CN114389592A - Level shift circuit - Google Patents
Level shift circuit Download PDFInfo
- Publication number
- CN114389592A CN114389592A CN202011114764.5A CN202011114764A CN114389592A CN 114389592 A CN114389592 A CN 114389592A CN 202011114764 A CN202011114764 A CN 202011114764A CN 114389592 A CN114389592 A CN 114389592A
- Authority
- CN
- China
- Prior art keywords
- nmos transistor
- circuit
- transistor
- pmos
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 66
- 238000002955 isolation Methods 0.000 claims abstract description 22
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/01—Modifications for accelerating switching
- H03K19/017—Modifications for accelerating switching in field-effect transistor circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
Abstract
一种电平转换电路。所述电平转换电路包括:输入子电路、隔离子电路及输出子电路;其中,所述输入子电路包括:第一NMOS管、第二NMOS管、反相器;所述输出子电路包括:第一PMOS管及第二PMOS管;所述第一NMOS管及第二NMOS管,源极接地,漏极与所述隔离子电路连接;所述隔离子电路与所述第一PMOS管及第二PMOS管的漏极连接;所述第一NMOS管及第二NMOS管的阈值电压,小于所述第一PMOS管及第二PMOS管的阈值电压;所述隔离子电路,用于连通所述输入子电路及输出子电路,并为所述第一NMOS管及第二NMOS管提供相适应的漏极电压。应用上述方案,可以提高电平转换电路的电平转换速度。
A level shifting circuit. The level conversion circuit includes: an input sub-circuit, an isolation sub-circuit and an output sub-circuit; wherein, the input sub-circuit includes: a first NMOS transistor, a second NMOS transistor, and an inverter; the output sub-circuit includes: a first PMOS transistor and a second PMOS transistor; the first NMOS transistor and the second NMOS transistor, the source is grounded, and the drain is connected to the isolation sub-circuit; the isolation sub-circuit is connected to the first PMOS transistor and the second NMOS transistor. The drains of the two PMOS transistors are connected; the threshold voltages of the first NMOS transistor and the second NMOS transistor are smaller than the threshold voltages of the first PMOS transistor and the second PMOS transistor; the isolation sub-circuit is used to connect the The input sub-circuit and the output sub-circuit provide suitable drain voltages for the first NMOS transistor and the second NMOS transistor. By applying the above solution, the level conversion speed of the level conversion circuit can be improved.
Description
技术领域technical field
本发明涉及电子电路领域,尤其涉及一种电平转换电路。The invention relates to the field of electronic circuits, in particular to a level conversion circuit.
背景技术Background technique
半导体存储器中通常具有电平转换电路,用于将逻辑电平转换为所需的高电压或低电压。Semiconductor memories usually have level shifting circuits for converting logic levels to desired high or low voltages.
现有的电平转换电路中,所使用的互补金属氧化物半导体(Complementary MetalOxide Semiconductor,CMOS)管,均为高压CMOS管。所谓高压CMOS管,即可以用于传输高压的CMOS管,该高压至少大于输入的逻辑电平值。所述高压CMOS管的阈值电压的典型值(Vt)约为1.0V,有的甚至可以大于1.0V。In the existing level conversion circuit, the used complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) transistors are all high voltage CMOS transistors. The so-called high-voltage CMOS tube is a CMOS tube that can be used to transmit high voltage, and the high voltage is at least greater than the input logic level value. The typical value (Vt) of the threshold voltage of the high-voltage CMOS transistor is about 1.0V, and some may even be higher than 1.0V.
由于CMOS管的饱和电流值,与MOS管的阈值电压呈反比,CMOS管的阈值电压越高,CMOS管的饱和电流值越小,电平转换过程中,流过CMOS管的电流也就越小,由此导致现有电平转换电路的翻转时间较长,电平转换速度较慢。Since the saturation current value of the CMOS tube is inversely proportional to the threshold voltage of the MOS tube, the higher the threshold voltage of the CMOS tube, the smaller the saturation current value of the CMOS tube, and the smaller the current flowing through the CMOS tube during the level conversion process. , which results in a longer inversion time and a slower level conversion speed of the existing level conversion circuit.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是:提高电平转换电路的电平转换速度。The technical problem solved by the present invention is to improve the level conversion speed of the level conversion circuit.
为解决上述技术问题,本发明实施例提供一种电平转换电路,所述电平转换电路包括:输入子电路、隔离子电路及输出子电路;其中,所述输入子电路包括:第一NMOS管、第二NMOS管、反相器;所述输出子电路包括:第一PMOS管及第二PMOS管;In order to solve the above technical problem, an embodiment of the present invention provides a level conversion circuit, the level conversion circuit includes: an input sub-circuit, an isolation sub-circuit and an output sub-circuit; wherein, the input sub-circuit includes: a first NMOS circuit tube, a second NMOS tube, and an inverter; the output sub-circuit includes: a first PMOS tube and a second PMOS tube;
所述第一NMOS管的栅极与逻辑信号输出端及所述反相器的输入端连接;所述反相器的输出端与所述第二NMOS管的栅极连接;所述第一NMOS管及第二NMOS管,源极接地,漏极与所述隔离子电路连接;所述隔离子电路与所述第一PMOS管及第二PMOS管的漏极连接;所述第一PMOS管的栅极与所述第二PMOS管的漏极连接,所述第二PMOS管的栅极与所述第一PMOS管的漏极连接;所述第一PMOS管及第二PMOS管的源极与电源电压输出端连接;The gate of the first NMOS transistor is connected to the logic signal output terminal and the input terminal of the inverter; the output terminal of the inverter is connected to the gate of the second NMOS transistor; the first NMOS transistor tube and the second NMOS tube, the source is grounded, and the drain is connected to the isolator circuit; the isolator circuit is connected to the drain of the first PMOS tube and the second PMOS tube; the first PMOS tube The gate is connected to the drain of the second PMOS tube, and the gate of the second PMOS tube is connected to the drain of the first PMOS tube; the sources of the first PMOS tube and the second PMOS tube are connected to Power supply voltage output connection;
所述第一NMOS管及第二NMOS管的阈值电压,小于所述第一PMOS管及第二PMOS管的阈值电压;所述隔离子电路,用于连通所述输入子电路及输出子电路,并为所述第一NMOS管及第二NMOS管提供相适应的漏极电压。The threshold voltages of the first NMOS transistor and the second NMOS transistor are smaller than the threshold voltages of the first PMOS transistor and the second PMOS transistor; the isolation sub-circuit is used to connect the input sub-circuit and the output sub-circuit, And provide a suitable drain voltage for the first NMOS transistor and the second NMOS transistor.
可选地,所述隔离子电路,包括:第三NMOS管及第四NMOS管;其中:Optionally, the isolation sub-circuit includes: a third NMOS transistor and a fourth NMOS transistor; wherein:
所述第三NMOS管及第四NMOS管的栅极,均与电源电压输出端连接;所述第三NMOS管的源极与所述第一NMOS管的漏极连接;所述第四NMOS管的源极与所述第二NMOS管的漏极连接;所述第三NMOS管的漏极与所述第一PMOS管的漏极连接;所述第四NMOS管的漏极与所述第二PMOS管的漏极连接;The gates of the third NMOS transistor and the fourth NMOS transistor are both connected to the power supply voltage output terminal; the source of the third NMOS transistor is connected to the drain of the first NMOS transistor; the fourth NMOS transistor The source of the NMOS transistor is connected to the drain of the second NMOS transistor; the drain of the third NMOS transistor is connected to the drain of the first PMOS transistor; the drain of the fourth NMOS transistor is connected to the drain of the second NMOS transistor The drain connection of the PMOS tube;
所述第三NMOS管及第四NMOS管的阈值电压小于所述第一NMOS管及第二NMOS管的阈值电压。The threshold voltages of the third NMOS transistor and the fourth NMOS transistor are lower than the threshold voltages of the first NMOS transistor and the second NMOS transistor.
可选地,所述第三NMOS管及第四NMOS管阈值电压的典型值,大于或等于0V,小于或等于0.2V。Optionally, the typical values of the threshold voltages of the third NMOS transistor and the fourth NMOS transistor are greater than or equal to 0V and less than or equal to 0.2V.
可选地,所述电平转换电路还包括:第五NMOS管,所述第五NMOS管与所述第一PMOS管并联,所述第五NMOS管的栅极与所述反相器的输出端连接。Optionally, the level conversion circuit further includes: a fifth NMOS transistor, the fifth NMOS transistor is connected in parallel with the first PMOS transistor, and the gate of the fifth NMOS transistor is connected to the output of the inverter end connection.
可选地,所述电平转换电路还包括:第六NMOS管,所述第六NMOS管与所述第二PMOS管并联,所述第六NMOS管的栅极与所述逻辑信号输出端连接。Optionally, the level conversion circuit further includes: a sixth NMOS transistor, the sixth NMOS transistor is connected in parallel with the second PMOS transistor, and the gate of the sixth NMOS transistor is connected to the logic signal output terminal .
可选地,所述第五NMOS管及第六NMOS管阈值电压的典型值,大于或等于1V。Optionally, the typical values of the threshold voltages of the fifth NMOS transistor and the sixth NMOS transistor are greater than or equal to 1V.
可选地,所述第一PMOS管及第二PMOS管阈值电压的典型值,大于或等于1。Optionally, the typical values of the threshold voltages of the first PMOS transistor and the second PMOS transistor are greater than or equal to 1.
可选地,所述第一NMOS管及第二NMOS管阈值电压的典型值,大于或等于0.7V且小于或等于0.8V。Optionally, the typical values of the threshold voltages of the first NMOS transistor and the second NMOS transistor are greater than or equal to 0.7V and less than or equal to 0.8V.
可选地,所述反相器由CMOS管构成。Optionally, the inverter is composed of CMOS transistors.
可选地,所述反相器中CMOS管阈值电压的典型值,大于或等于0.7V,且小于或等于0.8V。Optionally, the typical value of the threshold voltage of the CMOS transistor in the inverter is greater than or equal to 0.7V and less than or equal to 0.8V.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
采用上述方案,由于隔离子电路的一端与第一NMOS管及第二NMOS管的漏极连接,另一端与第一PMOS管及第二PMOS管漏极连接,并且,所述隔离子电路可以连通输入子电路及输出子电路,由此可以使得隔离子电路能够将第一PMOS管及第二PMOS管的漏极电压,转换成与第一NMOS管及第二NMOS管相适应的漏极电压,进而在所述第一NMOS管及第二NMOS管的阈值电压,小于所述第一PMOS管及第二PMOS管的阈值电压时,相对于第一NMOS管及第二NMOS管的阈值电压,与所述第一PMOS管及第二PMOS管的阈值电压相等的情况,本发明的方案,可以使得由输入子电路流向输出子电路的电流更大,从而可以提高电平转换速度。With the above solution, one end of the isolation sub-circuit is connected to the drains of the first NMOS transistor and the second NMOS transistor, and the other end is connected to the drains of the first PMOS transistor and the second PMOS transistor, and the isolation sub-circuit can be connected The input sub-circuit and the output sub-circuit can enable the isolation sub-circuit to convert the drain voltage of the first PMOS tube and the second PMOS tube into a drain voltage suitable for the first NMOS tube and the second NMOS tube, Furthermore, when the threshold voltages of the first NMOS transistor and the second NMOS transistor are smaller than the threshold voltages of the first PMOS transistor and the second PMOS transistor, the threshold voltage of the first NMOS transistor and the second NMOS transistor is the same as the threshold voltage of the first NMOS transistor and the second NMOS transistor. When the threshold voltages of the first PMOS transistor and the second PMOS transistor are equal, the solution of the present invention can make the current flowing from the input sub-circuit to the output sub-circuit larger, thereby improving the level conversion speed.
进一步,通过设置第五NMOS管或第六NMOS管,第五NMOS管及第六NMOS管均与输入子电路连接,由此可以进一步提高输出端充放电的速度,也就进一步提高电平转换速度。Further, by setting the fifth NMOS tube or the sixth NMOS tube, both the fifth NMOS tube and the sixth NMOS tube are connected to the input sub-circuit, so that the speed of charging and discharging of the output terminal can be further improved, and the level conversion speed can be further improved. .
附图说明Description of drawings
图1是一种电平转换电路的结构示意图;1 is a schematic structural diagram of a level conversion circuit;
图2是本发明实施例中一种电平转换电路的结构示意图;2 is a schematic structural diagram of a level conversion circuit in an embodiment of the present invention;
图3是本发明实施例中另一种电平转换电路的结构示意图;3 is a schematic structural diagram of another level conversion circuit in an embodiment of the present invention;
图4是图1中电平转换电路与本发明中电平转换电路之间电平转换速度的仿真结果对比示意图。FIG. 4 is a schematic diagram showing the comparison of the simulation results of the level conversion speed between the level conversion circuit in FIG. 1 and the level conversion circuit in the present invention.
具体实施方式Detailed ways
图1为一种现有电平转换电路的结构示意图。参照图1,所述电路转换电路10可以包括:反相器11,第一MOS管P1,第二MOS管P2,第三MOS管N1及第四MOS管N2。其中,第一MOS管P1及第二MOS管P2为PMOS管,第三MOS管N1及第四MOS管N2为NMOS管。FIG. 1 is a schematic structural diagram of a conventional level conversion circuit. Referring to FIG. 1 , the
反相器11的输入端及第三MOS管N1的栅极,与逻辑信号输出端IN连接。第三MOS管N1的漏极与第一MOS管P1的漏极连接。第四MOS管N2的栅极与反相器11的输出端连接。第四MOS管N2的源极与第三MOS管N1的源极均连接至地线VSS。第一MOS管P1及第二MOS管P2的源极均与电源电压输出端VDD连接。第一MOS管P1的栅极,与第二MOS管P2的漏极及第四MOS管N2的漏极连接。第二MOS管P2的栅极与第一MOS管P1的漏极连接。The input terminal of the inverter 11 and the gate of the third MOS transistor N1 are connected to the logic signal output terminal IN. The drain of the third MOS transistor N1 is connected to the drain of the first MOS transistor P1. The gate of the fourth MOS transistor N2 is connected to the output end of the inverter 11 . The source of the fourth MOS transistor N2 and the source of the third MOS transistor N1 are both connected to the ground line VSS. The sources of the first MOS transistor P1 and the second MOS transistor P2 are both connected to the power supply voltage output terminal VDD. The gate of the first MOS transistor P1 is connected to the drain of the second MOS transistor P2 and the drain of the fourth MOS transistor N2. The gate of the second MOS transistor P2 is connected to the drain of the first MOS transistor P1.
当逻辑信号输出端IN输出的逻辑信号的电压为高电平时,第三MOS管N1导通,第四MOS管N2断开,使得第二MOS管P2的栅极电压为低电平,进而使得第二MOS管P2导通,输出端out输出电压值接近电源电压输出端VDD所输出的电压,即为高电平。When the voltage of the logic signal output by the logic signal output terminal IN is at a high level, the third MOS transistor N1 is turned on, and the fourth MOS transistor N2 is turned off, so that the gate voltage of the second MOS transistor P2 is at a low level, thereby making The second MOS transistor P2 is turned on, and the output voltage value of the output terminal out is close to the voltage output by the power supply voltage output terminal VDD, which is a high level.
当逻辑信号输出端IN输出的逻辑信号的电压为低电平时,第三MOS管N1断开,第四MOS管N2导通,使得第一MOS管P1的栅极电压为低电平,进而使得第一MOS管P1导通,此时,输出端out输出电压值为低电平。When the voltage of the logic signal output by the logic signal output terminal IN is at a low level, the third MOS transistor N1 is turned off, and the fourth MOS transistor N2 is turned on, so that the gate voltage of the first MOS transistor P1 is at a low level, thereby making the The first MOS transistor P1 is turned on, and at this time, the output voltage value of the output terminal out is a low level.
在上述电路转换电路10中,第一MOS管P1及第二MOS管P2均直接与电源电压输出端VDD连接,故第一MOS管P1及第二MOS管P2需为高压晶体管,从而才能在高压条件下正常工作。In the above-mentioned
由于第三MOS管N1直接与第一MOS管P1连接,第四MOS管N2直接与第二MOS管P2连接,由此使得第三MOS管N1及第四MOS管N2也工作在高压下,故第三MOS管N1及第四MOS管N2也应为高压晶体管。Because the third MOS transistor N1 is directly connected to the first MOS transistor P1, and the fourth MOS transistor N2 is directly connected to the second MOS transistor P2, so that the third MOS transistor N1 and the fourth MOS transistor N2 also work under high pressure, so The third MOS transistor N1 and the fourth MOS transistor N2 should also be high-voltage transistors.
在具体实施中,可以通过调整CMOS管内部栅氧层的厚度及工艺条件,来使得CMOS管为高压CMOS管。通常情况下,高压CMOS管的阈值电压较高,其典型值大约为1.0V,恶劣情况下,可以达到1.0V以上。In a specific implementation, the thickness of the gate oxide layer inside the CMOS tube and the process conditions can be adjusted to make the CMOS tube a high-voltage CMOS tube. Under normal circumstances, the threshold voltage of high-voltage CMOS tubes is relatively high, and its typical value is about 1.0V. In severe cases, it can reach more than 1.0V.
CMOS管的饱和电流值,与CMOS管的阈值电压呈反比,由于高压CMOS管的阈值电压较高,故在电平转换过程中,流过高压CMOS管的电流很小,由此导致电平转换电路10需要较长时间对输出端进行充电,才能使得输出端out达到所需的转换电压,即电平转换电路的翻转时间较长,因此电平转换速度较慢。The saturation current value of the CMOS tube is inversely proportional to the threshold voltage of the CMOS tube. Due to the high threshold voltage of the high-voltage CMOS tube, during the level conversion process, the current flowing through the high-voltage CMOS tube is very small, resulting in level conversion. The
为了解决上述问题,本发明实施例提供了一种电平转换电路,所述电平转换电路中设置有隔离子电路,所述隔离子电路一端与输入子电路连接,另一端与输出子电路连接,并且,所述隔离子电路可以连通输入子电路及输出子电路,由此可以使得隔离子电路能够将电源电压输出端输出的高电压隔离,输入子电路能够工作在较低电压下,这样,输入子电路中的NMOS管,可以选择阈值电压小于输出子电路中PMOS管阈值电压的NMOS管。而输入子电路中的NMOS管的阈值电压减小,可以增大流过输入子电路中NMOS管的电流,进而使得输出子电路输出的电流增大,提高了对输入端进行充电的速度,最终提高了电平转换速度。In order to solve the above problem, an embodiment of the present invention provides a level conversion circuit, wherein an isolation subcircuit is provided in the level conversion circuit, one end of the isolation subcircuit is connected to the input subcircuit, and the other end is connected to the output subcircuit , and the isolator sub-circuit can be connected to the input sub-circuit and the output sub-circuit, so that the isolator sub-circuit can isolate the high voltage output by the power supply voltage output terminal, and the input sub-circuit can work at a lower voltage, thus, For the NMOS transistor in the input sub-circuit, an NMOS transistor whose threshold voltage is lower than the threshold voltage of the PMOS transistor in the output sub-circuit can be selected. The decrease of the threshold voltage of the NMOS tube in the input sub-circuit can increase the current flowing through the NMOS tube in the input sub-circuit, thereby increasing the current output by the output sub-circuit, improving the speed of charging the input terminal, and finally Increased level shifting speed.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细地说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
参照图2,本发明实施例提供了一种电平转换电路20,用于将输入的逻辑信号的电压值转换为所需的电压值。本发明的实施例中,输入的逻辑信号的电压值,小于转换后的电压值,即所述电平转换电路20用于将低压逻辑信号转换为高压逻辑信号。Referring to FIG. 2 , an embodiment of the present invention provides a
具体地,所述电平转换电路20可以包括:输入子电路21、隔离子电路22及输出子电路23。Specifically, the
其中,所述输入子电路21可以包括:第一NMOS管K1、第二NMOS管K2、反相器211。所述输出子电路23可以包括:第一PMOS管M1及第二PMOS管M2。The
所述第一NMOS管K1的栅极与逻辑信号输出端IN及所述反相器211的输入端C连接;所述反相器211的输出端D与所述第二NMOS管K2的栅极连接。所述第一NMOS管K1及第二NMOS管K2,源极接地,漏极与所述隔离子电路22连接。所述隔离子电路22与所述第一PMOS管M1及第二PMOS管M2的漏极连接。所述第一PMOS管M1的栅极与所述第二PMOS管M2的漏极连接,所述第二PMOS管M2的栅极与所述第一PMOS管M1的漏极连接。所述第一PMOS管M1及第二PMOS管M2的源极与电源电压输出端VDD连接。The gate of the first NMOS transistor K1 is connected to the logic signal output terminal IN and the input terminal C of the
所述第一NMOS管K1及第二NMOS管K2的阈值电压,小于所述第一PMOS管M1及第二PMOS管M2的阈值电压。所述隔离子电路22,用于连通所述输入子电路21及输出子电路23,并为所述第一NMOS管K1及第二NMOS管K2提供相适应的漏极电压。The threshold voltages of the first NMOS transistor K1 and the second NMOS transistor K2 are lower than the threshold voltages of the first PMOS transistor M1 and the second PMOS transistor M2. The
由于所述隔离子电路22可以连通输入子电路21及输出子电路23,并且可以为第一NMOS管K1及第二NMOS管K2提供相适应的漏极电压,由此可以使得电平转换电路20能够进行电平转换。而其中第一NMOS管K1及第二NMOS管K2的阈值电压,小于所述第一PMOS管M1及第二PMOS管M2的阈值电压,故可以使得流过输入子电路21的电流值较大,由此可以快速为输出端out充电,使得输出端out的电压值能够尽快达到所需的转换电压,有效提高电平转换速度。Since the
在具体实施中,所述电源电压输出端VDD所输出的电压值,大于1.2V,可以为3.3V、5V或者10V等,具体可以根据实际所要得到的转换后的电压值进行设定。In a specific implementation, the voltage value output by the power supply voltage output terminal VDD is greater than 1.2V, and may be 3.3V, 5V, or 10V, etc., which may be set according to the actual converted voltage value to be obtained.
在具体实施中,所述第一NMOS管K1及第二NMOS管K2的阈值电压,小于所述第一PMOS管M1及第二PMOS管M2的阈值电压。In a specific implementation, the threshold voltages of the first NMOS transistor K1 and the second NMOS transistor K2 are lower than the threshold voltages of the first PMOS transistor M1 and the second PMOS transistor M2.
所述第一PMOS管M1的阈值电压,与第二PMOS管M2的阈值电压可以相同,也可以不同。所述第一NMOS管K1的阈值电压,与所述第二NMOS管K2的阈值电压,可以相同,也可以不同,但只要小于第一PMOS管M1的阈值电压及第二PMOS管M2的阈值电压即可。The threshold voltage of the first PMOS transistor M1 and the threshold voltage of the second PMOS transistor M2 may be the same or different. The threshold voltage of the first NMOS transistor K1 and the threshold voltage of the second NMOS transistor K2 may be the same or different, but as long as they are smaller than the threshold voltage of the first PMOS transistor M1 and the threshold voltage of the second PMOS transistor M2 That's it.
其中,所述第一PMOS管M1及第二PMOS管M2的阈值电压为高压CMOS管,其阈值电压的典型值约为1.0V,也可以大于1.0V。相应地,所述第一NMOS管K1及第二NMOS管K2,可以选择低压CMOS管,即能够在较低工作电压下正常工作的MOS管,所述低压可以为0.8V,甚至更低。所述第一NMOS管K1及第二NMOS管K2阈值电压的典型值,可以大于或等于0.7V且小于或等于0.8V。Wherein, the threshold voltages of the first PMOS transistor M1 and the second PMOS transistor M2 are high-voltage CMOS transistors, and the typical value of the threshold voltages is about 1.0V, and may be greater than 1.0V. Correspondingly, the first NMOS transistor K1 and the second NMOS transistor K2 can be selected as low-voltage CMOS transistors, that is, MOS transistors that can work normally under a lower operating voltage, and the low voltage can be 0.8V or even lower. Typical values of the threshold voltages of the first NMOS transistor K1 and the second NMOS transistor K2 may be greater than or equal to 0.7V and less than or equal to 0.8V.
在具体实施中,可以通过调整MOS内栅氧层的厚度及相应的工艺条件,使得所形成的MOS管为低压CMOS管或高压CMOS管。In a specific implementation, the thickness of the gate oxide layer in the MOS and the corresponding process conditions can be adjusted, so that the formed MOS transistor is a low-voltage CMOS transistor or a high-voltage CMOS transistor.
在具体实施中,所述隔离子电路22可以采用多种电路结构实现,具体不作限制,只要能够将输入子电路21与输出子电路23的工作电压隔离即可。In specific implementation, the
在本发明的一实施例中,所述隔离子电路22可以包括:第三NMOS管K3及第四NMOS管K4。其中:In an embodiment of the present invention, the
所述第三NMOS管K3及第四NMOS管K4的栅极,均与电源电压输出端VDD连接。所述第三NMOS管K3的源极与所述第一NMOS管K1的漏极连接。所述第四NMOS管K4的源极与所述第二NMOS管K2的漏极连接。所述第三NMOS管K3的漏极与所述第一PMOS管M1的漏极连接。所述第四NMOS管K4的漏极与所述第二PMOS管M2的漏极连接。所述第三NMOS管K3及第四NMOS管K4的阈值电压,小于所述第一NMOS管K1及第二NMOS管K2的阈值电压。The gates of the third NMOS transistor K3 and the fourth NMOS transistor K4 are both connected to the power supply voltage output terminal VDD. The source of the third NMOS transistor K3 is connected to the drain of the first NMOS transistor K1. The source of the fourth NMOS transistor K4 is connected to the drain of the second NMOS transistor K2. The drain of the third NMOS transistor K3 is connected to the drain of the first PMOS transistor M1. The drain of the fourth NMOS transistor K4 is connected to the drain of the second PMOS transistor M2. The threshold voltages of the third NMOS transistor K3 and the fourth NMOS transistor K4 are lower than the threshold voltages of the first NMOS transistor K1 and the second NMOS transistor K2.
在本发明的实施例中,第三NMOS管K3的阈值电压,与第四NMOS管K4的阈值电压可以相同,也可以不同,只要小于所述第一NMOS管K1的阈值电压及第二NMOS管K2的阈值电压即可。In the embodiment of the present invention, the threshold voltage of the third NMOS transistor K3 and the threshold voltage of the fourth NMOS transistor K4 may be the same or different, as long as they are smaller than the threshold voltage of the first NMOS transistor K1 and the threshold voltage of the second NMOS transistor K4 The threshold voltage of K2 is sufficient.
在具体实施中,所述第三NMOS管K3及第四NMOS管K4,可以为本征高压CMOS管。本征高压CMOS管可以在高压下正常工作,但其阈值电压很小,阈值电压的典型值通常小于或等于0.2V,大于或等于0V。In a specific implementation, the third NMOS transistor K3 and the fourth NMOS transistor K4 may be intrinsic high-voltage CMOS transistors. Intrinsic high-voltage CMOS transistors can work normally under high voltage, but their threshold voltage is very small. The typical value of the threshold voltage is usually less than or equal to 0.2V and greater than or equal to 0V.
由于所述第三NMOS管K3及第四NMOS管K4的阈值电压,小于第一NMOS管K1及第二NMOS管K2的阈值电压,故流过第三NMOS管K3及第四NMOS管K4的电流,可以大于流过第一NMOS管K1及第二NMOS管K2的电流。因此,逻辑信号输入至输入子电路21后,完全可以经隔离子电路22流至输出子电路23,由此提高电平转换速度。Since the threshold voltages of the third NMOS transistor K3 and the fourth NMOS transistor K4 are smaller than the threshold voltages of the first NMOS transistor K1 and the second NMOS transistor K2, the current flowing through the third NMOS transistor K3 and the fourth NMOS transistor K4 , which may be greater than the current flowing through the first NMOS transistor K1 and the second NMOS transistor K2. Therefore, after the logic signal is input to the
当逻辑信号输出端IN输出的逻辑信号的电压为高电平时,第一NMOS管K1导通,第二NMOS管K2断开。由于第三NMOS管K3始终为导通状态,故可以使得第二PMOS管M2的栅极电压为低电平,进而使得第二PMOS管M2导通,输出端out输出电压值接近电源电压输出端VDD所输出的电压,即为高电平。When the voltage of the logic signal output by the logic signal output terminal IN is at a high level, the first NMOS transistor K1 is turned on, and the second NMOS transistor K2 is turned off. Since the third NMOS transistor K3 is always in an on state, the gate voltage of the second PMOS transistor M2 can be made to be at a low level, so that the second PMOS transistor M2 is turned on, and the output voltage value of the output terminal out is close to the power supply voltage output terminal. The voltage output by VDD is a high level.
当逻辑信号输出端IN输出的逻辑信号的电压为低电平时,第一NMOS管K1断开,第二NMOS管K2导通。由于第四NMOS管K4始终为导通状态,故可以使得输出端out输出电压值为低电平。When the voltage of the logic signal output by the logic signal output terminal IN is at a low level, the first NMOS transistor K1 is turned off, and the second NMOS transistor K2 is turned on. Since the fourth NMOS transistor K4 is always in an on state, the output voltage value of the output terminal out can be made to be a low level.
在本发明的另一实施例中,参照图3,所述电平转换电路20还可以包括:第五NMOS管K5。所述第五NMOS管K5与所述第一PMOS管M1并联,所述第五NMOS管K5的栅极与所述反相器211的输出端D连接。In another embodiment of the present invention, referring to FIG. 3 , the
在逻辑信号输出端IN输出的逻辑信号的电压为低电平时,第五NMOS管K5导通。同时,第二NMOS管K2导通,使得输出端out输出电压值为低电平。此时,第一PMOS管M1导通,第一PMOS管M1及第五NMOS管K5共同为输出端out充电,使得输出端out更快达到所需的转换电压。When the voltage of the logic signal output from the logic signal output terminal IN is at a low level, the fifth NMOS transistor K5 is turned on. At the same time, the second NMOS transistor K2 is turned on, so that the output voltage value of the output terminal out is a low level. At this time, the first PMOS transistor M1 is turned on, and the first PMOS transistor M1 and the fifth NMOS transistor K5 jointly charge the output end out, so that the output end out reaches the required conversion voltage faster.
在本发明的另一实施例中,参照图3,所述电平转换电路20还可以包括:第六NMOS管K6。所述第六NMOS管K6与所述第二PMOS管M2并联,所述第六NMOS管K6的栅极与逻辑信号输出端IN连接,也就是与所述反相器211的输入端C连接。In another embodiment of the present invention, referring to FIG. 3 , the
在逻辑信号输出端IN输出的逻辑信号的电压为高电平时,第六NMOS管K6导通。同时,第一NMOS管K1导通,使得第二PMOS管M2导通。此时,输出端out输出电压值为高电平。使得第二PMOS管M2及第六NMOS管K6共同为输出端out充电,使得输出端out更快达到所需的转换电压。When the voltage of the logic signal output from the logic signal output terminal IN is at a high level, the sixth NMOS transistor K6 is turned on. At the same time, the first NMOS transistor K1 is turned on, so that the second PMOS transistor M2 is turned on. At this time, the output voltage value of the output terminal out is a high level. The second PMOS transistor M2 and the sixth NMOS transistor K6 are made to jointly charge the output end out, so that the output end out reaches the required conversion voltage faster.
可以理解的是,在具体实施中,可以仅设置第五NMOS管K5,也可以仅设置第六NMOS管K6,还可以同时设置第五NMOS管K5及第六NMOS管K6,此处不作限制。It can be understood that, in the specific implementation, only the fifth NMOS transistor K5 may be provided, or only the sixth NMOS transistor K6 may be provided, and the fifth NMOS transistor K5 and the sixth NMOS transistor K6 may be provided at the same time, which is not limited here.
在具体实施中,所述第五NMOS管K5及第六NMOS管K6也为高压CMOS管,即能够在高压下正常工作的MOS管,其阈值电压的典型值大于或等于1.0V。In a specific implementation, the fifth NMOS transistor K5 and the sixth NMOS transistor K6 are also high-voltage CMOS transistors, that is, MOS transistors that can work normally under high voltage, and their typical threshold voltage is greater than or equal to 1.0V.
在具体实施中,所述反相器211可以由CMOS管构成,构成所述反相器211的CMOS管可以为低压CMOS管,阈值电压的典型值,大于或等于0.7V,且小于或等于0.8V。In a specific implementation, the
图4表示:图1中电平转换电路10的电平转换速度,与本发明实施例中电平转换电路20的电平转换速度,二者仿真结果对比示意图。FIG. 4 is a schematic diagram showing the comparison between the simulation results of the level conversion speed of the
如图4所述,曲线41表示输入的逻辑信号的电压变化曲线。曲线42表示电平转换电路20输出端out所输出信号的电压变化曲线。曲线43表示电平转换电路10输出端out所输出信号的电压变化曲线。As shown in FIG. 4 , the curve 41 represents the voltage variation curve of the input logic signal. The
t1时刻,如点a所示,输入的逻辑信号的电压值达到0.6V,约为高电平(1.2V)的一半。t2时刻,如点b所示,电平转换电路20输出端out所输出信号的电压值达到0.9V,约为高电平(1.8V)的一半。t3时刻,如点c所示,电平转换电路20输出端out所输出信号的电压值达到0.9V,约为高电平(1.8V)的一半。At time t1, as indicated by point a, the voltage value of the input logic signal reaches 0.6V, which is about half of the high level (1.2V). At time t2, as indicated by point b, the voltage value of the signal output from the output terminal out of the
(t2-t1)表示电平转换电路20的电平翻转时长,(t3-t1)表示电平转换电路10的电平翻转时长。显然,本发明实施例中的电平转换电路20所需电平翻转时长,小于电平转换电路10所需电平翻转时长。( t2 - t1 ) represents the level inversion duration of the
由上述内容可知,本发明实施例中的电平转换电路20,由于隔离子电路22的设置,使得输入子电路21中的CMOS管可以使用低压CMOS管,由此可以增大流过输入子电路21中CMOS管的电流,有效提高电平转速速度。As can be seen from the above, in the
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011114764.5A CN114389592A (en) | 2020-10-16 | 2020-10-16 | Level shift circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011114764.5A CN114389592A (en) | 2020-10-16 | 2020-10-16 | Level shift circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114389592A true CN114389592A (en) | 2022-04-22 |
Family
ID=81193735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011114764.5A Pending CN114389592A (en) | 2020-10-16 | 2020-10-16 | Level shift circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114389592A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117254682A (en) * | 2023-11-20 | 2023-12-19 | 成都芯翼科技有限公司 | Anti-interference voltage conversion circuit |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406140A (en) * | 1993-06-07 | 1995-04-11 | National Semiconductor Corporation | Voltage translation and overvoltage protection |
CN101047382A (en) * | 2007-03-19 | 2007-10-03 | 北京中星微电子有限公司 | Level shifter |
CN101123430A (en) * | 2006-08-10 | 2008-02-13 | 中芯国际集成电路制造(上海)有限公司 | Level conversion circuit |
US20090189638A1 (en) * | 2008-01-28 | 2009-07-30 | Elite Semiconductor Memory Technology, Inc. | Level shifter circuit |
CN105162469A (en) * | 2015-03-24 | 2015-12-16 | 清华大学 | Synchronous latch register |
CN105429441A (en) * | 2015-12-31 | 2016-03-23 | 童乔凌 | IGBT (Insulated Gate Bipolar Transistor) closed loop active driving circuit and driving method thereof |
CN107735740A (en) * | 2015-08-31 | 2018-02-23 | 赛普拉斯半导体公司 | Biasing circuit for the level shifter with isolation |
CN109347473A (en) * | 2018-09-04 | 2019-02-15 | 上海东软载波微电子有限公司 | Level shift circuit |
CN110149050A (en) * | 2019-06-21 | 2019-08-20 | 珠海市一微半导体有限公司 | A kind of level shifter and chip based on DMOS pipe |
CN110729995A (en) * | 2019-11-28 | 2020-01-24 | 华中科技大学 | A level conversion circuit and level conversion method |
-
2020
- 2020-10-16 CN CN202011114764.5A patent/CN114389592A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406140A (en) * | 1993-06-07 | 1995-04-11 | National Semiconductor Corporation | Voltage translation and overvoltage protection |
CN101123430A (en) * | 2006-08-10 | 2008-02-13 | 中芯国际集成电路制造(上海)有限公司 | Level conversion circuit |
CN101047382A (en) * | 2007-03-19 | 2007-10-03 | 北京中星微电子有限公司 | Level shifter |
US20090189638A1 (en) * | 2008-01-28 | 2009-07-30 | Elite Semiconductor Memory Technology, Inc. | Level shifter circuit |
CN105162469A (en) * | 2015-03-24 | 2015-12-16 | 清华大学 | Synchronous latch register |
CN107735740A (en) * | 2015-08-31 | 2018-02-23 | 赛普拉斯半导体公司 | Biasing circuit for the level shifter with isolation |
CN105429441A (en) * | 2015-12-31 | 2016-03-23 | 童乔凌 | IGBT (Insulated Gate Bipolar Transistor) closed loop active driving circuit and driving method thereof |
CN109347473A (en) * | 2018-09-04 | 2019-02-15 | 上海东软载波微电子有限公司 | Level shift circuit |
CN110149050A (en) * | 2019-06-21 | 2019-08-20 | 珠海市一微半导体有限公司 | A kind of level shifter and chip based on DMOS pipe |
CN110729995A (en) * | 2019-11-28 | 2020-01-24 | 华中科技大学 | A level conversion circuit and level conversion method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117254682A (en) * | 2023-11-20 | 2023-12-19 | 成都芯翼科技有限公司 | Anti-interference voltage conversion circuit |
CN117254682B (en) * | 2023-11-20 | 2024-03-12 | 成都芯翼科技有限公司 | Anti-interference voltage conversion circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10673437B2 (en) | Level shifting circuit and method | |
US10128846B2 (en) | Apparatus and method for data level shifting with boost assisted inputs for high speed and low voltage applications | |
JPH07106946A (en) | Level shifter | |
TWI388124B (en) | Level shifter circuit | |
US5216292A (en) | Pullup resistance control input circuit and output circuit | |
WO2008014380A2 (en) | Level shifting circuit having junction field effect transistors | |
CN110890885B (en) | High-speed level conversion circuit applied to mixed voltage output buffer | |
US7675322B2 (en) | Level shifting circuits for generating output signals having similar duty cycle ratios | |
KR101341734B1 (en) | CMOS Differential Logic Circuit Using Voltage Boosting Technique | |
CN114389592A (en) | Level shift circuit | |
CN112019203A (en) | Level conversion circuit | |
CN104506183B (en) | Univoltage sub-threshold level converter | |
CN106160744A (en) | A kind of high speed dynamic latch comparator applied in low voltage environment | |
CN110798201B (en) | A high-speed withstand voltage level conversion circuit | |
CN103944556A (en) | Level transfer circuit | |
CN108011629A (en) | A kind of high-speed low-power-consumption level displacement circuit | |
US20240106435A1 (en) | Level shift circuit | |
CN113726330B (en) | A level conversion circuit and chip | |
TWI455484B (en) | Level shifter | |
JPS6143896B2 (en) | ||
CN112332833B (en) | Level conversion circuit and CPU chip with same | |
CN114389595A (en) | Level conversion circuit | |
JP2023067760A (en) | level shift circuit | |
CN110868198A (en) | A delay circuit unit with weak correlation with process angle | |
JP4588436B2 (en) | Level shifter circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |