CN114522682B - 一种炭载双金属单原子催化剂及其制备方法 - Google Patents
一种炭载双金属单原子催化剂及其制备方法 Download PDFInfo
- Publication number
- CN114522682B CN114522682B CN202011321179.2A CN202011321179A CN114522682B CN 114522682 B CN114522682 B CN 114522682B CN 202011321179 A CN202011321179 A CN 202011321179A CN 114522682 B CN114522682 B CN 114522682B
- Authority
- CN
- China
- Prior art keywords
- catalyst
- carbon
- halogen
- metals
- bimetallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/62—Platinum group metals with gallium, indium, thallium, germanium, tin or lead
- B01J23/622—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
- B01J23/626—Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/652—Chromium, molybdenum or tungsten
- B01J23/6522—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/656—Manganese, technetium or rhenium
- B01J23/6562—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/656—Manganese, technetium or rhenium
- B01J23/6567—Rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8913—Cobalt and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
一种炭载双金属单原子催化剂及其制备方法。一种炭载双金属单原子催化剂,其特征在于,该催化剂含有铱、铑、铂、钌、金、银、铼、钴、镍、铬、锡中的两种金属,且该催化剂中两种金属分别以含羰基和卤素配体的单核络合物形式原子级单分散在炭载体表面。其制备方法为先制备炭载双金属纳米颗粒,再利用一氧化碳和含卤物质(卤素、氢卤酸或卤代烃)的一种或二种以上同时与两种金属纳米颗粒进行反应,对其进行原位原子级单分散热处理,从而制得炭载双金属单原子催化剂。本申请公开了一种炭载双金属单原子催化剂的制备方法,其工艺新颖、操作简单,普适性强,可批量制备高载量,高分散,稳定性强的炭载双金属单原子催化剂。
Description
技术领域
本发明属于催化剂技术领域,具体涉及一种碳载体负载的双金属单原子催化剂及其制备方法。
背景技术
在工业催化剂中,负载型金属催化剂占比70%以上,尤其负载型贵金属催化剂,广泛用于各种催化剂反应,如加氢异构,醋酸加氢、电化学、羰基合成、合成气转化、三效催化剂、航天催化等。在工业生产中,负载型金属催化剂往往呈现为纳米颗粒,其具有较好的热稳定性和化学稳定性,在工业生产扮演了重要的催化角色,为大宗化学品生产做出了重要的贡献。但是,对于负载纳米金属催化剂,往往只有表面暴露的原子才具有催化剂活性,这就使得其金属原子利用效率降低,尤其是资源有限的贵金属,会造成资源的浪费。
与此同时,科研人员发现,金属催化剂催化活性与其纳米尺寸、形貌、晶相等具有密切关系。负载型金属团簇催化剂的高活性归因于其金属活性组分在高比表面积载体上以高度分散的纳米团簇形式存在,可以充分利用催化活性位点,进而提高了催化剂的反应活性和金属原子利用率。为了使负载型金属催化剂上每个金属原子的催化效果达到最佳,研究者不断减小活性金属的颗粒尺寸。
最新的实验和理论研究发现,亚纳米团簇比纳米级粒子具有更好的催化活性或选择性。从理论上讲,负载型金属催化剂分散的极限是金属以单原子的形式均匀分布在载体上,这不仅是负载型金属催化剂的理想状态,而且也将催化科学带入到一个更小的研究尺度-单原子催化。对于高负载量的金属催化剂,在催化反应过程中只有极少数金属活性组分起催化作用。相比较而言,每个金属原子都作为活性位的单原子催化剂在效率上“以一当十”,而传统负载型金属催化剂的金属利用效率远远低于理想水平。特别是对于贵金属来说,大量使用无疑增加了催化剂成本,不利于在工业生产中进行规模化应用。因此,为了最大限度地发挥贵金属的催化效率,降低制造成本,制备单原子金属催化剂成为研究者的重要选择。
单原子金属催化剂,具有金属单原子级分散和单催化活性位特点,自2011年起,凭借其近100%的金属原子利用效率,更多配位不饱和位,以及理想的均相催化多相化研究模型,引起人们的广泛关注,相较于其他纳米或亚纳米催化剂而言,具有非常高的催化效率。此外,单原子金属催化剂兼具均相催化剂均匀单一的活性中心和多相催化剂稳定易分离的特点,将多相催化与均相催化联系在一起,在氧化、还原、水煤气转化、电催化等方面表现出优异的催化性能。
然而,由于单金属原子催化剂具有高的表面能、可迁移性,容易团聚,在催化反应过程中保持较高的稳定性是一个重大的挑战。这不仅限制了单原子催化剂的实际应用,也导致了其活性中心的精细结构难以解析,反应构效关系难以建立。
此外,相较于单金属活性位点催化剂,双金属活性位点催化剂更具吸引力,它不仅具有单点催化的本质特性,还具有双催化活性位点,往往表现出更佳的催化活性,可以实现不同反应的在相邻位点上的串联催化。其过程既可以表现为双活性位点协同催化,也可以表现为双活性位点接力催化。在双金属活性位点催化剂中,其不同的金属活性位点之间既能表现出协同催化,又可以表现为串联催化。
但是目前,负载型双金属单原子催化剂的制备非常少,深圳市国创新能源研究院报道了一种利用电化学方法(CN 108682870 B),制备了金属有机骨架掺氮缺陷碳负载的Pt基双金属单原子催化剂。天津大学报道了一种原子层积技术制备Ru-Pt/TiO2催化剂(CN108993487 B),其催化剂在合成氨反应中寿命更长,有较强的抗中毒能力,大大降低了反应活化能,催化效率大幅度提升。李亚栋院士等利用高分子聚合物聚合-热解-挥发(PPE)方法制备了聚酞菁负载的ZnFe催化剂,在电化学中表现出了优异的催化活性(Angew.Chem.Int.Ed.2018,57,8614–8618)。上海应用技术大学报道一种利用聚乙烯醇制备氧化石墨烯负载的CuNi双金属单原子催化剂(CN 110479342 A)。以上这些方法步骤复杂、条件苛刻、所需仪器昂贵,金属负载量很低,或某一方法只对特定金属有效,这些缺陷要求需要发展一种操作简单,对多种金属都有作用的制备超高分散负载型双金属单原子催化剂的方法。
发明内容
本申请在于提供一种炭载体双金属单原子催化剂的制备方法,工艺新颖简单,普适性强,可批量生产高载量,高分散,稳定性强的碳基载体负载的双金属单原子催化剂。
本发明的技术方案为:
一种炭载体双金属单原子催化剂及其制备方法。该催化剂包括炭载体和活性金属N和M,N和M分别为铱、铑、铂、钌、金、银、铼、钴、镍、铬、锡中的一种金属,且N和M不相同,金属N和M分别以含羰基和卤素配体的单核络合物形式原子级单分散在炭载体的表面;其制备方法简单描述为先制备炭载双金属纳米颗粒催化剂,再利用一氧化碳和含卤物质(卤素、氢卤酸或卤代烃)和金属纳米颗粒的反应,对其进行原位原子级单分散热处理,从而制得炭载双金属单原子催化剂。
其负载的金属N和M在催化剂中的质量含量百分占比为0.05~5%,优选占比为0.1~3%,进一步优选占比为0.1~1%;
其负载的金属N和M均为原子级单分散的含羰基和卤素配体的单核络合物。
所使用的炭载体可为椰壳炭、介孔炭、石墨烯、或者碳纳米管的一种。
根据权利1所述的炭载双金属单原子催化剂的制备方法,简述为:先制备炭载体负载的双金属纳米颗粒,再利用一氧化碳和含卤物质(卤素、氢卤酸或卤代烃)-与金属N和M反应,对其进行原位原子级分散的热处理反应,即可制得炭载双金属单原子催化剂。
所述的炭载双金属纳米颗粒,可以通过制备含有双金属N和M的前驱液等体积浸渍炭载体、惰性气体焙烧(300℃-500℃)、氢气还原(300℃-500℃)等方式制备;
所用到的卤素、氢卤酸或卤代烷烃,包括氯气、溴气、碘单质,氯化氢、溴化氢、碘化氢,氯甲烷、溴甲烷、溴乙烷、溴丙烷、碘甲烷、碘乙烷、碘丙烷、碘苯等。优选溴、碘、溴化物或者碘化物,进一步优选碘或碘化物。
卤素或卤代烷烃的引入方式既可以通过一氧化碳鼓泡的形式引入,也可以通过泵进料的形式引入。
对于某些较难原子级分散的金属如铱、金等纳米颗粒,在负载后采用氧气和混合气交替处理的方式,依次通过引入氧气进行处理反应,再用一氧化碳与含卤混合气(卤素、氢卤酸或卤代烃中的一种或二种以上)处理反应。
于:反应条件为,温度100~350℃,压力0.1~3.0MPa;CO和含卤物质(卤素、氢卤酸或卤代烃中的一种或二种以上)的摩尔比例在0.1~10,处理时间为10min~10h。
本申请专利的有益效果包括但不限于:
与现有的技术相比,本发明提供了一种炭载双金属单原子催化剂及其制备方法。该制备工艺新颖、操作简单,条件温和,普适性强,可批量生产高载量,高分散,稳定性强的炭载双金属单原子催化剂。
附图说明
图1为本发明申请中制备的Rh-Ru均为单原子分散状态图,其中,(a)为实施例1中样品Rh-Ru/AC的HR-TEM图;(b)为实施例1中样品Rh1-Ru1/AC的HAADF-STM图。
图2为本发明申请中制备的Cr-Pt均为单原子分散状态图,其中,(a)为实施例5中样品Cr-Pt/AC的HR-TEM图;(b)为实施例5中样品Cr1-Pt1/AC的HAADF-STM图;由图可以看出本发明申请中制备的Cr-Pt均为单原子分散状态。
图3为本发明申请中制备的Rh-Au均为单原子分散状态图,其中,(a)为实施例7中样品Rh-Au的HR-TEM图;(b)为实施例7中样品Rh1-Au1/AC的HAADF-STM图;由图可以看出本发明申请中制备的Rh-Au均为单原子分散状态。
图4为本发明申请中制备的Ir-Au均为单原子分散状态图,其中,(a)为实施例8中样品Ir-Au的HR-TEM图;(b)为实施例8中样品Ir1-Au1/AC的HAADF-STM图;
具体实施方式
下面结合实施例详述本申请,但不限制本发明要保护的内容。如无特殊说明,本申请所用原料和试剂均来自商业购买,未经处理直接使用,所用仪器设备采用厂家推荐的方案和参数。
实施例中,透射电镜采用日本JEM-2100的仪器检测。
实施例1
量取0.27gRhCl3和0.27gRuCl3溶于15ml的去离子水中,得到RhCl3-RuCl3的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气300℃还原2h,得到活性炭负载的负载量各为1%的Rh-Ru纳米催化剂,记为样品Rh-Ru/AC;然后用一氧化碳和碘甲烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3I=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Rh1-Ru1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Rh-Ru催化剂。
实施例2
量取0.54gIrCl3和0.16gSnCl2溶于15ml的去离子水中,得到IrCl3-SnCl2的前驱体溶液,然后浸渍10.0g介孔炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气400℃还原2h,得到介孔负载的负载量各为1%的Ir-Sn纳米催化剂,记为样品Ir-Sn/MC;然后用一氧化碳和溴甲烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3Br=2)于240℃处理2h,得到的介孔炭负载的双金属单原子催化剂,记为样品Ir1-Sn1/MC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Ir-Sn催化剂。
实施例3
量取0.27gRhCl3和0.18gCoCl2溶于15ml的去离子水中,得到RhCl3-CoCl2的前驱体溶液,然后浸渍10.0石墨烯。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气350℃还原2h,得到石墨烯负载的负载量各为1%的Rh-Co纳米催化剂,记为样品Rh-Co/GO;然后用一氧化碳和氯甲烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3Cl=2)于240℃处理2h,得到石墨烯负载的双金属单原子催化剂,记为样品Rh1-Co1/GO。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Rh-Co催化剂。
实施例4
量取0.54gMnCl2和0.27gRhCl3溶于15ml的去离子水中,得到MnCl2-RhCl3的前驱体溶液,然后浸渍10.0g碳纳米管。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气400℃还原2h,得到碳纳米管负载的负载量各为1%的Mn-Rh纳米催化剂,记为样品Mn-Rh/CNTs;然后用一氧化碳和碘化氢的混合气氛(压力为:0.1MPa;摩尔比CO:HI=2)于240℃处理2h,得到的碳纳米管负载的双金属单原子催化剂,记为样品Mn1-Rh1/CNTs。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Rh-Mn催化剂。
实施例5
量取0.27gCrCl3和0.44gH2PtCl4·6H2O溶于15ml的去离子水中,得到CrCl3-H2PtCl4的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气400℃还原2h,得到活性炭负载的负载量各为1%的Cr-Pt纳米催化剂,记为样品Cr-Pt/AC;然后用一氧化碳和溴化氢的混合气氛(压力为:0.1MPa;摩尔比CO:HBr=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Cr1-Pt1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Cr-Pt催化剂。
实施例6
量取0.54gAgNO3和0.54gIrCl3溶于15ml的去离子水中,得到AgNO3-IrCl3的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气300℃还原2h,得到活性炭负载的负载量各为1%的Ag-Ir纳米催化剂,记为样品Ag-Ir/AC;Ag-Ir/AC在5%的O2/Ar混合气下钝化处理4h,然后用一氧化碳和氯化氢的混合气氛(压力为:0.1MPa;摩尔比CO:HCl=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Ag1-Ir1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Ir-Ag催化剂。
实施例7
量取0.27gRhCl3和0.40gHAuCl4·4H2O溶于15ml的去离子水中,得到RhCl3-HAuCl4的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气300℃还原2h,得到活性炭负载的负载量各为1%的Rh-Au纳米催化剂,记为样品Rh-Au/AC;然后用一氧化碳和氯气的混合气氛(压力为:0.1MPa;摩尔比CO:Cl2=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Rh1-Au1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Rh-Au催化剂。
实施例8
量取0.54gIrCl3和0.80gHAuCl4·4H2O溶于15ml的去离子水中,得到IrCl3-HAuCl4的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气300℃还原2h,得到活性炭负载的负载量各为1%的Ir-Au纳米催化剂,记为样品Ir-Au/AC;Ir-Au/AC在5%的O2/Ar混合气下钝化处理4h,然后用一氧化碳和碘甲烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3I=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Ir1-Au1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Ir-Au催化剂。
实施例9
量取0.88gH2PtCl4·6H2O和0.80gHAuCl4·4H2O溶于15ml的去离子水中,得到H2PtCl4-HAuCl4的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气300℃还原2h,得到活性炭负载的负载量各为1%的Pt-Au纳米催化剂,记为样品Pt-Au/AC;然后用一氧化碳和碘乙烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3CH2I=2)于240℃处理2h,得到活性炭负载的双金属单原子催化剂,记为样品Pt1-Au1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Pt-Au催化剂。
实施例10
量取0.88gH2PtCl4·6H2O和0.64gNiCl2·6H2O溶于15ml的去离子水中,得到H2PtCl4-NiCl2的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,然后用氢气300℃还原2h,得到活性炭负载的负载量各为1%的Pt-Ni纳米催化剂,记为样品Pt-Ni/AC;然后用一氧化碳和碘苯的混合气氛(压力为:0.1MPa;摩尔比CO:C6H5I=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Pt1-Ni1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Pt-Ni催化剂。
实施例11
量取0.36gIrCl3和0.80gHAuCl4·4H2O溶于15ml的去离子水中,得到IrCl3-HAuCl4的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,H2 300℃还原2h,得到活性炭负载的负载量各为1%的Ir-Au纳米催化剂,记为样品Ir-Au/AC;Ir-Au/AC在5%O2/Ar混合气下钝化处理4h,然后用一氧化碳和溴乙烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3CH2Br=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Ir1-Au1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Ir-Au催化剂。
实施例12
量取0.36gIrCl3和0.53gRuCl3溶于15ml的去离子水中,得到IrCl3-RuCl4的前驱体溶液,然后浸渍10.0g椰壳炭,90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,H2300℃还原2h,得到活性炭负载的负载量各为1%的Ir-Ru纳米催化剂,记为样品Ir1-Ru1/AC;Ir-Ru/AC在5%的O2/Ar混合气下钝化处理4h,然后用一氧化碳和碘丙烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3CH2CH2I=2)于240℃处理2h,得到活性炭负载Ir-Ru双金属单原子催化剂,记为样品Ir1-Ru1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Ir-Ru催化剂。
实施例13
量取0.54gRhCl3和0.64gHReO4·4H2O溶于15ml的去离子水中,得到RhCl3-HReO4的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,H2 300℃还原2h,得到活性炭负载的负载量各为1%的Rh-Re纳米催化剂,记为样品Rh-Re/AC;然后用一氧化碳和碘甲烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3I=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Rh1-Re1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Rh-Re催化剂。
实施例14
量取0.54gRuCl3和0.64gNiCl2·6H2O溶于15ml的去离子水中,得到RuCl3-NiCl2的前驱体溶液,然后浸渍10.0g椰壳炭。90℃蒸发溶剂,120℃烘箱烘干8h,300℃氮气保护焙烧4h,H2 300℃还原2h,得到活性炭负载的负载量各为1%的Ru-Ni纳米催化剂,记为样品Ru-Ni/AC;然后用一氧化碳和溴丙烷的混合气氛(压力为:0.1MPa;摩尔比CO:CH3CH2CH2Br=2)于240℃处理2h,得到的活性炭负载的双金属单原子催化剂,记为样品Ru1-Ni1/AC。采用X射线衍射XRD、X射线吸收精细结构谱XAFS、球差电镜HAADF-STEM等即可知道制得的催化剂为碳载双金属单原子Rh-Ni催化剂。
催化剂样品的表征
采用高分辨电镜对所得样品进行表征,结果显示,本申请所制备得到的炭载双金属单原子催化剂,贵金属在催化剂上均为单原子分散状态。
如图1所示,(a)为实施例1中样品Rh-Ru/AC的HR-TEM图;(b)为实施例1中样品Rh1-Ru1/AC的HAADF-STM图;由图可以看出本发明申请中制备的Rh-Ru均为单原子分散状态。
如图2所示,(a)为实施例5中样品Cr-Pt/AC的HR-TEM图;(b)为实施例5中样品Cr1-Pt1/AC的HAADF-STM图;由图可以看出本发明申请中制备的Cr-Pt均为单原子分散状态。
如图3所示,(a)为实施例7中样品Rh-Au的HR-TEM图;(b)为实施例7中样品Rh1-Au1/AC的HAADF-STM图;由图可以看出本发明申请中制备的Rh-Au均为单原子分散状态。
如图4所示,(a)为实施例8中样品Ir-Au的HR-TEM图;(b)为实施例8中样品Ir1-Au1/AC的HAADF-STM图;由图可以看出本发明申请中制备的Ir-Au均为单原子分散状态。
其余实施例中所制备得到的样品的测试结果与实施例1所得样品类似。
应用案例为制备的催化剂在以甲醇、CO为原料制备乙酸甲酯反应中的应用
催化剂的活化:在催化剂使用前,在反应器中CO/H2=4,GHSV=7500h-1中进行原位还原活化,条件为:常压,5℃/min从室温升温至230℃,保持1小时,得到活化后的炭载双原子催化剂。
羰基化反应条件为:235℃,2.5Mpa,CH3OH/CO/H2=4/4/1(摩尔比),甲醇LHSV=10h-1。反应尾气经冷阱冷却后,气相产物进行在线分析,色谱仪器为安捷伦7890B GC,PQ填充柱,TCD检测器。液相产物离线分析,FFAP毛细管色谱柱,FID检测器。内标法分析,异丁醇为内标物。
使用实施例1-14制备得到的炭载双原子催化剂,按照上述操作制备乙酸甲酯,甲醇的转化率以及乙酸甲酯的选择性如表1。
表1甲醇的转化率以及乙酸甲酯的选择性
*以转化的甲醇计,其它产物主要为乙酸。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。
Claims (6)
1.一种甲醇、CO为原料制备乙酸甲酯的炭载双金属单原子催化剂,该催化剂包括炭载体和活性金属N和M,N和M分别为铱、铑、铂、钌、金、银、铼、钴、镍、铬、锡中的两种金属,且N和M不相同,金属N和M分别以含羰基和卤素配体的单核络合物形式原子级单分散在炭载体的表面,且金属N和M选取的金属包括较难分散的金属铱或金;
所述的催化剂的制备方法如下:
首先制备炭载体负载的双金属N和M纳米颗粒,具体过程为:将含有双金属N和M的前驱液等体积浸渍炭载体、惰性气体焙烧300℃-500℃、氢气还原300℃-500℃,将含有金属N和M的纳米合金颗粒负载于炭载体上,负载后采用氧气和混合气交替处理的方式,依次通过引入氧气进行处理反应,再利用一氧化碳和卤素、氢卤酸或卤代烷烃中的一种或二种以上同时与金属N和M的合金纳米颗粒进行反应,对其进行原位原子级单分散处理,从而制得炭载体负载的双金属单原子催化剂;
卤素或卤代烷烃或氢卤酸中的一种或二种以上的引入方式或通过CO鼓泡形式引入反应体系中,或通过泵引入反应体系中。
2.根据权利要求1所述的催化剂,其特征在于,金属N和M在催化剂中的质量含量百分占比为0.05~5%。
3.根据权利要求2所述的催化剂,其特征在于,金属N和M在催化剂中的质量含量百分占比为0.1~3%。
4.根据权利要求3所述的催化剂,其特征在于,金属N和M在催化剂中的质量含量百分占比为0.1~1%。
5.根据权利要求1所述的催化剂,其特征在于,所述的炭载体为椰壳炭、介孔炭、石墨烯、或者碳纳米管中的一种。
6. 根据权利要求1所述的催化剂,其特征在于:反应条件为,温度100~350℃,压力0.1~3.0MPa;CO和卤素、氢卤酸或卤代烷烃中的一种或二种以上的摩尔比例在0.1~10,处理时间为10 min ~ 10h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011321179.2A CN114522682B (zh) | 2020-11-23 | 2020-11-23 | 一种炭载双金属单原子催化剂及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011321179.2A CN114522682B (zh) | 2020-11-23 | 2020-11-23 | 一种炭载双金属单原子催化剂及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114522682A CN114522682A (zh) | 2022-05-24 |
CN114522682B true CN114522682B (zh) | 2024-04-26 |
Family
ID=81619401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011321179.2A Active CN114522682B (zh) | 2020-11-23 | 2020-11-23 | 一种炭载双金属单原子催化剂及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114522682B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115064705B (zh) * | 2022-07-05 | 2024-05-24 | 清华大学 | 异金属原子对催化剂及其制备方法和应用 |
CN115672407B (zh) * | 2022-11-23 | 2024-02-02 | 中国石油大学(华东) | 一种膦配体修饰的碳载单原子铑催化剂及其制备和应用方法 |
CN116037111B (zh) * | 2023-02-14 | 2025-01-14 | 西安理工大学 | 双金属单原子催化剂及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102256919A (zh) * | 2008-12-17 | 2011-11-23 | 巴斯夫欧洲公司 | 生产取代的环己基甲醇的连续方法 |
CN102746117A (zh) * | 2012-06-27 | 2012-10-24 | 中国科学院大连化学物理研究所 | 一种以菊芋为原料催化转化制备六元醇的方法 |
CN111195515A (zh) * | 2018-11-20 | 2020-05-26 | 中国科学院大连化学物理研究所 | 一种单原子分散贵金属催化剂、其制备方法及应用 |
CN111195516A (zh) * | 2018-11-20 | 2020-05-26 | 中国科学院大连化学物理研究所 | 一种原子级单分散铑基催化剂、其制备方法及在甲醇气相羰基化制备乙酸甲酯中的应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10009817A1 (de) * | 2000-03-01 | 2001-09-06 | Basf Ag | Verfahren zur Herstellung von Alkoholen an rheniumhaltigen Aktivkohle-Trägerkatalysatoren |
US7407909B2 (en) * | 2004-10-01 | 2008-08-05 | Exxonmobil Research And Engineering Company | Ex-situ reduction and dry passivation of noble metal catalysts |
-
2020
- 2020-11-23 CN CN202011321179.2A patent/CN114522682B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102256919A (zh) * | 2008-12-17 | 2011-11-23 | 巴斯夫欧洲公司 | 生产取代的环己基甲醇的连续方法 |
CN102746117A (zh) * | 2012-06-27 | 2012-10-24 | 中国科学院大连化学物理研究所 | 一种以菊芋为原料催化转化制备六元醇的方法 |
CN111195515A (zh) * | 2018-11-20 | 2020-05-26 | 中国科学院大连化学物理研究所 | 一种单原子分散贵金属催化剂、其制备方法及应用 |
CN111195516A (zh) * | 2018-11-20 | 2020-05-26 | 中国科学院大连化学物理研究所 | 一种原子级单分散铑基催化剂、其制备方法及在甲醇气相羰基化制备乙酸甲酯中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114522682A (zh) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction | |
CN114522682B (zh) | 一种炭载双金属单原子催化剂及其制备方法 | |
Liang et al. | Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane | |
Zhang et al. | Kinetically stabilized Pd@ Pt core–shell octahedral nanoparticles with thin Pt layers for enhanced catalytic hydrogenation performance | |
Alayoglu et al. | Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen | |
Kim et al. | Highly tunable syngas production by electrocatalytic reduction of CO2 using Ag/TiO2 catalysts | |
CN111195515B (zh) | 一种单原子分散贵金属催化剂、其制备方法及应用 | |
Kivrak et al. | A complementary study on novel PdAuCo catalysts: Synthesis, characterization, direct formic acid fuel cell application, and exergy analysis | |
Zhou et al. | Tuning selectivity of electrochemical reduction reaction of CO2 by atomically dispersed Pt into SnO2 nanoparticles | |
Mathe et al. | Methanol oxidation reaction activity of microwave-irradiated and heat-treated Pt/Co and Pt/Ni nano-electrocatalysts | |
CA2704667A1 (en) | Process for producing a catalyst and use of the catalyst | |
Ocampo et al. | Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance | |
Singhania et al. | Catalytic performance of carbon nanotubes supported palladium catalyst for hydrogen production from hydrogen iodide decomposition in thermochemical sulfur iodine cycle | |
Fiuza et al. | Supported AuCu alloy nanoparticles for the preferential oxidation of CO (CO-PROX) | |
CN112553646A (zh) | 一种MXene负载纳米合金催化剂、制备方法及其应用 | |
Gebremariam et al. | PdAgRu nanoparticles on polybenzimidazole wrapped CNTs for electrocatalytic formate oxidation | |
Liu et al. | Copper single-atom-covered Pt nanoparticles for selective hydrogenation of phenylacetylene | |
Afzali et al. | Design of PdxIr/g-C3N4 modified FTO to facilitate electricity generation and hydrogen evolution in alkaline media | |
Ahmad et al. | Facile one-step synthesis of supportless porous AuPtPd nanocrystals as high performance electrocatalyst for glucose oxidation reaction | |
Crabb et al. | Synthesis and characterisation of carbon-supported PtGe electrocatalysts for CO oxidation | |
Li et al. | Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis | |
Veizaga et al. | Development of PtGe and PtIn anodic catalysts supported on carbonaceous materials for DMFC | |
Lafforgue et al. | Evaluation of carbon-supported palladium electrocatalysts for the borohydride oxidation reaction in conditions relevant to fuel cell operation | |
Lee et al. | Effective oxygen reduction reaction and suppression of CO poisoning on Pt3Ni1/N-rGO electrocatalyst | |
Chaparro-Garnica et al. | Efficient production of hydrogen from a valuable CO2-derived molecule: Formic acid dehydrogenation boosted by biomass waste-derived catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |