CN114410635A - Endogenous U6 promoter of Fusarium venezia and its CRISPR/Cas9-based gene editing method - Google Patents
Endogenous U6 promoter of Fusarium venezia and its CRISPR/Cas9-based gene editing method Download PDFInfo
- Publication number
- CN114410635A CN114410635A CN202210314506.4A CN202210314506A CN114410635A CN 114410635 A CN114410635 A CN 114410635A CN 202210314506 A CN202210314506 A CN 202210314506A CN 114410635 A CN114410635 A CN 114410635A
- Authority
- CN
- China
- Prior art keywords
- promoter
- endogenous
- fusarium
- cas9
- fusarium venenatum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了来源于威尼斯镰刀菌的U6启动子,以及适用于威尼斯镰刀菌的基因编辑方法。本发明在威尼斯镰刀菌中成功建立了以内源U6启动子为基础的CRISPR/Cas9基因编辑体系,并实现对靶标基因的定点编辑在,因而在低同源重组率威尼斯镰刀菌中实现方便、快速、高效的基因编辑,具有较高应用价值。
The invention discloses a U6 promoter derived from Fusarium venetianus and a gene editing method suitable for Fusarium venetianus. The present invention successfully establishes a CRISPR/Cas9 gene editing system based on the endogenous U6 promoter in Fusarium venetianus, and realizes the site-directed editing of the target gene, thus realizing convenience and speed in Fusarium venetianus with a low homologous recombination rate , Efficient gene editing, with high application value.
Description
技术领域technical field
本发明涉及威尼斯镰刀菌基因工程领域,具体涉及威尼斯镰刀菌内源U6启动子及其基于CRISPR/Cas9的基因编辑方法。The invention relates to the field of genetic engineering of Fusarium venetianus, in particular to an endogenous U6 promoter of Fusarium venetianus and a gene editing method based on CRISPR/Cas9.
背景技术Background technique
威尼斯镰刀菌是从3000多株真菌中筛选到的可用于发酵生产菌丝蛋白的工业菌株。该菌株发酵产生的菌丝蛋白与单细胞蛋白相比更加味美,具有类似肉质的组织结构,并且能够提供很好的营养平衡,包括脂肪含量低,氨基酸种类齐全,富含微量元素、维生素及利于人胃肠蠕动的可食性粗纤维。此外,威尼斯镰刀菌菌丝蛋白还具有很好的安全性,已在全球的18个国家获得食品原料上市许可。因此,具有部分或全部替代动物性和植物性蛋白质食品的潜力。Fusarium venezia is an industrial strain screened from more than 3,000 fungi that can be used for fermentative production of mycelin. Compared with the single-cell protein, the mycelial protein produced by the fermentation of this strain is more delicious, has a meat-like tissue structure, and can provide a good nutritional balance, including low fat content, complete amino acid types, rich in trace elements, vitamins and benefits. Edible crude fiber for human gastrointestinal motility. In addition, Fusarium venezia mycelial protein also has very good safety, and has obtained the marketing license of food raw materials in 18 countries around the world. Therefore, it has the potential to partially or completely replace animal-based and plant-based protein foods.
过去几年,CRISPR/Cas9基因编辑体系已在丝状真菌中得到广泛的应用,使研究人员对丝状真菌的改造能力大幅度提升。在CRISPR/Cas9基因编辑体系的建立过程中,调控sgRNA表达的高效Ⅲ型启动子起着关键作用,其中又以U6启动子研究最为普遍。当前在威尼斯镰刀菌中还未有关于内源高效U6启动子的报告。因此,挖掘高效的威尼斯镰刀菌TB01内源U6启动子,并以此建立CRISPR/Cas9基因编辑系统,有望大幅提高同源重组效率,减少对筛选标记的依赖,以及实现多基因同时编辑,最终推进该菌株的基础研究和开发利用。In the past few years, the CRISPR/Cas9 gene editing system has been widely used in filamentous fungi, greatly improving the ability of researchers to modify filamentous fungi. In the establishment of the CRISPR/Cas9 gene editing system, the efficient type III promoter that regulates the expression of sgRNA plays a key role, among which the U6 promoter is the most commonly studied. There is currently no report on the endogenous efficient U6 promoter in F. venezia. Therefore, mining the efficient endogenous U6 promoter of Fusarium venezia TB01 and establishing a CRISPR/Cas9 gene editing system is expected to greatly improve the efficiency of homologous recombination, reduce the dependence on selection markers, and achieve simultaneous editing of multiple genes. Basic research and development and utilization of this strain.
发明内容SUMMARY OF THE INVENTION
针对现有技术的需求,本发明以威尼斯镰刀菌TB01 GFP荧光菌株为编辑对象,以能够在丝状真菌中自主复制且包含了黑曲霉密码子优化的Cas9蛋白表达载体为Cas9蛋白供体,通过比较不同内源U6启动子调控sgRNAGFP时对GFP基因的编辑效率,筛选到U6启动子U6374和U694,并以此为基础建立了能够实现威尼斯镰刀菌TB01菌株基因组精准、高效编辑的CRISPR/Cas9基因编辑体系。In response to the needs of the prior art, the present invention takes the Fusarium venetianus TB01 GFP fluorescent strain as the editing object, and uses the Cas9 protein expression vector that can replicate autonomously in filamentous fungi and contains codon-optimized Aspergillus niger as the Cas9 protein donor, through Comparing the editing efficiency of GFP gene when different endogenous U6 promoters regulate sgRNA GFP , the U6 promoters U6 374 and U6 94 were screened, and based on this, a CRISPR capable of realizing accurate and efficient genome editing of Fusarium venezia strain TB01 was established /Cas9 gene editing system.
因而,本发明的目的在于提供威尼斯镰刀菌的高效内源U6启动子和适合于威尼斯镰刀菌的基于CRISPR/Cas9基因编辑的方法。Therefore, the object of the present invention is to provide a high-efficiency endogenous U6 promoter of F. venetianus and a CRISPR/Cas9-based gene editing method suitable for F. venetianus.
本发明提供一种来源于威尼斯镰刀菌的内源U6启动子,其特征在于,在威尼斯镰刀菌中可诱导sgRNA的表达,以使Cas9在正确位置对靶标序列进行切割,所述内源U6启动子的核苷酸序列如SEQ ID NO:1或SEQ ID NO:2。更具体地,所述启动子是从丝状真菌是威尼斯镰刀菌TB01克隆到的,该菌株的保藏编号为CGMCC NO.20740,分类命名为镰刀菌Fusarium venenatum,于2020年10月12日保藏于中国微生物菌种保藏管理委员会普通微生物中心(保藏地址为北京市朝阳区北辰西路1号院3号)。The invention provides an endogenous U6 promoter derived from Fusarium venetianus, which is characterized in that the expression of sgRNA can be induced in Fusarium venetianus, so that Cas9 cuts the target sequence at the correct position, and the endogenous U6 promoter The nucleotide sequence of the sub is as SEQ ID NO:1 or SEQ ID NO:2. More specifically, the promoter is cloned from the filamentous fungus Fusarium venenatum TB01, the strain's deposit number is CGMCC NO. Ordinary Microbiology Center of China Microbial Culture Collection Management Committee (the preservation address is No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing).
本发明提供一种来源于威尼斯镰刀菌的内源U6启动子,其特征在于,在威尼斯镰刀菌中可诱导sgRNA的表达,以使Cas9在正确位置对靶标序列进行切割,所述内源U6启动子的核苷酸序列如SEQ ID NO:1或SEQ ID NO:2所示。The invention provides an endogenous U6 promoter derived from Fusarium venetianus, which is characterized in that the expression of sgRNA can be induced in Fusarium venetianus, so that Cas9 cuts the target sequence at the correct position, and the endogenous U6 promoter The nucleotide sequence of the sub is shown in SEQ ID NO:1 or SEQ ID NO:2.
进一步本发明提供含有所述的威尼斯镰刀菌的内源U6启动子的表达盒。优选地,表达盒包括所述内源U6启动子,和与其可操作连接的sgRNA中参与识别目标基因靶点的序列以及gRNA scaffold。更优选地,所述的gRNA scaffold的核苷酸序列如SEQ ID NO:3所示。Further, the present invention provides an expression cassette containing the endogenous U6 promoter of Fusarium venetianus. Preferably, the expression cassette comprises the endogenous U6 promoter, and the sequences in the sgRNA operably linked thereto that are involved in recognizing the target of the gene of interest and the gRNA scaffold. More preferably, the nucleotide sequence of the gRNA scaffold is shown in SEQ ID NO:3.
本发明还提供含有所述的来源于威尼斯镰刀菌的内源U6启动子或所述的表达盒的重组载体。The present invention also provides a recombinant vector containing the endogenous U6 promoter or the expression cassette derived from Fusarium venetianus.
本发明进一步提供一种威尼斯镰刀菌的基因编辑的方法,其包括如下步骤:将含有所述的来源于威尼斯镰刀菌的内源U6启动子介导的编辑目标基因的sgRNA片段和Cas9表达载体共转化威尼斯镰刀菌原生质体中,进一步筛选编辑成功的转化子。The present invention further provides a method for gene editing of Fusarium venetianus, which comprises the following steps: co-mingling the sgRNA fragment containing the endogenous U6 promoter-derived editing target gene mediated by the Fusarium venetianus with a Cas9 expression vector Transformed Fusarium venetianus protoplasts, and further screened the successfully edited transformants.
在优选实施方式中,所述Cas9表达载体中的调控元件包括如SEQ ID NO:5所示的PgpdA启动子;Cas9蛋白;SV40 NLS为病毒SV40的核定位信号;构巢曲霉trpc的启动子Ptrpc和终止子Ttrpc;潮霉素抗性基因Hyg;丝状真菌自主复制子AMA1;其中,所述内源U6启动子介导的编辑目标基因的sgRNA片段包括所述内源U6启动子、sgRNA中参与识别目标基因靶点的序列以及gRNA scaffold,进一步优选地所述的gRNA scaffold的核苷酸序列如SEQ IDNO:3所示。In a preferred embodiment, the regulatory elements in the Cas9 expression vector include the PgpdA promoter shown in SEQ ID NO: 5; the Cas9 protein; SV40 NLS is the nuclear localization signal of the virus SV40; the promoter Ptrpc of Aspergillus nidulans trpc and terminator Ttrpc; hygromycin resistance gene Hyg; filamentous fungus autonomous replicon AMA1; wherein, the sgRNA fragment of the endogenous U6 promoter-mediated editing target gene includes the endogenous U6 promoter, sgRNA The sequence involved in identifying the target of the target gene and the gRNA scaffold, further preferably, the nucleotide sequence of the gRNA scaffold is shown in SEQ ID NO: 3.
在一个具体实施方式中,所述威尼斯镰刀菌原生质体采用如下方法制备:收集威尼斯镰刀菌孢子,并用无菌0.7 M氯化钠洗涤后,酶解2小时,所述酶解采用的酶裂解液为:20mg崩溃酶+40mg蜗牛酶溶于10ml 0.7 M氯化钠,并过滤除菌。In a specific embodiment, the Fusarium venetianus protoplast is prepared by the following method: collecting Fusarium venetianus spores, washing with sterile 0.7 M sodium chloride, enzymatic hydrolysis for 2 hours, and the enzymatic lysate used in the enzymatic hydrolysis To be: 20 mg of crash enzyme + 40 mg of helicase dissolved in 10 ml of 0.7 M sodium chloride and filter sterilized.
进一步优选地,所述威尼斯镰刀菌为威尼斯镰刀菌TB01。Further preferably, the Fusarium venetianus is Fusarium venetianus TB01.
另外,优选地,上述方法进一步包括通过PCR或测序验证目的基因编辑成功的转化子。In addition, preferably, the above-mentioned method further comprises verifying the successful transformants of the target gene editing by PCR or sequencing.
本发明有益效果在于,在威尼斯镰刀菌中成功建立了以内源U6启动子为基础的CRISPR/Cas9基因编辑体系,并实现对靶标基因的定点编辑,因而在低同源重组率威尼斯镰刀菌中实现方便、快速、高效的基因编辑,具有较高应用价值。The beneficial effect of the invention lies in that the CRISPR/Cas9 gene editing system based on the endogenous U6 promoter is successfully established in Fusarium venetianus, and the targeted editing of the target gene is realized, thus realizing the low homologous recombination rate in Fusarium venetianus. Convenient, fast and efficient gene editing with high application value.
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。Other advantages, objects, and features of the present invention will appear in part from the description that follows, and in part will be appreciated by those skilled in the art from the study and practice of the invention.
附图说明Description of drawings
图1 威尼斯镰刀菌内源U6启动子调控sgRNAGFP表达的融合片段构建。其中A为各内源U6启动子片段及sgRNAGFP片段扩增后的电泳结果。B为各内源U6启动子片段与sgRNAGFP片段融合后的电泳结果。C为各内源U6启动子片段与sgRNAGFP片段融合后的测序比对结果。Fig. 1 Construction of fusion fragment of Fusarium venetianus endogenous U6 promoter to regulate sgRNA GFP expression. A is the electrophoresis result of each endogenous U6 promoter fragment and sgRNA GFP fragment amplified. B is the electrophoresis result of each endogenous U6 promoter fragment fused with sgRNA GFP fragment. C is the sequencing comparison result of each endogenous U6 promoter fragment fused with the sgRNA GFP fragment.
图2 Cas9表达载体构建。其中A为pCas9表达载体示意图。PgpdA为威尼斯镰刀菌TB01内源启动子;Cas9为进行黑曲霉密码子优化的Cas9蛋白;SV40 NLS为病毒SV40的核定位信号;Ptrpc和Ttrpc为构巢曲霉trpc的启动子和终止子;Hyg为潮霉素抗性基因;AMA1为丝状真菌自主复制子。B为pCas9表达载体转化子的PCR扩增电泳结果。1-10为pCas9转化子,H20为阴性对照。C为pCas9表达载体转化子的测序结果表明的已包含启动子和Cas9蛋白扩增片段的结构图。Figure 2 Construction of Cas9 expression vector. A is the schematic diagram of pCas9 expression vector. PgpdA is the endogenous promoter of F. venezia TB01; Cas9 is the codon-optimized Cas9 protein of Aspergillus niger; SV40 NLS is the nuclear localization signal of virus SV40; Ptrpc and Ttrpc are the promoter and terminator of trpc of Aspergillus nidulans; Hyg is Hygromycin resistance gene; AMA1 is an autonomous replicon of filamentous fungi. B is the PCR amplification electrophoresis result of pCas9 expression vector transformants. 1-10 are pCas9 transformants, and H 2 0 is a negative control. C is the structural diagram of the amplified fragment of the promoter and Cas9 protein indicated by the sequencing results of the transformant of the pCas9 expression vector.
图3 威尼斯镰刀菌CRISPR/Cas9基因编辑系统示意图。Figure 3 Schematic diagram of the CRISPR/Cas9 gene editing system in Fusarium venezia.
图4 CRISPR/Cas9编辑GFP荧光菌株的GFP基因编辑转化子的荧光代表性照片。Figure 4. Representative photographs of fluorescence of GFP gene-edited transformants of CRISPR/Cas9 edited GFP fluorescent strains.
图5荧光菌株GFP编辑转化子的PCR扩增后电泳结果。M为DNA marker;WT为野生型威尼斯镰刀菌(阴性对照);1-4为编辑后的无荧光转化子;5为未编辑的GFP荧光菌株。Figure 5. Electrophoresis results after PCR amplification of GFP -edited transformants of fluorescent strains. M is DNA marker; WT is wild-type Fusarium venetianus (negative control); 1-4 are edited non-fluorescent transformants; 5 is unedited GFP fluorescent strain.
具体实施方式Detailed ways
下面通过具体实施例对本发明作进一步的阐述,以便更好的理解本发明,但并不构成对本发明的限制。The present invention will be further described below through specific examples, so as to better understand the present invention, but it does not constitute a limitation of the present invention.
实施例1:威尼斯镰刀菌TB01不同内源U6启动子调控sgRNAGFP表达的融合片段构建Example 1: Construction of fusion fragments for the regulation of sgRNA GFP expression by different endogenous U6 promoters of Fusarium venetianus TB01
本发明通过和其它物种通过序列比较和检索,在威尼斯镰刀菌TB01中挖掘并克隆到内源U6启动子U694和U6374(序列分别如SEQ ID NO:1和SEQ ID NO:2),属于II类启动子,因而特别适合专门用于基因编辑中诱导sgRNA表达。Through sequence comparison and retrieval with other species, the present invention excavates and clones endogenous U6 promoters U6 94 and U6 374 (sequences as SEQ ID NO: 1 and SEQ ID NO: 2) in Fusarium venetianus TB01 (sequences are respectively SEQ ID NO: 1 and SEQ ID NO: 2), belonging to Class II promoters are therefore particularly suitable for inducing sgRNA expression in gene editing.
1. 引物1. Primers
2.片段扩增程序2. Fragment Amplification Procedure
3.实验方法3. Experimental method
分别以引物对U698-1/2,U694-1/2,U686-1/2,U6374-1/2从威尼斯镰刀菌TB01的DNA基因组中扩出相应内源U6启动子序列U686、U694、U698、U6374,以引物对sgRNA-1/2在人工合成的gRNA scaffold片段(SEQ ID NO:3)的基础上扩出sgRNAGFP序列(SEQ ID NO:4)。随后通过融合PCR进行两轮扩增,将U6片段与sgRNAGFP片段进行融合,并对融合片段进行测序确认。Using primer pairs U6 98 -1/2, U6 94 -1/2, U6 86 -1/2, U6 374 -1/2 to amplify the corresponding endogenous U6 promoter sequence U6 from the DNA genome of Fusarium venezia TB01, respectively 86 , U6 94 , U6 98 , U6 374 , the sgRNA GFP sequence (SEQ ID NO: 4) was amplified based on the synthetic gRNA scaffold fragment (SEQ ID NO: 3) with primer pair sgRNA-1/2. Subsequently, two rounds of amplification were performed by fusion PCR, the U6 fragment was fused with the sgRNA GFP fragment, and the fusion fragment was confirmed by sequencing.
实验结果如图1所示,其中A为各内源U6启动子片段及sgRNAGFP片段扩增后的电泳结果。B为各内源U6启动子片段与sgRNAGFP片段融合后的电泳结果。C为各内源U6启动子片段与sgRNAGFP片段融合后的测序比对结果。电泳结果和序列测序比对结果显示,各内源U6启动子与sgRNAGFP片段融合成功,随后将融合片段置于-20℃保存。The experimental results are shown in Figure 1, where A is the electrophoresis result of each endogenous U6 promoter fragment and sgRNA GFP fragment amplified. B is the electrophoresis result of each endogenous U6 promoter fragment fused with sgRNA GFP fragment. C is the sequencing comparison result of each endogenous U6 promoter fragment fused with the sgRNA GFP fragment. The results of electrophoresis and sequence sequencing showed that each endogenous U6 promoter was successfully fused to the sgRNA GFP fragment, and then the fusion fragment was stored at -20°C.
实施例2:Cas9蛋白表达载体构建Example 2: Construction of Cas9 protein expression vector
1.引物1. Primers
2.片段扩增程序2. Fragment Amplification Procedure
3.实验方法3. Experimental method
以引物对PgpdA1/2从威尼斯镰刀菌TB01的DNA基因组中扩出内源性的强启动子PgpdA的序列(SEQ ID NO:5),以引物对pCas9-T1/2从包含优化黑曲霉密码子后的Cas9骨架载体中扩出Cas9-Ttrpc序列。随后通过同源重组酶将其连接到包含丝状真菌中自主复子AMA1和Hyg抗性的骨架载体上获得pCas9表达载体。将其进行大肠杆菌DH5α转化后挑选单菌落进行PCR验证(以横跨gpdA和Cas9的片段为检测对象,引物对为Pgc1/2),获得阳性转化子。The sequence of the endogenous strong promoter PgpdA (SEQ ID NO: 5) was amplified from the DNA genome of Fusarium venetianus TB01 with primer pair PgpdA1/2, and the sequence of the endogenous strong promoter PgpdA (SEQ ID NO: 5) was amplified with primer pair pCas9-T1/2 from containing optimized codons from Aspergillus niger The Cas9-Ttrpc sequence was expanded in the latter Cas9 backbone vector. The pCas9 expression vector was then obtained by homologous recombinase ligation to the backbone vector containing the autoreplicon AMA1 and Hyg resistance in filamentous fungi. After transforming it into E. coli DH5α, a single colony was selected for PCR verification (with the fragment spanning gpdA and Cas9 as the detection object, and the primer pair was Pgc1/2) to obtain a positive transformant.
图2中A显示为pCas9表达载体示意图。实验结果如图2中B和C所示。电泳图(图2中B)和测序结果表明的结构(图2中C)显示,Pgpda片段和Cas9-T片段已成功连接到骨架载体上,随后将阳性转化子菌株置于-80℃保存,用于后续Cas9表达质粒的提取。A in Figure 2 shows a schematic diagram of the pCas9 expression vector. The experimental results are shown in B and C in Figure 2. The electropherogram (B in Figure 2) and the structure indicated by the sequencing results (C in Figure 2) showed that the Pgpda fragment and the Cas9-T fragment had been successfully connected to the backbone vector, and then the positive transformant strains were stored at -80 °C, For subsequent extraction of Cas9 expression plasmid.
实施例3:不同内源U6启动子调控sgRNAGFP融合片段与Cas9表达载体的威尼斯镰刀菌GFP荧光菌株的原生质体共转化Example 3: Co-transformation of protoplasts of Fusarium venetianus GFP fluorescent strains with different endogenous U6 promoters regulating sgRNA GFP fusion fragments and Cas9 expression vectors
本实施例描述了威尼斯镰刀菌CRISPR/Cas9基因编辑具体实验过程。图3示了本发明的威尼斯镰刀菌CRISPR/Cas9基因编辑系统示意图。This example describes the specific experimental process of CRISPR/Cas9 gene editing in Fusarium venezia. Figure 3 shows a schematic diagram of the Fusarium venezia CRISPR/Cas9 gene editing system of the present invention.
1.培养基1. Culture medium
YEPD: 酵母粉3g,蛋白胨10g,葡萄糖20g,定容到1LYEPD: Yeast powder 3g, peptone 10g, glucose 20g, make up to 1L
溶解酶的缓冲液:0.7 M氯化钠Buffer to dissolve enzyme: 0.7 M NaCl
STC:0.8 M山梨醇;50 mM CaCl2,50 mM Tris-HCl(Ph 8.0)STC: 0.8 M sorbitol; 50 mM CaCl 2 , 50 mM Tris-HCl (Ph 8.0)
SPTC:含40% PEG6000的STCSPTC: STC with 40% PEG6000
再生培养基:酵母提取物1g,胰蛋白胨1g,蔗糖274g,琼脂糖10g,定容1LRegeneration medium: yeast extract 1g, tryptone 1g, sucrose 274g, agarose 10g, constant volume 1L
筛选培养基:葡萄糖30g,酵母粉6g,琼脂粉15g,定容到1L。Screening medium: glucose 30g, yeast powder 6g, agar powder 15g, make up to 1L.
2.实验方法2. Experimental method
1)吐温80制备威尼斯镰刀菌孢悬液,涂于GY固体培养基上,28℃,培养7-10 d产孢;1) The spore suspension of Fusarium venezia was prepared with Tween 80, spread on GY solid medium, and cultured at 28°C for 7-10 days to produce spores;
2)制备孢悬液接于YEPD液体培养基中(加玻璃珠),28℃,200rmp培养至萌发菌丝长度为孢子的3-4倍(16h);2) Prepare the spore suspension and inoculate it in YEPD liquid medium (add glass beads), cultivate at 28°C, 200rmp until the length of the germinated mycelium is 3-4 times that of the spore (16h);
3)4℃,13000rpm,15min收集孢子,并用无菌0.7 M氯化钠洗涤1次;3) Collect spores at 4°C, 13000rpm, 15min, and wash once with sterile 0.7 M sodium chloride;
4)酶裂解液制备原生质体(20mg崩溃酶+40mg蜗牛酶溶于10ml 0.7 M氯化钠,并过滤除菌),30℃ 100 rpm裂解2h;4) Preparation of protoplasts from enzyme lysate (20mg crash enzyme + 40mg helicase dissolved in 10ml 0.7 M sodium chloride, and sterilized by filtration), lysed at 30°C and 100 rpm for 2h;
5)三层擦镜纸过滤后4℃,7000rpm,10min;5) After filtering with three layers of lens paper, 4℃, 7000rpm, 10min;
6)STC洗涤2次,按上述离心后用STC重选原生质体(浓度106),放于冰上备用;6) Wash twice with STC, reselect protoplasts (concentration 10 6 ) with STC after centrifugation as above, and put them on ice for later use;
7)取80μl上述原生质体悬浮液,加入20μl SPTC,轻轻混匀,再分别加入10μg融合U6::sgRNA片段和Cas9表达载体,轻轻混匀后放置冰上30min;7) Take 80 μl of the above protoplast suspension, add 20 μl SPTC, mix gently, then add 10 μg fusion U6::sgRNA fragment and Cas9 expression vector, mix gently and place on ice for 30 minutes;
8)加入1ml SPTC轻轻混匀,室温放置20min;8) Add 1ml SPTC and mix gently, leave at room temperature for 20min;
9)混合液加到40℃左右的再生培养基中,摇匀倒板,28℃培养过夜(12h左右);9) Add the mixture to the regeneration medium at about 40°C, shake well and pour the plate, and culture at 28°C overnight (about 12h);
10)倒上筛选培养基,28℃培养长出转化子(3-4d),以进一步筛选GFP基因编辑转化子。10) Pour on the screening medium and grow the transformants at 28°C (3-4d) to further screen the GFP gene editing transformants.
实施例4:GFP基因编辑转化子的荧光观察Example 4: Fluorescence observation of GFP gene editing transformants
利用手持荧光激发器LUYOR-3415GR照射实施例2中获得的GFP基因编辑转化子,并通过滤片进行拍照。实验结果如下表和图4所示。The GFP gene editing transformants obtained in Example 2 were irradiated with a hand-held fluorescence exciter LUYOR-3415GR, and photographed through a filter. The experimental results are shown in the following table and Figure 4.
基于不同内源U6启动子的CRISPR/Cas9编辑系统对GFP基因编辑效率比较Comparison of GFP gene editing efficiency by CRISPR/Cas9 editing systems based on different endogenous U6 promoters
结果显示,在荧光激发器照射下,只有以U6374启动子和U694启动子为基础的CRISPR/Cas9基因编辑系统转化荧光菌株后才出现无荧光的转化子(GFP被编辑),且U6374启动子中所呈现的无荧光转化子比例(67%)明显高于U694启动子(22%),表明基于威尼斯镰刀菌内源U6374启动子和U694启动子建立的CRISPR/Cas9基因编辑系统能够在威尼斯镰刀菌中工作,且启动子U6374的诱导活性最强。The results showed that under the irradiation of the fluorescent exciter, only after the CRISPR/Cas9 gene editing system based on the U6 374 promoter and the U6 94 promoter transformed the fluorescent strains, non-fluorescent transformants (GFP was edited) appeared, and U6 374 The proportion of non-fluorescent transformants presented in the promoter (67%) was significantly higher than that of the U6 94 promoter (22%), indicating that the CRISPR/Cas9 gene editing based on the endogenous U6 374 promoter and U6 94 promoter of F. venezia was established The system was able to work in Fusarium venetianus, and the promoter U6 374 had the strongest induction activity.
实施例5:荧光菌株GFP编辑转化子的PCR扩增及测序Example 5: PCR amplification and sequencing of GFP -edited transformants of fluorescent strains
1.试剂1. Reagents
菌丝裂解液:取1.2 gNaOH用去离子水溶解后定容至100 mL。Mycelial lysate: dissolve 1.2 g NaOH in deionized water and dilute to 100 mL.
菌丝中和液:10 mL 1M Tris-HCl(pH8.0),40 mL 0.3 M HCl,用去离子水定容至800 mL。Mycelial neutralization solution: 10 mL 1M Tris-HCl (pH8.0), 40 mL 0.3 M HCl, and make up to 800 mL with deionized water.
2.引物2. Primers
3.片段扩增程序3. Fragment Amplification Procedure
4.实验方法4. Experimental method
针对实施例3中的无荧光转化子,利用菌丝裂解液和中和液对其制备简易模板(取少量菌丝体于8μl菌丝裂解液中,98℃处理2min,随后加入170μl菌丝中和液即为简易模板),并通过引物对编辑验证-1/2扩增包含GFP基因的片段,随后对片段进行测序比对。For the non-fluorescent transformants in Example 3, a simple template was prepared by using mycelium lysate and neutralization solution (a small amount of mycelium was taken in 8 μl of mycelium lysate, treated at 98°C for 2 min, and then added to 170 μl of mycelium and solution is a simple template), and the fragment containing the GFP gene was amplified by primer pair editing to verify-1/2, and then the fragments were sequenced and compared.
实验结果如图5所示荧光菌株GFP编辑转化子的PCR扩增后电泳结果。经无荧光转化子的PCR扩增及测序比对结果表明,导入Cas9和sgRNAGFP后GFP基因在特定sgRNA结合位置发生碱基缺失,导致整个基因发生移码突变。该结果进一步证实内源U6启动子及相应CRISPR/Cas9基因编辑系统能够在威尼斯镰刀菌中能够有效应用。The experimental results are shown in Figure 5. The results of electrophoresis after PCR amplification of the GFP -edited transformants of fluorescent strains are shown. The results of PCR amplification and sequencing comparison of non-fluorescent transformants showed that after the introduction of Cas9 and sgRNA GFP , the GFP gene had base deletion at the specific sgRNA binding position, resulting in frameshift mutation of the entire gene. This result further confirms that the endogenous U6 promoter and the corresponding CRISPR/Cas9 gene editing system can be effectively applied in Fusarium venezia.
<110>中国科学院天津工业生物技术研究所<110> Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
<120>威尼斯镰刀菌内源U6启动子及其基于CRISPR/Cas9的基因编辑方法<120> Fusarium venetianus endogenous U6 promoter and its CRISPR/Cas9-based gene editing method
<130> 2022<130> 2022
<160> 5<160> 5
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 543<211> 543
<212> DNA<212> DNA
<213> 威尼斯镰刀菌(Fusarium venenatum)<213> Fusarium venenatum
<400> 1<400> 1
ccaggcggaa ttaatcagtc agcgccccaa ttctttattt catcccgagt cttgacggag 60ccaggcggaa ttaatcagtc agcgccccaa ttctttattt catcccgagt cttgacggag 60
agatgggata gtgaacatat ttagacctaa aaaaatacac aaaaaacatg ctaatatcgt 120agatgggata gtgaacatat ttagacctaa aaaaatacac aaaaaacatg ctaatatcgt 120
aaactgactc gataagcacg tccctcattc cctcagccgt caatccaaat gcgccacctc 180aaactgactc gataagcacg tccctcattc cctcagccgt caatccaaat gcgccacctc 180
gtctccaagt acgaaacggt tgtcttgatg ttgcggagtt taggcttggg gttttcgtac 240gtctccaagt acgaaacggt tgtcttgatg ttgcggagtt taggcttggg gttttcgtac 240
aagtttaagc atgcttctta gcgcgtggga gctgacatct actgcgaggc gtatgcaaag 300aagtttaagc atgcttctta gcgcgtggga gctgacatct actgcgaggc gtatgcaaag 300
acctatataa atacccgcca acaggaggag ttttcgggac cgaactgaag cttgtctgtt 360acctatataa atacccgcca acaggaggag ttttcgggac cgaactgaag cttgtctgtt 360
gcttctgcga gtataggttt gtcacaatca atcactccca ggcatatggc aaagaatgga 420gcttctgcga gtataggttt gtcacaatca atcactccca ggcatatggc aaagaatgga 420
gtgagtttga caagtcatgc tgatagtgac aatgattcaa aaccttgata atatactttg 480gtgagtttga caagtcatgc tgatagtgac aatgattcaa aaccttgata atatactttg 480
ctgctgctgc ctggaaaata ggcgttggga agggtttata agttaacaca agaccatcac 540ctgctgctgc ctggaaaata ggcgttggga agggtttata agttaacaca agaccatcac 540
tac 543tac 543
<210> 2<210> 2
<211> 303<211> 303
<212> DNA<212> DNA
<213> 威尼斯镰刀菌(Fusarium venenatum)<213> Fusarium venenatum
<400> 2<400> 2
atgcgggcgg atgttttgcg agtctggcac tgatgaccag ctgttgttgt tccgctatat 60atgcgggcgg atgttttgcg agtctggcac tgatgaccag ctgttgttgt tccgctatat 60
ttagaaccta gcaaatgctc actcttcaca acaacgtgag atgatttatt gatcagtaat 120ttagaaccta gcaaatgctc actcttcaca acaacgtgag atgatttatt gatcagtaat 120
tcctttttaa tgagcaggac tctttttgtg aagatgtgaa gatgtgccgt gctgctgtgg 180tcctttttaa tgagcaggac tctttttgtg aagatgtgaa gatgtgccgt gctgctgtgg 180
tgatgacaga aactcaaaaa cagactttgt tgctgcctag agcatgccta ggtacctaga 240tgatgacaga aactcaaaaa cagactttgt tgctgcctag agcatgccta ggtacctaga 240
caatgcatgc ctggacaata catgctgggt aaggcttata agttaaaata agaccaaccc 300caatgcatgc ctggacaata catgctgggt aaggcttata agttaaaata agaccaaccc 300
ttc 303ttc 303
<210> 3<210> 3
<211> 83<211> 83
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 3<400> 3
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgctttt ttt 83ggcaccgagt cggtgctttt ttt 83
<210> 4<210> 4
<211> 104<211> 104
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 4<400> 4
gcagccacaa cgtctatatc agttttagag ctagaaatag caagttaaaa taaggctagt 60gcagccacaa cgtctatatc agttttagag ctagaaatag caagttaaaa taaggctagt 60
ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt tttt 104ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt tttt 104
<210> 5<210> 5
<211> 1450<211> 1450
<212> DNA<212> DNA
<213> 人工合成<213> Synthetic
<400> 5<400> 5
ggtgttgatc gtcaaccaag tccgttcacc ggagcttccg gagaggaaga aaaaaaaaac 60ggtgttgatc gtcaaccaag tccgttcacc ggagcttccg gagaggaaga aaaaaaaaac 60
atctgatatg tttgtaacaa atttgctgaa tccattgaac tgaattgaaa gacatcacgg 120atctgatatg tttgtaacaa atttgctgaa tccattgaac tgaattgaaa gacatcacgg 120
agagttgcac ggtagaatac ggtgtcttat tcggcggcac ctacagaaaa aacagtatcc 180agagttgcac ggtagaatac ggtgtcttat tcggcggcac ctacagaaaa aacagtatcc 180
atccatttcg tctctgtgag gaggaggatg gatggacaga aatggaatca actgaggtgg 240atccatttcg tctctgtgag gaggaggatg gatggacaga aatggaatca actgaggtgg 240
catggcatgg catgaggggt agaaaaggta ctttttaata gagtgaggcg tgcataatgg 300catggcatgg catgaggggt agaaaaggta ctttttaata gagtgaggcg tgcataatgg 300
gacatgtatc tttttcaggg catcaatcat caccccacca taatgtattg tagctattgt 360gacatgtatc tttttcaggg catcaatcat caccccacca taatgtattg tagctattgt 360
cagtagtggg gaccttagct caccgagctg tggaaagtga gcatgatatg ctctgtacct 420cagtagtggg gaccttagct caccgagctg tggaaagtga gcatgatatg ctctgtacct 420
aaggacaatt aacttgtaaa gctgtaaata tattagttag ttcttataaa acattgaaag 480aaggacaatt aacttgtaaa gctgtaaata tattagttag ttcttataaa acattgaaag 480
gttaagtatt accaagtcat ggcaacggga ttctatgtcc agctatcaag gtactagaca 540gttaagtatt accaagtcat ggcaacggga ttctatgtcc agctatcaag gtactagaca 540
gccgttgaga ggggaaggaa aaaaaaaaag tctcccaccc tctcacccga tattccatgt 600gccgttgaga ggggaaggaa aaaaaaaaag tctcccaccc tctcacccga tattccatgt 600
tccattggcc cctgttatga tacgctacct acactacgat tacctaccta cctactatac 660tccattggcc cctgttatga tacgctacct acactacgat tacctaccta cctactatac 660
tgtacgcccc cttgtctggc ctggcctagc accctggcag tctgggtctg gtctggggtg 720tgtacgcccc cttgtctggc ctggcctagc accctggcag tctgggtctg gtctggggtg 720
tgtgttcgtg ggatgatgaa tgatgtggtg ggtgggttac taaactaaac atgagcttga 780tgtgttcgtg ggatgatgaa tgatgtggtg ggtgggttac taaactaaac atgagcttga 780
tgagagagtc catggttttc gattattagt atttgtactc ccaccctttc tcctcgacct 840tgagagagtc catggttttc gattattagt atttgtactc ccaccctttc tcctcgacct 840
tttttctttt tcctctcttt tcttttcatt ctcatcatcc tcaacaacac aacaactact 900ttttttctttt tcctctcttt tcttttcatt ctcatcatcc tcaacaacac aacaactact 900
tctttcttca ccaaaaggta tgtgtcttac ctgtctagct ttagctctct agctttgcct 960tctttcttca ccaaaaggta tgtgtcttac ctgtctagct ttagctctct agctttgcct 960
gtctctgccc ctccattctc aggattgctt ggctggttct acccctccat tccgcgcgac 1020gtctctgccc ctccattctc aggattgctt ggctggttct acccctccat tccgcgcgac 1020
tacatcacca tcataacatc acaacatgat ctcgttgctt ccatgctaca tcatgtcata 1080tacatcacca tcataacatc acaacatgat ctcgttgctt ccatgctaca tcatgtcata 1080
tcatacctgc ttcttatcac cactctgtga tgatacgtca actattggca ttcatccatt 1140tcatacctgc ttcttatcac cactctgtga tgatacgtca actattggca ttcatccatt 1140
gagcggataa caaggggagg ggagcaattg gaaggcaaaa aaaaaaaggg acaagaaaaa 1200gagcggataa caaggggagg ggagcaattg gaaggcaaaa aaaaaaaggg acaagaaaaa 1200
agacagagct tcagagctca tatcctgccc ctcctttgca ccaacgttgt cccctcccct 1260agacagagct tcagagctca tatcctgccc ctcctttgca ccaacgttgt cccctcccct 1260
ccactttctt ctactgtggc aacacccgtc ctcaccaaaa aaagctctct ttacatacca 1320ccactttctt ctactgtggc aacacccgtc ctcaccaaaa aaagctctct ttacatacca 1320
taccatacca taccatacca taccatacct gcctctgatc tgatctgtcc cactccgtca 1380taccatacca taccatacca taccatacct gcctctgatc tgatctgtcc cactccgtca 1380
tacagacggc atataaaata ccccactccc tcgcctcaac ctttgctctt cctcctcatc 1440tacagacggc atataaaata ccccactccc tcgcctcaac ctttgctctt cctcctcatc 1440
ttcttctcta 1450ttcttctcta 1450
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210314506.4A CN114410635B (en) | 2022-03-29 | 2022-03-29 | Venetian fusarium endogenous U6 promoter and gene editing method based on CRISPR/Cas9 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210314506.4A CN114410635B (en) | 2022-03-29 | 2022-03-29 | Venetian fusarium endogenous U6 promoter and gene editing method based on CRISPR/Cas9 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114410635A true CN114410635A (en) | 2022-04-29 |
CN114410635B CN114410635B (en) | 2022-06-14 |
Family
ID=81263697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210314506.4A Active CN114410635B (en) | 2022-03-29 | 2022-03-29 | Venetian fusarium endogenous U6 promoter and gene editing method based on CRISPR/Cas9 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114410635B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114958899A (en) * | 2022-05-30 | 2022-08-30 | 福州大学 | Replicon capable of autonomously replicating in Aspergillus niger cells |
CN115786384A (en) * | 2022-11-07 | 2023-03-14 | 中国科学院天津工业生物技术研究所 | Integration site of fusarium venenatum TB01 and application thereof |
CN116640753A (en) * | 2023-07-20 | 2023-08-25 | 中国科学院天津工业生物技术研究所 | Pyruvate decarboxylase gene FvPDC6 and application thereof in improving yield of fusarium venenatum hypha protein |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103038338A (en) * | 2010-05-10 | 2013-04-10 | 加利福尼亚大学董事会 | Endoribonuclease compositions and methods of use thereof |
WO2016100272A1 (en) * | 2014-12-16 | 2016-06-23 | Danisco Us Inc | Fungal genome modification systems and methods of use |
WO2016110453A1 (en) * | 2015-01-06 | 2016-07-14 | Dsm Ip Assets B.V. | A crispr-cas system for a filamentous fungal host cell |
CN107849562A (en) * | 2015-07-28 | 2018-03-27 | 丹尼斯科美国公司 | Genome editing system and application method |
CN108738328A (en) * | 2015-01-06 | 2018-11-02 | 帝斯曼知识产权资产管理有限公司 | CRISPR-CAS systems for filamentous fungal host cell |
CN112226373A (en) * | 2020-12-07 | 2021-01-15 | 中国科学院天津工业生物技术研究所 | A protein-producing strain and its application |
CN113412932A (en) * | 2021-06-08 | 2021-09-21 | 中国科学院天津工业生物技术研究所 | Processing method and application of edible hypha protein |
CN113785931A (en) * | 2021-08-27 | 2021-12-14 | 中国科学院天津工业生物技术研究所 | A kind of preparation method and application of edible acetylated cell fiber |
CN114107073A (en) * | 2022-01-29 | 2022-03-01 | 中国科学院天津工业生物技术研究所 | A kind of method that utilizes molasses to produce mycelin |
-
2022
- 2022-03-29 CN CN202210314506.4A patent/CN114410635B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103038338A (en) * | 2010-05-10 | 2013-04-10 | 加利福尼亚大学董事会 | Endoribonuclease compositions and methods of use thereof |
WO2016100272A1 (en) * | 2014-12-16 | 2016-06-23 | Danisco Us Inc | Fungal genome modification systems and methods of use |
WO2016110453A1 (en) * | 2015-01-06 | 2016-07-14 | Dsm Ip Assets B.V. | A crispr-cas system for a filamentous fungal host cell |
CN108738328A (en) * | 2015-01-06 | 2018-11-02 | 帝斯曼知识产权资产管理有限公司 | CRISPR-CAS systems for filamentous fungal host cell |
CN107849562A (en) * | 2015-07-28 | 2018-03-27 | 丹尼斯科美国公司 | Genome editing system and application method |
CN112226373A (en) * | 2020-12-07 | 2021-01-15 | 中国科学院天津工业生物技术研究所 | A protein-producing strain and its application |
CN113412932A (en) * | 2021-06-08 | 2021-09-21 | 中国科学院天津工业生物技术研究所 | Processing method and application of edible hypha protein |
CN113785931A (en) * | 2021-08-27 | 2021-12-14 | 中国科学院天津工业生物技术研究所 | A kind of preparation method and application of edible acetylated cell fiber |
CN114107073A (en) * | 2022-01-29 | 2022-03-01 | 中国科学院天津工业生物技术研究所 | A kind of method that utilizes molasses to produce mycelin |
Non-Patent Citations (2)
Title |
---|
张婉卿: "大丽轮枝菌U6启动子及棉帚霉菌rDNA序列的分析", 《中国优秀硕士学位论文全文数据库 农业科技辑》 * |
张婉卿: "大丽轮枝菌U6启动子及棉帚霉菌rDNA序列的分析", 《中国优秀硕士学位论文全文数据库 农业科技辑》, 15 January 2021 (2021-01-15), pages 19 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114958899A (en) * | 2022-05-30 | 2022-08-30 | 福州大学 | Replicon capable of autonomously replicating in Aspergillus niger cells |
CN115786384A (en) * | 2022-11-07 | 2023-03-14 | 中国科学院天津工业生物技术研究所 | Integration site of fusarium venenatum TB01 and application thereof |
CN116640753A (en) * | 2023-07-20 | 2023-08-25 | 中国科学院天津工业生物技术研究所 | Pyruvate decarboxylase gene FvPDC6 and application thereof in improving yield of fusarium venenatum hypha protein |
CN116640753B (en) * | 2023-07-20 | 2023-10-13 | 中国科学院天津工业生物技术研究所 | Pyruvate decarboxylase gene FvPDC6 and its application in improving mycelial protein production of Fusarium venetiensis |
Also Published As
Publication number | Publication date |
---|---|
CN114410635B (en) | 2022-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114410635B (en) | Venetian fusarium endogenous U6 promoter and gene editing method based on CRISPR/Cas9 | |
CN105695485B (en) | A Cas9-encoding gene for filamentous fungal Crispr-Cas system and its application | |
JP7430189B2 (en) | Pichia pastoris mutants for expressing foreign genes | |
EP0460716A1 (en) | Yeast expression systems with vectors having GAPDH promoters, and synthesis of HBsAg | |
NO840200L (en) | GLUCOAMYLASE CDNA. | |
JPH0698789A (en) | Production of polypeptide | |
CN103555749A (en) | Method for in vitro efficient construction of multi-copy Pichia expression vector | |
Walz et al. | Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis | |
CN118638663B (en) | Recombinant engineering bacterium for improving yield of recombinant human albumin and application thereof | |
CN114410634B (en) | Promoter derived from fusarium venenatum and visual gene knockout screening method | |
CN118580980A (en) | A recombinant engineering bacterium for preparing recombinant human albumin and its application | |
CN103421794B (en) | A kind of Aspergillus niger constitutive expression element, expression vector, recombinant Aspergillus niger and its construction method and application | |
CN108070609A (en) | By the use of trichoderma reesei as the method for host expresses recombinant protein | |
Schuren et al. | A homologous gene-reporter system for the basidiomycete Schizophyllum commune based on internally deleted homologous genes | |
CN116064431B (en) | Aflatoxin oxidase for improving pepsin resistance | |
CN103667274B (en) | A kind of multiple-shaped nuohan inferior yeast genetic manipulation strategy and application thereof | |
CN115786384B (en) | Integration site of fusarium venenatum TB01 and application thereof | |
CN107603979B (en) | A promoter-like gene for high-efficiency expression of exogenous protein and its application | |
CN115851633B (en) | Aflatoxin oxidase with improved resistance to pepsin | |
CN113755509A (en) | Lysophospholipase variant, construction method thereof and expression in aspergillus niger strain | |
CN116640753B (en) | Pyruvate decarboxylase gene FvPDC6 and its application in improving mycelial protein production of Fusarium venetiensis | |
CN116004555B (en) | Resistance to pepsin is improved aflatoxin oxidase of (a) | |
CN119265055B (en) | A recombinant engineering bacterium for preparing recombinant albumin based on transcription factors and its application | |
CN118620935A (en) | A CRISPR-Cas9 gene editing system for Fusarium brevicaulis and its application | |
CN116064432A (en) | Aflatoxin oxidase for improving pepsin resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |