impedance volume ratio signals, expands the research on non-invasive blood pressure detection, avoids direct contact of electrodes with the skin, improves the accuracy of blood pressure measurement, and establishes and optimizes a model for non-contact continuous blood pressure prediction.
为实现上述问题,本发明提供了一种基于电容耦合电极的非接触血压检测仪及方法,该方法是由电容耦合激励电极1、电容耦合测量电极2、电容耦合参考电极3、心电与阻抗容积信号测量模块4、数据采集模块5、特征提取模块6、阻抗容积特征参数计算模块7、PTT血压计算模块8、PTT融合阻抗容积参数的机器学习模块9以及血压预测模块10组成。To solve the above problems, the present invention provides a non-contact blood pressure detector and method based on capacitive coupling electrodes, which method consists of a capacitive coupling excitation electrode 1, a capacitive coupling measurement electrode 2, a capacitive coupling reference electrode 3, an ECG and impedance volume signal measurement module 4, a data acquisition module 5, a feature extraction module 6, an impedance volume feature parameter calculation module 7, a PTT blood pressure calculation module 8, a PTT fusion impedance volume parameter machine learning module 9 and a blood pressure prediction module 10.
所述电容耦合激励电极,用于和所述电容耦合测量电极配合贴附于人体手臂的衣物外侧进行阻抗容积特性检测。The capacitive coupling excitation electrode is used to cooperate with the capacitive coupling measurement electrode to be attached to the outside of clothing on the human arm to perform impedance volume characteristic detection.
所述另外的电容耦合测量电极,用于和所述电容耦合参考电极配合贴附于人体心胸部的衣物外侧进行心电图信号检测。The other capacitive coupling measurement electrode is used to cooperate with the capacitive coupling reference electrode to be attached to the outside of clothing on the heart and chest of a human body to detect electrocardiogram signals.
所述心电与阻抗容积信号测量模块,用于同步采集电容耦合阻抗容积率(CCIPG)信号和电容耦合心电图(CCECG)信号。The ECG and impedance volume signal measurement module is used to synchronously collect capacitive coupled impedance volume ratio (CCIPG) signals and capacitive coupled electrocardiogram (CCECG) signals.
所述数据采集模块,用于将接收到的胸导联CCECG、手臂CCIPG信号转化为数字信号并传输给控制器,使得控制器得到测量者的电容耦合心电图波形和阻抗容积率波形图。The data acquisition module is used to convert the received chest lead CCECG and arm CCIPG signals into digital signals and transmit them to the controller, so that the controller can obtain the capacitive coupling electrocardiogram waveform and impedance volume ratio waveform of the measured person.
所述特征提取模块,用于获取脉搏波传导时间(PWTT)。The feature extraction module is used to obtain the pulse wave transmission time (PWTT).
所述阻抗容积特征参数计算模块,用于获取人体血流动力学参数。The impedance volume characteristic parameter calculation module is used to obtain human hemodynamic parameters.
所述PTT血压计算模块,用于计算血压值1。The PTT blood pressure calculation module is used to calculate the blood pressure value 1.
所述PTT融合阻抗容积参数的机器学习模块,用于将阻抗容积率波形图上所反映心血管系统生理特性的形态学特征参数与血压值1作为样本数据进行学习训练,进行最终血压模型的建立。The PTT fusion impedance-volume parameter machine learning module is used to use the morphological characteristic parameters of the physiological characteristics of the cardiovascular system reflected on the impedance-volume ratio waveform and the blood pressure value 1 as sample data for learning and training to establish the final blood pressure model.
所述血压预测模块用于人体血压值的预测。The blood pressure prediction module is used to predict the blood pressure value of a human body.
进一步地,耦合电极为四层矩形PCB板,耦合电极中间两层均设为屏蔽地层,实现隔离空间噪声的作用。Furthermore, the coupling electrode is a four-layer rectangular PCB board, and the two middle layers of the coupling electrode are both set as shielding ground layers to achieve the function of isolating spatial noise.
进一步地,心电与阻抗容积信号测量模块包括耦合心电测量单元和耦合阻抗容积率测量单元。Furthermore, the ECG and impedance volume signal measurement module includes a coupled ECG measurement unit and a coupled impedance volume ratio measurement unit.
其中,耦合心电测量单元包括差分放大电路、50Hz陷波电路和带通滤波电路,差分放大电路的输入端连接心电耦合测量电极,用于将耦合测量电极采集的电容耦合心电信号与参考电极的心电信号进行单位增益的差分,同时引出心电耦合电极的共模干扰,50Hz陷波电路和带通滤波电路用于对差分放大后的信号进行滤波得到胸导联心电信号。Among them, the coupled ECG measurement unit includes a differential amplifier circuit, a 50Hz trap circuit and a bandpass filter circuit. The input end of the differential amplifier circuit is connected to the ECG coupling measurement electrode, which is used to perform unit gain differential between the capacitively coupled ECG signal collected by the coupling measurement electrode and the ECG signal of the reference electrode, and at the same time, to induce the common mode interference of the ECG coupling electrode. The 50Hz trap circuit and the bandpass filter circuit are used to filter the differentially amplified signal to obtain the chest lead ECG signal.
其中,耦合阻抗容积率测量单元包括主控电路、恒流源电路、差分放大电路、滤波电路、全波整流电路和微分电路,主控电路控制恒流源电路输出50KHz,0.3mA电流,采用四电极法测量人体手臂阻抗,差分放大电路的输入端连接耦合测量电极,用于将耦合测量电极采集的电容耦合阻抗容积信号进行差分放大,处理后的信号经滤波电路进入全波整流以及微分电路,得到手臂阻抗容积率信号。Among them, the coupling impedance volume ratio measurement unit includes a main control circuit, a constant current source circuit, a differential amplifier circuit, a filter circuit, a full-wave rectifier circuit and a differential circuit. The main control circuit controls the constant current source circuit to output 50KHz, 0.3mA current, and adopts the four-electrode method to measure the human arm impedance. The input end of the differential amplifier circuit is connected to the coupling measurement electrode, which is used to differentially amplify the capacitive coupling impedance volume signal collected by the coupling measurement electrode. The processed signal enters the full-wave rectifier and differential circuit through the filter circuit to obtain the arm impedance volume ratio signal.
其中,数据采集模块主要由A/D电路组成,用于将接收到的胸导联心电信号、手臂阻抗容积率信号转化为数字信号并传输给控制器,使得控制器得到测量者的电容耦合心电图波形和阻抗容积率波形图。Among them, the data acquisition module is mainly composed of A/D circuits, which are used to convert the received chest lead ECG signals and arm impedance volume ratio signals into digital signals and transmit them to the controller, so that the controller can obtain the capacitive coupling ECG waveform and impedance volume ratio waveform of the measured person.
其中,所述人体CCIPG信号波形图上所反映心血管系统生理特性的形态学特征参数包括:BC段时间占单周期时间比值(TRBC)、CX段时间占单周期时间比值(TRCX)、射血时间占单周期比(TR)、缓慢射血期时间(TCX)、射血时间(TBX)以及每搏心输出量(SBX)。Among them, the morphological characteristic parameters of the physiological characteristics of the cardiovascular system reflected in the human CCIPG signal waveform include: the ratio of BC segment time to single cycle time ( TRBC ), the ratio of CX segment time to single cycle time ( TRCX ), the ratio of ejection time to single cycle ( TR ), the slow ejection period time ( TCX ), the ejection time ( TBX ) and the cardiac output per stroke ( SBX ).
该非接触血压检测方法具体如下:The non-contact blood pressure detection method is as follows:
步骤一、对采集到的心电图波形进行R波有效峰值点定位,获得心电图波形有效R波峰值位置;对阻抗容积率信号波形图进行上升支结束点定位,获得阻抗容积率信号波形图上升支结束点位置。Step 1: locate the effective peak point of the R wave of the collected electrocardiogram waveform to obtain the effective R wave peak position of the electrocardiogram waveform; locate the rising branch end point of the impedance volume ratio signal waveform to obtain the rising branch end point position of the impedance volume ratio signal waveform.
心电图波形上出现第j个R波有效峰值点后,确定心电图波形上第j个R波有效峰值点位置,并确定与心电图波形上第j个R波有效峰值点对应的阻抗容积率信号波形图的上升支结束点位置。计算第j个测量者心率HRj,HRj=1/Tj,其中Tj为心电图波形上第j个R波有效峰值点与心电图波形上第j+1个R波有效峰值点间的时间差,计算测量者的第j个脉搏波传导时间PWTTj。After the jth R wave effective peak point appears on the ECG waveform, determine the position of the jth R wave effective peak point on the ECG waveform, and determine the position of the rising branch end point of the impedance volume ratio signal waveform corresponding to the jth R wave effective peak point on the ECG waveform. Calculate the jth heart rate HR j of the measured person, HR j = 1/T j , where T j is the time difference between the jth R wave effective peak point on the ECG waveform and the j+1th R wave effective peak point on the ECG waveform, and calculate the jth pulse wave conduction time PWTT j of the measured person.
步骤二、根据第j个心率和第j个脉搏波传导时间PWTTj,计算第j个舒张压DBPj和第j个收缩压SBPj。Step 2: Calculate the jth diastolic pressure DBP j and the jth systolic pressure SBP j according to the jth heart rate and the jth pulse wave transmission time PWTT j .
步骤三、将阻抗容积率信号波形图的形态学特征参数引入到PTT血压计算模块所组成的指标数据集中。Step 3: Introduce the morphological characteristic parameters of the impedance volume ratio signal waveform into the index data set composed of the PTT blood pressure calculation module.
步骤四、采用基于极端随机森林模型的机器学习方式,建立血压的非线性模型。Step 4: Use machine learning based on the extreme random forest model to establish a nonlinear model of blood pressure.
进一步地,第j个舒张压DBPj的计算表达式为:Furthermore, the calculation expression of the j-th diastolic pressure DBP j is:
DBPj=a*ln PWTTj+b*HRj+c*TRCX+d*TR+e*TCX+f*SBX+gDBP j =a*ln PWTT j +b*HR j +c*T RCX +d*T R +e*T CX +f*S BX +g
进一步地,第j个收缩压SBPj的计算表达式为:Furthermore, the calculation expression of the j-th systolic blood pressure SBP j is:
SBPj=α*ln PWTTj+β*TRBC+δ*TRCX+ε*TR+γSBP j =α*ln PWTT j +β*T RBC +δ*T RCX +ε*T R +γ
a、b、c、d、e、f、g、α、β、δ、ε、γ等参数值则通过测量者进行匹配取值,获取m组测量者的心电阻抗容积率数据组,m≥2,并同步使用血压计测量收缩压和舒张压。心电阻抗容积率数据组内包括心率、脉搏波传导时间以及阻抗容积率波形图的形态学参数。将m组心电阻抗容积率数据组和对应的收缩压、舒张压代入训练,便可得到与之匹配的模型参数值。The parameter values of a, b, c, d, e, f, g, α, β, δ, ε, γ, etc. are matched and obtained by the measurers, and the cardiopulmonary impedance volume ratio data set of m groups of measurers is obtained, m ≥ 2, and the systolic and diastolic blood pressures are measured simultaneously using a sphygmomanometer. The cardiopulmonary impedance volume ratio data set includes heart rate, pulse wave transmission time, and morphological parameters of the impedance volume ratio waveform. Substituting the m groups of cardiopulmonary impedance volume ratio data sets and the corresponding systolic and diastolic blood pressures into the training, the matching model parameter values can be obtained.
进一步地,第j个脉搏波传导时间为PWTTj心电图波形上第j个波有效峰值点与对应的阻抗容积率波形图的上升支结束点之间的时间差。心电图波形上的R波有效峰值点与阻抗容积率波形图的上升支结束点分割的方法如下:若心电图波形的上一个R波有效峰值点的时刻早于阻抗容积率波形图的一个上升支结束点的时刻,且二者之间不存在心电图波形的其他R波有效峰值点和阻抗容积率波形图的其他上升支结束点,则两者分割为一个对应组。Further, the j-th pulse wave conduction time is the time difference between the j-th wave effective peak point on the PWTT j electrocardiogram waveform and the corresponding rising branch end point of the impedance volume ratio waveform. The method for segmenting the R wave effective peak point on the electrocardiogram waveform and the rising branch end point of the impedance volume ratio waveform is as follows: if the time of the previous R wave effective peak point of the electrocardiogram waveform is earlier than the time of a rising branch end point of the impedance volume ratio waveform, and there are no other R wave effective peak points of the electrocardiogram waveform and other rising branch end points of the impedance volume ratio waveform between the two, then the two are segmented into a corresponding group.
进一步地,对心电图波形或阻抗容积率波形图进行特征峰值点定位的方法具体如下:Furthermore, the method for locating the characteristic peak point of the electrocardiogram waveform or the impedance volume ratio waveform is specifically as follows:
(1)对心电图波形或阻抗容积率波形图通过小波阈值滤波法对其进行滤波、去噪处理。(1) The electrocardiogram waveform or impedance volume ratio waveform is filtered and denoised by wavelet threshold filtering.
(2)对(1)处理后的信号曲线进行求导,得到导函数曲线。并对导函数曲线求零点,从而确定所得曲线的极大值点和极小值点的位置。(2) The signal curve processed by (1) is differentiated to obtain a derivative function curve. The zero point of the derivative function curve is calculated to determine the positions of the maximum and minimum points of the obtained curve.
(3)在(2)中确定的极值点中筛选大于幅度阈值XS的点作为预定峰值,XS=3/4*(XSMAX-XSMIN)+XSMIN,其中XSMAX代表(1)中数据幅度最大的值,XSMIN代表(1)中数据幅度最小的值。(3) Among the extreme value points determined in (2), the points with amplitude greater than the amplitude threshold XS are selected as the predetermined peak value, XS = 3/4*( XSMAX - XSMIN ) + XSMIN , where XSMAX represents the value with the largest data amplitude in (1), and XSMIN represents the value with the smallest data amplitude in (1).
(4)将n个预定峰值分为i个已定峰值组。其中,i个已定峰值组之间的任意两个相邻的预定峰值时间位置相差大于0.3~0.5s。(4) The n predetermined peaks are divided into i predetermined peak groups, wherein the time positions of any two adjacent predetermined peaks in the i predetermined peak groups differ by more than 0.3 to 0.5 seconds.
(5)在i个已定峰值组内选取一个幅度最大的位置点,便可得到i个有效峰值点。(5) By selecting a position point with the largest amplitude in the i determined peak groups, i valid peak points can be obtained.
进一步地,步骤三中基于极端随机森林模型的机器学习方式,建立非线性血压模型的方法详细如下:Furthermore, in step 3, the method for establishing a nonlinear blood pressure model based on the machine learning method of the extreme random forest model is as follows:
一、将阻抗容积率信号波形图的形态学特征参数引入到PTT血压计算模块所组成的指标数据集中;First, the morphological characteristic parameters of the impedance volume ratio signal waveform are introduced into the index data set composed of the PTT blood pressure calculation module;
二、从原始训练集中选取6组样本数据,生成6个训练集;2. Select 6 groups of sample data from the original training set to generate 6 training sets;
三、对6个训练集分别训练6个决策树模型;3. Train 6 decision tree models for 6 training sets respectively;
四、针对单个决策树模型选择最好的特征进行分裂,多次重复上述操作;4. Select the best feature for splitting a single decision tree model and repeat the above operation multiple times;
五、将生成的6颗决策树组成的随机森林;5. A random forest consisting of 6 decision trees generated;
六、得到血压的预测值,根据测试集交叉验证得到验证集的结果,从而评估回归模型结果的正确性。6. Obtain the predicted value of blood pressure, and obtain the result of the validation set based on the cross-validation of the test set, so as to evaluate the correctness of the regression model results.
本发明具有的有益效果是:The present invention has the following beneficial effects:
1、本发明是基于电容耦合电极的非接触式检测人体血压,可避免电极片直接接触皮肤,解决了长期监测不稳定及电极刺激皮肤的问题。1. The present invention is a non-contact detection of human blood pressure based on capacitive coupling electrodes, which can avoid direct contact of electrodes with the skin and solve the problems of long-term monitoring instability and electrode irritation to the skin.
2、本发明在PTT血压计算模型的基础上,引入了阻抗容积波形图的形态学特征参数,进一步优化了非接触式连续血压预测模型。2. Based on the PTT blood pressure calculation model, the present invention introduces the morphological characteristic parameters of the impedance volume waveform diagram, and further optimizes the non-contact continuous blood pressure prediction model.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是一种基于电容耦合电极的非接触血压检测仪及方法的结构示意图;FIG1 is a schematic structural diagram of a non-contact blood pressure detector and method based on capacitive coupling electrodes;
图2是一种基于电容耦合电极的非接触血压检测仪及方法的硬件电路系统框图;FIG2 is a block diagram of a hardware circuit system of a non-contact blood pressure detector and method based on capacitive coupling electrodes;
图3是本发明采用极端随机森林方式对血压值进行预测的流程图。FIG3 is a flow chart of the present invention using the extreme random forest method to predict blood pressure values.
具体实施方式DETAILED DESCRIPTION
为了使本申请的目的、技术方案及优点更加清楚明白,下面结合附图以及实施例,对本发明进行进一步详细说明。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments.
如图1所示,一种基于电容耦合电极的非接触血压检测仪及方法包括电容耦合激励电极1、电容耦合测量电极2、电容耦合参考电极3、心电与阻抗容积信号测量模块4、数据采集模块5、特征提取模块6、阻抗容积特征参数计算模块7、PTT血压计算模块8、PTT融合阻抗容积参数的机器学习模块9以及血压预测模块10。As shown in Figure 1, a non-contact blood pressure detector and method based on capacitive coupling electrodes include a capacitive coupling excitation electrode 1, a capacitive coupling measurement electrode 2, a capacitive coupling reference electrode 3, an electrocardiogram and impedance volume signal measurement module 4, a data acquisition module 5, a feature extraction module 6, an impedance volume feature parameter calculation module 7, a PTT blood pressure calculation module 8, a PTT fusion impedance volume parameter machine learning module 9 and a blood pressure prediction module 10.
所述电容耦合激励电极1、电容耦合测量电极2以及电容耦合参考电极3的作用为,在人体穿着薄衣物且无法将电极片直接贴附于皮肤时,完成电容耦合心电信号和电容耦合阻抗容积信号的同步采集;其做法是:根据四电极法的电极排列方式,将电容耦合激励电极1、电容耦合测量电极2固定于人体手臂衣物的外侧,与此同时,将另外数量的电容耦合测量电极2、电容耦合参考电极3,按照胸部心电三导联的方式同样固定于人体胸部衣物的外围。The function of the capacitive coupling excitation electrode 1, the capacitive coupling measurement electrode 2 and the capacitive coupling reference electrode 3 is to complete the synchronous acquisition of the capacitive coupling ECG signal and the capacitive coupling impedance volume signal when the human body is wearing thin clothing and the electrode sheet cannot be directly attached to the skin; the method is: according to the electrode arrangement method of the four-electrode method, the capacitive coupling excitation electrode 1 and the capacitive coupling measurement electrode 2 are fixed to the outside of the human arm clothing, and at the same time, another number of capacitive coupling measurement electrodes 2 and capacitive coupling reference electrodes 3 are also fixed to the periphery of the human chest clothing in the same way as the three-lead chest ECG method.
所述心电与阻抗容积信号测量模块,用于同步采集电容耦合阻抗容积率(CCIPG)信号和电容耦合心电图(CCECG)信号。The ECG and impedance volume signal measurement module is used to synchronously collect capacitive coupled impedance volume ratio (CCIPG) signals and capacitive coupled electrocardiogram (CCECG) signals.
所述数据采集模块,用于将接收到的胸导联CCECG、手臂CCIPG信号转化为数字信号并传输给控制器,使得控制器得到测量者的电容耦合心电图波形和阻抗容积率波形图。The data acquisition module is used to convert the received chest lead CCECG and arm CCIPG signals into digital signals and transmit them to the controller, so that the controller can obtain the capacitive coupling electrocardiogram waveform and impedance volume ratio waveform of the measured person.
所述特征提取模块,用于获取脉搏波传导时间(PWTT)。The feature extraction module is used to obtain the pulse wave transmission time (PWTT).
所述阻抗容积特征参数计算模块,用于获取阻抗容积率波形图上所反映心血管系统生理特性的形态学特征参数。The impedance-volume characteristic parameter calculation module is used to obtain the morphological characteristic parameters of the physiological characteristics of the cardiovascular system reflected on the impedance-volume ratio waveform.
所述PTT血压计算模块,用于计算血压值1。The PTT blood pressure calculation module is used to calculate the blood pressure value 1.
所述PTT融合阻抗容积参数的机器学习模块,用于将阻抗容积率波形图上所反映心血管系统生理特性的形态学特征参数与血压值1作为样本数据进行学习训练,进行最终血压模型的建立。The PTT fusion impedance-volume parameter machine learning module is used to use the morphological characteristic parameters of the physiological characteristics of the cardiovascular system reflected on the impedance-volume ratio waveform and the blood pressure value 1 as sample data for learning and training to establish the final blood pressure model.
所述血压预测模块用于人体血压值的预测。The blood pressure prediction module is used to predict the blood pressure value of a human body.
如图2所示,本发明的硬件系统电路包括耦合心电测量单元、耦合阻抗容积率测量单元以及数据采集模块电路;一、耦合心电测量单元包括差分放大电路、50Hz陷波电路和带通滤波电路,差分放大电路的输入端连接心电耦合测量电极,用于将耦合测量电极采集的电容耦合心电信号与参考电极的心电信号进行单位增益的差分,同时引出心电耦合电极的共模干扰,50Hz陷波电路和带通滤波电路用于对差分放大后的信号进行滤波得到胸导联心电信号;二、耦合阻抗容积率测量单元包括主控电路、恒流源电路、差分放大电路、滤波电路、全波整流电路和微分电路,主控电路控制恒流源电路输出50KHz,0.3mA电流,采用四电极法测量人体手臂阻抗,差分放大电路的输入端连接耦合测量电极,用于将耦合测量电极采集的电容耦合阻抗容积信号进行差分放大,处理后的信号经滤波电路进入全波整流以及微分电路,得到手臂阻抗容积率信号;三、数据采集模块主要由A/D电路组成,用于将接收到的胸导联心电信号、手臂阻抗容积率信号转化为数字信号并传输给控制器,使得控制器得到测量者的电容耦合心电图波形和阻抗容积率波形图。As shown in FIG2 , the hardware system circuit of the present invention includes a coupled ECG measurement unit, a coupled impedance volumetric rate measurement unit and a data acquisition module circuit; first, the coupled ECG measurement unit includes a differential amplifier circuit, a 50Hz trap circuit and a bandpass filter circuit, the input end of the differential amplifier circuit is connected to the ECG coupling measurement electrode, and is used to perform a unit gain differential between the capacitively coupled ECG signal collected by the coupling measurement electrode and the ECG signal of the reference electrode, and at the same time, to draw out the common mode interference of the ECG coupling electrode, and the 50Hz trap circuit and the bandpass filter circuit are used to filter the differentially amplified signal to obtain the chest lead ECG signal; second, the coupled impedance volumetric rate measurement unit includes a main control circuit, a constant current source circuit, a differential amplifier circuit, and a constant current source circuit. The main control circuit controls the constant current source circuit to output 50KHz, 0.3mA current, and adopts the four-electrode method to measure the human arm impedance. The input end of the differential amplifier circuit is connected to the coupling measurement electrode, which is used to differentially amplify the capacitive coupling impedance volume signal collected by the coupling measurement electrode. The processed signal enters the full-wave rectification and differential circuit through the filtering circuit to obtain the arm impedance volume ratio signal; third, the data acquisition module is mainly composed of an A/D circuit, which is used to convert the received chest lead ECG signal and arm impedance volume ratio signal into digital signals and transmit them to the controller, so that the controller obtains the capacitive coupling ECG waveform and impedance volume ratio waveform of the measured person.
该非接触式血压检测方法具体如下:The non-contact blood pressure detection method is as follows:
步骤一、对采集到的心电图波形进行R波有效峰值点定位,获得心电图波形有效R波峰值位置;对阻抗容积率信号波形图进行上升支结束点定位,获得阻抗容积率信号波形图上升支结束点位置。Step 1: locate the effective peak point of the R wave of the collected electrocardiogram waveform to obtain the effective R wave peak position of the electrocardiogram waveform; locate the rising branch end point of the impedance volume ratio signal waveform to obtain the rising branch end point position of the impedance volume ratio signal waveform.
心电图波形上出现第j个R波有效峰值点后,确定心电图波形上第j个R波有效峰值点位置,并确定与心电图波形上第j个R波有效峰值点对应的阻抗容积率信号波形图的上升支结束点位置。计算第j个测量者心率HRj,HRj=1/Tj,其中Tj为心电图波形上第j个R波有效峰值点与心电图波形上第j+1个R波有效峰值点间的时间差,计算测量者的第j个脉搏波传导时间PWTTj。After the jth R wave effective peak point appears on the ECG waveform, determine the position of the jth R wave effective peak point on the ECG waveform, and determine the position of the rising branch end point of the impedance volume ratio signal waveform corresponding to the jth R wave effective peak point on the ECG waveform. Calculate the jth heart rate HR j of the measured person, HR j = 1/T j , where T j is the time difference between the jth R wave effective peak point on the ECG waveform and the j+1th R wave effective peak point on the ECG waveform, and calculate the jth pulse wave conduction time PWTT j of the measured person.
步骤二、根据第j个心率和第j个脉搏波传导时间PWTTj,计算第j个舒张压DBPj和第j个收缩压SBPj;得到第j个舒张压DBPj的计算表达式为:DBPj=a*ln PWTTj+b*HRj+c*TRCX+d*TR+e*TCX+f*SBX+g,第j个收缩压SBPj的计算表达式为:SBPj=α*ln PWTTj+β*TRBC+δ*TRCX+ε*TR+γ。其中,a、b、c、d、e、f、g、α、β、δ、ε、γ等参数值则通过测量者进行匹配取值,获取m组测量者的心电阻抗容积率数据组,m≥2,并同步使用血压计测量收缩压和舒张压。心电阻抗容积率数据组内包括心率、脉搏波传导时间以及阻抗容积率波形图的形态学参数。将m组心电阻抗容积率数据组和对应的收缩压、舒张压代入训练,便可得到与之匹配的模型参数值。Step 2: Calculate the jth diastolic pressure DBP j and the jth systolic pressure SBP j according to the jth heart rate and the jth pulse wave transmission time PWTT j ; obtain the calculation expression of the jth diastolic pressure DBP j as: DBP j = a*ln PWTT j + b*HR j + c* TRCX + d* TR + e* TCX + f* SBX + g, and the calculation expression of the jth systolic pressure SBP j as: SBP j = α*ln PWTT j + β* TRBC + δ* TRCX + ε* TR + γ. Among them, the values of parameters such as a, b, c, d, e, f, g, α, β, δ, ε, γ, etc. are matched and obtained by the measurers, and the cardiac impedance volume ratio data groups of m groups of measurers are obtained, m≥2, and the systolic pressure and diastolic pressure are measured synchronously using a sphygmomanometer. The cardiotonic impedance volume ratio data set includes heart rate, pulse wave transmission time and morphological parameters of impedance volume ratio waveform. By substituting m groups of cardiotonic impedance volume ratio data sets and corresponding systolic pressure and diastolic pressure into training, matching model parameter values can be obtained.
步骤三、将阻抗容积率信号波形图的形态学特征参数BC段时间占单周期时间比值(TRBC)、CX段时间占单周期时间比值(TRCX)、射血时间占单周期比(TR)、缓慢射血期时间(TCX)、射血时间(TBX)以及每搏心输出量(SBX)等引入到PTT血压计算模块所组成的指标数据集中。Step three, introduce the morphological characteristic parameters of the impedance-volume ratio signal waveform, such as the ratio of BC segment time to single cycle time ( TRBC ), the ratio of CX segment time to single cycle time ( TRCX ), the ratio of ejection time to single cycle ( TR ), the slow ejection period time ( TCX ), the ejection time ( TBX ) and the cardiac output per stroke ( SBX ), into the indicator data set composed of the PTT blood pressure calculation module.
步骤四、采用基于极端随机森林模型的机器学习方式,建立血压的非线性模型;随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法,其构建过程是:一、将阻抗容积率信号波形图的形态学特征参数引入到PTT血压计算模块所组成的指标数据集中;二、从原始训练集中选取6组样本数据,生成6个训练集;三、对6个训练集分别训练6个决策树模型;四、针对单个决策树模型选择最好的特征进行分裂,多次重复上述操作;五、将生成的6颗决策树组成的随机森林;六、得到血压的预测值,根据测试集交叉验证得到验证集的结果,从而评估回归模型结果的正确性。Step 4. Use machine learning based on extreme random forest model to establish a nonlinear model of blood pressure. Random forest is a supervised learning algorithm and an ensemble learning algorithm based on decision tree. Its construction process is as follows: 1. Introduce the morphological characteristic parameters of the impedance volume ratio signal waveform into the index data set composed of the PTT blood pressure calculation module; 2. Select 6 groups of sample data from the original training set to generate 6 training sets; 3. Train 6 decision tree models for the 6 training sets respectively; 4. Select the best features for a single decision tree model to split, and repeat the above operation many times; 5. Create a random forest composed of the 6 generated decision trees; 6. Obtain the predicted value of blood pressure, and obtain the result of the validation set based on the cross-validation of the test set, so as to evaluate the correctness of the regression model results.
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。What is disclosed above is only a preferred embodiment of the present invention, and it certainly cannot be used to limit the scope of rights of the present invention. Ordinary technicians in this field can understand that all or part of the processes of the above embodiment and equivalent changes made according to the claims of the present invention still fall within the scope of the invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210251624.5A CN114587307B (en) | 2022-03-15 | 2022-03-15 | A non-contact blood pressure detector and method based on capacitive coupling electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210251624.5A CN114587307B (en) | 2022-03-15 | 2022-03-15 | A non-contact blood pressure detector and method based on capacitive coupling electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114587307A CN114587307A (en) | 2022-06-07 |
CN114587307B true CN114587307B (en) | 2024-08-09 |
Family
ID=81808546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210251624.5A Active CN114587307B (en) | 2022-03-15 | 2022-03-15 | A non-contact blood pressure detector and method based on capacitive coupling electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114587307B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117524489B (en) * | 2024-01-08 | 2024-03-08 | 吉林大学 | Patient health monitoring management system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110251108A (en) * | 2019-06-27 | 2019-09-20 | 上海海事大学 | Blood pressure measuring device based on electrocardiogram and pulse wave acoustic signal |
CN113348427A (en) * | 2018-11-08 | 2021-09-03 | 加利福尼亚大学董事会 | Soft capacitance type pressure sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106413534B (en) * | 2015-08-08 | 2020-06-30 | 深圳先进技术研究院 | Continuous blood pressure measuring device, measuring model establishing method and system |
WO2018030380A1 (en) * | 2016-08-10 | 2018-02-15 | 株式会社村田製作所 | Blood pressure state measurement device |
US11357414B2 (en) * | 2019-04-26 | 2022-06-14 | Pacesetter, Inc. | Methods, systems and devices that use conductive communication to determine time delay for use in monitoring blood pressure |
-
2022
- 2022-03-15 CN CN202210251624.5A patent/CN114587307B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113348427A (en) * | 2018-11-08 | 2021-09-03 | 加利福尼亚大学董事会 | Soft capacitance type pressure sensor |
CN110251108A (en) * | 2019-06-27 | 2019-09-20 | 上海海事大学 | Blood pressure measuring device based on electrocardiogram and pulse wave acoustic signal |
Also Published As
Publication number | Publication date |
---|---|
CN114587307A (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104873186B (en) | A kind of wearable artery detection device and its data processing method | |
KR20210005644A (en) | Method for estimating blood pressure and arterial stiffness based on light volumetric variability recording (PPG) signal | |
CN111493855B (en) | System and method for non-invasive measurement of individualized cardiac output | |
CN107233087A (en) | A kind of Woundless blood pressure measuring device based on photoplethysmographic feature | |
CN112274127B (en) | A non-invasive continuous blood pressure detection method and device based on a single pulse wave | |
CN109512412B (en) | A central arterial blood pressure measuring device | |
CN204708828U (en) | A kind of wearable noinvasive arterial health checkout gear | |
CN101732040A (en) | Non-invasive multipath pulse wave detection device, system and analytical system | |
CN106264504A (en) | Noninvasive Blood Pressure Measurement System based on finger arteriogram and method | |
CN112089405B (en) | Pulse wave characteristic parameter measuring and displaying device | |
CN109512409A (en) | A kind of cardiovascular health assessment device and its application method | |
CN109793507A (en) | A cuffless blood pressure measuring device and measuring method based on finger pressure oscillometric method | |
CN110881967A (en) | Non-invasive multi-segment peripheral arterial vessel elastic function detection method and instrument thereof | |
Rachim et al. | Wrist photo-plethysmography and bio-impedance sensor for cuff-less blood pressure monitoring | |
Myint et al. | Blood pressure measurement from photo-plethysmography to pulse transit time | |
CN110897631A (en) | Device and method for real-time monitoring of pregnancy and childbirth | |
CN116803340B (en) | Noninvasive blood pressure detection method based on multi-source data fusion and graph neural network | |
CN113288103B (en) | Noninvasive heart displacement monitoring system and method | |
CN105769140B (en) | A kind of multipoint mode radial artery pulse condition collecting system and method | |
Zhang et al. | A LabVIEW based measure system for pulse wave transit time | |
CN114587307B (en) | A non-contact blood pressure detector and method based on capacitive coupling electrode | |
CN210408412U (en) | Portable dynamic cardiovascular parameter acquisition equipment | |
CN205866733U (en) | There is not continuous blood pressure measuring device of wound | |
Hoseinzadeh et al. | Design and Implementation of a blood pressure device with high sampling frequency to analyze cardiovascular diseases in LabVIEW | |
CN117100239A (en) | Blood pressure detection system based on CNN+LSTM and PPG signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |