[go: up one dir, main page]

CN114525300A - Application of polynucleotide and protein and haploid inducing line thereof - Google Patents

Application of polynucleotide and protein and haploid inducing line thereof Download PDF

Info

Publication number
CN114525300A
CN114525300A CN202210109081.3A CN202210109081A CN114525300A CN 114525300 A CN114525300 A CN 114525300A CN 202210109081 A CN202210109081 A CN 202210109081A CN 114525300 A CN114525300 A CN 114525300A
Authority
CN
China
Prior art keywords
haploid
sequence
potato
leu
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210109081.3A
Other languages
Chinese (zh)
Inventor
黄三文
陈绍江
张金喆
尹健
钟裕
唐蝶
罗嘉翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Agricultural Genomics Institute at Shenzhen of CAAS
Original Assignee
China Agricultural University
Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences
Agricultural Genomics Institute at Shenzhen of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University, Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen of CAAS filed Critical China Agricultural University
Priority to CN202210109081.3A priority Critical patent/CN114525300A/en
Publication of CN114525300A publication Critical patent/CN114525300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • A01H1/08Methods for producing changes in chromosome number
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Soil Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供多核苷酸和蛋白质的应用及其单倍体诱导系,该多核苷酸包含或由如下序列组成:1)SEQ ID NO:1所示的核苷酸序列;或2)SEQ ID NO:1所示序列的互补序列、简并序列或同源序列;或3)在严紧条件下与SEQ ID NO:1所示的核苷酸序列杂交的多核苷酸或其互补序列;4)所述序列1)‑3)中任一序列的cDNA序列或CDS序列;当该核苷酸的表达和/或活性被抑制,或者该核苷酸所表达的蛋白活性降低或失去活性时,含有该核苷酸的植物自交或与其他植物杂交即可产生单倍体后代。

Figure 202210109081

The present invention provides applications of polynucleotides and proteins and haploid inducible lines thereof, the polynucleotides comprising or consisting of the following sequences: 1) the nucleotide sequence shown in SEQ ID NO: 1; or 2) SEQ ID NO : a complementary sequence, a degenerate sequence or a homologous sequence of the sequence shown in 1; or 3) a polynucleotide or its complementary sequence that hybridizes with the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions; 4) the The cDNA sequence or CDS sequence of any one of the sequences 1)-3); when the expression and/or activity of the nucleotide is suppressed, or the protein activity expressed by the nucleotide is reduced or inactive, the Plants containing nucleotides can be selfed or crossed with other plants to produce haploid progeny.

Figure 202210109081

Description

多核苷酸和蛋白质的应用及其单倍体诱导系Applications of polynucleotides and proteins and their haploid inducible lines

技术领域technical field

本发明涉及生物育种领域,特别涉及多核苷酸和蛋白质的应用及其单倍体诱导系。The present invention relates to the field of biological breeding, in particular to the application of polynucleotides and proteins and their haploid inducible lines.

背景技术Background technique

马铃薯是世界上最重要的块茎作物,与其他主要作物不同,四倍体遗传和无性系繁殖的复杂性极大地阻碍了栽培马铃薯的遗传改良。为了获得具有足够的杂种优势和一致性的杂交种,具有高基因组纯合度的纯自交系至关重要。Potato is the most important tuber crop in the world, and unlike other major crops, the complexities of tetraploid inheritance and clonal reproduction greatly hinder the genetic improvement of cultivated potatoes. To obtain hybrids with sufficient heterosis and uniformity, pure inbred lines with high genomic homozygosity are essential.

自交衰退,是由于自交或近亲繁殖而出现的生活力下降、适应性减弱或经济性状退化的现象。原因是自交使群体内纯合体比率增加,显性度降低。马铃薯为了得到纯合自交系必须经历近交或者自交,但是其经过长期的无性繁殖积累了大量的有害突变,并且很难通过重组清除这些有害突变。自交衰退也是限制马铃薯培育优良种系的结构障碍之一。通过诱导植株产生单倍体,加倍获得纯合株系,已然成为快速获得自交系的方法之一。近年来在玉米、拟南芥和番茄等物种中已经实现通过诱导系诱导产生单倍体植株。Selfing recession is the phenomenon of decreased viability, weakened fitness, or degradation of economic traits due to selfing or inbreeding. The reason is that selfing increases the homozygous ratio in the population and reduces the dominance. Potato must undergo inbreeding or selfing in order to obtain a homozygous inbred line, but it has accumulated a large number of harmful mutations through long-term asexual reproduction, and it is difficult to eliminate these harmful mutations by recombination. Selfing decline is also one of the structural obstacles that limit the cultivation of potato elite lines. Homozygous lines are obtained by inducing plants to produce haploids by doubling, which has become one of the methods to quickly obtain inbred lines. In recent years, the induction of haploid plants by induction lines has been achieved in maize, Arabidopsis and tomato.

自交不亲和性和近交系的衰退使得开发纯自交系具有挑战性。马铃薯杂交育种仍处于早期阶段,迫切需要开发一种获得纯自交系的有效方法。与利用多代自交或回交的传统育种方法相比,双倍的单倍体生产可以使单交系的单倍体基因组在单代内固定。单倍体配子体可通过体外组织培养、体内诱导系杂交和种内杂交或CENH3着丝粒组蛋白诱导发育为双单倍体孢子体。在这些方法中,单倍体诱导(HI)触发是最有效的方法,但PLA1/MTL/NLD和DMP等HI基因仅在个别物种中证实可行,且由于物种间遗传背景的差异,导致这些物种之间诱导效率(HIR)的差异显著。目前,尚无证据证明这些HI基因在各个物种间均可通用,特别是在难以转化的基因型中。Self-incompatibility and the decline of inbred lines make the development of pure inbred lines challenging. Potato cross-breeding is still at an early stage, and there is an urgent need to develop an efficient method for obtaining pure inbred lines. In contrast to traditional breeding methods that utilize multiple generations of selfing or backcrossing, the doubled haploid production allows for the fixation of the haploid genome of a single inbred line within a single generation. Haploid gametophytes can develop into double haploid sporophytes by in vitro tissue culture, in vivo inducible line hybridization and intraspecific hybridization or CENH3 centromeric histone induction. Among these methods, haploid induction (HI) triggering is the most effective method, but HI genes such as PLA1/MTL/NLD and DMP have only been demonstrated in individual species, and due to differences in genetic background between species, these species The difference in induction efficiency (HIR) between them was significant. Currently, there is no evidence that these HI genes are universal across species, especially in difficult-to-transform genotypes.

目前,部分四倍体马铃薯可以被诱导成单倍体(二倍体水平)。然而,二倍体马铃薯是否能被诱导成单倍体(一倍体水平)尚未见报道。Currently, partially tetraploid potatoes can be induced to become haploid (diploid level). However, whether diploid potatoes can be induced to become haploid (at the monoploid level) has not yet been reported.

发明内容SUMMARY OF THE INVENTION

鉴于此,本申请提供了一种多核苷酸和蛋白质的应用及其单倍体诱导系。该核苷酸与马铃薯形成单倍体有关。当该核苷酸的表达和/或活性被抑制,或者该核苷酸所表达的蛋白活性受到影响时,例如活性降低或失去活性,含有该核苷酸的植物自交或与其他植物杂交即可产生单倍体后代。In view of this, the present application provides an application of polynucleotides and proteins and a haploid inducible line thereof. This nucleotide is associated with potato haploid formation. When the expression and/or activity of the nucleotide is inhibited, or the activity of the protein expressed by the nucleotide is affected, for example, the activity is reduced or lost, the plant containing the nucleotide will be selfed or crossed with other plants. Haploid offspring can be produced.

为了实现本发明的目的,本发明采用如下技术方案:In order to realize the purpose of the present invention, the present invention adopts following technical scheme:

本发明一方面提供一种多核苷酸在马铃薯单倍体诱导中的应用,该多核苷酸为如下序列中的至少一种:One aspect of the present invention provides the application of a polynucleotide in potato haploid induction, the polynucleotide being at least one of the following sequences:

1)SEQ ID NO:1所示的核苷酸序列,即StDMP基因序列;1) the nucleotide sequence shown in SEQ ID NO: 1, namely the StDMP gene sequence;

2)SEQ ID NO:1所示序列的互补序列、简并序列或同源序列,其中所述同源序列为与SEQ ID No.1所示的核苷酸具有75%或以上、76%或以上、77%或以上、78%或以上、79%或以上、80%或以上、81%或以上、82%或以上、83%或以上、84%或以上、85%或以上、86%或以上、87%或以上、88%或以上、89%或以上、90%或以上、91%或以上、92%或以上、93%或以上、94%或以上、95%或以上、96%或以上、97%或以上、98%或以上、99%或以上、99.1或以上、99.2或以上、99.3%或以上、99.4%或以上、99.5%或以上、99.6%或以上、99.7%或以上、99.8%或以上、或99.9%或以上同一性的多核苷酸;2) The complementary sequence, degenerate sequence or homologous sequence of the sequence shown in SEQ ID NO: 1, wherein the homologous sequence is 75% or more, 76% or more of the nucleotide shown in SEQ ID NO. Above, 77% or above, 78% or above, 79% or above, 80% or above, 81% or above, 82% or above, 83% or above, 84% or above, 85% or above, 86% or above Above, 87% or above, 88% or above, 89% or above, 90% or above, 91% or above, 92% or above, 93% or above, 94% or above, 95% or above, 96% or above Above, 97% or above, 98% or above, 99% or above, 99.1 or above, 99.2 or above, 99.3% or above, 99.4% or above, 99.5% or above, 99.6% or above, 99.7% or above, Polynucleotides of 99.8% or more, or 99.9% or more identity;

3)在严紧条件下与SEQ ID NO:1所示的核苷酸序列杂交的多核苷酸或其互补序列;3) a polynucleotide or its complementary sequence that hybridizes with the nucleotide sequence shown in SEQ ID NO: 1 under stringent conditions;

4)所述序列1)-3)中任一序列的cDNA序列或CDS序列。4) The cDNA sequence or CDS sequence of any of the sequences 1) to 3).

在本发明的一个具体实施方式中,所述CDS序列如SEQ ID NO:3所示。In a specific embodiment of the present invention, the CDS sequence is shown in SEQ ID NO:3.

本发明另一方面提供一种蛋白质在马铃薯单倍体诱导中的应用,该蛋白质为如下序列中的至少一种:Another aspect of the present invention provides the application of a protein in potato haploid induction, the protein being at least one of the following sequences:

1)SEQ ID NO:2所示的蛋白质,即所述StDMP基因序列所表达的氨基酸序列;1) the protein shown in SEQ ID NO: 2, that is, the amino acid sequence expressed by the StDMP gene sequence;

2)SEQ ID NO:2所示的蛋白质的N端和/或C端连接标签得到的融合蛋白质;2) a fusion protein obtained by linking the N-terminal and/or C-terminal of the protein shown in SEQ ID NO: 2 with a tag;

3)SEQ ID NO:2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的蛋白质;3) a protein with the same function obtained by the amino acid sequence shown in SEQ ID NO: 2 through the substitution and/or deletion and/or addition of one or several amino acid residues;

4)与SEQ ID NO:2所示的氨基酸序列具有75%或75%以上的同源性且具有相同功能的蛋白质。4) A protein having 75% or more homology with the amino acid sequence shown in SEQ ID NO: 2 and having the same function.

其中所述75%以上的同源性为76%或以上、77%或以上、78%或以上、79%或以上、80%或以上、81%或以上、82%或以上、83%或以上、84%或以上、85%或以上、86%或以上、87%或以上、88%或以上、89%或以上、90%或以上、91%或以上、92%或以上、93%或以上、94%或以上、95%或以上、96%或以上、97%或以上、98%或以上、99%或以上、99.1或以上、99.2或以上、99.3%或以上、99.4%或以上、99.5%或以上、99.6%或以上、99.7%或以上、99.8%或以上、或99.9%或以上。wherein said 75% or more homology is 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more , 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more , 94% or above, 95% or above, 96% or above, 97% or above, 98% or above, 99% or above, 99.1 or above, 99.2 or above, 99.3% or above, 99.4% or above, 99.5 % or more, 99.6% or more, 99.7% or more, 99.8% or more, or 99.9% or more.

本发明另一方面提供一种马铃薯单倍体诱导系,该单倍体诱导系通过基因的插入、取代和/或缺失的突变方式使上述多核苷酸或蛋白质的表达和/或活性降低。Another aspect of the present invention provides a potato haploid inducible line, which reduces the expression and/or activity of the above-mentioned polynucleotide or protein through gene insertion, substitution and/or deletion mutation.

作为优选,突变方式为CRISPR/Cas9、TELLEN技术、T-DNA插入、EMS诱变、ZFN技术中的一种。Preferably, the mutation method is one of CRISPR/Cas9, TELLEN technology, T-DNA insertion, EMS mutagenesis, and ZFN technology.

在本发明的一个具体实施方式中,所述突变方式为CRISPR/Cas9技术。In a specific embodiment of the present invention, the mutation mode is CRISPR/Cas9 technology.

在本发明的一个具体实施方式中,所述StDMP基因被敲除。In a specific embodiment of the present invention, the StDMP gene is knocked out.

本发明中的一个具体实施方式中,马铃薯单倍体诱导系基因组中的StDMP基因的表达和/或活性降低。In a specific embodiment of the present invention, the expression and/or activity of the StDMP gene in the genome of the potato haploid inducible line is reduced.

在本发明的一个具体实施方式中,所述StDMP基因不表达。In a specific embodiment of the present invention, the StDMP gene is not expressed.

在本发明的一个具体实施方式中,相较于发现StDMP基因时,其表达量降低。In a specific embodiment of the present invention, the expression level of the StDMP gene is reduced compared to when the StDMP gene was found.

在本发明的一个具体实施方式中,所述StDMP基因的活性降低。In a specific embodiment of the present invention, the activity of the StDMP gene is reduced.

在本发明的一个具体实施方式中,所述StDMP基因所表达的蛋白活性降低。In a specific embodiment of the present invention, the activity of the protein expressed by the StDMP gene is reduced.

在本发明的一个具体实施方式中,所述StDMP基因所表达的蛋白丧失了该蛋白原有的生物学活性,从而使所述单倍体诱导系自交或与其杂交的后代中基因组减半形成单倍体。In a specific embodiment of the present invention, the protein expressed by the StDMP gene loses the original biological activity of the protein, so that the haploid inducible line is self-bred or the offspring of its cross is halved. haploid.

在本发明的一个具体实施方式中,所述单倍体诱导系作为父本。In a specific embodiment of the present invention, the haploid inducible line serves as the male parent.

本发明还应当包括利用RNAi干扰、过表达或者启动子编辑等其他现有技术手段而使得StDMP基因的表达和/或活性降低,甚至丧失。The present invention should also include the use of RNAi interference, overexpression or promoter editing and other prior art means to reduce or even lose the expression and/or activity of the StDMP gene.

本发明另一方面提供了一种单倍体诱导系的制备方法,其包括如下步骤:将含有StDMP基因的生物材料中的StDMP基因的表达和/或活性降低,优选地,所述StDMP基因不表达,或所述StDMP基因所表达的蛋白无活性。Another aspect of the present invention provides a method for preparing a haploid inducible line, comprising the steps of: reducing the expression and/or activity of the StDMP gene in the biological material containing the StDMP gene, preferably, the StDMP gene does not expression, or the protein expressed by the StDMP gene is inactive.

本发明另一方面提供上述单倍体诱导系在马铃薯单倍体育种或杂交育种中的应用。Another aspect of the present invention provides the application of the above-mentioned haploid induction line in potato haploid breeding or cross-breeding.

本发明另一方面提供一种基因敲除盒,其为敲除上述多核苷酸的敲除盒。Another aspect of the present invention provides a gene knockout cassette, which is a knockout cassette for knocking out the above-mentioned polynucleotide.

本发明另一方面提供一种敲除载体,其为敲除上述多核苷酸的敲除载体。Another aspect of the present invention provides a knockout vector, which is a knockout vector for knocking out the above-mentioned polynucleotide.

本发明另一方面提供一种重组微生物,其为敲除上述多核苷酸的重组载体。Another aspect of the present invention provides a recombinant microorganism, which is a recombinant vector for knocking out the above-mentioned polynucleotide.

本发明另一方面提供一种转基因植物细胞系,其为敲除上述多核苷酸的转基因植物细胞系。Another aspect of the present invention provides a transgenic plant cell line, which is a transgenic plant cell line in which the above-mentioned polynucleotide is knocked out.

本发明另一方面提供一种马铃薯植物,其为如下植物之一:Another aspect of the present invention provides a potato plant, which is one of the following plants:

1)上述转基因植物细胞系生长形成的植物;1) a plant formed by the growth of the above-mentioned transgenic plant cell line;

2)所述1)中的植物自交所形成的后代,以及所述后代生长形成的植物;2) the progeny formed by the selfing of the plant in the 1), and the plant formed by the growth of the progeny;

3)所述1)中的植物与其它品种杂交所形成的后代,以及所述后代生长形成的植物。3) The progeny formed by crossing the plant in 1) with other varieties, and the plant formed by the growth of the progeny.

本发明还提供了一种马铃薯单倍体植物的制备方法,包括如下步骤:The present invention also provides a method for preparing a potato haploid plant, comprising the following steps:

1)以上述敲除StDMP基因的转基因植物为父本,将其自交或与其它品种杂交,得到种子;1) with the above-mentioned transgenic plant knocking out the StDMP gene as the male parent, it is self-crossed or crossed with other varieties to obtain seeds;

2)所述种子经1~5mg/mL赤霉素处理24~72小时后,消毒,播种在1/2MS培养基中,得到种苗;2) The seeds are treated with 1-5 mg/mL gibberellin for 24-72 hours, then sterilized and sown in 1/2 MS medium to obtain seedlings;

3)对种苗进行单倍体鉴别,得到单倍体植物。3) Haploid identification of seedlings to obtain haploid plants.

在本发明具体实施例中,赤霉素处理的浓度为2mg/mL,时间为48小时。In the specific embodiment of the present invention, the concentration of gibberellin treatment is 2 mg/mL, and the time is 48 hours.

在本发明中,单倍体鉴别的方法包括荧光标记鉴别技术、分子标记鉴别技术、成熟植株表型鉴别技术、流式细胞检测叶片鉴别技术中的一种或几种。In the present invention, the haploid identification method includes one or more of fluorescent marker identification technology, molecular marker identification technology, mature plant phenotype identification technology, and flow cytometry leaf identification technology.

本发明还提供了一种马铃薯纯合二倍体植物的制备方法,包括如下步骤:利用上述筛选方法获得单倍体植物,取单倍体植物的顶端嫩芽,采用0.35%~0.55%秋水仙素进行染色体加倍处理至少2天,得到纯合二倍体植物。The present invention also provides a method for preparing a potato homozygous diploid plant, comprising the following steps: using the above screening method to obtain a haploid plant; Chromosomal doubling was carried out for at least 2 days to obtain homozygous diploid plants.

在本发明具体实施例中,秋水仙素处理的浓度为0.4%~0.5%,时间为至少3天。In a specific embodiment of the present invention, the concentration of colchicine treatment is 0.4%-0.5%, and the time is at least 3 days.

示例性的,本发明至少具有以下优势之一:Exemplarily, the present invention has at least one of the following advantages:

一方面,本发明所提供的多核苷酸与马铃薯形成单倍体有关。当该核苷酸的表达和/或活性被抑制,或者该核苷酸所表达的蛋白活性降低或失去活性时,含有该核苷酸的植物自交或与其他植物杂交即可产生单倍体后代。因此,含有该多核苷酸的植物可以用于马铃薯的杂交育种或单倍体育种。In one aspect, the polynucleotides provided by the invention are related to potato haploid formation. When the expression and/or activity of the nucleotide is inhibited, or the activity of the protein expressed by the nucleotide is reduced or inactive, the plant containing the nucleotide can be selfed or hybridized with other plants to produce haploids offspring. Therefore, plants containing this polynucleotide can be used for cross-breeding or haploid breeding of potatoes.

另一方面,由于马铃薯本身存在大量的有害突变位点,在形成单倍体的过程中这些位点从隐性转为显性导致植株发育不良甚至致死,经过荧光初筛后的弱(无)荧光种子的发芽率只有6%。本发明利用赤霉素处理48h后播在1/2MS培养基中,将它的发芽率从6%提升至40%,显著提高了马铃薯单倍体的制备效率,为二倍体马铃薯植物的单倍体制备提供了切实有效的方法,具有实际应用和操作价值。On the other hand, due to the existence of a large number of harmful mutation sites in the potato itself, these sites change from recessive to dominant during the formation of haploid, resulting in poor plant development or even death. The germination rate of fluorescent seeds was only 6%. The invention utilizes gibberellin to treat for 48 hours and then sown in 1/2MS medium, which increases its germination rate from 6% to 40%, significantly improves the preparation efficiency of potato haploids, and is a monoploid of diploid potato plants. The ploidy preparation provides a practical and effective method with practical application and operational value.

此外,本发明提供的马铃薯纯合二倍体的制备方法,整个诱导获得单倍体的时间大概半年左右,从单倍体加倍到二倍体只需要一个月左右的时间,相比较通过五六年的自交回交获得纯合的株系,本发明提供的方法节省了大量的时间、人力和物力。诱导产生的单倍体和加倍后的二倍体,也会成为马铃薯基础研究重要材料。In addition, the preparation method of potato homozygous diploid provided by the present invention takes about half a year to obtain a haploid through induction, and it only takes about a month to double from a haploid to a diploid. Years of self-crossing and backcrossing can obtain homozygous strains, and the method provided by the present invention saves a lot of time, manpower and material resources. The induced haploid and doubled diploid will also become important materials for basic potato research.

无论是实际生产还是基础研究,本发明均具有重要作用和应用价值。Whether it is actual production or basic research, the present invention has important functions and application values.

附图说明Description of drawings

图1示马铃薯StDMP基因双等位突变株系基因型;突变株系的两套染色体和野生型相比均发生缺失突变,为功能缺失型突变体;Figure 1 shows the genotype of the potato StDMP gene biallelic mutant line; the two sets of chromosomes of the mutant line are both deleted and mutant compared with the wild type, which is a loss-of-function mutant;

图2示马铃薯单倍体种子荧光筛选结果;二倍体种子中胚和胚乳中均有红色荧光,单倍体种子胚中无荧光、胚乳中有弱荧光;比例尺=1mm;Figure 2 shows the results of fluorescence screening of potato haploid seeds; diploid seeds have red fluorescence in the embryo and endosperm, while haploid seeds have no fluorescence in the embryo and weak fluorescence in the endosperm; scale bar = 1 mm;

图3示马铃薯单倍体植株分子标记鉴定结果;I为转基因马铃薯植株亲本材料,II为杂交马铃薯B材料(PG6359,国际马铃薯中心原始编号CIP705468),III为StDMP基因双等位突变株系,IV和V为StDMP基因双等位突变株系和马铃薯B材料杂交后诱导产生的单倍体,VI和VII为StDMP基因双等位突变株系和马铃薯B材料杂交后的二倍体;单倍体材料只可以扩增出母本马铃薯B材料的基因型;Figure 3 shows the results of molecular marker identification of potato haploid plants; I is the parent material of the transgenic potato plant, II is the hybrid potato B material (PG6359, the original number of the International Potato Center CIP705468), III is the StDMP gene biallelic mutant line, IV and V are the haploids induced by the crossing of the StDMP gene biallelic mutant line with the potato B material, VI and VII are the diploids after crossing the StDMP gene biallelic mutant line with the potato B material; haploid The material can only amplify the genotype of the female potato B material;

图4示马铃薯单倍体植株表型鉴定结果;与二倍体植株相比,单倍体植株具有植株矮小,叶片较窄,株型紧凑等特征;比例尺=1cm;Figure 4 shows the results of phenotypic identification of potato haploid plants; compared with diploid plants, haploid plants have the characteristics of shorter plants, narrower leaves, and compact plant shapes; scale bar = 1 cm;

图5示马铃薯单倍体植株流式细胞仪鉴定结果;将二倍体细胞核信号峰位设为50,由于细胞内可能存在正在复制的细胞,所以二倍体细胞核信号峰位会出现在50和100附近,单倍体细胞核信号峰位则会在25和50附近出现。Figure 5 shows the identification results of potato haploid plants by flow cytometry; the signal peak of diploid nucleus is set to 50. Since there may be cells that are replicating in the cell, the signal peak of diploid nucleus will appear between 50 and 50. Around 100, the haploid nuclear signal peaks appear around 25 and 50.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

说明:本申请中StDMP基因是Soltu.DM.05G005100.1基因的简称。Description: StDMP gene in this application is the abbreviation of Soltu.DM.05G005100.1 gene.

StDMP或StDMP表示基因或蛋白可根据上下文确定。StDMP or StDMP representation gene or protein can be determined according to the context.

实施例1利用CRISPR/Cas9系统敲除StDMP基因Example 1 Knockout of StDMP gene using CRISPR/Cas9 system

利用CRISPR/Cas9系统敲除马铃薯中的StDMP基因,获得StDMP基因敲除的马铃薯突变体。具体步骤如下:The StDMP gene in potato was knocked out using the CRISPR/Cas9 system to obtain a StDMP gene knockout potato mutant. Specific steps are as follows:

步骤1、sgRNA序列的选择Step 1. Selection of sgRNA sequence

在StDMP基因上设计靶位点序列,长度为20bp。The target site sequence was designed on the StDMP gene with a length of 20 bp.

靶位点位于序列1(基因组序列)的第4-23位,位于序列3(CDS序列)的第4-23位,靶位点1序列为GAGCAAACTAGTGAAGGAAT(序列4)。The target site is located at positions 4-23 of sequence 1 (genome sequence) and located at positions 4-23 of sequence 3 (CDS sequence), and the sequence of target site 1 is GAGCAAACTAGTGAAGGAAT (sequence 4).

靶位点设计sgRNA序列为:The target site design sgRNA sequence is:

GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(序列5)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC (sequence 5)

该sgRNA的编码DNA分子为:The coding DNA molecule of this sgRNA is:

GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC(序列6)。GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC (SEQ ID NO: 6).

步骤2、CRISPR/Cas9载体的构建Step 2. Construction of CRISPR/Cas9 vector

原始载体包含sgRNA序列,进一步将步骤1中的靶位点1序列插入载体,得到CRISPR/Cas9载体。The original vector contains the sgRNA sequence, and the target site 1 sequence in step 1 is further inserted into the vector to obtain a CRISPR/Cas9 vector.

步骤3、转基因植株的获得Step 3. Obtainment of transgenic plants

将步骤2获得的CRISPR/Cas9载体通过热激转化转至农杆菌感受态细胞EHA105(农杆菌EHA105感受态细胞购自上海唯第生物技术有限公司,公众可通过购买获得),得到重组菌EHA105/CRISPR/Cas9。The CRISPR/Cas9 vector obtained in step 2 was transferred to Agrobacterium competent cell EHA105 by heat shock transformation (Agrobacterium EHA105 competent cell was purchased from Shanghai Weidi Biotechnology Co., Ltd., and the public can obtain it by purchase) to obtain recombinant strain EHA105/ CRISPR/Cas9.

再将重组菌EHA105/CRISPR/Cas9采用农杆菌侵染马铃薯的转化方法(重组农杆菌进行28℃扩繁,扩繁后的菌液用于马铃薯侵染),经过卡那抗性筛选后获得T0代转基因马铃薯植株。Then the recombinant strain EHA105/CRISPR/Cas9 was transformed by Agrobacterium to infect potatoes (recombinant Agrobacterium was propagated at 28°C, and the amplified bacterial solution was used for potato infection), and after kana resistance screening, T was obtained. Generation 0 transgenic potato plants.

实施例2 StDMP基因发生突变的转基因植株鉴定Example 2 Identification of Transgenic Plants with StDMP Gene Mutation

采集实施例1中步骤3获得的T0代转基因马铃薯植株叶片,并提取基因组DNA作为模板,采用如下引物对进行PCR扩增,得到不同株系的PCR扩增产物。The leaves of the T 0 generation transgenic potato plants obtained in step 3 in Example 1 were collected, and genomic DNA was extracted as a template, and the following primer pairs were used for PCR amplification to obtain PCR amplification products of different lines.

StDMP突变序列检测引物的序列如下:The sequences of the primers for StDMP mutation sequence detection are as follows:

StDMP-test-F:AGAAGATTCAAAACATTTGTAAGTGCATTT(序列7)StDMP-test-F: AGAAGATTCAAAACATTTGTAAGTGCATTT (sequence 7)

StDMP-test-R:ACAACTGTCACGATTTATGGTGAAA(序列8)StDMP-test-R: ACAACTGTCACGATTTATGGTGAAA (sequence 8)

将不同株系的PCR扩增产物进行Sanger测序,根据测序结果与野生型的StDMP基因进行比对。根据以下原则分别对StDMP基因型进行鉴定。The PCR amplification products of different strains were sequenced by Sanger, and compared with the wild-type StDMP gene according to the sequencing results. The StDMP genotypes were identified according to the following principles.

自靶位点序列起具有双峰特征的序列,则该株系的基因型为杂合基因型(2条同源染色体中的1条染色体上的StDMP基因突变,且另1条染色体上的StDMP基因未突变),该株系为T0代转基因马铃薯杂合突变型株系;A sequence with bimodal characteristics from the target site sequence, the genotype of the line is a heterozygous genotype (StDMP gene mutation on one of the two homologous chromosomes, and StDMP on the other chromosome The gene is not mutated), the line is a T 0 generation transgenic potato heterozygous mutant line;

自靶位点序列起具有双峰特征的序列,且2条同源染色体中StDMP基因均发生突变,则该株系为T0代转基因马铃薯双等位突变株系。Since the sequence of the target site has a bimodal characteristic sequence, and the StDMP gene is mutated in both homologous chromosomes, the line is a T 0 generation transgenic potato biallelic mutant line.

自靶位点序列起具有特异单峰特征的序列,若与野生型马铃薯的StDMP基因序列相同,则该株系的基因型为野生型,即StDMP基因序列没有发生突变;若与野生型马铃薯的StDMP基因的序列不同,则该株系的基因型为纯合基因型(2条同源染色体上的StDMP基因均发生突变),该株系为T0代转基因马铃薯纯合突变型株系。If the sequence with specific unimodal characteristics from the target site sequence is the same as the StDMP gene sequence of wild-type potato, the genotype of the line is wild-type, that is, the StDMP gene sequence has no mutation; If the sequence of StDMP gene is different, the genotype of the line is homozygous genotype (the StDMP gene on both homologous chromosomes is mutated), and the line is a homozygous mutant line of T 0 transgenic potato.

本案例鉴定到T0代StDMP基因双等位突变株系(如图1所示),用于下述单倍体诱导能力分析实验。In this case, the T 0 generation StDMP gene biallelic mutant line (as shown in Figure 1) was identified, which was used for the following haploid inducibility analysis experiment.

实施例3 StDMP基因敲除的马铃薯突变体在诱导产生单倍体中的应用Example 3 Application of StDMP gene knockout potato mutant in inducing haploid

将实施例2中所获得T0代StDMP基因双等位突变株系分别与马铃薯B材料(PG6359,国际马铃薯中心原始编号CIP705468)进行杂交获得后代,通过如下方法对后代中的单倍体进行鉴别。The T 0 generation StDMP gene biallelic mutant lines obtained in Example 2 were respectively crossed with the potato B material (PG6359, the original number of the International Potato Center CIP705468) to obtain offspring, and the haploids in the offspring were identified by the following methods. .

步骤1、荧光标记鉴别Step 1. Fluorescent label identification

CRISPR/Cas9载体上携带启动子OLEO1驱动TagRFP(Entacmaea quadricolor)的表达元件。由于启动子OLEO1在成熟的种子胚中特异表达,可通过荧光灯对TagRFP的荧光信号进行观察。因此,用携带该表达元件的突变体作为父本,与其它不携带荧光的母本材料杂交,所得到的种子中,二倍体种子的胚由于具有父本的基因组而表现出红色荧光,而单倍体种子的胚由于来源于母本而表现为无荧光(图2)。The CRISPR/Cas9 vector carries the promoter OLEO1 to drive the expression element of TagRFP (Entacmaea quadricolor). Since the promoter OLEO1 is specifically expressed in mature seed embryos, the fluorescent signal of TagRFP can be observed by fluorescent light. Therefore, using the mutant carrying the expression element as the male parent and crossing it with other non-fluorescent female parent materials, among the obtained seeds, the embryos of the diploid seeds showed red fluorescence due to the genome of the male parent, while the Embryos of haploid seeds appeared non-fluorescent due to their maternal origin (Figure 2).

步骤2、单倍体种子萌发Step 2. Haploid Seed Germination

将上述步骤1鉴定出来的弱(无)荧光种子,经过2mg/mL赤霉素浸泡处理48h后,8%的次氯酸钠消毒后铺在1/2MS培养基中。The weak (non-) fluorescent seeds identified in the above step 1 were soaked in 2 mg/mL gibberellin for 48 hours, sterilized with 8% sodium hypochlorite, and then spread in 1/2 MS medium.

由于单倍体诱导系在诱导单倍体的过程中,与卵细胞结合的精子的基因组会全部消失,与中央细胞融合的精子的基因组会保留,所以单倍体的种子萌发后根中并无荧光,而只在胚乳中有荧光。Since the haploid-inducing line is in the process of inducing haploid, the genome of the sperm combined with the egg cell will disappear, and the genome of the sperm fused with the central cell will remain, so there is no fluorescence in the roots of the haploid seeds after germination , and only fluoresce in the endosperm.

一周后,种子开始陆续萌发,发芽率达40%,筛选出根无荧光,胚乳有荧光的植株,即为单倍体植株。A week later, the seeds began to germinate one after another, and the germination rate reached 40%. The plants with no fluorescence in the roots and fluorescence in the endosperm were screened out, which were haploid plants.

步骤3、分子标记鉴别Step 3. Molecular marker identification

将上述步骤2鉴定出的根无荧光、胚乳有荧光的植株,提取其基因组DNA,采用母本材料和转基因突变株系间多态性引物A+B进行PCR扩增,并将扩增产物进行琼脂糖带型检测。Extract the genomic DNA of the plants with no fluorescence in the root and fluorescence in the endosperm identified in the above step 2, and perform PCR amplification with the polymorphic primers A+B between the maternal material and the transgenic mutant lines, and the amplified products are subjected to PCR amplification. Agarose band detection.

在本实施例中,使用的引物序列为A:CGTGGGAAGAACGTCGTG;B:CATGAGTCATATGGGGTGGA,若待测单株的扩增产物的大小为117bp,表现为1条带,认为该单株条带为母本带型,不存在父本材料的带型,则该单株是母本单倍体。若待测单株的扩增产物的大小为117bp和175bp,表现为2条带,认为该单株条带为母本和转基因突变株系杂合带型,则该单株是正常杂交的后代,是二倍体。In this example, the primer sequences used are A: CGTGGAAGAACGTCGTG; B: CATGAGTCATATGGGGTGGA. If the size of the amplified product of the single plant to be tested is 117 bp, which appears as one band, the single plant band is considered to be the female parent band type. , there is no banding pattern of the male parent material, then the individual plant is the female parent haploid. If the size of the amplified product of the single plant to be tested is 117bp and 175bp, showing two bands, the single plant band is considered to be the heterozygous band type of the female parent and the transgenic mutant line, and the single plant is the offspring of a normal cross. , is a diploid.

如图3所示,I为转基因马铃薯植株亲本材料,II为杂交马铃薯B材料(母本),III为StDMP基因双等位突变株系(父本),IV和V为StDMP基因双等位突变株系和马铃薯B材料杂交后诱导产生的单倍体,其只可以扩增出母本马铃薯B材料的基因型,扩增产物的大小为117bp,表现为1条带。VI和VII为StDMP基因双等位突变株系和马铃薯B材料杂交后的二倍体,扩增产物的大小为117bp和175bp,表现为2条带。As shown in Figure 3, I is the parent material of the transgenic potato plant, II is the hybrid potato B material (the female parent), III is the StDMP gene biallelic mutant line (the male parent), and IV and V are the StDMP gene biallelic mutation The haploid induced by the hybridization of the line with the potato B material can only amplify the genotype of the female potato B material, and the size of the amplified product is 117 bp, which appears as one band. VI and VII are diploids obtained by crossing the StDMP gene biallelic mutant line with the potato B material. The amplified products are 117 bp and 175 bp in size, showing two bands.

步骤4、成熟植株表型鉴别Step 4. Phenotypic identification of mature plants

将上述步骤1鉴定出的弱(无)荧光的种子进一步种植,观察后代单株表型,单倍体具有植株矮小,叶片较窄,株型紧凑等特征,二倍体则表现为植株高大,叶片宽大(图4)。The weak (non) fluorescent seeds identified in the above step 1 were further planted, and the phenotype of the single plant of the offspring was observed. The leaves are broad (Figure 4).

步骤5、流式细胞检测叶片鉴别Step 5. Flow cytometric detection of leaf identification

将上述步骤中获得的表现为单倍体性状植株进行流式细胞检测,具体方法如下:提取待测植株幼嫩叶片的细胞核,以二倍体马铃薯叶片作为对照;再用流式细胞仪器检测信号,首先检测二倍体细胞核信号,并将二倍体细胞核信号峰位设为50,由于细胞内可能存在正在复制的细胞,所以二倍体细胞核信号峰位会出现在50和100附近。二倍体细胞的遗传物质是单倍体细胞的两倍,因此,单倍体细胞核信号峰位会在25和50附近出现。若待测植株细胞核信号峰出现在25和50附近,则认为该待测植株为单倍体植株。若待测植株的信号峰出现在50和100附近,则认为其与二倍体细胞核信号强度富集位置相同,该待测植株为二倍体(图5)。Perform flow cytometry detection on the plants with haploid traits obtained in the above steps, and the specific method is as follows: extract the nucleus of the young leaves of the plants to be tested, and use the diploid potato leaves as a control; and then use a flow cytometer to detect the signal , firstly detect the diploid nuclear signal, and set the diploid nuclear signal peak position to 50. Since there may be replicating cells in the cell, the diploid nuclear signal peak will appear near 50 and 100. Diploid cells have twice as much genetic material as haploid cells, so the haploid nuclear signal peaks around 25 and 50. If the nuclear signal peak of the plant to be tested appears near 25 and 50, the plant to be tested is considered to be a haploid plant. If the signal peak of the plant to be tested appears near 50 and 100, it is considered to be the same as the enriched position of the signal intensity of the diploid nucleus, and the plant to be tested is a diploid (Fig. 5).

统计上述鉴定结果可以看出,马铃薯StDMP基因突变后与其他材料杂交,在后代中可获得母本单倍体。From the above identification results, it can be seen that after the potato StDMP gene is mutated and hybridized with other materials, the maternal haploid can be obtained in the offspring.

步骤6、通过秋水仙素加倍获得纯合二倍体Step 6. Homozygous diploid obtained by colchicine doubling

将获得的马铃薯单倍体,取顶端的嫩芽,移栽至秋水仙素(0.3%、0.4%、0.5%和0.6%)的MS培养中,三天后转移至正常MS培养基中。经过一段时间的培养发现在0.6%的秋水仙素浓度培养基培养过的顶芽出现死亡,其他浓度的发育正常。经过倍性的检测发现在0.3%和0.5%的秋水仙素浓度下没有发生加倍,在0.4%的秋水仙素浓度下发生加倍,加倍效率达5%。随后尝试将顶芽一直放在0.4%和0.5%的秋水仙素MS培养基中培养,发现顶芽可以正常发育。并且在0.4%浓度的秋水仙素培养基中7个顶芽有2株发生了加倍,加倍效率28.6%;0.5%浓度的秋水仙素培养基中4个顶芽有1个发生了加倍,加倍率25%,其余顶芽均未加倍。这些检测出的二倍体植株为纯合的二倍体马铃薯。The obtained potato haploids were taken from the apical shoots, transplanted into MS culture with colchicine (0.3%, 0.4%, 0.5% and 0.6%), and transferred to normal MS medium three days later. After a period of culturing, it was found that the terminal buds cultured in the 0.6% colchicine concentration medium appeared to die, and the development of other concentrations was normal. The ploidy test found that no doubling occurred at the colchicine concentration of 0.3% and 0.5%, and doubling occurred at the colchicine concentration of 0.4%, and the doubling efficiency was 5%. Subsequent attempts were made to keep apical buds in 0.4% and 0.5% colchicine MS medium, and it was found that the apical buds could develop normally. And in the 0.4% concentration of colchicine medium, 2 of the 7 terminal buds doubled, and the doubling efficiency was 28.6%; in the 0.5% concentration of colchicine medium, 1 of the 4 terminal buds doubled, and the doubling efficiency was 28.6%. The doubling rate was 25%, and the remaining terminal buds were not doubled. These detected diploid plants were homozygous diploid potatoes.

上述实施例中的序列1-序列3如下:Sequence 1-Sequence 3 in the above embodiment is as follows:

序列1:Sequence 1:

ATGGAGCAAACTAGTGAAGGAATTGGAATAAAAATGTACAGTACATCGAAACGCGTCGATAATTCATCTTCTATGTATCCTACTAATTTACCACAAGATGATACAATCCCAGAATTATCTCAACCTGCATTACCAATTGGTGGGAAAAAAAGAAGAGCAATGGCAAATGGTGTACAAAAAACACTTTCAAAAACTTCATTACTTGTTAATTTTCTACCAACAGGCACACTTTTAACATTTGAAATGTTACTTCCATCAGTATTTGGTAAAGGAGATTGTTCACCAATTACTACATTTATGATTTTAACATTACTTGGACTTTGTACTTTGTCATGTTTTTTCTTCCATTTTACCGATAGTTTTCGAGGTCCTGATGGCAAAGTTTACTATGGTTTTGTTACACCAAGAGGTTTGAAAGTTTTCAAGACTGGACTTGGTGTTGATGTGCCAAAAGATGAAAGGTAATTTTTTATGTTGGTAATCGCCCTTAGCCACGAACACTATTTTCTATAAAAAAGAGAAAAATAGAGATTTGTGATAGGAATATTTTTGACTAAAGAGTTTCATACATATATGATTGTGACAAAAGATGAAAGGTAACTTTTAGGGATGGTTTTTGTAATATTTGTGTGTGTGAGAGACGTACATCGCCCTTGGCTATGAACACTATTTTTCTATGAGAAAAGAGAAAAATATTAATTTGTGATGGAATGAATATTTTTTACTAGAGAGTTTTCATTTATGTAAATTTTATGATTGTGACAAAAGATAGAAAGGTAACTTTTTAGTGATGATTTTTTCAATGTTTATGTGTGTGAGATGTAAATTCGCCCTTGGCTATGAACACTATTTTCTATGAGAAAAGAGAAAATATACAGATTTGTGATGGAATATTTTTGACTAAAGATTTTCATCCACATAATTATAAAAAATTTATGATTGTGACAAAAGGTTTTCCGTCACAAAAATTGTGTGTTTTTTTTAAAAATATAGTTATTTGCTTAAAGTCATTGTTTCACCATAAAAGATGACAGTTTTTAGATAAATTATCAATTTCACCCCTCAAAATCATTGTTTCACCATAAATCGTGACAGTTGTATAGCAAAATCTTCAATATTGTGGACGAAATTTGCAATGCTTTCTTTATTACTAATATTGTGTTTTTTCCCCCTTAATTTAGTGTGTTGACATCATTACCTTTTTGTTGGTTGGTTGTACTAGGTACATTGTGGGATTGACAGATTTTGTACATGCAATGATGTCTGTTTTGGTGTTTGTGGCAATTGCATTTTCTGATCATAGAGTGACACTTTGTCTATTTCCTGGACATGCTAAAGAACTTGATGAAATTATGAGGAGTTTTCCATTAATGGTTGGAGTTATTTGTAGTGGACTTTTTCTTGTTTTTCCTAATTCTAGATATGGTGTTGGATGTATGTCTGCTTAGCTATTTTTATTTTATTCTACACTAGACTACATTTCTTTTCTAGTTTTATACTGTTTCATATATATTGTAATTTAAGTTGGTCGATATTTATTTAAAATTATCTATATGATATATTGTTTTCTTTTCTTTTTCAAATTTATATTTCAAAATTTAAATATATTGGTATTTTGCTAGCTGTTCTAAATATGTCCCATATCCCTCCTATTTATTGCACAAAAATAACAGCTATAACTAAATATTTATATTGCTTGGACTTTTTAAATATATCACGTGGAGTATTTCAAATTTTCAATAATACCCCCTCTATTCCAAATGTAATTGTCCTTTTCAAGAGTCGTGAATTTTCCTAATTTTCAAAACTAAATTTAATTAGATAAGATAACTATGTACAAGTTACAACCTCTGCCACACACATCAATAAATCTATCACTTCAACCAGATAAGGTAACTACTTAAAATTTGTACATCCAAATCTCTACACATTTCAAAATTGCCACTATCCAGCTGTAATCTTCTTTGTATCGTTCCAATTAAGTACGTACTTAATCATATGGCTATGTTAGTCCCAAAAATTATGTTGAATTCTGGTCATGAAATGCCTCTAATAGGCATGGGAACAGCACCAACGGCACCAACATTACCACCAATTGACCAATTAGTCTCCATTTTTATCGATGCTATCGAAGCTGGTTATCGACACTTTGACACCGCTGCGGCCTATGGCTCCGAGGAAGCACTAGGTCGAGCCGTGGCTGACGCGATACAACGCGGACTCATAGAGAGCCGTGAAGATGTTTTTATTACATCTAAGTTATGGTGCACCGAAACACATCATGACCTTGTTCTTCCTGCTCTCAAAAGATCTCTCGCGTAAGTTTGCTCATACTATTGATTTTAAATTCGAATAAAATAAAAAGTTGTGATAGATTAACATCTTATACATGTTTCTACGGGGTGGGGGTTTGGTTCAACCCCTACCATGTAGTAATATATATATATAAGCAAAAAATTCACTTTAATTAGAGGGACATGGATCTTGTCTATAATCTACAAAAATATTGTCATTGGCTCATAGCAATTTATATGTGGTAATATTCCCAACTTCATTTATGTGATTGTATTTCCTTTTAAGTCCATTCTAGATAGAATGACTATTTTCTAATTTTGATAATAATATAATTTTGACTTTCTCCTTTTTTCCATAATGACATATTTGTATAATCACACAAATATTATACAATATATTTAATATCACATATTTCAAAAATTTTATCGTCATATAAATGTTATGATACGTTTAAGATTACGAATTTTATAAGTCTTGATTTCTTTTTAAAACTTTGCATCTGATCAAAATACACTACATAAATTGAAATTACTATATAATTATTGTTGTTATTGGTACAAACACAATACATGCATCAAATTATTATACTTCATATATTTTGTCATCAATTTCATATATTAATCATGAATGTAAAGATATCTCATCCTCTTTCAGATTTCACATAATGTGGAACTATCCTTGTTGTTGTAATCATGAATGTCATAAAATGTTTTGTAGGAGATTAGGGATGGATTACTTGGACTTGTACCATATACATTGGCCAGTGAGGATGAAGAATGGTAGTGACCAAGGTATAAAGTTGGTAAATGAGGATGTAATTCCATTTGACATGAAAGGAACATGGGAAGCTATGGAAGAATGTCACAAATTAGGTTTGGCCAAATCTATTGGTGTATGCAACTTTAGTTGCACAAAACTCTCTCAACTCCTAACTCATGCTACCATTCCTCCTGCTGTAAATCAGGTAAATATAACATACTATACCCTTAGCGATATTTAATTGGGAACGAAATTTAAGAAATTTAAAGCTATAGATATTTATGGCTATAAATCATTTCGTTAATAATAACATGAATTAATTTAAAATTTAGTTTATGATCAAGAAATGATAACATTCTTTTTGTATAGACTAGAGAGGAAAGTACGACATTCTAGTATAGAATCTTTAAATCTTTTGAAATAAGATTTACTTATTTAAAAATTACATAAAAAATATATTATAAAATGCAATAATTGACAGGTGGAAATGCATGTAGCATGGAGACAAGAGAAGATGTTAGCATTTTGTAAAGAGAAAGGAATACATGTAAGTGCATGGTCTCCTCTTGGAGCAAATGGAATACCTTTTTGGGGCAATCATGCTGTTATGCAAAACTCTGTTCTAAAAGACATTGCCTTTCATAGACAAAAGAGCATTCCACAGGTACCAATAAATAATTAAATTATTCACTCAGTGTTCACACTAAATTATATTAGTATATTAACGTTTAATATATCAATAACTTTTTAAATTTGCTCTCAAATTCTATTTTGACACTTGAAGTAAGACTTGTTTCAATTGAACATCTGAACTCATGATAAATTTTTTTTTATTAGTAATCATTAGACACTTTCAGTTCAAATTTTGAAGAAAAAAGATATCTACTAGATAGTTAAGTTAACTCCATAAAATATGACATCTCCTTTAAGTATGCGATTAGCCTCAATTGAGGTTTTACGACTTATTAAGGCAAATACATTTAATCAGAGGAGGTAGCATGTTTTAAGTGTGACGTTTGAGAACACACGCTAAAAGTTTTTCAAAATTTGAACCGTAAGTCTCTAATAAAACGCTTTACTATGTGTTTTAAGTGATTAGAATAAATATTAGTTCGAACATCCAAATAAAATTGCTCACAAGGATAGTAATTGTTTGATATTTGTAGGTGGCATTGAGATGGGTATATGAGCAAGGTGTTAGTGTATTAGTGAAGAGTTTTAACAAAGATAGAATGAAAGAGAATCTTCAAATTTTGGATTGGGAATTAAGCAATGAAGAAAATGCTAAGATTCAAGAGATTCCTCAATGCAGGGGATTCAAAGGTGAACTTTTTGTTCATCCAGATGGACCATACAAATCCCCAGATGAATTCTGGGATGGTGAACTATAAATGGAGCAAACTAGTGAAGGAATTGGAATAAAAATGTACAGTACATCGAAACGCGTCGATAATTCATCTTCTATGTATCCTACTAATTTACCACAAGATGATACAATCCCAGAATTATCTCAACCTGCATTACCAATTGGTGGGAAAAAAAGAAGAGCAATGGCAAATGGTGTACAAAAAACACTTTCAAAAACTTCATTACTTGTTAATTTTCTACCAACAGGCACACTTTTAACATTTGAAATGTTACTTCCATCAGTATTTGGTAAAGGAGATTGTTCACCAATTACTACATTTATGATTTTAACATTACTTGGACTTTGTACTTTGTCATGTTTTTTCTTCCATTTTACCGATAGTTTTCGAGGTCCTGATGGCAAAGTTTACTATGGTTTTGTTACACCAAGAGGTTTGAAAGTTTTCAAGACTGGACTTGGTGTTGATGTGCCAAAAGATGAAAGGTAATTTTTTATGTTGGTAATCGCCCTTAGCCACGAACACTATTTTCTATAAAAAAGAGAAAAATAGAGATTTGTGATAGGAATATTTTTGACTAAAGAGTTTCATACATATATGATTGTGACAAAAGATGAAAGGTAACTTTTAGGGATGGTTTTTGTAATATTTGTGTGTGTGAGAGACGTACATCGCCCTTGGCTATGAACACTATTTTTCTATGAGAAAAGAGAAAAATATTAATTTGTGATGGAATGAATATTTTTTACTAGAGAGTTTTCATTTATGTAAATTTTATGATTGTGACAAAAGATAGAAAGGTAACTTTTTAGTGATGATTTTTTCAATGTTTATGTGTGTGAGATGTAAATTCGCCCTTGGCTATGAACACTATTTTCTATGAGAAAAGAGAAAATATACAGATTTGTGATGGAATATTTTTGACTAAAGATTTTCATCCACATAATTATAAAAAATTTATGATTGTGACAAAAGGTTTTCCGTCACAAAAATTGTGTGTTTTTTTTAAAAATATAGTTATTTG CTTAAAGTCATTGTTTCACCATAAAAGATGACAGTTTTTAGATAAATTATCAATTTCACCCCTCAAAATCATTGTTTCACCATAAATCGTGACAGTTGTATAGCAAAATCTTCAATATTGTGGACGAAATTTGCAATGCTTTCTTTATTACTAATATTGTGTTTTTTCCCCCTTAATTTAGTGTGTTGACATCATTACCTTTTTGTTGGTTGGTTGTACTAGGTACATTGTGGGATTGACAGATTTTGTACATGCAATGATGTCTGTTTTGGTGTTTGTGGCAATTGCATTTTCTGATCATAGAGTGACACTTTGTCTATTTCCTGGACATGCTAAAGAACTTGATGAAATTATGAGGAGTTTTCCATTAATGGTTGGAGTTATTTGTAGTGGACTTTTTCTTGTTTTTCCTAATTCTAGATATGGTGTTGGATGTATGTCTGCTTAGCTATTTTTATTTTATTCTACACTAGACTACATTTCTTTTCTAGTTTTATACTGTTTCATATATATTGTAATTTAAGTTGGTCGATATTTATTTAAAATTATCTATATGATATATTGTTTTCTTTTCTTTTTCAAATTTATATTTCAAAATTTAAATATATTGGTATTTTGCTAGCTGTTCTAAATATGTCCCATATCCCTCCTATTTATTGCACAAAAATAACAGCTATAACTAAATATTTATATTGCTTGGACTTTTTAAATATATCACGTGGAGTATTTCAAATTTTCAATAATACCCCCTCTATTCCAAATGTAATTGTCCTTTTCAAGAGTCGTGAATTTTCCTAATTTTCAAAACTAAATTTAATTAGATAAGATAACTATGTACAAGTTACAACCTCTGCCACACACATCAATAAATCTATCACTTCAACCAGATAAGGTAACTACTTAAAATTTGTACATCCAAATCTCTACACATTTCAAAATTGCCACTATCCAGCTGTAATCTTCTTTGTATCGTTCCAATTAAGTACGTACTTAATCATAT GGCTATGTTAGTCCCAAAAATTATGTTGAATTCTGGTCATGAAATGCCTCTAATAGGCATGGGAACAGCACCAACGGCACCAACATTACCACCAATTGACCAATTAGTCTCCATTTTTATCGATGCTATCGAAGCTGGTTATCGACACTTTGACACCGCTGCGGCCTATGGCTCCGAGGAAGCACTAGGTCGAGCCGTGGCTGACGCGATACAACGCGGACTCATAGAGAGCCGTGAAGATGTTTTTATTACATCTAAGTTATGGTGCACCGAAACACATCATGACCTTGTTCTTCCTGCTCTCAAAAGATCTCTCGCGTAAGTTTGCTCATACTATTGATTTTAAATTCGAATAAAATAAAAAGTTGTGATAGATTAACATCTTATACATGTTTCTACGGGGTGGGGGTTTGGTTCAACCCCTACCATGTAGTAATATATATATATAAGCAAAAAATTCACTTTAATTAGAGGGACATGGATCTTGTCTATAATCTACAAAAATATTGTCATTGGCTCATAGCAATTTATATGTGGTAATATTCCCAACTTCATTTATGTGATTGTATTTCCTTTTAAGTCCATTCTAGATAGAATGACTATTTTCTAATTTTGATAATAATATAATTTTGACTTTCTCCTTTTTTCCATAATGACATATTTGTATAATCACACAAATATTATACAATATATTTAATATCACATATTTCAAAAATTTTATCGTCATATAAATGTTATGATACGTTTAAGATTACGAATTTTATAAGTCTTGATTTCTTTTTAAAACTTTGCATCTGATCAAAATACACTACATAAATTGAAATTACTATATAATTATTGTTGTTATTGGTACAAACACAATACATGCATCAAATTATTATACTTCATATATTTTGTCATCAATTTCATATATTAATCATGAATGTAAAGATATCTCATCCTCTTTCAGATTTCACATAATGTGGAACTATCCTTGTTGTTGTAATCATGAATGTCATAA AATGTTTTGTAGGAGATTAGGGATGGATTACTTGGACTTGTACCATATACATTGGCCAGTGAGGATGAAGAATGGTAGTGACCAAGGTATAAAGTTGGTAAATGAGGATGTAATTCCATTTGACATGAAAGGAACATGGGAAGCTATGGAAGAATGTCACAAATTAGGTTTGGCCAAATCTATTGGTGTATGCAACTTTAGTTGCACAAAACTCTCTCAACTCCTAACTCATGCTACCATTCCTCCTGCTGTAAATCAGGTAAATATAACATACTATACCCTTAGCGATATTTAATTGGGAACGAAATTTAAGAAATTTAAAGCTATAGATATTTATGGCTATAAATCATTTCGTTAATAATAACATGAATTAATTTAAAATTTAGTTTATGATCAAGAAATGATAACATTCTTTTTGTATAGACTAGAGAGGAAAGTACGACATTCTAGTATAGAATCTTTAAATCTTTTGAAATAAGATTTACTTATTTAAAAATTACATAAAAAATATATTATAAAATGCAATAATTGACAGGTGGAAATGCATGTAGCATGGAGACAAGAGAAGATGTTAGCATTTTGTAAAGAGAAAGGAATACATGTAAGTGCATGGTCTCCTCTTGGAGCAAATGGAATACCTTTTTGGGGCAATCATGCTGTTATGCAAAACTCTGTTCTAAAAGACATTGCCTTTCATAGACAAAAGAGCATTCCACAGGTACCAATAAATAATTAAATTATTCACTCAGTGTTCACACTAAATTATATTAGTATATTAACGTTTAATATATCAATAACTTTTTAAATTTGCTCTCAAATTCTATTTTGACACTTGAAGTAAGACTTGTTTCAATTGAACATCTGAACTCATGATAAATTTTTTTTTATTAGTAATCATTAGACACTTTCAGTTCAAATTTTGAAGAAAAAAGATATCTACTAGATAGTTAAGTTAACTCCATAAAATATGACATCTCCTTTAAGTATGCGATTAGCCTCA ATTGAGGTTTTACGACTTATTAAGGCAAATACATTTAATCAGAGGAGGTAGCATGTTTTAAGTGTGACGTTTGAGAACACACGCTAAAAGTTTTTCAAAATTTGAACCGTAAGTCTCTAATAAAACGCTTTACTATGTGTTTTAAGTGATTAGAATAAATATTAGTTCGAACATCCAAATAAAATTGCTCACAAGGATAGTAATTGTTTGATATTTGTAGGTGGCATTGAGATGGGTATATGAGCAAGGTGTTAGTGTATTAGTGAAGAGTTTTAACAAAGATAGAATGAAAGAGAATCTTCAAATTTTGGATTGGGAATTAAGCAATGAAGAAAATGCTAAGATTCAAGAGATTCCTCAATGCAGGGGATTCAAAGGTGAACTTTTTGTTCATCCAGATGGACCATACAAATCCCCAGATGAATTCTGGGATGGTGAACTATAA

序列2:Sequence 2:

Met Glu Gln Thr Ser Glu Gly Ile Gly Ile Lys Met Tyr Ser Thr Ser LysArg Val Asp Asn Ser Ser Ser Met Tyr Pro Thr Asn Leu Pro Gln Asp Asp Thr IlePro Glu Leu Ser Gln Pro Ala Leu Pro Ile Gly Gly Lys Lys Arg Arg Ala Met AlaAsn Gly Val Gln Lys Thr Leu Ser Lys Thr Ser Leu Leu Val Asn Phe Leu Pro ThrGly Thr Leu Leu Thr Phe Glu Met Leu Leu Pro Ser Val Phe Gly Lys Gly Asp CysSer Pro Ile Thr Thr Phe Met Ile Leu Thr Leu Leu Gly Leu Cys Thr Leu Ser CysPhe Phe Phe His Phe Thr Asp Ser Phe Arg Gly Pro Asp Gly Lys Val Tyr Tyr GlyPhe Val Thr Pro Arg Gly Leu Lys Val Phe Lys Thr Gly Leu Gly Val Asp Val ProLys Asp Glu Arg Tyr Ile Val Gly Leu Thr Asp Phe Val His Ala Met Met Ser ValLeu Val Phe Val Ala Ile Ala Phe Ser Asp His Arg Val Thr Leu Cys Leu Phe ProGly His Ala Lys Glu Leu Asp Glu Ile Met Arg Ser Phe Pro Leu Met Val Gly ValIle Cys Ser Gly Leu Phe Leu Val Phe Pro Asn Ser Arg Tyr Gly Val Gly Cys MetGly Thr Ala Pro Thr Ala Pro Thr Leu Pro Pro Ile Asp Gln Leu Val Ser Ile PheIle Asp Ala Ile Glu Ala Gly Tyr Arg His Phe Asp Thr Ala Ala Ala Tyr Gly SerGlu Glu Ala Leu Gly Arg Ala Val Ala Asp Ala Ile Gln Arg Gly Leu Ile Glu SerArg Glu Asp Val Phe Ile Thr Ser Lys Leu Trp Cys Thr Glu Thr His His Asp LeuVal Leu Pro Ala Leu Lys Arg Ser Leu Ala Arg Leu Gly Met Asp Tyr Leu Asp LeuTyr His Ile His Trp Pro Val Arg Met Lys Asn Gly Ser Asp Gln Gly Ile Lys LeuVal Asn Glu Asp Val Ile Pro Phe Asp Met Lys Gly Thr Trp Glu Ala Met Glu GluCys His Lys Leu Gly Leu Ala Lys Ser Ile Gly Val Cys Asn Phe Ser Cys Thr LysLeu Ser Gln Leu Leu Thr His Ala Thr Ile Pro Pro Ala Val Asn Gln Val Glu MetHis Val Ala Trp Arg Gln Glu Lys Met Leu Ala Phe Cys Lys Glu Lys Gly Ile HisVal Ser Ala Trp Ser Pro Leu Gly Ala Asn Gly Ile Pro Phe Trp Gly Asn His AlaVal Met Gln Asn Ser Val Leu Lys Asp Ile Ala Phe His Arg Gln Lys Ser Ile ProGln Val Ala Leu Arg Trp Val Tyr Glu Gln Gly Val Ser Val Leu Val Lys Ser PheAsn Lys Asp Arg Met Lys Glu Asn Leu Gln Ile Leu Asp Trp Glu Leu Ser Asn GluGlu Asn Ala Lys Ile Gln Glu Ile Pro Gln Cys Arg Gly Phe Lys Gly Glu Leu PheVal His Pro Asp Gly Pro Tyr Lys Ser Pro Asp Glu Phe Trp Asp Gly Glu LeuMet Glu Gln Thr Ser Glu Gly Ile Gly Ile Lys Met Tyr Ser Thr Ser LysArg Val Asp Asn Ser Ser Ser Met Tyr Pro Thr Asn Leu Pro Gln Asp Asp Thr IlePro Glu Leu Ser Gln Pro Ala Leu Pro Ile Gly Gly Lys Lys Arg Arg Ala Met AlaAsn Gly Val Gln Lys Thr Leu Ser Lys Thr Ser Leu Leu Val Asn Phe Leu Pro ThrGly Thr Leu Leu Thr Phe Glu Met Leu Leu Pro Ser Val Phe Gly Lys Gly Asp CysSer Pro Ile Thr Thr Phe Met Ile Leu Thr Leu Leu Gly Leu Cys Thr Leu Ser CysPhe Phe Phe His Phe Thr Asp Ser Phe Arg Gly Pro Asp Gly Lys Val Tyr Tyr GlyPhe Val Thr Pro Arg Gly Leu Lys Val Phe Lys Thr Gly Leu Gly Val Asp Val ProLys Asp Glu Arg Tyr Ile Val Gly Leu Thr Asp Phe Val His Ala Met Met Ser ValLeu Val Phe Val Ala Ile Ala Phe Ser Asp His Arg Val Thr Leu Cys Leu Phe ProGly His Ala Lys Glu Leu Asp Glu Ile Met Arg Ser Phe Pro Leu Met Val Gly ValIle Cys Ser Gly Leu Phe Leu Val Phe Pro Asn Ser Arg Tyr Gly Val Gly Cys MetGly Thr Ala Pro Thr Ala Pro Thr Leu Pro Pro Ile Asp Gln Leu Val Ser Ile PheIle Asp Ala Ile Glu Ala Gly Tyr A rg His Phe Asp Thr Ala Ala Ala Ala Tyr Gly SerGlu Glu Ala Leu Gly Arg Ala Val Ala Asp Ala Ile Gln Arg Gly Leu Ile Glu SerArg Glu Asp Val Phe Ile Thr Ser Lys Leu Trp Cys Thr Glu Thr His His Asp LeuVal Leu Pro Ala Leu Lys Arg Ser Leu Ala Arg Leu Gly Met Asp Tyr Leu Asp LeuTyr His Ile His Trp Pro Val Arg Met Lys Asn Gly Ser Asp Gln Gly Ile Lys LeuVal Asn Glu Asp Val Ile Pro Phe Asp Met Lys Gly Thr Trp Glu Ala Met Glu GluCys His Lys Leu Gly Leu Ala Lys Ser Ile Gly Val Cys Asn Phe Ser Cys Thr LysLeu Ser Gln Leu Leu Thr His Ala Thr Ile Pro Pro Ala Val Asn Gln Val Glu MetHis Val Ala Trp Arg Gln Glu Lys Met Leu Ala Phe Cys Lys Glu Lys Gly Ile HisVal Ser Ala Trp Ser Pro Leu Gly Ala Asn Gly Ile Pro Phe Trp Gly Asn His AlaVal Met Gln Asn Ser Val Leu Lys Asp Ile Ala Phe His Arg Gln Lys Ser Ile ProGln Val Ala Leu Arg Trp Val Tyr Glu Gln Gly Val Ser Val Leu Val Lys Ser PheAsn Lys Asp Arg Met Lys Glu Asn Leu Gln Ile Leu Asp Trp Glu Leu Ser Asn GluGlu Asn Ala Lys Ile Gln Glu Ile Pro Gln Cys Arg Gly Phe Ly s Gly Glu Leu PheVal His Pro Asp Gly Pro Tyr Lys Ser Pro Asp Glu Phe Trp Asp Gly Glu Leu

序列3:Sequence 3:

ATGGAGCAAACTAGTGAAGGAATTGGAATAAAAATGTACAGTACATCGAAACGCGTCGATAATTCATCTTCTATGTATCCTACTAATTTACCACAAGATGATACAATCCCAGAATTATCTCAACCTGCATTACCAATTGGTGGGAAAAAAAGAAGAGCAATGGCAAATGGTGTACAAAAAACACTTTCAAAAACTTCATTACTTGTTAATTTTCTACCAACAGGCACACTTTTAACATTTGAAATGTTACTTCCATCAGTATTTGGTAAAGGAGATTGTTCACCAATTACTACATTTATGATTTTAACATTACTTGGACTTTGTACTTTGTCATGTTTTTTCTTCCATTTTACCGATAGTTTTCGAGGTCCTGATGGCAAAGTTTACTATGGTTTTGTTACACCAAGAGGTTTGAAAGTTTTCAAGACTGGACTTGGTGTTGATGTGCCAAAAGATGAAAGGTACATTGTGGGATTGACAGATTTTGTACATGCAATGATGTCTGTTTTGGTGTTTGTGGCAATTGCATTTTCTGATCATAGAGTGACACTTTGTCTATTTCCTGGACATGCTAAAGAACTTGATGAAATTATGAGGAGTTTTCCATTAATGGTTGGAGTTATTTGTAGTGGACTTTTTCTTGTTTTTCCTAATTCTAGATATGGTGTTGGATGCATGGGAACAGCACCAACGGCACCAACATTACCACCAATTGACCAATTAGTCTCCATTTTTATCGATGCTATCGAAGCTGGTTATCGACACTTTGACACCGCTGCGGCCTATGGCTCCGAGGAAGCACTAGGTCGAGCCGTGGCTGACGCGATACAACGCGGACTCATAGAGAGCCGTGAAGATGTTTTTATTACATCTAAGTTATGGTGCACCGAAACACATCATGACCTTGTTCTTCCTGCTCTCAAAAGATCTCTCGCGAGATTAGGGATGGATTACTTGGACTTGTACCATATACATTGGCCAGTGAGGATGAAGAATGGTAGTGACCAAGGTATAAAGTTGGTAAATGAGGATGTAATTCCATTTGACATGAAAGGAACATGGGAAGCTATGGAAGAATGTCACAAATTAGGTTTGGCCAAATCTATTGGTGTATGCAACTTTAGTTGCACAAAACTCTCTCAACTCCTAACTCATGCTACCATTCCTCCTGCTGTAAATCAGGTGGAAATGCATGTAGCATGGAGACAAGAGAAGATGTTAGCATTTTGTAAAGAGAAAGGAATACATGTAAGTGCATGGTCTCCTCTTGGAGCAAATGGAATACCTTTTTGGGGCAATCATGCTGTTATGCAAAACTCTGTTCTAAAAGACATTGCCTTTCATAGACAAAAGAGCATTCCACAGGTGGCATTGAGATGGGTATATGAGCAAGGTGTTAGTGTATTAGTGAAGAGTTTTAACAAAGATAGAATGAAAGAGAATCTTCAAATTTTGGATTGGGAATTAAGCAATGAAGAAAATGCTAAGATTCAAGAGATTCCTCAATGCAGGGGATTCAAAGGTGAACTTTTTGTTCATCCAGATGGACCATACAAATCCCCAGATGAATTCTGGGATGGTGAACTATAAATGGAGCAAACTAGTGAAGGAATTGGAATAAAAATGTACAGTACATCGAAACGCGTCGATAATTCATCTTCTATGTATCCTACTAATTTACCACAAGATGATACAATCCCAGAATTATCTCAACCTGCATTACCAATTGGTGGGAAAAAAAGAAGAGCAATGGCAAATGGTGTACAAAAAACACTTTCAAAAACTTCATTACTTGTTAATTTTCTACCAACAGGCACACTTTTAACATTTGAAATGTTACTTCCATCAGTATTTGGTAAAGGAGATTGTTCACCAATTACTACATTTATGATTTTAACATTACTTGGACTTTGTACTTTGTCATGTTTTTTCTTCCATTTTACCGATAGTTTTCGAGGTCCTGATGGCAAAGTTTACTATGGTTTTGTTACACCAAGAGGTTTGAAAGTTTTCAAGACTGGACTTGGTGTTGATGTGCCAAAAGATGAAAGGTACATTGTGGGATTGACAGATTTTGTACATGCAATGATGTCTGTTTTGGTGTTTGTGGCAATTGCATTTTCTGATCATAGAGTGACACTTTGTCTATTTCCTGGACATGCTAAAGAACTTGATGAAATTATGAGGAGTTTTCCATTAATGGTTGGAGTTATTTGTAGTGGACTTTTTCTTGTTTTTCCTAATTCTAGATATGGTGTTGGATGCATGGGAACAGCACCAACGGCACCAACATTACCACCAATTGACCAATTAGTCTCCATTTTTATCGATGCTATCGAAGCTGGTTATCGACACTTTGACACCGCTGCGGCCTATGGCTCCGAGGAAGCACTAGGTCGAGCCGTGGCTGACGCGATACAACGCGGACTCATAGAGAGCCGTGAAGATGTTTTTATTACATCTAAGTTATGGTGCACCGAAACACATCATGACCTTGTTCTTCCTGCTCTCAAAAGATCTCTCGCGAGATTAGGGATGGATTACTTGGACTTGTACCATATACATTGGCCAGTGAGGATGAAGAATGGTA GTGACCAAGGTATAAAGTTGGTAAATGAGGATGTAATTCCATTTGACATGAAAGGAACATGGGAAGCTATGGAAGAATGTCACAAATTAGGTTTGGCCAAATCTATTGGTGTATGCAACTTTAGTTGCACAAAACTCTCTCAACTCCTAACTCATGCTACCATTCCTCCTGCTGTAAATCAGGTGGAAATGCATGTAGCATGGAGACAAGAGAAGATGTTAGCATTTTGTAAAGAGAAAGGAATACATGTAAGTGCATGGTCTCCTCTTGGAGCAAATGGAATACCTTTTTGGGGCAATCATGCTGTTATGCAAAACTCTGTTCTAAAAGACATTGCCTTTCATAGACAAAAGAGCATTCCACAGGTGGCATTGAGATGGGTATATGAGCAAGGTGTTAGTGTATTAGTGAAGAGTTTTAACAAAGATAGAATGAAAGAGAATCTTCAAATTTTGGATTGGGAATTAAGCAATGAAGAAAATGCTAAGATTCAAGAGATTCCTCAATGCAGGGGATTCAAAGGTGAACTTTTTGTTCATCCAGATGGACCATACAAATCCCCAGATGAATTCTGGGATGGTGAACTATAA

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention. within.

序列表sequence listing

<110> 中国农业科学院深圳农业基因组研究所<110> Shenzhen Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences

中国农业大学China Agricultural University

中国农业科学院蔬菜花卉研究所Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences

<120> 多核苷酸和蛋白质的应用及其单倍体诱导系<120> Applications of polynucleotides and proteins and their haploid inducible lines

<130> 21-13620CN<130> 21-13620CN

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 4445<211> 4445

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

atggagcaaa ctagtgaagg aattggaata aaaatgtaca gtacatcgaa acgcgtcgat 60atggagcaaa ctagtgaagg aattggaata aaaatgtaca gtacatcgaa acgcgtcgat 60

aattcatctt ctatgtatcc tactaattta ccacaagatg atacaatccc agaattatct 120aattcatctt ctatgtatcc tactaattta ccacaagatg atacaatccc agaattatct 120

caacctgcat taccaattgg tgggaaaaaa agaagagcaa tggcaaatgg tgtacaaaaa 180caacctgcat taccaattgg tgggaaaaaa agaagagcaa tggcaaatgg tgtacaaaaa 180

acactttcaa aaacttcatt acttgttaat tttctaccaa caggcacact tttaacattt 240acactttcaa aaacttcatt acttgttaat tttctaccaa caggcacact tttaacattt 240

gaaatgttac ttccatcagt atttggtaaa ggagattgtt caccaattac tacatttatg 300gaaatgttac ttccatcagt atttggtaaa ggagattgtt caccaattac tacatttatg 300

attttaacat tacttggact ttgtactttg tcatgttttt tcttccattt taccgatagt 360attttaacat tacttggact ttgtactttg tcatgttttt tcttccattt taccgatagt 360

tttcgaggtc ctgatggcaa agtttactat ggttttgtta caccaagagg tttgaaagtt 420tttcgaggtc ctgatggcaa agtttactat ggttttgtta caccaagagg tttgaaagtt 420

ttcaagactg gacttggtgt tgatgtgcca aaagatgaaa ggtaattttt tatgttggta 480ttcaagactg gacttggtgt tgatgtgcca aaagatgaaa ggtaattttt tatgttggta 480

atcgccctta gccacgaaca ctattttcta taaaaaagag aaaaatagag atttgtgata 540atcgccctta gccacgaaca ctattttcta taaaaaagag aaaaatagag atttgtgata 540

ggaatatttt tgactaaaga gtttcataca tatatgattg tgacaaaaga tgaaaggtaa 600ggaatatttt tgactaaaga gtttcataca tatatgattg tgacaaaaga tgaaaggtaa 600

cttttaggga tggtttttgt aatatttgtg tgtgtgagag acgtacatcg cccttggcta 660cttttaggga tggttttttgt aatatttgtg tgtgtgagag acgtacatcg cccttggcta 660

tgaacactat ttttctatga gaaaagagaa aaatattaat ttgtgatgga atgaatattt 720tgaacactat ttttctatga gaaaagagaa aaatattaat ttgtgatgga atgaatattt 720

tttactagag agttttcatt tatgtaaatt ttatgattgt gacaaaagat agaaaggtaa 780tttactagag agttttcatt tatgtaaatt ttatgattgt gacaaaagat agaaaggtaa 780

ctttttagtg atgatttttt caatgtttat gtgtgtgaga tgtaaattcg cccttggcta 840ctttttagtg atgatttttt caatgtttat gtgtgtgaga tgtaaattcg cccttggcta 840

tgaacactat tttctatgag aaaagagaaa atatacagat ttgtgatgga atatttttga 900tgaacactat tttctatgag aaaagagaaa atatacagat ttgtgatgga atatttttga 900

ctaaagattt tcatccacat aattataaaa aatttatgat tgtgacaaaa ggttttccgt 960ctaaagattt tcatccacat aattataaaa aatttatgat tgtgacaaaa ggttttccgt 960

cacaaaaatt gtgtgttttt tttaaaaata tagttatttg cttaaagtca ttgtttcacc 1020cacaaaaatt gtgtgttttt tttaaaaata tagttatttg cttaaagtca ttgtttcacc 1020

ataaaagatg acagttttta gataaattat caatttcacc cctcaaaatc attgtttcac 1080ataaaagatg acagttttta gataaattat caatttcacc cctcaaaatc attgtttcac 1080

cataaatcgt gacagttgta tagcaaaatc ttcaatattg tggacgaaat ttgcaatgct 1140cataaatcgt gacagttgta tagcaaaatc ttcaatattg tggacgaaat ttgcaatgct 1140

ttctttatta ctaatattgt gttttttccc ccttaattta gtgtgttgac atcattacct 1200ttctttatta ctaatattgt gttttttccc ccttaattta gtgtgttgac atcattacct 1200

ttttgttggt tggttgtact aggtacattg tgggattgac agattttgta catgcaatga 1260ttttgttggt tggttgtact aggtacattg tgggattgac agattttgta catgcaatga 1260

tgtctgtttt ggtgtttgtg gcaattgcat tttctgatca tagagtgaca ctttgtctat 1320tgtctgtttt ggtgtttgtg gcaattgcat tttctgatca tagagtgaca ctttgtctat 1320

ttcctggaca tgctaaagaa cttgatgaaa ttatgaggag ttttccatta atggttggag 1380ttcctggaca tgctaaagaa cttgatgaaa ttatgaggag ttttccatta atggttggag 1380

ttatttgtag tggacttttt cttgtttttc ctaattctag atatggtgtt ggatgtatgt 1440ttatttgtag tggacttttt cttgtttttc ctaattctag atatggtgtt ggatgtatgt 1440

ctgcttagct atttttattt tattctacac tagactacat ttcttttcta gttttatact 1500ctgcttagct atttttattt tattctacac tagactacat ttcttttcta gttttatact 1500

gtttcatata tattgtaatt taagttggtc gatatttatt taaaattatc tatatgatat 1560gtttcatata tattgtaatt taagttggtc gatatttatt taaaattatc tatatgatat 1560

attgttttct tttctttttc aaatttatat ttcaaaattt aaatatattg gtattttgct 1620attgttttct tttctttttc aaatttatat ttcaaaattt aaatatattg gtattttgct 1620

agctgttcta aatatgtccc atatccctcc tatttattgc acaaaaataa cagctataac 1680agctgttcta aatatgtccc atatccctcc tatttattgc acaaaaataa cagctataac 1680

taaatattta tattgcttgg actttttaaa tatatcacgt ggagtatttc aaattttcaa 1740taaatattta tattgcttgg actttttaaa tatatcacgt ggagtatttc aaattttcaa 1740

taataccccc tctattccaa atgtaattgt ccttttcaag agtcgtgaat tttcctaatt 1800taataccccc tctattccaa atgtaattgt ccttttcaag agtcgtgaat tttcctaatt 1800

ttcaaaacta aatttaatta gataagataa ctatgtacaa gttacaacct ctgccacaca 1860ttcaaaacta aatttaatta gataagataa ctatgtacaa gttacaacct ctgccacaca 1860

catcaataaa tctatcactt caaccagata aggtaactac ttaaaatttg tacatccaaa 1920catcaataaa tctatcactt caaccagata aggtaactac ttaaaatttg tacatccaaa 1920

tctctacaca tttcaaaatt gccactatcc agctgtaatc ttctttgtat cgttccaatt 1980tctctacaca tttcaaaatt gccactatcc agctgtaatc ttctttgtat cgttccaatt 1980

aagtacgtac ttaatcatat ggctatgtta gtcccaaaaa ttatgttgaa ttctggtcat 2040aagtacgtac ttaatcatat ggctatgtta gtcccaaaaa ttatgttgaa ttctggtcat 2040

gaaatgcctc taataggcat gggaacagca ccaacggcac caacattacc accaattgac 2100gaaatgcctc taataggcat gggaacagca ccaacggcac caacattacc accaattgac 2100

caattagtct ccatttttat cgatgctatc gaagctggtt atcgacactt tgacaccgct 2160caattagtct ccatttttat cgatgctatc gaagctggtt atcgacactt tgacaccgct 2160

gcggcctatg gctccgagga agcactaggt cgagccgtgg ctgacgcgat acaacgcgga 2220gcggcctatg gctccgagga agcactaggt cgagccgtgg ctgacgcgat acaacgcgga 2220

ctcatagaga gccgtgaaga tgtttttatt acatctaagt tatggtgcac cgaaacacat 2280ctcatagaga gccgtgaaga tgtttttatt acatctaagt tatggtgcac cgaaacacat 2280

catgaccttg ttcttcctgc tctcaaaaga tctctcgcgt aagtttgctc atactattga 2340catgaccttg ttcttcctgc tctcaaaaga tctctcgcgt aagtttgctc atactattga 2340

ttttaaattc gaataaaata aaaagttgtg atagattaac atcttataca tgtttctacg 2400ttttaaattc gaataaaata aaaagttgtg atagattaac atcttataca tgtttctacg 2400

gggtgggggt ttggttcaac ccctaccatg tagtaatata tatatataag caaaaaattc 2460gggtgggggt ttggttcaac ccctaccatg tagtaatata tatatataag caaaaaattc 2460

actttaatta gagggacatg gatcttgtct ataatctaca aaaatattgt cattggctca 2520actttaatta gagggacatg gatcttgtct ataatctaca aaaatattgt cattggctca 2520

tagcaattta tatgtggtaa tattcccaac ttcatttatg tgattgtatt tccttttaag 2580tagcaattta tatgtggtaa tattcccaac ttcatttatg tgattgtatt tccttttaag 2580

tccattctag atagaatgac tattttctaa ttttgataat aatataattt tgactttctc 2640tccattctag atagaatgac tattttctaa ttttgataat aatataattt tgactttctc 2640

cttttttcca taatgacata tttgtataat cacacaaata ttatacaata tatttaatat 2700cttttttcca taatgacata tttgtataat cacacaaata ttatacaata tatttaatat 2700

cacatatttc aaaaatttta tcgtcatata aatgttatga tacgtttaag attacgaatt 2760cacatatttc aaaaatttta tcgtcatata aatgttatga tacgtttaag attacgaatt 2760

ttataagtct tgatttcttt ttaaaacttt gcatctgatc aaaatacact acataaattg 2820ttataagtct tgatttcttt ttaaaacttt gcatctgatc aaaatacact acataaattg 2820

aaattactat ataattattg ttgttattgg tacaaacaca atacatgcat caaattatta 2880aaattactat ataattattg ttgttattgg tacaaacaca atacatgcat caaattatta 2880

tacttcatat attttgtcat caatttcata tattaatcat gaatgtaaag atatctcatc 2940tacttcatat attttgtcat caatttcata tattaatcat gaatgtaaag attctcatc 2940

ctctttcaga tttcacataa tgtggaacta tccttgttgt tgtaatcatg aatgtcataa 3000ctctttcaga tttcacataa tgtggaacta tccttgttgt tgtaatcatg aatgtcataa 3000

aatgttttgt aggagattag ggatggatta cttggacttg taccatatac attggccagt 3060aatgttttgt aggagattag ggatggatta cttggacttg taccatatac attggccagt 3060

gaggatgaag aatggtagtg accaaggtat aaagttggta aatgaggatg taattccatt 3120gaggatgaag aatggtagtg accaaggtat aaagttggta aatgaggatg taattccatt 3120

tgacatgaaa ggaacatggg aagctatgga agaatgtcac aaattaggtt tggccaaatc 3180tgacatgaaa ggaacatggg aagctatgga agaatgtcac aaattaggtt tggccaaatc 3180

tattggtgta tgcaacttta gttgcacaaa actctctcaa ctcctaactc atgctaccat 3240tattggtgta tgcaacttta gttgcacaaa actctctcaa ctcctaactc atgctaccat 3240

tcctcctgct gtaaatcagg taaatataac atactatacc cttagcgata tttaattggg 3300tcctcctgct gtaaatcagg taaatataac atactatacc cttagcgata tttaattggg 3300

aacgaaattt aagaaattta aagctataga tatttatggc tataaatcat ttcgttaata 3360aacgaaattt aagaaattta aagctataga tatttatggc tataaatcat ttcgttaata 3360

ataacatgaa ttaatttaaa atttagttta tgatcaagaa atgataacat tctttttgta 3420ataacatgaa ttaatttaaa atttagttta tgatcaagaa atgataacat tctttttgta 3420

tagactagag aggaaagtac gacattctag tatagaatct ttaaatcttt tgaaataaga 3480tagactagag aggaaagtac gacattctag tatagaatct ttaaatcttt tgaaataaga 3480

tttacttatt taaaaattac ataaaaaata tattataaaa tgcaataatt gacaggtgga 3540tttacttatt taaaaattac ataaaaaata tattataaaa tgcaataatt gacaggtgga 3540

aatgcatgta gcatggagac aagagaagat gttagcattt tgtaaagaga aaggaataca 3600aatgcatgta gcatggagac aagagaagat gttagcattt tgtaaagaga aaggaataca 3600

tgtaagtgca tggtctcctc ttggagcaaa tggaatacct ttttggggca atcatgctgt 3660tgtaagtgca tggtctcctc ttggagcaaa tggaatacct ttttggggca atcatgctgt 3660

tatgcaaaac tctgttctaa aagacattgc ctttcataga caaaagagca ttccacaggt 3720tatgcaaaac tctgttctaa aagacattgc ctttcataga caaaagagca ttccacaggt 3720

accaataaat aattaaatta ttcactcagt gttcacacta aattatatta gtatattaac 3780accaataaat aattaaatta ttcactcagt gttcacacta aattatatta gtatattaac 3780

gtttaatata tcaataactt tttaaatttg ctctcaaatt ctattttgac acttgaagta 3840gtttaatata tcaataactt tttaaatttg ctctcaaatt ctattttgac acttgaagta 3840

agacttgttt caattgaaca tctgaactca tgataaattt ttttttatta gtaatcatta 3900agacttgttt caattgaaca tctgaactca tgataaattt ttttttatta gtaatcatta 3900

gacactttca gttcaaattt tgaagaaaaa agatatctac tagatagtta agttaactcc 3960gacactttca gttcaaattt tgaagaaaaa agatatctac tagatagtta agttaactcc 3960

ataaaatatg acatctcctt taagtatgcg attagcctca attgaggttt tacgacttat 4020ataaaatatg acatctcctt taagtatgcg attagcctca attgaggttt tacgacttat 4020

taaggcaaat acatttaatc agaggaggta gcatgtttta agtgtgacgt ttgagaacac 4080taaggcaaat acatttaatc agaggaggta gcatgtttta agtgtgacgt ttgagaacac 4080

acgctaaaag tttttcaaaa tttgaaccgt aagtctctaa taaaacgctt tactatgtgt 4140acgctaaaag tttttcaaaa tttgaaccgt aagtctctaa taaaacgctt tactatgtgt 4140

tttaagtgat tagaataaat attagttcga acatccaaat aaaattgctc acaaggatag 4200tttaagtgat tagaataaat attagttcga acatccaaat aaaattgctc acaaggatag 4200

taattgtttg atatttgtag gtggcattga gatgggtata tgagcaaggt gttagtgtat 4260taattgtttg atatttgtag gtggcattga gatgggtata tgagcaaggt gttagtgtat 4260

tagtgaagag ttttaacaaa gatagaatga aagagaatct tcaaattttg gattgggaat 4320tagtgaagag ttttaacaaa gatagaatga aagagaatct tcaaattttg gattgggaat 4320

taagcaatga agaaaatgct aagattcaag agattcctca atgcagggga ttcaaaggtg 4380taagcaatga agaaaatgct aagattcaag agattcctca atgcagggga ttcaaaggtg 4380

aactttttgt tcatccagat ggaccataca aatccccaga tgaattctgg gatggtgaac 4440aactttttgt tcatccagat ggaccataca aatccccaga tgaattctgg gatggtgaac 4440

tataa 4445tataa 4445

<210> 2<210> 2

<211> 529<211> 529

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

Met Glu Gln Thr Ser Glu Gly Ile Gly Ile Lys Met Tyr Ser Thr SerMet Glu Gln Thr Ser Glu Gly Ile Gly Ile Lys Met Tyr Ser Thr Ser

1 5 10 151 5 10 15

Lys Arg Val Asp Asn Ser Ser Ser Met Tyr Pro Thr Asn Leu Pro GlnLys Arg Val Asp Asn Ser Ser Ser Met Tyr Pro Thr Asn Leu Pro Gln

20 25 30 20 25 30

Asp Asp Thr Ile Pro Glu Leu Ser Gln Pro Ala Leu Pro Ile Gly GlyAsp Asp Thr Ile Pro Glu Leu Ser Gln Pro Ala Leu Pro Ile Gly Gly

35 40 45 35 40 45

Lys Lys Arg Arg Ala Met Ala Asn Gly Val Gln Lys Thr Leu Ser LysLys Lys Arg Arg Ala Met Ala Asn Gly Val Gln Lys Thr Leu Ser Lys

50 55 60 50 55 60

Thr Ser Leu Leu Val Asn Phe Leu Pro Thr Gly Thr Leu Leu Thr PheThr Ser Leu Leu Val Asn Phe Leu Pro Thr Gly Thr Leu Leu Thr Phe

65 70 75 8065 70 75 80

Glu Met Leu Leu Pro Ser Val Phe Gly Lys Gly Asp Cys Ser Pro IleGlu Met Leu Leu Pro Ser Val Phe Gly Lys Gly Asp Cys Ser Pro Ile

85 90 95 85 90 95

Thr Thr Phe Met Ile Leu Thr Leu Leu Gly Leu Cys Thr Leu Ser CysThr Thr Phe Met Ile Leu Thr Leu Leu Gly Leu Cys Thr Leu Ser Cys

100 105 110 100 105 110

Phe Phe Phe His Phe Thr Asp Ser Phe Arg Gly Pro Asp Gly Lys ValPhe Phe Phe His Phe Thr Asp Ser Phe Arg Gly Pro Asp Gly Lys Val

115 120 125 115 120 125

Tyr Tyr Gly Phe Val Thr Pro Arg Gly Leu Lys Val Phe Lys Thr GlyTyr Tyr Gly Phe Val Thr Pro Arg Gly Leu Lys Val Phe Lys Thr Gly

130 135 140 130 135 140

Leu Gly Val Asp Val Pro Lys Asp Glu Arg Tyr Ile Val Gly Leu ThrLeu Gly Val Asp Val Pro Lys Asp Glu Arg Tyr Ile Val Gly Leu Thr

145 150 155 160145 150 155 160

Asp Phe Val His Ala Met Met Ser Val Leu Val Phe Val Ala Ile AlaAsp Phe Val His Ala Met Met Ser Val Leu Val Phe Val Ala Ile Ala

165 170 175 165 170 175

Phe Ser Asp His Arg Val Thr Leu Cys Leu Phe Pro Gly His Ala LysPhe Ser Asp His Arg Val Thr Leu Cys Leu Phe Pro Gly His Ala Lys

180 185 190 180 185 190

Glu Leu Asp Glu Ile Met Arg Ser Phe Pro Leu Met Val Gly Val IleGlu Leu Asp Glu Ile Met Arg Ser Phe Pro Leu Met Val Gly Val Ile

195 200 205 195 200 205

Cys Ser Gly Leu Phe Leu Val Phe Pro Asn Ser Arg Tyr Gly Val GlyCys Ser Gly Leu Phe Leu Val Phe Pro Asn Ser Arg Tyr Gly Val Gly

210 215 220 210 215 220

Cys Met Gly Thr Ala Pro Thr Ala Pro Thr Leu Pro Pro Ile Asp GlnCys Met Gly Thr Ala Pro Thr Ala Pro Thr Leu Pro Pro Ile Asp Gln

225 230 235 240225 230 235 240

Leu Val Ser Ile Phe Ile Asp Ala Ile Glu Ala Gly Tyr Arg His PheLeu Val Ser Ile Phe Ile Asp Ala Ile Glu Ala Gly Tyr Arg His Phe

245 250 255 245 250 255

Asp Thr Ala Ala Ala Tyr Gly Ser Glu Glu Ala Leu Gly Arg Ala ValAsp Thr Ala Ala Ala Tyr Gly Ser Glu Glu Ala Leu Gly Arg Ala Val

260 265 270 260 265 270

Ala Asp Ala Ile Gln Arg Gly Leu Ile Glu Ser Arg Glu Asp Val PheAla Asp Ala Ile Gln Arg Gly Leu Ile Glu Ser Arg Glu Asp Val Phe

275 280 285 275 280 285

Ile Thr Ser Lys Leu Trp Cys Thr Glu Thr His His Asp Leu Val LeuIle Thr Ser Lys Leu Trp Cys Thr Glu Thr His His Asp Leu Val Leu

290 295 300 290 295 300

Pro Ala Leu Lys Arg Ser Leu Ala Arg Leu Gly Met Asp Tyr Leu AspPro Ala Leu Lys Arg Ser Leu Ala Arg Leu Gly Met Asp Tyr Leu Asp

305 310 315 320305 310 315 320

Leu Tyr His Ile His Trp Pro Val Arg Met Lys Asn Gly Ser Asp GlnLeu Tyr His Ile His Trp Pro Val Arg Met Lys Asn Gly Ser Asp Gln

325 330 335 325 330 335

Gly Ile Lys Leu Val Asn Glu Asp Val Ile Pro Phe Asp Met Lys GlyGly Ile Lys Leu Val Asn Glu Asp Val Ile Pro Phe Asp Met Lys Gly

340 345 350 340 345 350

Thr Trp Glu Ala Met Glu Glu Cys His Lys Leu Gly Leu Ala Lys SerThr Trp Glu Ala Met Glu Glu Cys His Lys Leu Gly Leu Ala Lys Ser

355 360 365 355 360 365

Ile Gly Val Cys Asn Phe Ser Cys Thr Lys Leu Ser Gln Leu Leu ThrIle Gly Val Cys Asn Phe Ser Cys Thr Lys Leu Ser Gln Leu Leu Thr

370 375 380 370 375 380

His Ala Thr Ile Pro Pro Ala Val Asn Gln Val Glu Met His Val AlaHis Ala Thr Ile Pro Pro Ala Val Asn Gln Val Glu Met His Val Ala

385 390 395 400385 390 395 400

Trp Arg Gln Glu Lys Met Leu Ala Phe Cys Lys Glu Lys Gly Ile HisTrp Arg Gln Glu Lys Met Leu Ala Phe Cys Lys Glu Lys Gly Ile His

405 410 415 405 410 415

Val Ser Ala Trp Ser Pro Leu Gly Ala Asn Gly Ile Pro Phe Trp GlyVal Ser Ala Trp Ser Pro Leu Gly Ala Asn Gly Ile Pro Phe Trp Gly

420 425 430 420 425 430

Asn His Ala Val Met Gln Asn Ser Val Leu Lys Asp Ile Ala Phe HisAsn His Ala Val Met Gln Asn Ser Val Leu Lys Asp Ile Ala Phe His

435 440 445 435 440 445

Arg Gln Lys Ser Ile Pro Gln Val Ala Leu Arg Trp Val Tyr Glu GlnArg Gln Lys Ser Ile Pro Gln Val Ala Leu Arg Trp Val Tyr Glu Gln

450 455 460 450 455 460

Gly Val Ser Val Leu Val Lys Ser Phe Asn Lys Asp Arg Met Lys GluGly Val Ser Val Leu Val Lys Ser Phe Asn Lys Asp Arg Met Lys Glu

465 470 475 480465 470 475 480

Asn Leu Gln Ile Leu Asp Trp Glu Leu Ser Asn Glu Glu Asn Ala LysAsn Leu Gln Ile Leu Asp Trp Glu Leu Ser Asn Glu Glu Asn Ala Lys

485 490 495 485 490 495

Ile Gln Glu Ile Pro Gln Cys Arg Gly Phe Lys Gly Glu Leu Phe ValIle Gln Glu Ile Pro Gln Cys Arg Gly Phe Lys Gly Glu Leu Phe Val

500 505 510 500 505 510

His Pro Asp Gly Pro Tyr Lys Ser Pro Asp Glu Phe Trp Asp Gly GluHis Pro Asp Gly Pro Tyr Lys Ser Pro Asp Glu Phe Trp Asp Gly Glu

515 520 525 515 520 525

LeuLeu

<210> 3<210> 3

<211> 1590<211> 1590

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

atggagcaaa ctagtgaagg aattggaata aaaatgtaca gtacatcgaa acgcgtcgat 60atggagcaaa ctagtgaagg aattggaata aaaatgtaca gtacatcgaa acgcgtcgat 60

aattcatctt ctatgtatcc tactaattta ccacaagatg atacaatccc agaattatct 120aattcatctt ctatgtatcc tactaattta ccacaagatg atacaatccc agaattatct 120

caacctgcat taccaattgg tgggaaaaaa agaagagcaa tggcaaatgg tgtacaaaaa 180caacctgcat taccaattgg tgggaaaaaa agaagagcaa tggcaaatgg tgtacaaaaa 180

acactttcaa aaacttcatt acttgttaat tttctaccaa caggcacact tttaacattt 240acactttcaa aaacttcatt acttgttaat tttctaccaa caggcacact tttaacattt 240

gaaatgttac ttccatcagt atttggtaaa ggagattgtt caccaattac tacatttatg 300gaaatgttac ttccatcagt atttggtaaa ggagattgtt caccaattac tacatttatg 300

attttaacat tacttggact ttgtactttg tcatgttttt tcttccattt taccgatagt 360attttaacat tacttggact ttgtactttg tcatgttttt tcttccattt taccgatagt 360

tttcgaggtc ctgatggcaa agtttactat ggttttgtta caccaagagg tttgaaagtt 420tttcgaggtc ctgatggcaa agtttactat ggttttgtta caccaagagg tttgaaagtt 420

ttcaagactg gacttggtgt tgatgtgcca aaagatgaaa ggtacattgt gggattgaca 480ttcaagactg gacttggtgt tgatgtgcca aaagatgaaa ggtacattgt gggattgaca 480

gattttgtac atgcaatgat gtctgttttg gtgtttgtgg caattgcatt ttctgatcat 540gattttgtac atgcaatgat gtctgttttg gtgtttgtgg caattgcatt ttctgatcat 540

agagtgacac tttgtctatt tcctggacat gctaaagaac ttgatgaaat tatgaggagt 600agagtgacac tttgtctatt tcctggacat gctaaagaac ttgatgaaat tatgaggagt 600

tttccattaa tggttggagt tatttgtagt ggactttttc ttgtttttcc taattctaga 660tttccattaa tggttggagt tatttgtagt ggactttttc ttgtttttcc taattctaga 660

tatggtgttg gatgcatggg aacagcacca acggcaccaa cattaccacc aattgaccaa 720tatggtgttg gatgcatggg aacagcacca acggcaccaa cattaccacc aattgaccaa 720

ttagtctcca tttttatcga tgctatcgaa gctggttatc gacactttga caccgctgcg 780ttagtctcca ttttttatcga tgctatcgaa gctggttatc gacactttga caccgctgcg 780

gcctatggct ccgaggaagc actaggtcga gccgtggctg acgcgataca acgcggactc 840gcctatggct ccgaggaagc actaggtcga gccgtggctg acgcgataca acgcggactc 840

atagagagcc gtgaagatgt ttttattaca tctaagttat ggtgcaccga aacacatcat 900atagagagcc gtgaagatgt ttttattaca tctaagttat ggtgcaccga aacacatcat 900

gaccttgttc ttcctgctct caaaagatct ctcgcgagat tagggatgga ttacttggac 960gaccttgttc ttcctgctct caaaagatct ctcgcgagat tagggatgga ttacttggac 960

ttgtaccata tacattggcc agtgaggatg aagaatggta gtgaccaagg tataaagttg 1020ttgtaccata tacattggcc agtgaggatg aagaatggta gtgaccaagg tataaagttg 1020

gtaaatgagg atgtaattcc atttgacatg aaaggaacat gggaagctat ggaagaatgt 1080gtaaatgagg atgtaattcc atttgacatg aaaggaacat gggaagctat ggaagaatgt 1080

cacaaattag gtttggccaa atctattggt gtatgcaact ttagttgcac aaaactctct 1140cacaaattag gtttggccaa atctattggt gtatgcaact ttagttgcac aaaactctct 1140

caactcctaa ctcatgctac cattcctcct gctgtaaatc aggtggaaat gcatgtagca 1200caactcctaa ctcatgctac cattcctcct gctgtaaatc aggtggaaat gcatgtagca 1200

tggagacaag agaagatgtt agcattttgt aaagagaaag gaatacatgt aagtgcatgg 1260tggagacaag agaagatgtt agcattttgt aaagagaaag gaatacatgt aagtgcatgg 1260

tctcctcttg gagcaaatgg aatacctttt tggggcaatc atgctgttat gcaaaactct 1320tctcctcttg gagcaaatgg aatacctttt tggggcaatc atgctgttat gcaaaactct 1320

gttctaaaag acattgcctt tcatagacaa aagagcattc cacaggtggc attgagatgg 1380gttctaaaag acattgcctt tcatagacaa aagagcattc cacaggtggc attgagatgg 1380

gtatatgagc aaggtgttag tgtattagtg aagagtttta acaaagatag aatgaaagag 1440gtatatgagc aaggtgttag tgtattagtg aagagtttta acaaagatag aatgaaagag 1440

aatcttcaaa ttttggattg ggaattaagc aatgaagaaa atgctaagat tcaagagatt 1500aatcttcaaa ttttggattg ggaattaagc aatgaagaaa atgctaagat tcaagagatt 1500

cctcaatgca ggggattcaa aggtgaactt tttgttcatc cagatggacc atacaaatcc 1560cctcaatgca ggggattcaa aggtgaactt tttgttcatc cagatggacc atacaaatcc 1560

ccagatgaat tctgggatgg tgaactataa 1590ccagatgaat tctgggatgg tgaactataa 1590

<210> 4<210> 4

<211> 20<211> 20

<212> DNA/RNA<212> DNA/RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

gagcaaacta gtgaaggaat 20gagcaaacta gtgaaggaat 20

<210> 5<210> 5

<211> 76<211> 76

<212> DNA/RNA<212> DNA/RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu 60

ggcaccgagu cggugc 76ggcaccgagu cggugc 76

<210> 6<210> 6

<211> 76<211> 76

<212> DNA/RNA<212> DNA/RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60

ggcaccgagt cggtgc 76ggcaccgagt cggtgc 76

<210> 7<210> 7

<211> 30<211> 30

<212> DNA/RNA<212> DNA/RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

agaagattca aaacatttgt aagtgcattt 30agaagattca aaacatttgt aagtgcattt 30

<210> 8<210> 8

<211> 25<211> 25

<212> DNA/RNA<212> DNA/RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

acaactgtca cgatttatgg tgaaa 25acaactgtca cgatttatgg tgaaa 25

Claims (10)

1. The application of polynucleotide in haploid induction of potato, wherein the polynucleotide is at least one of the following sequences:
1) SEQ ID NO: 1;
2) SEQ ID NO: 1, wherein the homologous sequence is a sequence that is complementary to, degenerate as, or homologous to the sequence set forth in SEQ ID NO: 1 or more than 75% identity;
3) under stringent conditions with SEQ ID NO: 1 or a complementary sequence thereof;
4) a cDNA sequence or CDS sequence of any one of the sequences 1) to 3).
2. The application of a protein in potato haploid induction is characterized in that the protein is at least one of the following sequences:
1) SEQ ID NO: 2;
2) SEQ ID NO: 2, the N end and/or the C end of the protein shown in the figure is connected with a label to obtain a fusion protein;
3) SEQ ID NO: 2 by substitution and/or deletion and/or addition of one or more amino acid residues to obtain the protein with the same function;
4) and SEQ ID NO: 2 has homology of 75% or more than 75% and has the same function.
3. A potato haploid inducer line, characterized in that the haploid inducer line reduces the expression and/or activity of the polynucleotide of claim 1 or the protein of claim 2 by means of mutation by insertion, substitution and/or deletion of a gene.
4. The haploid inducer line of claim 3, wherein the mutation is one of CRISPR/Cas9, TELLEN technology, T-DNA insertion, EMS mutagenesis, ZFN technology.
5. Use of the haploid inducer line of claim 3 or 4 for haploid breeding or crossbreeding of potatoes.
6. A biomaterial, characterized in that it is any of the following 1) to 4):
1) a knock-out cassette for knocking out the polynucleotide of claim 1;
2) a knock-out vector for knocking out the polynucleotide of claim 1;
3) a recombinant microorganism which knockdown the polynucleotide of claim 1;
4) a transgenic plant cell line wherein the polynucleotide of claim 1 is knocked out.
7. A potato plant grown from the transgenic plant cell line of claim 6.
8. A potato plant, which is a progeny resulting from selfing of the plant of claim 7, and a plant grown from said progeny;
or progeny thereof formed by crossing the plant of claim 7 with another variety, and plants grown from said progeny.
9. A preparation method of a potato haploid plant is characterized by comprising the following steps:
1) selfing or crossing with other varieties to obtain seeds by using the haploid inducer line as a male parent in claim 3;
2) treating the seeds with gibberellin of 1-5 mg/mL for 24-72 hours, disinfecting, and sowing in 1/2MS culture medium to obtain seedlings;
3) and (4) carrying out haploid identification on the seedlings to obtain haploid plants.
10. A method for preparing a potato homozygous diploid plant, comprising the steps of: obtaining haploid plants by the screening method of claim 9, taking the top shoots of the haploid plants, and performing chromosome doubling treatment with 0.35% -0.55% colchicine for at least 2 days to obtain homozygous diploid plants.
CN202210109081.3A 2022-01-28 2022-01-28 Application of polynucleotide and protein and haploid inducing line thereof Pending CN114525300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210109081.3A CN114525300A (en) 2022-01-28 2022-01-28 Application of polynucleotide and protein and haploid inducing line thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210109081.3A CN114525300A (en) 2022-01-28 2022-01-28 Application of polynucleotide and protein and haploid inducing line thereof

Publications (1)

Publication Number Publication Date
CN114525300A true CN114525300A (en) 2022-05-24

Family

ID=81622226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210109081.3A Pending CN114525300A (en) 2022-01-28 2022-01-28 Application of polynucleotide and protein and haploid inducing line thereof

Country Status (1)

Country Link
CN (1) CN114525300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117461557A (en) * 2022-07-21 2024-01-30 北京市农林科学院 Efficient doubling method for corn haploid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828714A (en) * 2014-03-07 2014-06-04 毕节市农业科学研究所 Method for induction and diploidization of different-germplasm haploid of corn in northwest Guizhou
US20190029202A1 (en) * 2015-10-02 2019-01-31 Keygene N.V. Method for the production of haploid and subsequent doubled haploid plants
CN111763687A (en) * 2019-03-12 2020-10-13 中国农业大学 A method for rapid breeding of maize haploid inducible lines based on gene editing technology
CN111996209A (en) * 2019-05-27 2020-11-27 中国农业大学 Parthenogenetic haploid-inducing gene DMP and its application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828714A (en) * 2014-03-07 2014-06-04 毕节市农业科学研究所 Method for induction and diploidization of different-germplasm haploid of corn in northwest Guizhou
US20190029202A1 (en) * 2015-10-02 2019-01-31 Keygene N.V. Method for the production of haploid and subsequent doubled haploid plants
CN111763687A (en) * 2019-03-12 2020-10-13 中国农业大学 A method for rapid breeding of maize haploid inducible lines based on gene editing technology
CN111996209A (en) * 2019-05-27 2020-11-27 中国农业大学 Parthenogenetic haploid-inducing gene DMP and its application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117461557A (en) * 2022-07-21 2024-01-30 北京市农林科学院 Efficient doubling method for corn haploid

Similar Documents

Publication Publication Date Title
KR101388281B1 (en) Disease resistent cucumber plants
ES2366228T3 (en) CLOSTEROVIRUS RESISTANT MELON PLANTS.
CN111996209B (en) Parthenogenesis haploid inducing gene DMP and application thereof
CN104342450B (en) The method for cultivating corn haploid induction line of the corn haploid-induction higher than corn haploid induction line CAU5
US12022788B2 (en) Prolific flowering watermelon
EP4240143A1 (en) Parthenocarpic watermelon plants
US20180265887A1 (en) Basil Plants With High Tolerance to Downy Mildew
US12052971B2 (en) Solanaceous plant capable of stenospermocarpic fruit formation
CN114525300A (en) Application of polynucleotide and protein and haploid inducing line thereof
AU2021359680A9 (en) Parthenocarpic watermelon plants
EP4038193A1 (en) Begomovirus resistance related genes
CN116445497B (en) Cabbage BoDMP9 gene and application thereof in maternal haploid induction
CN117305326B (en) Broccoli BoCENH3 gene and its application in haploid induction
US20220340917A1 (en) Watermelon with pale microseeds
US20230404007A1 (en) Parthenocarpic watermelon plants
EP4278891A1 (en) Clubroot resistance and markers in brassica
OA21301A (en) Parthenocarpic watermelon plants.
CN117925633A (en) Cabbage BoCENH3 gene and its application in haploid induction
OA21227A (en) Parthenocarpic watermelon plants.
KR20230023711A (en) Capsicum annuum plants with improved thrips resistance
JP2023523531A (en) Plants with improved nematode resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220524