CN114413486A - A fluid lattice magnetron enhanced absorption solar energy collector - Google Patents
A fluid lattice magnetron enhanced absorption solar energy collector Download PDFInfo
- Publication number
- CN114413486A CN114413486A CN202111620434.8A CN202111620434A CN114413486A CN 114413486 A CN114413486 A CN 114413486A CN 202111620434 A CN202111620434 A CN 202111620434A CN 114413486 A CN114413486 A CN 114413486A
- Authority
- CN
- China
- Prior art keywords
- heat
- solar
- absorption
- heat collecting
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/40—Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/30—Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S40/00—Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
- F24S40/90—Arrangements for testing solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/10—Details of absorbing elements characterised by the absorbing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于太阳能热利用领域,具体涉及一种流体点阵式磁控强化吸收太阳能集热装置。The invention belongs to the field of solar thermal utilization, and in particular relates to a fluid lattice type magnetron enhanced absorption solar energy heat collection device.
背景技术Background technique
太阳能作为可再生能源中最为丰富的一种能源,成为当前科学研究的重点。尤其是对太阳能光热的研究,更是人们研究的热点。常规中温集热方式主要依靠真空镀膜管上的选择性吸收涂层吸收太阳能辐射加热内部工质,通过导热和对流的方式将热量传递给管内流体。这种间接吸收的方式由于选择性吸收涂层耐热性能和真空度难长久保持,以及温差大导致集热管易炸裂等因素,导致系统稳定性、可靠性和耐久性差,且工艺复杂,成本较高,因此成为其应用的主要障碍。鉴于此,用纳米流体直接吸收太阳能方式的直接吸收型集热器引起了人们的广泛关注。纳米流体直接吸收太阳能集热器的传热机理是在传统的集热流体中添加集热能力强的纳米颗粒,使得集热的吸收工质自身有很强大的太阳能吸收特性,集热介质集吸热、传热和载热三种特性于一体,制造简单、成本较低,大大的提高了集热效率。As one of the most abundant renewable energy sources, solar energy has become the focus of current scientific research. In particular, the research on solar thermal energy is a hotspot of research. The conventional medium-temperature heat collection method mainly relies on the selective absorption coating on the vacuum coated tube to absorb solar radiation to heat the internal working medium, and transfer the heat to the fluid in the tube by means of heat conduction and convection. This indirect absorption method is difficult to maintain the heat resistance and vacuum degree of the selective absorption coating for a long time, and the large temperature difference causes the heat collector tube to burst easily, resulting in poor system stability, reliability and durability, and the process is complicated and the cost is relatively high high, thus becoming a major obstacle to its application. In view of this, direct absorption heat collectors using nanofluids to directly absorb solar energy have attracted extensive attention. The heat transfer mechanism of nanofluid directly absorbing solar heat collector is to add nanoparticles with strong heat collecting ability to the traditional heat collecting fluid, so that the heat collecting working medium itself has strong solar energy absorption characteristics, and the heat collecting medium collects and absorbs the heat. The three characteristics of heat, heat transfer and heat transfer are integrated, the manufacture is simple, the cost is low, and the heat collection efficiency is greatly improved.
近年来,随着磁流体的发展,研究者发现,虽然纳米流体直接吸收太阳能集热器能够有效提高对太阳能光热的吸收,但是改变纳米颗粒的种类、尺寸、形状等可以进一步提高对太阳能光热的吸收效率。磁性纳米流体,它不仅具有固体物质的磁性,而且具有液体的流动特性,在外加磁场作用下,磁性纳米流体中的磁性颗粒会小范围的聚集,聚集体形状的变化,也起到强化传热作用。In recent years, with the development of magnetic fluids, researchers have found that although the direct absorption of solar collectors by nanofluids can effectively improve the absorption of solar light and heat, changing the type, size, and shape of nanoparticles can further improve the absorption of solar light. heat absorption efficiency. Magnetic nanofluids not only have the magnetic properties of solid substances, but also have the flow characteristics of liquids. Under the action of an external magnetic field, the magnetic particles in the magnetic nanofluids will aggregate in a small range, and the shape of the aggregates will change, which also enhances heat transfer. effect.
专利CN110195938A公开了一种磁场辅助纳米流体直接吸收式聚光型磁流体太阳能集热装置,包括太阳能定位追踪反射装置、太阳能吸收装置和换热蒸汽发生装置。通过纳米流体有效提高光热吸收传热效率,同时利用外加磁场在纳米流体中形成纳米磁流体山丘型结构补充吸收太阳能。但该设备尽管一定程度上提高了太阳能的吸收效率,但整体上呈现出周围升温快,中间升温慢的吸热特点,导致传热时间长,整体吸热效率低。Patent CN110195938A discloses a magnetic field-assisted nanofluid direct absorption type concentrating magnetic fluid solar heat collecting device, including a solar positioning tracking reflection device, a solar energy absorbing device and a heat exchange steam generating device. The efficiency of photothermal absorption and heat transfer is effectively improved by nanofluid, and the nanomagnetic fluid hill-shaped structure is formed in the nanofluid by an external magnetic field to supplement the absorption of solar energy. However, although the device improves the absorption efficiency of solar energy to a certain extent, it generally exhibits the characteristics of rapid heating around and slow heating in the middle, resulting in long heat transfer time and low overall heat absorption efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的目的即解决上述技术问题,提供一种对太阳能的集热效率和传热效率提高,设备使用寿命长、节能的流体点阵式磁控强化吸收太阳能集热装置。The purpose of the present invention is to solve the above-mentioned technical problems, and to provide a fluid lattice type magnetron enhanced absorption solar energy heat collection device with improved solar energy collection efficiency and heat transfer efficiency, long equipment service life and energy saving.
本发明解决其技术问题是通过以下技术方案实现的:The present invention solves its technical problem and realizes through the following technical solutions:
一种流体点阵式磁控强化吸收太阳能集热装置,包括聚光器和安装在聚光器上方的太阳能吸收单元,位于聚光器底部设有永磁体,所述永磁体位于旋转盘上方,所述旋转盘连接有控制旋转盘转动的控制器,所述控制器和旋转盘均连接电源;所述太阳能吸收单元包括集热管和依次套嵌在集热管外部的储水管、玻璃真空内管,所述集热管内部设有横向和纵向的弧形光纤,所述弧形光纤上设有强化点阵吸收单元。A fluid lattice-type magnetron strengthening absorption solar energy heat collection device, comprising a concentrator and a solar energy absorption unit installed above the concentrator, a permanent magnet is arranged at the bottom of the concentrator, and the permanent magnet is located above a rotating disk, The rotating disk is connected with a controller that controls the rotation of the rotating disk, and both the controller and the rotating disk are connected to a power source; the solar energy absorption unit includes a heat collection tube, a water storage tube and a glass vacuum inner tube which are sequentially embedded outside the heat collection tube, The inside of the heat collecting tube is provided with transverse and longitudinal arc-shaped optical fibers, and the arc-shaped optical fibers are provided with reinforced lattice absorption units.
永磁体套嵌在旋转盘的中心,当旋转盘转动时,可以随其一起转动,目的是在其转动的过程中,因其产生的磁场的方向也随之变化,可以控制集热管内部的光纤上的强化点阵吸收单元的突触方向也一起变化,使其在最合适的角度接收最大强度的光照,加强了图3中部分的光热吸收,从而提高对太阳能的吸收效率。进一步的,所述强化点阵吸收单元是吸附有磁性高热导复合材料的磁体颗粒。磁体颗粒是磁钢经过机械粉碎和球磨机研磨变成细小的磁体,通过环氧胶粘附在光纤上,可以将具有磁性和高吸收、高热导的复合材料吸附在小磁体的周围,并在磁体的作用下,沿磁场方向形成突触,并且突触的方向随永磁体的转动而改变,用于捕捉和传导太阳能光线,如图4所示。太阳光线照射在这些突起的结构上时不断地被反复吸收和反射,直至太阳光被完全吸收,这样就可以使这些突触以最合适的角度最大化的吸收并储存太阳能的光热。The permanent magnet is embedded in the center of the rotating disk. When the rotating disk rotates, it can rotate with it. The purpose is that the direction of the magnetic field generated by the rotating disk also changes during the rotation process, which can control the optical fiber inside the heat collector tube. The synaptic direction of the enhanced lattice absorption unit on the upper part also changes together, so that it receives the maximum intensity of light at the most suitable angle, which strengthens the light and heat absorption of the part in Figure 3, thereby improving the absorption efficiency of solar energy. Further, the strengthening lattice absorption unit is a magnet particle adsorbed with a magnetic high thermal conductivity composite material. Magnet particles are magnetic steel that has been mechanically pulverized and ground into small magnets, which are adhered to the optical fiber through epoxy glue. Under the action of , a synapse is formed along the direction of the magnetic field, and the direction of the synapse changes with the rotation of the permanent magnet, which is used to capture and conduct solar light, as shown in Figure 4. When sunlight hits these protruding structures, it is continuously absorbed and reflected repeatedly until the sunlight is completely absorbed, so that these synapses can maximize the absorption and storage of solar light and heat at the most suitable angle.
进一步的,所述磁性高热导复合材料是四氧化三铁修饰碳纳米管的复合纳米材料。Further, the magnetic high thermal conductivity composite material is a composite nanomaterial of ferric oxide modified carbon nanotubes.
进一步的,所述集热管内部包含吸收工质,所述吸收工质是添加Fe3O4-石墨烯复合功能性纳米磁流体到基液中的混合液。所述基液为导热油、水或乙二醇。在分散剂的作用下纳米颗粒可以均匀稳定的分布在基液中,在永磁体的作用下,均匀分布的纳米颗粒开始小范围的聚集,形成链状的热通道,能够有效提高对太阳能的吸收效率。Further, the inside of the heat collecting tube contains an absorbing working medium, and the absorbing working medium is a mixed liquid obtained by adding Fe 3 O 4 -graphene composite functional nano-magnetic fluid to the base liquid. The base fluid is heat transfer oil, water or ethylene glycol. Under the action of the dispersant, the nanoparticles can be uniformly and stably distributed in the base liquid. Under the action of the permanent magnet, the evenly distributed nanoparticles begin to aggregate in a small range to form a chain-like heat channel, which can effectively improve the absorption of solar energy. efficiency.
进一步的,所述储水管、玻璃真空内管和集热管固定在固定挡板一侧,所述固定挡板另一侧分别设有连接储水管的进水口和出水口,连接集热管的吸收工质进出口。Further, the water storage pipe, the glass vacuum inner pipe and the heat collection pipe are fixed on one side of the fixed baffle, and the other side of the fixed baffle is respectively provided with a water inlet and a water outlet connected to the water storage pipe, and the absorption equipment of the heat collection pipe is connected. Quality import and export.
进一步的,所述控制器连接有光敏传感器,所述电源为太阳能电池板。Further, the controller is connected with a photosensitive sensor, and the power source is a solar panel.
进一步的,所述聚光器包括为金属半弧状光反射面,所述反射面表面镀有高反射率薄膜。集热管周围的太阳光线经过反射面聚焦的被集中反射到集热管上被集热管中的吸收工质吸收,同时一些没来得及被吸收工质吸收从而穿透真空内管的光可以由聚光光反射面-13再次反射,达到二次吸收的作用,从而提高集热管内③部(图3)距离太阳最远的部分的吸收。Further, the concentrator includes a metal semi-arc-shaped light reflecting surface, and the surface of the reflecting surface is coated with a high reflectivity film. The solar light around the heat collector tube is focused by the reflective surface and concentrated on the heat collector tube and absorbed by the absorbing working medium in the heat collecting tube. At the same time, some light that has not had time to be absorbed by the absorbing working medium and penetrate the vacuum inner tube can be absorbed by the concentrated light. The reflective surface-13 reflects again to achieve the effect of secondary absorption, thereby improving the absorption of the part farthest from the sun in the ③ part (Fig. 3) of the heat collector.
进一步的,所述太阳能吸收单元通过支架支撑在光反射面的内凹面上。Further, the solar energy absorbing unit is supported on the concave surface of the light reflecting surface through a bracket.
进一步的,所述光反射面两端固定在三角架上。Further, both ends of the light reflecting surface are fixed on a tripod.
本发明的有益效果为:The beneficial effects of the present invention are:
与现有技术相比,本发明提出一种流体点阵式磁控强化吸收太阳能集热装置,克服了传统太阳能集热器吸收涂层耐高温和耐久性差,以及现有的直接吸收型集热器吸热不均而导致吸热慢、传热时间长等问题,通过优化装置的结构及材料,能够在现有的直接吸收型太阳能集热装置的基础上,解决吸收工质内部吸热较慢或者依靠热传导升温速度慢、时间长的局限,通过在升温较慢的中部区域添加装置使得中部吸收与其他部分同步或接近同步的速度吸收光热,进一步提高了集热器的集热、储能效率及热传输效率。Compared with the prior art, the present invention proposes a fluid lattice-type magnetron enhanced absorption solar heat collector, which overcomes the poor high temperature resistance and durability of the traditional solar collector absorption coating, and the existing direct absorption type heat collector. The problem of slow heat absorption and long heat transfer time caused by uneven heat absorption of the device can be solved by optimizing the structure and material of the device, based on the existing direct absorption solar heat collector, to solve the problem of the internal heat absorption of the absorbing working medium. Slow or relying on the limitation of slow heating speed and long time due to heat conduction, by adding devices in the middle area where the heating temperature is relatively slow, the middle part absorbs light and heat at a synchronous or nearly synchronous speed with other parts, which further improves the heat collection and storage capacity of the collector. energy efficiency and heat transfer efficiency.
附图说明Description of drawings
图1是本发明的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the present invention;
图2是本发明中太阳能吸收单元的结构示意图;Fig. 2 is the structural representation of the solar energy absorption unit in the present invention;
图3是本发明中光反射面反射太阳光的示意图;Fig. 3 is the schematic diagram of light reflecting surface reflecting sunlight in the present invention;
图4是本发明中放大的强化点阵吸收单元的吸收太阳能原理图。FIG. 4 is a schematic diagram of the solar energy absorption of the enlarged enhanced lattice absorption unit in the present invention.
附图标记说明:Description of reference numbers:
1-玻璃真空外管、2-储水管、3-集热管、4-固定挡板、5-螺旋帽、6-出水口、7- 防腐密封材料、8-吸收工质进出口、9-进水口、10-螺旋帽、11-光纤、12-强化点阵吸收单元、13-光反射面、14-三脚架、15-固定器、16-支架、17-永磁体、18- 控制器、19-旋转盘。1-glass vacuum outer tube, 2-water storage tube, 3-heat collector tube, 4-fixed baffle, 5-screw cap, 6-water outlet, 7-anti-corrosion sealing material, 8-absorbing medium inlet and outlet, 9-inlet Nozzle, 10-screw cap, 11-fiber, 12-strengthened lattice absorption unit, 13-light reflecting surface, 14-tripod, 15-fixer, 16-support, 17-permanent magnet, 18-controller, 19- Spin the disc.
具体实施方式Detailed ways
下面通过具体实施例和附图对本发明作进一步的详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。The present invention will be further described in detail below through specific embodiments and accompanying drawings. The following embodiments are only descriptive, not restrictive, and cannot limit the protection scope of the present invention.
实施例1Example 1
如图1和2所示,一种流体点阵式磁控强化吸收太阳能集热装置,包括聚光器和安装在聚光器上方的太阳能吸收单元,位于聚光器底部设有永磁体17,永磁体17位于旋转盘19上方,旋转盘19连接有控制旋转盘19转动的控制器18,控制器18和旋转盘19均连接电源;太阳能吸收单元包括集热管3和依次套嵌在集热管外部的储水管2(玻璃材质)、玻璃真空内管1,集热管内部设有横向和纵向的弧形光纤11,弧形光纤11上设有强化点阵吸收单元12。As shown in Figures 1 and 2, a fluid lattice type magnetron enhanced absorption solar heat collector includes a concentrator and a solar energy absorption unit installed above the concentrator, and a
储水管2、玻璃真空内管1和集热管3固定在固定挡板4一侧,固定挡板4 另一侧分别设有连接储水管1的进水口9和出水口6,连接集热管3的吸收工质进出口8。控制器18连接有光敏传感器,电源为太阳能电池板,用于储存能量,为旋转盘19的转动以及智能控制器18的工作提供能量,也可以是根据需要来选择供电装置,也可以使用电池、发电机或直接接在家庭、工业电路中。The
聚光器包括为金属半弧状光反射面13,反射面13表面镀有高反射率薄膜。集热管周围的太阳光线经过反射面聚焦的被集中反射到集热管上被集热管中的吸收工质吸收,同时一些没来得及被吸收工质吸收从而穿透真空内管的光可以由聚光光反射面13再次反射,达到二次吸收的作用,从而提高集热管内③部距离太阳最远的部分的吸收。太阳能吸收单元通过固定器15和支架16固定在光反射面13的内凹面上。光反射面13两端固定在三角架14上。进水口6和出水口9 上安装有螺旋帽5和10,用于进水口、出水口和水管的连接固定。吸收工质进出口8上设有仿佛密封材料7,其可将吸收工质密封在集热管3的内部,避免其泄露。The concentrator includes a metal semi-arc-shaped
根据太阳从升起到降落的时间及弧度,合理的计算出太阳移动的速度,从而设置好旋转盘19转动的角速度,使镶嵌在旋转盘19内的永磁体17始终正对着太阳,使得永磁体17控制的强化点阵吸收单元12和吸收工质中纳米颗粒聚集体可以沿着太阳光线的方向最大化的吸收太阳的光热以及最快速度的传热,同时,不同的季节,太阳的升起到降落的时间段的长短不一样,所以,在控制器表面设置了光敏传感器作为旋转盘19的工作开关,当光敏传感器感应到太阳光时,旋转盘19开始工作,当夜幕降临,光敏传感器感应不到光时,旋转盘19停止工作。强化点阵吸收单元12是吸附有磁性高热导复合材料的磁体颗粒,磁性高热导复合材料是四氧化三铁修饰碳纳米管的复合纳米材料。According to the time and radian of the sun from rising to falling, the moving speed of the sun can be reasonably calculated, so as to set the angular speed of the rotation of the
集热管3内部包含吸收工质,吸收工质是添加Fe3O4-石墨烯复合功能性纳米磁流体到基液中的混合液。The inside of the
上述材料可以从市场上购买或者借鉴现有技术制备而得,本发明提供一种吸收工质和强化点阵吸收单元得制备方法。The above-mentioned materials can be purchased from the market or prepared by referring to the prior art, and the present invention provides a preparation method for absorbing working medium and strengthening lattice absorption unit.
实施例2吸收工质的制备:The preparation of
采用两步法制备Fe3O4-石墨烯复合功能性纳米磁流体。在导热油中加入微量的三聚磷酸钠,在50℃的水浴条件下超声振荡20min,制备质量浓度为2g/L的三聚磷酸钠的导热油溶液。称取一定质量的干燥的纳米Fe3O4粉末和纳米石墨烯,加入到三聚磷酸钠导热油溶液中,制备体积分数为5%的复合溶液,用磁力加热搅拌器搅拌,加热搅拌到70℃,在70℃的水浴条件下超声振荡40min,这样可使Fe3O4完全的包裹在石墨烯的表面形成复合磁性颗粒,在分散剂的作用下均匀的分散在溶液中。石墨烯具有很好的热吸收和热传导性能但是没有磁性,Fe3O4有磁性但是热吸收不是很好,上述制备的复合功能性纳米磁流体不仅具有很好的热吸收和热传导性能,还具有磁性,可被磁场控制,可以在磁场的作用下发生聚集。Fe 3 O 4 -graphene composite functional nanomagnetic fluid was prepared by a two-step method. A small amount of sodium tripolyphosphate was added to the heat-conducting oil, and the heat-conducting oil solution with a mass concentration of 2g/L of sodium tripolyphosphate was prepared by ultrasonic oscillation for 20 min in a water bath at 50°C. Weigh a certain mass of dry nano - Fe3O4 powder and nano-graphene, add it to the sodium tripolyphosphate heat-conducting oil solution, prepare a composite solution with a volume fraction of 5%, stir with a magnetic heating stirrer, heat and stir to 70 ℃, ultrasonically oscillate for 40 min in a water bath at 70 ℃, so that Fe 3 O 4 can be completely wrapped on the surface of graphene to form composite magnetic particles, which are uniformly dispersed in the solution under the action of a dispersant. Graphene has good heat absorption and heat conduction properties but no magnetism, Fe 3 O 4 is magnetic but not very good in heat absorption, the composite functional nano-magnetic fluid prepared above not only has good heat absorption and heat conduction properties, but also has Magnetism, which can be controlled by a magnetic field, can be aggregated under the action of a magnetic field.
实施例3强化点阵吸收单元的制备:The preparation of
采用化学共沉淀法制得磁性四氧化三铁纳米粒子,采用NH3·H2O作为沉淀剂,将一定量的FeCl2和FeCl3混合溶液加入到烧杯中,然后再将28%的氨水加入到烧杯中。机械搅拌,水浴恒温,电动搅拌45min后静置在磁铁上,待黑色固体完全沉淀后,倒掉上层清液。用蒸馏水反复洗涤直至pH为中性为止,在 60℃真空干燥箱中干燥24h,得到磁性四氧化三铁纳米粒子。Magnetic ferric oxide nanoparticles were prepared by chemical co-precipitation method. Using NH 3 ·H 2 O as a precipitant, a certain amount of mixed solution of FeCl 2 and FeCl 3 was added to the beaker, and then 28% ammonia water was added to the beaker. in a beaker. Mechanical stirring, constant temperature in a water bath, electric stirring for 45 min, and then stand on a magnet. After the black solid is completely precipitated, the supernatant liquid is poured out. Repeated washing with distilled water until the pH is neutral, drying in a vacuum drying oven at 60° C. for 24 h to obtain magnetic ferric oxide nanoparticles.
取1g经过预处理的碳纳米管放入100mL的烧瓶中,依次加入15mL浓硝酸和45mL浓硫酸,装好回流冷凝和吸收装置,加热回流0.5h。冷却至室温后将多余的酸过滤,所剩的粉末状物质即为纯净的碳纳米管。将所得的碳纳米管用去离子水洗涤至pH值为7时止。最后将洗涤过的碳纳米管放入烘箱中干燥2h,得到纯净的碳纳米管。Take 1 g of pretreated carbon nanotubes into a 100 mL flask, add 15 mL of concentrated nitric acid and 45 mL of concentrated sulfuric acid in turn, install a reflux condensation and absorption device, and heat under reflux for 0.5 h. After cooling to room temperature, the excess acid was filtered, and the remaining powdery substance was pure carbon nanotubes. The obtained carbon nanotubes were washed with deionized water until the pH value was 7. Finally, the washed carbon nanotubes were placed in an oven to dry for 2 h to obtain pure carbon nanotubes.
将得到的磁性四氧化三铁纳米粒子和纯净的碳纳米管分别放入球磨机中,分别球磨3h、1h。称取80mg球磨过的多壁碳纳米管加入到25mL三甘醇溶液中,超声10min;接着边用磁力搅拌边加入200mg已球磨过的磁性Fe3O4纳米粒子,再将混合溶液放到集热式恒温加热磁力搅拌器内加热至280℃,并保持30min,然后自然冷却到室温。用乙醇稀释并用商业磁铁通过磁吸附过程从水溶液中将产物分离出来;最后用乙醇反复清洗并用真空烘箱烘干,即可得到四氧化三铁修饰碳纳米管的复合纳米材料。The obtained magnetic ferric oxide nanoparticles and pure carbon nanotubes were put into a ball mill, respectively, and ball milled for 3h and 1h, respectively. 80 mg of ball-milled multi-walled carbon nanotubes were weighed and added to 25 mL of triethylene glycol solution, and sonicated for 10 min; then 200 mg of ball-milled magnetic Fe 3 O 4 nanoparticles were added while magnetic stirring, and the mixed solution was placed in a collector. Heat to 280°C in a thermal constant-temperature heating magnetic stirrer, keep for 30min, and then naturally cool to room temperature. Dilute with ethanol and separate the product from the aqueous solution through a magnetic adsorption process with a commercial magnet; finally, repeatedly wash with ethanol and dry in a vacuum oven to obtain a composite nanomaterial of ferroferric oxide modified carbon nanotubes.
将强磁性的磁钢粉碎,并球磨1h,然后用双组份环氧胶将球磨后的磁钢碎粒均匀粘附在在光纤上,之后将制备好的四氧化三铁修饰碳纳米管的复合纳米材料吸附在被固定在光纤上的磁钢上,将复合好的光纤的两端用气凝胶固定在集热管管壁上使其悬挂在集热管的中间位置。The strong magnetic steel is crushed and ball-milled for 1 h, and then the ball-milled magnetic steel particles are uniformly adhered to the optical fiber with two-component epoxy glue. The composite nanomaterial is adsorbed on the magnetic steel fixed on the optical fiber, and the two ends of the composite optical fiber are fixed on the tube wall of the heat collecting tube with aerogel to be suspended in the middle position of the heat collecting tube.
实施例4工作原理Working principle of Example 4
当光敏传感器感应到太阳光时,控制器18发出指示控制旋转盘19连带着永磁体17开始转动,转到正对着太阳的方向,这时本装置开始工作,太阳光首先通过透明的玻璃真空外管1和玻璃储水管2照射水上,少部分的太阳光被玻璃真空内管2和集热管3中间填充的水所吸收,大部分未被水所吸收的太阳光透过水到达集热管3中装有的吸收工质中,吸收工质中离太阳最近的部分开始集热,同时照射在光反射面13上的太阳光线经过光反射面13的聚集及反射进入到集热管 3的下方的水中,如图3所示,同理,透过水的部分被吸收工质中的部分所吸收储存,由于吸收工质的部分添加了光纤11以及固定在光纤11表面上的强化点阵吸收单元12,所以提高了部分的光热吸收,部分吸收并储存了大量的光热,由于吸收工质吸收光热的能力比水快,所以吸收工质将其吸收的热量传递给水,通过热传递,使水温增高,冷水不断由进水口9进入,升温后的热水随着出水口6 排出供日常家庭或工业所用。不同时间段太阳光的照射角度不同,控制器-18控制着旋转盘-19以及永磁体-17始终追随着太阳的方向转动,最大程度上接收最强的太阳光。本装置中的太阳能吸收装置部分还可以大规模套接排列,以供不同应用场合的需求。When the photosensitive sensor senses sunlight, the
实施例5对比试验光热测试:Embodiment 5 Comparative test photothermal test:
将本发明所述得装置和专利CN110195938A中得装置进行光热测试,在太阳灯(35A,300V,实验光强为1500W/m2)下,由温度巡检仪进行测试,测试结果如下表格,位置如图3所示,表1即专利CN110195938A装置测试所得,表2即本发明所述装置。专利CN110195938A装置是流体由外向内传热,通过表1可以发现,从外到内,温度逐渐下降,水接触的是流体的最低温处,传热较慢。而本发明,流体内向外传热,水接触的是流体温度最高或较高的地方,传热较快,通过表2可以发现,不同位置的温差较小,减少了流体内部的传热,加快了流体向水的传热。The device described in the present invention and the device obtained in the patent CN110195938A were subjected to photothermal test, under the sun lamp (35A, 300V, the experimental light intensity was 1500W/m 2 ), the temperature patrol instrument was used to test, and the test results were as follows: The location is shown in Figure 3, Table 1 is the result obtained from the patent CN110195938A device test, and Table 2 is the device of the present invention. The patent CN110195938A device transfers heat from the outside to the inside of the fluid. From Table 1, it can be found that the temperature gradually decreases from the outside to the inside, and the water contacts the lowest temperature of the fluid, and the heat transfer is slow. In the present invention, heat is transferred from the inside to the outside of the fluid, and the water contacts the place with the highest or higher temperature of the fluid, and the heat transfer is faster. From Table 2, it can be found that the temperature difference between different positions is small, which reduces the heat transfer inside the fluid and accelerates the heat transfer. heat transfer from fluid to water.
表1Table 1
表2Table 2
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111620434.8A CN114413486B (en) | 2021-12-28 | 2021-12-28 | A fluid lattice magnetically controlled solar energy heat collection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111620434.8A CN114413486B (en) | 2021-12-28 | 2021-12-28 | A fluid lattice magnetically controlled solar energy heat collection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114413486A true CN114413486A (en) | 2022-04-29 |
CN114413486B CN114413486B (en) | 2025-04-18 |
Family
ID=81269300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111620434.8A Active CN114413486B (en) | 2021-12-28 | 2021-12-28 | A fluid lattice magnetically controlled solar energy heat collection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114413486B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116202237A (en) * | 2023-04-28 | 2023-06-02 | 昆明理工大学 | Solar vacuum tube photo-thermal performance monitoring device and monitoring method |
CN116772432A (en) * | 2023-05-25 | 2023-09-19 | 上海第二工业大学 | A nanofluidic trough solar concentrator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200265501Y1 (en) * | 2001-11-15 | 2002-02-21 | 박종근 | Water heater for warm and hot water using tracking apparatus of sun |
JP2014031963A (en) * | 2012-08-03 | 2014-02-20 | Nisshin Steel Co Ltd | Light reflection unit and method of manufacturing the same |
CN108168114A (en) * | 2017-12-27 | 2018-06-15 | 河南百年融熥实业有限公司 | A kind of rapid heat build-up solar water heater |
CN210602296U (en) * | 2019-06-17 | 2020-05-22 | 河海大学 | Magnetic field assisted nano-fluid direct absorption type concentrating magnetofluid solar heat collection device |
CN216694037U (en) * | 2021-12-28 | 2022-06-07 | 河海大学 | A fluid lattice magnetron enhanced absorption solar energy collector |
-
2021
- 2021-12-28 CN CN202111620434.8A patent/CN114413486B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200265501Y1 (en) * | 2001-11-15 | 2002-02-21 | 박종근 | Water heater for warm and hot water using tracking apparatus of sun |
JP2014031963A (en) * | 2012-08-03 | 2014-02-20 | Nisshin Steel Co Ltd | Light reflection unit and method of manufacturing the same |
CN108168114A (en) * | 2017-12-27 | 2018-06-15 | 河南百年融熥实业有限公司 | A kind of rapid heat build-up solar water heater |
CN210602296U (en) * | 2019-06-17 | 2020-05-22 | 河海大学 | Magnetic field assisted nano-fluid direct absorption type concentrating magnetofluid solar heat collection device |
CN216694037U (en) * | 2021-12-28 | 2022-06-07 | 河海大学 | A fluid lattice magnetron enhanced absorption solar energy collector |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116202237A (en) * | 2023-04-28 | 2023-06-02 | 昆明理工大学 | Solar vacuum tube photo-thermal performance monitoring device and monitoring method |
CN116202237B (en) * | 2023-04-28 | 2023-08-11 | 昆明理工大学 | A solar vacuum tube photothermal performance monitoring device and monitoring method |
CN116772432A (en) * | 2023-05-25 | 2023-09-19 | 上海第二工业大学 | A nanofluidic trough solar concentrator |
Also Published As
Publication number | Publication date |
---|---|
CN114413486B (en) | 2025-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bellos et al. | A review of concentrating solar thermal collectors with and without nanofluids | |
CN201059795Y (en) | Medium and high temperature concentrating solar heat collection system | |
CN216694037U (en) | A fluid lattice magnetron enhanced absorption solar energy collector | |
CN101226006A (en) | Heat pipe focused energy storage medium and high temperature solar collector | |
CN114413486B (en) | A fluid lattice magnetically controlled solar energy heat collection device | |
CN210602296U (en) | Magnetic field assisted nano-fluid direct absorption type concentrating magnetofluid solar heat collection device | |
CN203573997U (en) | A kind of thin film solar cell | |
CN101226011A (en) | Nano black liquor material for direct absorption of solar radiation energy | |
CN102927692A (en) | Heat absorption cavity and method thereof based on solid-liquid-gas three phase flow | |
CN201166472Y (en) | Reflective plate focusing energy storage tubular solar collector | |
CN104539238A (en) | Magnetic nano-fluid light condensation type photovoltaic combined heat and power generation device | |
CN217209890U (en) | A magnetic fluid zero-carbon light-inducing solar heat collector | |
CN115013853A (en) | Solar Phase Change Thermal Storage Heating System Containing Phase Change Materials with Different Melting Points | |
CN206944512U (en) | A kind of focus solar collector | |
CN200961960Y (en) | Groove type light-gathering heat pipe type solar boiler device | |
CN108444113A (en) | A kind of new type solar energy steam heat collection device | |
CN118487532A (en) | A hydrogen-electric complementary energy supply system integrating coupled photochemical-photoelectric-thermoelectric reaction conversion | |
CN108981194B (en) | Trough solar collector based on black body absorption principle | |
CN207963193U (en) | A simple and efficient solar water heater | |
CN109140799A (en) | A kind of solar water heater based on Fresnel line light and heat collection | |
CN108800629A (en) | A kind of exposed heat dump suitable for tower type solar thermo-power station | |
CN110195938B (en) | A magnetic field-assisted nanofluid direct absorption type concentrating magnetic fluid solar heat collection device | |
CN202835845U (en) | Dish type solar energy heat utilization system | |
CN114877536B (en) | Magnetic fluid zero-carbon light-guiding solar heat collection device | |
CN104879284A (en) | Sun-tracking solar chimney hot air system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |