CN114429908A - A kind of RFLDMOS device and its manufacturing method - Google Patents
A kind of RFLDMOS device and its manufacturing method Download PDFInfo
- Publication number
- CN114429908A CN114429908A CN202210104667.0A CN202210104667A CN114429908A CN 114429908 A CN114429908 A CN 114429908A CN 202210104667 A CN202210104667 A CN 202210104667A CN 114429908 A CN114429908 A CN 114429908A
- Authority
- CN
- China
- Prior art keywords
- region
- gate
- oxide layer
- layer
- gate oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000001039 wet etching Methods 0.000 claims abstract description 5
- 210000000746 body region Anatomy 0.000 claims description 31
- 230000015572 biosynthetic process Effects 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000000206 photolithography Methods 0.000 claims description 13
- 229910021332 silicide Inorganic materials 0.000 claims description 11
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 8
- 229920005591 polysilicon Polymers 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 111
- 230000000694 effects Effects 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 239000002356 single layer Substances 0.000 abstract description 3
- 238000001259 photo etching Methods 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,具体涉及一种RFLDMOS器件及其制造方法。The invention relates to the technical field of semiconductor manufacturing, in particular to an RFLDMOS device and a manufacturing method thereof.
背景技术Background technique
RFLDMOS(Radio Frequency Laterally Diffused Metal Oxide Semiconductor,射频横向双扩散场效应晶体管)是一种射频功率器件,具有高增益、高线性、高耐压、高输出功率等特点。RFLDMOS器件被广泛应用于射频基站、无线广播站、雷达等领域,采用功率阵列及多芯片合成,产品输出功率可达500W以上。RFLDMOS (Radio Frequency Laterally Diffused Metal Oxide Semiconductor, Radio Frequency Laterally Diffused Metal Oxide Semiconductor) is a radio frequency power device, which has the characteristics of high gain, high linearity, high withstand voltage, and high output power. RFLDMOS devices are widely used in RF base stations, wireless broadcasting stations, radars and other fields. Power arrays and multi-chip synthesis are used, and the output power of the products can reach more than 500W.
在RFLDMOS器件中常采用法拉第屏蔽罩。如图1所示,显示为具有一层法拉第屏蔽罩的RFLDMOS器件的剖面图,衬底11上具有外延层12,源区15和漏区17分别位于体区14和漂移区13中,重掺杂区16与源区15连接,体区14和漂移区13间外延层表面具有栅氧层18及多晶硅栅极19,在源区15、漏区17和多晶硅栅极19的表面形成有金属硅化物23;法拉第屏蔽层20位于多晶硅栅极19之上,且与多晶硅栅极19之间间隔介质层21。法拉第屏蔽罩20通过金属接触连线与源区15及下沉通道22连接,下沉通道22连接衬底11。法拉第屏蔽罩20可将器件内部的强电场位置从栅极边缘移至屏蔽层下方,在高压应用时可减少热载流子注入栅极,从而提高器件的可靠性。同时,法拉第屏蔽罩20也可大幅度降低栅极与漏极间的电容Cgd,即密勒电容,提高器件的频率特性。Faraday shields are often used in RFLDMOS devices. As shown in FIG. 1, it is a cross-sectional view of an RFLDMOS device with a Faraday shield, an
现有技术中,为了进一步提高器件的可靠性和频率特性,优化器件性能,如图2所示,RFLDMOS器件还可采用双层甚至三层法拉第屏蔽罩,但这会大大增加工艺复杂度和成本。In the prior art, in order to further improve the reliability and frequency characteristics of the device and optimize the device performance, as shown in Figure 2, the RFLDMOS device can also use a double-layer or even three-layer Faraday shield, but this will greatly increase the process complexity and cost. .
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供一种RFLDMOS器件及其制造方法,用以解决现有技术中存在的由于采用多层法拉第屏蔽罩而使工艺复杂度和成本增加的问题,实现采用单层法拉第屏蔽罩就能达到多层法拉第屏蔽罩效果的目的。In view of this, the present invention provides an RFLDMOS device and a manufacturing method thereof, which are used to solve the problem of increased process complexity and cost due to the use of a multi-layer Faraday shield in the prior art, and realize the use of a single-layer Faraday shield. The purpose of the multi-layer Faraday shield effect can be achieved.
本发明提供一种RFLDMOS器件的制造方法,包括以下步骤:The present invention provides a method for manufacturing an RFLDMOS device, comprising the following steps:
步骤一、提供衬底,在所述衬底上形成外延层,在所述外延层上方生长厚栅氧层;Step 1, providing a substrate, forming an epitaxial layer on the substrate, and growing a thick gate oxide layer on the epitaxial layer;
步骤二、光刻打开源区形成区域、靠源的部分栅极形成区域以及靠栅的部分漂移区形成区域;Step 2, photolithography opens the source region formation region, the partial gate formation region close to the source, and the gate drift region formation region;
步骤三、利用湿法刻蚀工艺去除光刻打开区域的所述厚栅氧层,并在剩余的所述厚栅氧层的两端形成底切;Step 3, using a wet etching process to remove the thick gate oxide layer in the lithography open area, and form undercuts at both ends of the remaining thick gate oxide layer;
步骤四、在所述外延层上方生长薄栅氧层,所述薄栅氧层和所述厚栅氧层共同构成阶梯型栅氧层;Step 4, growing a thin gate oxide layer above the epitaxial layer, and the thin gate oxide layer and the thick gate oxide layer together form a stepped gate oxide layer;
步骤五、淀积多晶硅并利用光刻刻蚀工艺在所述栅极形成区域形成栅极;Step 5, depositing polysilicon and forming a gate in the gate formation region by using a photolithography etching process;
步骤六、在所述外延层内制作体区和漂移区;Step 6, forming a body region and a drift region in the epitaxial layer;
步骤七、制作栅极侧墙,并在所述体区内形成重掺杂区和源区,在所述漂移区内形成漏区;Step 7, forming gate sidewalls, forming a heavily doped region and a source region in the body region, and forming a drain region in the drift region;
步骤八、在所述源区、所述漏区以及所述栅极上形成金属硅化物;Step 8, forming metal silicide on the source region, the drain region and the gate;
步骤九、淀积一层介质层,所述介质层覆盖所述体区、所述漂移区和所述栅极顶部;Step 9, depositing a dielectric layer, the dielectric layer covering the body region, the drift region and the top of the gate;
步骤十、在所述介质层上方淀积一层法拉第屏蔽层;Step ten, depositing a Faraday shielding layer on the dielectric layer;
步骤十一、利用光刻刻蚀工艺在所述栅极靠近所述漏区的部分上方和所述漂移区靠近所述栅极的部分上方形成法拉第屏蔽罩。
优选地,步骤一中所述衬底为N型,或,所述衬底为P型。Preferably, in step 1, the substrate is N-type, or, the substrate is P-type.
优选地,步骤三中形成底切后所述厚栅氧层的形状变为在所述外延层上间隔分布的两个等腰梯形。Preferably, after the undercut is formed in step 3, the shape of the thick gate oxide layer becomes two isosceles trapezoids spaced apart on the epitaxial layer.
优选地,步骤五中所述栅极的左上角为阶梯型。Preferably, the upper left corner of the gate in step 5 is stepped.
优选地,步骤九中所述介质层是氧化硅层。Preferably, the dielectric layer in step 9 is a silicon oxide layer.
优选地,步骤十中所述法拉第屏蔽层的材料为钨硅或者氮化钛。Preferably, the material of the Faraday shielding layer in step ten is tungsten silicon or titanium nitride.
优选地,步骤十一中所述法拉第屏蔽罩为阶梯型。Preferably, the Faraday shield in step eleven is of a stepped type.
优选地,该方法还包括:形成下沉通孔,所述下沉通孔的底部位于所述衬底,所述下沉通孔贯穿所述体区和所述外延层。Preferably, the method further includes: forming a sinking through hole, the bottom of the sinking through hole is located in the substrate, and the sinking through hole penetrates the body region and the epitaxial layer.
本发明还提供一种RFLDMOS器件,包括:The present invention also provides an RFLDMOS device, comprising:
衬底;substrate;
位于所述衬底上方的外延层;所述外延层中设置有漂移区和体区;所述漂移区内设置有漏区,所述体区内设置有重掺杂区和源区,所述重掺杂区与所述源区连接;an epitaxial layer located above the substrate; a drift region and a body region are arranged in the epitaxial layer; a drain region is arranged in the drift region, a heavily doped region and a source region are arranged in the body region, and the a heavily doped region is connected to the source region;
位于所述外延层上方的阶梯型栅氧层;a stepped gate oxide layer located above the epitaxial layer;
位于所述外延层表面的栅极结构,所述栅极结构包括所述栅氧层、栅极以及栅极侧墙;a gate structure located on the surface of the epitaxial layer, the gate structure comprising the gate oxide layer, a gate and a gate spacer;
位于所述源区、所述漏区和所述栅极上方的金属硅化物;a metal silicide over the source region, the drain region and the gate;
覆盖所述体区、所述漂移区和所述栅极结构顶部的介质层;a dielectric layer covering the body region, the drift region and the top of the gate structure;
覆盖所述介质层,且位于所述栅极靠近所述漏区的部分上方和所述漂移区靠近所述栅极的部分上方的法拉第屏蔽罩;以及a Faraday shield covering the dielectric layer and over a portion of the gate close to the drain region and over a portion of the drift region close to the gate; and
下沉通孔,所述下沉通孔底部位于所述衬底中,贯穿所述体区和所述外延层;a sinking through hole, the bottom of the sinking through hole is located in the substrate and penetrates the body region and the epitaxial layer;
其中,所述栅极结构中的所述栅氧层在栅极下具有坡度,且靠漏区一侧的栅氧层的厚度大于靠源区一侧的栅氧层;所述法拉第屏蔽罩为阶梯型。Wherein, the gate oxide layer in the gate structure has a slope under the gate, and the gate oxide layer on the side of the drain region is thicker than the gate oxide layer on the side of the source region; the Faraday shield is Ladder type.
本发明对现有RFLDMOS器件的法拉第屏蔽罩进行改进,将现有台阶状的法拉第屏蔽罩变为阶梯型法拉第屏蔽罩,使得单层法拉第屏蔽罩的RFLDMOS器件能够达到传统具有两层甚至三层法拉第屏蔽罩RFLDMOS器件的效果,解决现有技术中存在的由于采用多层法拉第屏蔽罩而使工艺复杂度和成本增加的问题。The invention improves the Faraday shield of the existing RFLDMOS device, and changes the existing stepped Faraday shield into a stepped Faraday shield, so that the RFLDMOS device of the single-layer Faraday shield can achieve the traditional two-layer or even three-layer Faraday shield. The effect of shielding the RFLDMOS device solves the problems of increased process complexity and cost due to the use of a multi-layer Faraday shield in the prior art.
附图说明Description of drawings
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present invention will become more apparent from the following description of embodiments of the present invention with reference to the accompanying drawings, in which:
图1显示为现有具有一层法拉第屏蔽罩的RFLDMOS器件的结构示意图;FIG. 1 shows a schematic structural diagram of an existing RFLDMOS device with a layer of Faraday shield;
图2显示为现有具有两层法拉第屏蔽罩的RFLDMOS器件的结构示意图;FIG. 2 is a schematic structural diagram of an existing RFLDMOS device with a two-layer Faraday shield;
图3显示为本发明实施例的RFLDMOS器件的制造方法的流程图;3 shows a flowchart of a method for manufacturing an RFLDMOS device according to an embodiment of the present invention;
图4-图10显示为本发明实施例的RFLDMOS器件的制造方法中各步骤的结构示意图;FIG. 4-FIG. 10 are schematic structural diagrams of each step in the manufacturing method of the RFLDMOS device according to the embodiment of the present invention;
图11显示为本发明实施例的RFLDMOS器件的示意图。FIG. 11 shows a schematic diagram of an RFLDMOS device according to an embodiment of the present invention.
具体实施方式Detailed ways
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。The present invention is described below based on examples, but the present invention is not limited to these examples only. In the following detailed description of the invention, some specific details are described in detail. The present invention can be fully understood by those skilled in the art without the description of these detailed parts. Well-known methods, procedures, procedures, components and circuits have not been described in detail in order to avoid obscuring the essence of the present invention.
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。Furthermore, those of ordinary skill in the art will appreciate that the drawings provided herein are for illustrative purposes and are not necessarily drawn to scale.
除非上下文明确要求,否则整个申请文件中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。Unless clearly required by the context, words such as "including", "comprising" and the like throughout this application should be construed in an inclusive rather than an exclusive or exhaustive sense; that is, in the sense of "including but not limited to".
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present invention, it should be understood that the terms "first", "second" and the like are used for descriptive purposes only, and should not be construed as indicating or implying relative importance. Also, in the description of the present invention, unless otherwise specified, "plurality" means two or more.
RFLDMOS器件采用多层法拉第屏蔽罩的结构可以进一步均匀漂移区场强分布,降低栅漏边缘电场,提高器件击穿电压。但其制作工艺比较复杂,每增加一层法拉第屏蔽罩都需要多加光刻、淀积金属、淀积绝缘介质材料、剥离、清洗等工艺步骤,而且要使各层法拉第屏蔽罩下面所淀积的绝缘介质材料具有合适的厚度,必须进行繁琐的工艺调试,导致大大增加了器件制造的难度和成本,降低了器件的成品率。因此,本发明提出一种RFLDMOS器件及其制造方法。下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The RFLDMOS device adopts the structure of the multi-layer Faraday shield, which can further uniformize the field intensity distribution in the drift region, reduce the electric field at the gate-drain fringe, and improve the breakdown voltage of the device. However, its manufacturing process is relatively complicated. Each additional layer of Faraday shield requires additional process steps such as photolithography, deposition of metal, deposition of insulating dielectric materials, stripping, cleaning, etc. The insulating dielectric material has a suitable thickness, and tedious process debugging must be carried out, which greatly increases the difficulty and cost of device manufacturing and reduces the yield of the device. Therefore, the present invention provides an RFLDMOS device and a manufacturing method thereof. The technical solutions of the present invention are further described below with reference to the accompanying drawings and through specific embodiments.
图3显示为本发明实施例的RFLDMOS器件的制造方法的流程图。如图3所示,包括以下步骤:FIG. 3 is a flowchart of a method for fabricating an RFLDMOS device according to an embodiment of the present invention. As shown in Figure 3, it includes the following steps:
步骤一、提供衬底101,在衬底101上形成外延层102,在外延层102上方生长厚栅氧层103。Step 1, providing a
在本发明实施例中,衬底101为N型,或,衬底101为P型。在P型衬底上生长P型外延层,或,在N型衬底上生长N型外延层。较佳地,用炉管生长厚栅氧层103。In the embodiment of the present invention, the
步骤二,如图4所示,光刻打开源区形成区域、靠源的部分栅极形成区域以及靠栅的部分漂移区形成区域。Step 2, as shown in FIG. 4 , the source region formation region, the partial gate formation region adjacent to the source and the drift region formation region adjacent to the gate are opened by photolithography.
光刻胶(PR)打开源端及靠源端的部分用于制作多晶硅栅极的区域,以及靠栅的部分用于制作漂移区的区域。The photoresist (PR) opens the source end and the part close to the source end for making the polysilicon gate region, and the part close to the gate for making the drift region region.
步骤三,如图5所示,利用湿法刻蚀工艺去除光刻打开区域的厚栅氧层103,并在剩余的厚栅氧层103的两端形成底切。Step 3, as shown in FIG. 5 , use a wet etching process to remove the thick
本发明实施例中,利用湿法刻蚀在光刻胶PR与厚栅氧层103之间形成底切(底切如图中虚线圆圈内所示),形成底切后厚栅氧层103的形状变为在外延层102上间隔分布的两个等腰梯形。In the embodiment of the present invention, an undercut is formed between the photoresist PR and the thick
步骤四,如图6所示,在外延层102上方生长薄栅氧层104,薄栅氧层104和厚栅氧层103共同构成阶梯型栅氧层105。Step 4, as shown in FIG. 6 , a thin gate oxide layer 104 is grown on the
再生长薄栅氧层104。薄栅氧层104和厚栅氧层103的厚度在本发明实施例中并不限定,以在实际工艺中需要的厚度为准。经过上述步骤一到四在外延层表面形成阶梯型栅氧层105。A thin gate oxide layer 104 is regrown. The thicknesses of the thin gate oxide layer 104 and the thick
步骤五,如图7所示,淀积多晶硅并利用光刻刻蚀工艺在栅极形成区域形成栅极106。Step 5, as shown in FIG. 7 , polysilicon is deposited and a
本发明实施例中,栅极106形成在斜坡处栅极形成区域的栅氧层105上方,栅极的左上角为阶梯型,具体的形成过程这里不再赘述,与形成上述栅氧层105相同。In the embodiment of the present invention, the
步骤六,如图8所示,在外延层102内制作体区107和漂移区108。Step 6, as shown in FIG. 8 , a
通过光刻工艺和离子注入工艺在外延层102内分别形成RFLDMOS器件的体区107和漂移区108。The
步骤七,如图8所示,制作栅极侧墙,并在体区107内形成重掺杂区109和源区110,在漂移区108内形成漏区111。Step 7, as shown in FIG. 8 , the gate spacers are formed, the heavily doped
通过光刻工艺和离子注入工艺在体区内形成重掺杂区和RFLDMOS的源区,在漂移内形成RFLDMOS的漏区。漏区位于漂移区内远离体区的一端。The heavily doped region and the source region of the RFLDMOS are formed in the body region through the photolithography process and the ion implantation process, and the drain region of the RFLDMOS is formed in the drift. The drain region is located at the end of the drift region away from the body region.
步骤八,如图8所示,在源区110、漏区111以及栅极106上形成金属硅化物112。Step 8, as shown in FIG. 8 ,
打开源漏区及栅极需要金属硅化的区域,进行金属硅化工艺。当然,其他区域如体区107内重掺杂区109的顶部也存在金属硅化物112。Open the source and drain regions and the gate area where metal silicide is required, and perform a metal silicide process. Of course,
步骤九,如图9所示,淀积一层介质层113,介质层113覆盖体区107、漂移区108和栅极106顶部。Step ninth, as shown in FIG. 9 , a
本发明实施例中,介质层113是氧化硅层。由于步骤四中阶梯型栅氧层的形成,后续覆盖的上述介质层113如图所示也为阶梯型。In the embodiment of the present invention, the
步骤十,在介质层113上方淀积一层法拉第屏蔽层。In step ten, a Faraday shielding layer is deposited on the
本发明实施例中,法拉第屏蔽层的材料为钨硅或者氮化钛。In the embodiment of the present invention, the material of the Faraday shielding layer is tungsten silicon or titanium nitride.
步骤十一,如图10所示,利用光刻刻蚀工艺在栅极靠近漏区的部分上方和漂移区靠近栅极的部分上方形成法拉第屏蔽罩114。Step eleven, as shown in FIG. 10 , a
本发明实施例中,由于步骤四中阶梯型栅氧层的形成,后续覆盖的上述介质层113、法拉第屏蔽罩114皆为阶梯型。相比传统RFLDMOS器件的简单台阶型的法拉第屏蔽罩结构,本发明实施例的阶梯型在兼顾击穿电压的同时改善了热载流子性能,降低了法拉第屏蔽罩对地电阻,有效的提高了器件高频下宽带性能以及可靠性。In the embodiment of the present invention, due to the formation of the stepped gate oxide layer in step 4, the
本发明实施例的半导体器件的制造方法还包括:步骤十二,形成下沉通孔,下沉通孔的底部位于衬底,下沉通孔贯穿体区和外延层。The manufacturing method of the semiconductor device according to the embodiment of the present invention further includes:
图11显示为本发明实施例的RFLDMOS器件的示意图。如图11所示,包括衬底101、位于衬底上方的外延层102、设置在外延层102内的漂移区108和体区107、设置在漂移区108内的漏区111,设置在体区107内的重掺杂区109和源区110、位于外延层102上方的阶梯型栅氧层105、位于外延层表面的栅极结构,栅极结构包括所述栅氧层105、栅极106以及栅极侧墙、位于源区110、漏区111和栅极106上方的金属硅化物112、覆盖体区107、漂移区108和栅极结构顶部的介质层113、法拉第屏蔽罩114以及下沉通孔115。FIG. 11 shows a schematic diagram of an RFLDMOS device according to an embodiment of the present invention. As shown in FIG. 11 , it includes a
本发明实施例中,体区107内重掺杂区109的顶部也存在金属硅化物112。下沉通孔115底部位于衬底中,贯穿体区和外延层;法拉第屏蔽罩114覆盖介质层113,且位于栅极靠近漏区的部分上方和漂移区靠近栅极的部分上方。In the embodiment of the present invention, the
本发明实施例中,栅极结构中的栅氧层105在栅极下具有坡度,且靠漏区一侧的栅氧层的厚度大于靠源区一侧的栅氧层。法拉第屏蔽罩114为阶梯型。In the embodiment of the present invention, the
本发明实施例的RFLDMOS器件不需再进行光刻刻蚀工艺形成双层法拉第屏蔽罩就能达到进一步优化器件可靠性和频率的效果,大大降低了工艺复杂度及成本。The RFLDMOS device according to the embodiment of the present invention does not need to perform a photolithography etching process to form a double-layer Faraday shield, so as to achieve the effect of further optimizing the reliability and frequency of the device, and greatly reduce the process complexity and cost.
应当理解,许多其他层也可以存在,例如间隔元件和/或其他合适的部件,为了简化,图示中予以省略。It should be understood that many other layers may also be present, such as spacer elements and/or other suitable components, which have been omitted from the illustration for simplicity.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210104667.0A CN114429908A (en) | 2022-01-28 | 2022-01-28 | A kind of RFLDMOS device and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210104667.0A CN114429908A (en) | 2022-01-28 | 2022-01-28 | A kind of RFLDMOS device and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114429908A true CN114429908A (en) | 2022-05-03 |
Family
ID=81312898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210104667.0A Pending CN114429908A (en) | 2022-01-28 | 2022-01-28 | A kind of RFLDMOS device and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114429908A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117936570A (en) * | 2024-03-20 | 2024-04-26 | 芯众享(成都)微电子有限公司 | Planar split-gate SiC MOSFET device with locally thickened gate dielectric and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070290262A1 (en) * | 2006-06-16 | 2007-12-20 | Jun Cai | High voltage LDMOS |
CN103035727A (en) * | 2012-11-09 | 2013-04-10 | 上海华虹Nec电子有限公司 | Radio frequency (RF) laterally diffused metal oxide semiconductor (LDMOS) component and manufacture method |
CN103035718A (en) * | 2012-08-17 | 2013-04-10 | 上海华虹Nec电子有限公司 | Semiconductor component and manufacture method thereof |
CN103050532A (en) * | 2012-08-13 | 2013-04-17 | 上海华虹Nec电子有限公司 | RF LDMOS (ratio frequency laterally diffused metal oxide semiconductor) device and manufacture method of RF LDMOS device |
US20140042522A1 (en) * | 2012-08-13 | 2014-02-13 | Shanghai Hua Hong Nec Electonics Co, Ltd. | Rf ldmos device and fabrication method thereof |
CN104282762A (en) * | 2014-09-15 | 2015-01-14 | 上海华虹宏力半导体制造有限公司 | Radio frequency transverse double-diffusion field effect transistor and manufacturing method thereof |
-
2022
- 2022-01-28 CN CN202210104667.0A patent/CN114429908A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070290262A1 (en) * | 2006-06-16 | 2007-12-20 | Jun Cai | High voltage LDMOS |
CN103050532A (en) * | 2012-08-13 | 2013-04-17 | 上海华虹Nec电子有限公司 | RF LDMOS (ratio frequency laterally diffused metal oxide semiconductor) device and manufacture method of RF LDMOS device |
US20140042522A1 (en) * | 2012-08-13 | 2014-02-13 | Shanghai Hua Hong Nec Electonics Co, Ltd. | Rf ldmos device and fabrication method thereof |
CN103035718A (en) * | 2012-08-17 | 2013-04-10 | 上海华虹Nec电子有限公司 | Semiconductor component and manufacture method thereof |
CN103035727A (en) * | 2012-11-09 | 2013-04-10 | 上海华虹Nec电子有限公司 | Radio frequency (RF) laterally diffused metal oxide semiconductor (LDMOS) component and manufacture method |
US20140131796A1 (en) * | 2012-11-09 | 2014-05-15 | Shanghai Huahong Grace Semiconductor Manufacturing Corporation | Rf ldmos device and fabrication method thereof |
CN104282762A (en) * | 2014-09-15 | 2015-01-14 | 上海华虹宏力半导体制造有限公司 | Radio frequency transverse double-diffusion field effect transistor and manufacturing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117936570A (en) * | 2024-03-20 | 2024-04-26 | 芯众享(成都)微电子有限公司 | Planar split-gate SiC MOSFET device with locally thickened gate dielectric and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE42403E1 (en) | Laterally diffused MOS transistor having N+ source contact to N-doped substrate | |
US5726463A (en) | Silicon carbide MOSFET having self-aligned gate structure | |
US9306013B2 (en) | Method of forming a gate shield in an ED-CMOS transistor and a base of a bipolar transistor using BICMOS technologies | |
CN102064110B (en) | LDMOS transistor, method for fabricating the same and power field effect transistor | |
JP2008547225A (en) | Structure and method for forming a laterally extending dielectric layer in a trench gate FET | |
CN111048420B (en) | Method for manufacturing lateral double-diffused transistor | |
US20100230747A1 (en) | Process for manufacturing a power device with a trench-gate structure and corresponding device | |
CN108389904B (en) | A kind of GaN HEMT device and preparation method | |
CN112635540B (en) | LDMOS device and preparation method thereof | |
CN103872123B (en) | N-channel radio frequency LDMOS device and manufacture method | |
CN113053738A (en) | Split gate type groove MOS device and preparation method thereof | |
CN113130633A (en) | Groove type field effect transistor structure and preparation method thereof | |
CN110957370B (en) | Method for manufacturing lateral double-diffused transistor | |
JP3949869B2 (en) | Vertical MOS transistor and manufacturing method thereof | |
CN105845736A (en) | LDMOS device structure and manufacture method thereof | |
CN106298544B (en) | Fabrication method and structure of trench DMOS device | |
CN114429908A (en) | A kind of RFLDMOS device and its manufacturing method | |
CN114122133A (en) | Laterally diffused metal oxide semiconductor device, preparation method thereof and electronic device | |
CN105047716B (en) | Radio frequency LDMOS device and its manufacturing method | |
CN104103693A (en) | U-groove power device and manufacturing method thereof | |
CN110707155A (en) | Shielding grid MOS structure capable of improving reverse recovery characteristic and manufacturing method thereof | |
CN111326585A (en) | Semiconductor super junction power device | |
CN112635541B (en) | LDMOS device and preparation method thereof | |
CN110718452A (en) | Silicon carbide device and method of making the same | |
CN111370493A (en) | RFLDMOS device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |