CN114383761B - Pressure sensor with unidirectional conductive function and preparation method and application thereof - Google Patents
Pressure sensor with unidirectional conductive function and preparation method and application thereof Download PDFInfo
- Publication number
- CN114383761B CN114383761B CN202111424219.0A CN202111424219A CN114383761B CN 114383761 B CN114383761 B CN 114383761B CN 202111424219 A CN202111424219 A CN 202111424219A CN 114383761 B CN114383761 B CN 114383761B
- Authority
- CN
- China
- Prior art keywords
- electrode
- pressure sensor
- magnetic conductive
- interdigital
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 51
- 239000000835 fiber Substances 0.000 claims abstract description 49
- 230000035945 sensitivity Effects 0.000 claims abstract description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 32
- 239000004917 carbon fiber Substances 0.000 claims description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 14
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 11
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 11
- 230000006698 induction Effects 0.000 claims description 10
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000004744 fabric Substances 0.000 claims description 8
- 230000035699 permeability Effects 0.000 claims description 7
- 238000001029 thermal curing Methods 0.000 claims description 7
- 238000001723 curing Methods 0.000 claims description 6
- -1 polydimethylsiloxane Polymers 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 230000003993 interaction Effects 0.000 claims description 3
- 238000000016 photochemical curing Methods 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 239000004837 Ultraviolet (UV) light curing adhesive Substances 0.000 claims 2
- 238000013007 heat curing Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000002243 precursor Substances 0.000 description 13
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 9
- 238000012360 testing method Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 4
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/12—Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/16—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in the magnetic properties of material resulting from the application of stress
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
本发明涉及传感器技术领域,具体公开了一种具有单一方向导电功能的压力传感器及其制备方法和应用。该压力传感器包括:两层柔性电极和位于两层柔性电极之间的介电层;所述介电层包括基体材料和分布于该基体材料中的磁性导电纤维,且所述磁性导电纤维垂直于柔性电极定向排列。本发明提供的压力传感器具有柔性、灵敏度高和监测范围宽的优势。
The invention relates to the field of sensor technology, and specifically discloses a pressure sensor with a single-directional conductive function and its preparation method and application. The pressure sensor includes: two layers of flexible electrodes and a dielectric layer located between the two layers of flexible electrodes; the dielectric layer includes a base material and magnetic conductive fibers distributed in the base material, and the magnetic conductive fibers are perpendicular to Flexible electrodes are oriented and arranged. The pressure sensor provided by the invention has the advantages of flexibility, high sensitivity and wide monitoring range.
Description
技术领域Technical field
本发明涉及传感器技术领域,具体涉及一种具有单一方向导电功能的压力传感器及其制备方法和应用。The invention relates to the field of sensor technology, and in particular to a pressure sensor with a single-directional conductive function and its preparation method and application.
背景技术Background technique
实时精确利用电子传感器测量人体重要信息对于健康监测、医疗保健具有重要作用,人体皮肤能够自然地区分压力以及各种机械刺激或机械变形并进行独立传感,因此可穿戴电子传感器件也应具备对各种机械应力的能力高灵敏的感知。但是,目前的传感器大多依靠接触电阻的改变实现压力传感,其形变范围较小,无法实现高灵敏度和宽的监测范围。Real-time and accurate use of electronic sensors to measure important information about the human body plays an important role in health monitoring and medical care. Human skin can naturally distinguish between pressure and various mechanical stimuli or mechanical deformations and conduct independent sensing. Therefore, wearable electronic sensing devices should also have the ability to detect Ability to sense various mechanical stresses with high sensitivity. However, most current sensors rely on changes in contact resistance to achieve pressure sensing. Their deformation range is small and they cannot achieve high sensitivity and wide monitoring range.
因此,制备高灵敏度和宽的监测范围的压力传感器仍然是传感器领域追求的热点。Therefore, preparing pressure sensors with high sensitivity and wide monitoring range is still a hot topic in the field of sensors.
发明内容Contents of the invention
本发明的目的是为了克服现有技术存在的技术问题,提供一种具有单一方向导电功能的压力传感器及其制备方法和应用。The purpose of the present invention is to overcome the technical problems existing in the prior art and provide a pressure sensor with a single-directional conductive function and its preparation method and application.
为了实现上述目的,本发明第一方面提供一种具有单一方向导电功能的压力传感器,该压力传感器包括:两层柔性电极和位于两层柔性电极之间的介电层;所述介电层包括基体材料和分布于该基体材料中的磁性导电纤维,且所述磁性导电纤维垂直于柔性电极定向排列。In order to achieve the above object, a first aspect of the present invention provides a pressure sensor with a single-directional conductive function. The pressure sensor includes: two layers of flexible electrodes and a dielectric layer located between the two layers of flexible electrodes; the dielectric layer includes A base material and magnetic conductive fibers distributed in the base material, and the magnetic conductive fibers are oriented perpendicular to the flexible electrode.
本发明第二方面提供一种制备具有单一方向导电功能的压力传感器的方法,该方法包括以下步骤:A second aspect of the present invention provides a method for preparing a pressure sensor with a single-directional conductive function. The method includes the following steps:
使磁性导电纤维定向分布于基体材料中,并组装柔性电极;Make the magnetic conductive fibers directionally distributed in the matrix material and assemble the flexible electrode;
其中,所述磁性导电纤维垂直于柔性电极定向排列。Wherein, the magnetic conductive fibers are oriented and arranged perpendicularly to the flexible electrodes.
本发明第三方面提供一种前述方法制备得到的压力传感器。A third aspect of the present invention provides a pressure sensor prepared by the aforementioned method.
本发明第四方面提供一种前述压力传感器在可穿戴设备和/或人机交互领域中的应用。A fourth aspect of the present invention provides an application of the aforementioned pressure sensor in the field of wearable devices and/or human-computer interaction.
本发明第五方面提供一种可穿戴设备,所述可穿戴设备包括前述压力传感器。A fifth aspect of the present invention provides a wearable device, which includes the aforementioned pressure sensor.
本发明提供的压力传感器具有柔性、灵敏度高和监测范围宽的优势。The pressure sensor provided by the invention has the advantages of flexibility, high sensitivity and wide monitoring range.
附图说明Description of the drawings
图1是本发明一种具体实施方式的定向排列后的磁性导电纤维的示意图;Figure 1 is a schematic diagram of directionally arranged magnetic conductive fibers according to a specific embodiment of the present invention;
图2是本发明一种具体实施方式的传感器随压力变化的示意图;Figure 2 is a schematic diagram of a sensor changing with pressure according to a specific embodiment of the present invention;
图3中,(a)分别是本发明实施例1,实施例4和对比例1制备的传感器在不同压力下,实时电流与初始电流的比值随压力变化而变化的曲线图;(b)分别是本发明实施例1,实施例2和实施例3制备的传感器在不同压力下,实时电流与初始电流的比值随压力变化而变化的曲线图;(c)是无压力状态下,实施例1制备的传感器在不同电压下的电流与电压关系(伏安曲线);(d)是本发明一种具体实施方式的传感器(实施例1)在不同压力下,实时电流压力变化而变化的曲线图;(e)是本发明一种具体实施方式的压力传感器在相同大小压力不同频率电流图;(f)是本发明一种具体实施方式的传感器(实施例1)在压力下刺激下,实时电流的变化曲线;(g)是本发明一种具体实施方式的传感器(实施例1)在3000次同一压力下刺激下,实时电流的变化曲线。In Figure 3, (a) is a graph showing how the ratio of the real-time current to the initial current changes with the pressure of the sensors prepared in Example 1, Example 4 and Comparative Example 1 of the present invention under different pressures; (b) respectively It is a graph showing how the ratio of the real-time current to the initial current changes with pressure changes for the sensors prepared in Example 1, Example 2 and Example 3 of the present invention under different pressures; (c) is a graph of Example 1 under no pressure. The relationship between current and voltage (volt-ampere curve) of the prepared sensor at different voltages; (d) is a curve chart of the real-time current and pressure changes of the sensor (Example 1) of a specific embodiment of the present invention under different pressures. ; (e) is a current diagram of a pressure sensor of a specific embodiment of the present invention under the same pressure and different frequencies; (f) is a real-time current diagram of a sensor of a specific embodiment of the present invention (Example 1) under pressure stimulation. The change curve; (g) is the change curve of the real-time current of the sensor (Example 1) of a specific embodiment of the present invention under stimulation under the same pressure 3000 times.
具体实施方式Detailed ways
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints of ranges and any values disclosed herein are not limited to the precise range or value, but these ranges or values are to be understood to include values approaching such ranges or values. For numerical ranges, the endpoint values of each range, the endpoint values of each range and individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges. These values The scope shall be deemed to be specifically disclosed herein.
本发明第一方面提供一种具有单一方向导电功能的压力传感器,该压力传感器包括:两层柔性电极和位于两层柔性电极之间的介电层;所述介电层包括基体材料和分布于该基体材料中的磁性导电纤维,且所述磁性导电纤维垂直于柔性电极定向排列。A first aspect of the present invention provides a pressure sensor with a single-directional conductive function. The pressure sensor includes: two layers of flexible electrodes and a dielectric layer located between the two layers of flexible electrodes; the dielectric layer includes a base material and a layer distributed in Magnetic conductive fibers in the base material, and the magnetic conductive fibers are oriented perpendicular to the flexible electrodes.
根据本发明的一些实施方式,所述基底材料与磁性导电纤维的重量比可以为(3-25):1(如3:1、4:1、5:1、10:1、15:1、20:1、25:1或以上数值之间的任意值)。According to some embodiments of the present invention, the weight ratio of the base material to the magnetic conductive fiber may be (3-25):1 (such as 3:1, 4:1, 5:1, 10:1, 15:1, Any value between 20:1, 25:1 or above).
根据本发明的一些实施方式,所述磁性导电纤维可以为圆柱状。According to some embodiments of the present invention, the magnetic conductive fiber may be cylindrical.
优选地,所述磁性导电纤维的长度为0.5-3mm,直径为0.1-0.3mm。Preferably, the magnetic conductive fiber has a length of 0.5-3mm and a diameter of 0.1-0.3mm.
根据本发明的一些实施方式,所述磁性导电纤维的导电系数可以为(1.5-2)×10-3Ω·cm;磁导率可以为(8-9)×103H/m。According to some embodiments of the present invention, the conductivity of the magnetic conductive fiber may be (1.5-2)×10 -3 Ω·cm; the magnetic permeability may be (8-9)×10 3 H/m.
根据本发明的一些实施方式,所述磁性导电纤维可以选自镀镍碳纤维、镀镍金属纤维、镀镍不锈钢、镀铁碳纤维和镀钴碳纤维中的至少一种,优选为镀镍碳纤维和/或镀钴碳纤维。According to some embodiments of the present invention, the magnetic conductive fiber can be selected from at least one of nickel-plated carbon fiber, nickel-plated metal fiber, nickel-plated stainless steel, iron-plated carbon fiber and cobalt-plated carbon fiber, preferably nickel-plated carbon fiber and/or Cobalt plated carbon fiber.
本发明对所述介电层的厚度没有特别的限制,只要能够满足奔本发明的需求即可,例如,所述介电层的厚度可以为2mm-5mm。The present invention has no special limitation on the thickness of the dielectric layer, as long as it can meet the requirements of the present invention. For example, the thickness of the dielectric layer can be 2 mm to 5 mm.
根据本发明的一些实施方式,所述基底材料可以选自热固化材料和/或光固化材料。According to some embodiments of the present invention, the base material may be selected from thermal curing materials and/or photo curing materials.
本发明中,所述基底材料的导热系数可以为0.134-0.159W/M*K,透光率可以为95-100%,具有生理惰性、良好的化学稳定性。其中,所述基底材料的电绝缘性和耐候性,抗剪切能力,能够在-50℃-200℃下长期使用。In the present invention, the thermal conductivity of the base material can be 0.134-0.159W/M*K, the light transmittance can be 95-100%, and it has physiological inertness and good chemical stability. Among them, the base material has electrical insulation, weather resistance, and shear resistance, and can be used for a long time at -50°C to 200°C.
根据本发明的一些实施方式,所述热固化材料可以选自聚二甲基硅氧烷和/或硅胶。According to some embodiments of the present invention, the thermosetting material may be selected from polydimethylsiloxane and/or silicone.
根据本发明的一些实施方式,所述光固化材料可以为光敏聚氨酯。According to some embodiments of the present invention, the photocurable material may be photosensitive polyurethane.
根据本发明的一些实施方式,所述两层柔性电极的厚度可以各自独立地为20μm-70μm。According to some embodiments of the present invention, the thicknesses of the two layers of flexible electrodes may independently range from 20 μm to 70 μm.
根据本发明的一些实施方式,所述柔性电极可以选自叉指电极和/或导电金属电极。According to some embodiments of the present invention, the flexible electrode may be selected from interdigital electrodes and/or conductive metal electrodes.
根据本发明的一些实施方式,所述压力传感器的上电极为导电金属电极,下电极为叉指电极。According to some embodiments of the present invention, the upper electrode of the pressure sensor is a conductive metal electrode, and the lower electrode is an interdigital electrode.
根据本发明的一些实施方式,所述叉指电极的对数为8-20对。According to some embodiments of the present invention, the number of pairs of interdigital electrodes is 8-20 pairs.
根据本发明的一些实施方式,所述叉指电极的叉指线宽和线距各自独立地为100-200μm。According to some embodiments of the present invention, the interdigital line width and line spacing of the interdigital electrode are each independently 100-200 μm.
根据本发明优选的实施方式,所述叉指电极通过磁控溅射制备,其中,磁控溅射的时间为20-40min。According to a preferred embodiment of the present invention, the interdigital electrode is prepared by magnetron sputtering, wherein the magnetron sputtering time is 20-40 minutes.
根据本发明优选的实施方式,所述磁控溅射使得叉指电极上沉积的金属厚度为70-100nm。优选地,所述沉积的金属选自铜和/或金,优选为铜。According to a preferred embodiment of the present invention, the magnetron sputtering causes the metal thickness deposited on the interdigital electrodes to be 70-100 nm. Preferably, the deposited metal is selected from copper and/or gold, preferably copper.
根据本发明的一些实施方式,所述导电金属电极为网状电极;所述导电金属电极选自铜电极、镍布和银布中的至少一种。According to some embodiments of the present invention, the conductive metal electrode is a mesh electrode; the conductive metal electrode is selected from at least one of copper electrode, nickel cloth and silver cloth.
根据本发明的一些实施方式,压力传感器的灵敏度可以为10000-40000kPa-1。According to some embodiments of the present invention, the sensitivity of the pressure sensor may be 10,000-40,000 kPa -1 .
本发明第二方面提供一种制备具有单一方向导电功能的压力传感器的方法,该方法包括以下步骤:A second aspect of the present invention provides a method for preparing a pressure sensor with a single-directional conductive function. The method includes the following steps:
使磁性导电纤维定向分布于基体材料中,并组装柔性电极;Make the magnetic conductive fibers directionally distributed in the matrix material and assemble the flexible electrode;
其中,所述磁性导电纤维垂直于柔性电极定向排列。Wherein, the magnetic conductive fibers are oriented and arranged perpendicularly to the flexible electrodes.
根据本发明的一些实施方式,组装柔性电极的方式包括:将柔性电极和分布有磁性导电纤维的基体材料一起固化;According to some embodiments of the present invention, the method of assembling the flexible electrode includes: solidifying the flexible electrode and a base material distributed with magnetic conductive fibers together;
或者,在分布有磁性导电纤维的基体材料进行固化之后,再粘覆柔性电极。Alternatively, after the matrix material on which the magnetic conductive fibers are distributed is cured, the flexible electrodes are adhered.
其中,将柔性电极和分布有磁性导电纤维的基体材料一起固化,可以表示一个或多个柔性电极和分布有磁性导电纤维的基体材料一起固化。Wherein, the flexible electrodes and the matrix material on which the magnetic conductive fibers are distributed are solidified together, which may mean that one or more flexible electrodes and the matrix material on which the magnetic conductive fibers are distributed are solidified together.
根据本发明的一些实施方式,所述磁性导电纤维定向分布于所述基体材料的方式可以为:According to some embodiments of the present invention, the magnetic conductive fibers are directionally distributed in the base material in the following manner:
将所述磁性导电纤维与所述基体材料混合置于模具中,所述导电纤维在垂直于模具的磁场诱导下以平行于磁场的方向定向分布于所述基体材料中。The magnetic conductive fibers are mixed with the matrix material and placed in a mold, and the conductive fibers are oriented and distributed in the matrix material in a direction parallel to the magnetic field under the induction of a magnetic field perpendicular to the mold.
本发明中,采用先覆盖上表面柔性电极再固化的方式,能够减少接触电阻,利于稳定器件,同时简化制备流程。In the present invention, the flexible electrode on the upper surface is first covered and then solidified, which can reduce the contact resistance, help stabilize the device, and simplify the preparation process.
根据本发明的一些实施方式,所述基底材料与所述磁性导电纤维的重量比为(5-20):1。According to some embodiments of the present invention, the weight ratio of the base material to the magnetic conductive fiber is (5-20):1.
本发明第二方面所述的磁性导电纤维、所述基底材料以及所述柔性电极与前述第一方面具有相同的含义。此处不再赘述。The magnetic conductive fiber, the base material and the flexible electrode described in the second aspect of the present invention have the same meaning as the aforementioned first aspect. No further details will be given here.
根据本发明的一些实施方式,所述模具可以为平板模具。为了获得更好的效果,所述模具的底部的材质为砂纸。其中,砂纸表面是蝶骨嵴结构可以有效提高传感灵敏度。According to some embodiments of the present invention, the mold may be a flat mold. In order to obtain better results, the bottom of the mold is made of sandpaper. Among them, the sandpaper surface has a sphenoid ridge structure, which can effectively improve the sensing sensitivity.
根据本发明的一些实施方式,所述混合在搅拌下进行。所述搅拌的转速可以为1500-3000rpm,时间可以为20-30min;According to some embodiments of the invention, the mixing is performed with stirring. The stirring speed can be 1500-3000rpm, and the stirring time can be 20-30min;
根据本发明的一些实施方式,所述磁场诱导的条件可以包括:磁场强度为0.1-0.3T;所述磁场诱导在均匀磁场下进行。According to some embodiments of the present invention, the conditions for the magnetic field induction may include: the magnetic field intensity is 0.1-0.3T; the magnetic field induction is performed under a uniform magnetic field.
根据本发明的一些实施方式,所述固化为光固化或热固化。According to some embodiments of the present invention, the curing is light curing or thermal curing.
优选地,所述光固化的条件包括:紫外光的波长为360-380nm,强度为20-50W,时间为20-30s。Preferably, the photocuring conditions include: the wavelength of ultraviolet light is 360-380nm, the intensity is 20-50W, and the time is 20-30s.
优选地,所述热固化的条件包括:70-80℃,时间为60-90min。Preferably, the thermal curing conditions include: 70-80°C and a time of 60-90 minutes.
本发明中,对柔性电极的组装方式没有特别的限制,只要能够满足本发明的需求即可。例如所述组装的方式可以为层压和/或粘贴。In the present invention, there is no particular restriction on the assembly method of the flexible electrode, as long as it can meet the requirements of the present invention. For example, the assembly method may be lamination and/or pasting.
本发明第三方面提供一种前述方法制备得到的压力传感器。A third aspect of the present invention provides a pressure sensor prepared by the aforementioned method.
本发明第四方面提供一种前述压力传感器在可穿戴设备和/或人机交互领域中的应用。A fourth aspect of the present invention provides an application of the aforementioned pressure sensor in the field of wearable devices and/or human-computer interaction.
本发明的方法还可以应用于3D打印中,可以取向打印具有特定图案的样材料。The method of the present invention can also be applied to 3D printing, and sample materials with specific patterns can be oriented and printed.
本发明第五方面提供一种可穿戴设备,所述可穿戴设备包括前述压力传感器。A fifth aspect of the present invention provides a wearable device, which includes the aforementioned pressure sensor.
以下将通过实施例对本发明进行详细描述。The present invention will be described in detail below through examples.
实施例1Example 1
(1)将4g镀镍碳纤维(直径为0.2mm、长度为2mm、导电系数为1.5×10-3Ω·cm、磁导率为8×103H/m)加入16g基体材料(聚二甲基硅氧烷(PDMS))中,在2000rpm下搅拌20min,混合均匀后倒入平板模具(材质:亚克力(聚甲基丙烯酸甲酯;4cm(长)×4cm(宽)×2mm(高)),模具底部为表面粗糙的砂纸)中,并将混合后的镀镍碳纤维和基体材料的表面刮涂(用薄刀片在基底材料上进行均匀刮膜)平整,之后将装有镀镍碳纤维和基体材料的模具放置于垂直方向的磁场中,在0.2T的磁场(均匀磁场)诱导下使其中的镀镍碳纤维沿磁场方向进行定向扭转,得到介电层前体;之后在得到的介电层前体的上表面覆盖一层厚度为50μm的导电薄膜(铜网,4cm(长)×4cm(宽)),室温下静置,10min自流平,得到上表面覆盖有导电薄膜的介电层前体;(1) Add 4g of nickel-plated carbon fiber (diameter: 0.2mm, length: 2mm, conductivity: 1.5×10-3Ω·cm, magnetic permeability: 8×103H/m) into 16g of base material (polydimethylsiloxane) alkane (PDMS)), stir for 20 minutes at 2000 rpm, mix evenly and pour into a flat mold (material: acrylic (polymethyl methacrylate; 4cm (length) × 4cm (width) × 2mm (height))), the bottom of the mold sandpaper with a rough surface), and scrape the mixed nickel-plated carbon fiber and base material surfaces (use a thin blade to evenly scrape the film on the base material), and then place the mold containing the nickel-plated carbon fiber and base material Placed in a magnetic field in a vertical direction, the nickel-plated carbon fiber is oriented and twisted along the direction of the magnetic field under the induction of a 0.2T magnetic field (uniform magnetic field) to obtain a dielectric layer precursor; then, on the obtained dielectric layer precursor The surface is covered with a conductive film (copper mesh, 4cm (length) × 4cm (width)) with a thickness of 50 μm, left to stand at room temperature, and self-leveled for 10 minutes to obtain a dielectric layer precursor whose upper surface is covered with a conductive film;
将得到的介电层前体在70℃下进行热固化60min,得到上表面覆盖有导电薄膜的介电层,其中,介电层的厚度为2mm;The obtained dielectric layer precursor was thermally cured at 70°C for 60 minutes to obtain a dielectric layer with an upper surface covered with a conductive film, where the thickness of the dielectric layer was 2 mm;
(2)采用磁控溅射(时间为30min)制备叉指电极,叉指电极上沉积铜的厚度为100nm,叉指电极的厚度为72μm,叉指电极的叉指线宽和线距各自为150μm;将其作为下电极粘覆至上述上表面覆盖有导电薄膜的介电层的下表面。(2) Use magnetron sputtering (time: 30 minutes) to prepare interdigital electrodes. The thickness of copper deposited on the interdigital electrodes is 100nm, the thickness of the interdigital electrodes is 72μm, and the interdigital line width and line spacing of the interdigital electrodes are respectively 150 μm; adhere it as a lower electrode to the lower surface of the above-mentioned dielectric layer whose upper surface is covered with a conductive film.
实施例2Example 2
(1)将4.4g镀镍碳纤维(直径为0.2mm、长度为2mm、导电系数为1.5×10-3Ω·cm、磁导率为8×103H/m)加入15.6g基体材料(聚二甲基硅氧烷(PDMS))中,在2000rpm下搅拌20min,混合均匀后倒入平板模具(材质:亚克力(聚甲基丙烯酸甲酯;4cm(长)×4cm(宽)×2mm(高)),模具底部为表面粗糙的砂纸)中,并将混合后的镀镍碳纤维和基体材料的表面刮涂(用薄刀片在基底材料上进行均匀刮膜)平整,之后将装有镀镍碳纤维和基体材料的模具放置于垂直方向的磁场中,在0.2T的磁场(均匀磁场)诱导下使其中的镀镍碳纤维沿磁场方向进行定向扭转,得到介电层前体;之后在得到的介电层的上表面覆盖一层厚度为50μm的导电薄膜(铜网,4cm(长)×4cm(宽)),室温下静置,10min自流平,得到上表面覆盖有导电薄膜的介电层前体;(1) Add 4.4g of nickel-plated carbon fiber (diameter of 0.2mm, length of 2mm, conductivity of 1.5×10-3Ω·cm, magnetic permeability of 8×103H/m) into 15.6g of base material (polydimethyl siloxane (PDMS), stir for 20 minutes at 2000 rpm, mix evenly and pour into a flat mold (material: acrylic (polymethylmethacrylate; 4cm (length) × 4cm (width) × 2mm (height)), The bottom of the mold is sandpaper with a rough surface), and the surface of the mixed nickel-plated carbon fiber and base material is scraped (use a thin blade to evenly scrape the film on the base material), and then the nickel-plated carbon fiber and base material are installed. The mold is placed in a vertical magnetic field, and the nickel-plated carbon fibers are oriented and twisted along the direction of the magnetic field under the induction of a 0.2T magnetic field (uniform magnetic field) to obtain a dielectric layer precursor; then, on the obtained dielectric layer The surface is covered with a conductive film (copper mesh, 4cm (length) × 4cm (width)) with a thickness of 50 μm, left to stand at room temperature, and self-leveled for 10 minutes to obtain a dielectric layer precursor whose upper surface is covered with a conductive film;
将得到的介电层前体在70℃下进行热固化60min,得到上表面覆盖有导电薄膜的介电层,其中,介电层的厚度为2mm;The obtained dielectric layer precursor was thermally cured at 70°C for 60 minutes to obtain a dielectric layer with an upper surface covered with a conductive film, where the thickness of the dielectric layer was 2 mm;
(2)采用磁控溅射(时间为30min)制备叉指电极,叉指电极上沉积铜的厚度为100nm,叉指电极的厚度为72μm,叉指电极的叉指线宽和线距各自为150μm;将其作为下电极粘覆至上述上表面覆盖有导电薄膜的介电层的下表面。(2) Use magnetron sputtering (time: 30 minutes) to prepare interdigital electrodes. The thickness of copper deposited on the interdigital electrodes is 100nm, the thickness of the interdigital electrodes is 72μm, and the interdigital line width and line spacing of the interdigital electrodes are respectively 150 μm; adhere it as a lower electrode to the lower surface of the above-mentioned dielectric layer whose upper surface is covered with a conductive film.
实施例3Example 3
(1)将3.6g镀镍碳纤维(直径为0.2mm、长度为2mm、导电系数为1.5×10-3Ω·cm、磁导率为8×103H/m)加入16.4g基体材料(聚二甲基硅氧烷(PDMS))中,在2000rpm下搅拌20min,混合均匀后倒入平板模具(材质:亚克力(聚甲基丙烯酸甲酯;4cm(长)×4cm(宽)×2mm(高)),模具底部为表面粗糙的砂纸)中,并将混合后的镀镍碳纤维和基体材料的表面刮涂(用薄刀片在基底材料上进行均匀刮膜)平整,之后将装有镀镍碳纤维和基体材料的模具放置于垂直方向的磁场中,在0.2T的磁场(均匀磁场)诱导下使其中的镀镍碳纤维沿磁场方向进行定向扭转,得到介电层前体;之后在得到的介电层的上表面覆盖一层厚度为50μm的导电薄膜(铜网,4cm(长)×4cm(宽)),室温下静置,10min自流平,得到上表面覆盖有导电薄膜的介电层前体;(1) Add 3.6g of nickel-plated carbon fiber (diameter of 0.2mm, length of 2mm, conductivity of 1.5×10-3Ω·cm, magnetic permeability of 8×103H/m) into 16.4g of base material (polydimethyl siloxane (PDMS), stir for 20 minutes at 2000 rpm, mix evenly and pour into a flat mold (material: acrylic (polymethylmethacrylate; 4cm (length) × 4cm (width) × 2mm (height)), The bottom of the mold is sandpaper with a rough surface), and the surface of the mixed nickel-plated carbon fiber and base material is scraped (use a thin blade to evenly scrape the film on the base material), and then the nickel-plated carbon fiber and base material are installed. The mold is placed in a vertical magnetic field, and the nickel-plated carbon fibers are oriented and twisted along the direction of the magnetic field under the induction of a 0.2T magnetic field (uniform magnetic field) to obtain a dielectric layer precursor; then, on the obtained dielectric layer The surface is covered with a conductive film (copper mesh, 4cm (length) × 4cm (width)) with a thickness of 50 μm, left to stand at room temperature, and self-leveled for 10 minutes to obtain a dielectric layer precursor whose upper surface is covered with a conductive film;
将得到的介电层前体在70℃下进行热固化60min,得到上表面覆盖有导电薄膜的介电层,其中,介电层的厚度为2mm;The obtained dielectric layer precursor was thermally cured at 70°C for 60 minutes to obtain a dielectric layer with an upper surface covered with a conductive film, where the thickness of the dielectric layer was 2 mm;
(2)采用磁控溅射(时间为30min)制备叉指电极,叉指电极上沉积铜的厚度为100nm,叉指电极的厚度为72μm,叉指电极的叉指线宽和线距各自为150μm;将其作为下电极粘覆至上述上表面覆盖有导电薄膜的介电层的下表面。(2) Use magnetron sputtering (time: 30 minutes) to prepare interdigital electrodes. The thickness of copper deposited on the interdigital electrodes is 100nm, the thickness of the interdigital electrodes is 72μm, and the interdigital line width and line spacing of the interdigital electrodes are respectively 150 μm; adhere it as a lower electrode to the lower surface of the above-mentioned dielectric layer whose upper surface is covered with a conductive film.
实施例4Example 4
(1)将4g镀镍碳纤维(直径为0.2mm、长度为2mm、导电系数为1.5×10-3Ω·cm、磁导率为8×103H/m)加入16g基体材料(聚二甲基硅氧烷(PDMS))中,在2000rpm下搅拌20min,混合均匀后倒入平板模具(材质:亚克力(聚甲基丙烯酸甲酯;4cm(长)×4cm(宽)×2mm(高)),模具底部为表面为光滑亚克力材料)中,并将混合后的镀镍碳纤维和基体材料的表面刮涂(用薄刀片在基底材料上进行均匀刮膜)平整,之后将装有镀镍碳纤维和基体材料的模具放置于垂直方向的磁场中,在0.2T的磁场(均匀磁场)诱导下使其中的镀镍碳纤维沿磁场方向进行定向扭转,得到介电层前体;之后在得到的介电层的上表面覆盖一层厚度为50μm的导电薄膜(铜网,4cm(长)×4cm(宽)),室温下静置,10min自流平,得到上表面覆盖有导电薄膜的介电层前体;(1) Add 4g of nickel-plated carbon fiber (diameter: 0.2mm, length: 2mm, conductivity: 1.5×10-3Ω·cm, magnetic permeability: 8×103H/m) into 16g of base material (polydimethylsiloxane) alkane (PDMS)), stir for 20 minutes at 2000 rpm, mix evenly and pour into a flat mold (material: acrylic (polymethyl methacrylate; 4cm (length) × 4cm (width) × 2mm (height))), the bottom of the mold (The surface is a smooth acrylic material), and scrape the mixed nickel-plated carbon fiber and the base material's surface (use a thin blade to evenly scrape the film on the base material), and then put the nickel-plated carbon fiber and base material into the The mold is placed in a vertical magnetic field, and the nickel-plated carbon fibers are oriented and twisted along the direction of the magnetic field under the induction of a 0.2T magnetic field (uniform magnetic field) to obtain a dielectric layer precursor; then, the upper surface of the obtained dielectric layer is Cover it with a conductive film (copper mesh, 4cm (length) × 4cm (width)) with a thickness of 50 μm, let it stand at room temperature, and self-level for 10 minutes to obtain a dielectric layer precursor whose upper surface is covered with a conductive film;
将得到的介电层前体在70℃下进行热固化60min,得到上表面覆盖有导电薄膜的介电层,其中,介电层的厚度为2mm;The obtained dielectric layer precursor was thermally cured at 70°C for 60 minutes to obtain a dielectric layer with an upper surface covered with a conductive film, where the thickness of the dielectric layer was 2 mm;
(2)采用磁控溅射(时间为30min)制备叉指电极,叉指电极上沉积铜的厚度为100nm,叉指电极的厚度为72μm,叉指电极的叉指线宽和线距各自为150μm;将其作为下电极粘覆至上述上表面覆盖有导电薄膜的介电层的下表面。(2) Use magnetron sputtering (time: 30 minutes) to prepare interdigital electrodes. The thickness of copper deposited on the interdigital electrodes is 100nm, the thickness of the interdigital electrodes is 72μm, and the interdigital line width and line spacing of the interdigital electrodes are respectively 150 μm; adhere it as a lower electrode to the lower surface of the above-mentioned dielectric layer whose upper surface is covered with a conductive film.
对比例1Comparative example 1
按照实施例1的方式进行,不同的是,不用磁场对镀镍碳纤维进行定向诱导。The process was carried out in the same manner as in Example 1, except that no magnetic field was used to induce the orientation of the nickel-plated carbon fibers.
对上述得到的压力传感器进行效果测试:Test the effect of the pressure sensor obtained above:
图3中(a)是利用线性马达对实施例1,实施例4,和对比例1制备的压力传感器施加可变的压力,其中,采用数字源表吉时利-2400(来施加恒定的电压,采用数字源表吉时利-6517来进行电流的测试。由测试结果可知,实时电流与初始电流的比值随施加压力的增大而增大。(a) in Figure 3 uses a linear motor to apply variable pressure to the pressure sensors prepared in Example 1, Example 4, and Comparative Example 1, in which a digital source meter Keithley-2400 (is used to apply a constant voltage , a digital sourcemeter Keithley-6517 was used to test the current. From the test results, it can be seen that the ratio of the real-time current to the initial current increases with the increase of the applied pressure.
图3中(a)的测试结果表明实施例1,实施例4和对比例1制备的压力传感对压力有较好的响应度。The test results in (a) in Figure 3 show that the pressure sensors prepared in Example 1, Example 4 and Comparative Example 1 have better responsiveness to pressure.
对于图3中(a)的不同的曲线、不同的斜率分别说明实施例1制备的压力传感器对压力的响应度要远远地高于实施例4和对比例1。Different curves and different slopes in (a) in Figure 3 respectively indicate that the pressure sensor prepared in Example 1 has a much higher responsiveness to pressure than Example 4 and Comparative Example 1.
图3中(b)与图3中(a)中的测试条件相同,分别代表的是实施例1,实施例2和实施例3对不同压力的响应电流。The test conditions in (b) in Figure 3 are the same as in (a) in Figure 3, and respectively represent the response currents to different pressures in Example 1, Example 2 and Example 3.
对于图3中(a)的不同的曲线、不同的斜率分别说明实施例1制备的压力传感器对压力的响应度要远远地高于实施例2和实施例3。Different curves and different slopes in (a) in Figure 3 respectively indicate that the pressure sensor prepared in Example 1 has a much higher responsiveness to pressure than Example 2 and Example 3.
图3中(c)是对实施例1制备的压力传感器测试的电压与电流成线性关系图。测试方法为电化学工作站,施加可变电压,测试其电流。结果表明实施1制备的压力传感器为纯电阻器件。(c) in Figure 3 is a linear relationship diagram between voltage and current tested on the pressure sensor prepared in Example 1. The test method is an electrochemical workstation, applying variable voltage and testing its current. The results show that the pressure sensor prepared in Implementation 1 is a pure resistive device.
图3中(d)-(g)测试方法与(a)和(b)相同。The test methods for (d)-(g) in Figure 3 are the same as (a) and (b).
图3中(d)表示在具体施加的压力(1-100kPa下,如1kPa、15kPa、38kPa、48kPa和58kPa)下,实施例1制备的压力传感器对应的电流;结果表明输出的电流信号在同一压力刺激下稳定且随压力增长而增大。(d) in Figure 3 shows the current corresponding to the pressure sensor prepared in Example 1 under specific applied pressure (1-100kPa, such as 1kPa, 15kPa, 38kPa, 48kPa and 58kPa); the results show that the output current signal is at the same It is stable under pressure stimulation and increases with pressure increase.
图3中(e)表示,实施例1制备的压力传感器输出电流随频率的加快而加快,且不会随着施加力频率的增大而增大。(e) in Figure 3 shows that the output current of the pressure sensor prepared in Example 1 increases as the frequency increases, and does not increase as the frequency of applied force increases.
图3中(f)表示对实施例1制备的压力传感器施加力,电流的响应时间为30ms,施加力的即刻产生电流信号。表明器件信号对压力响应快。(f) in Figure 3 shows the application of force to the pressure sensor prepared in Example 1. The response time of the current is 30 ms, and a current signal is generated immediately upon application of force. It shows that the device signal responds quickly to pressure.
图3中(g)表示实施例1制备的压力传感器的电流信号在3000次循环下,依然保持较好的稳定性。(g) in Figure 3 shows that the current signal of the pressure sensor prepared in Example 1 still maintains good stability after 3000 cycles.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited thereto. Within the scope of the technical concept of the present invention, many simple modifications can be made to the technical solution of the present invention, including the combination of various technical features in any other suitable manner. These simple modifications and combinations should also be regarded as the disclosed content of the present invention. All belong to the protection scope of the present invention.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111424219.0A CN114383761B (en) | 2021-11-26 | 2021-11-26 | Pressure sensor with unidirectional conductive function and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111424219.0A CN114383761B (en) | 2021-11-26 | 2021-11-26 | Pressure sensor with unidirectional conductive function and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114383761A CN114383761A (en) | 2022-04-22 |
CN114383761B true CN114383761B (en) | 2023-10-27 |
Family
ID=81195808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111424219.0A Active CN114383761B (en) | 2021-11-26 | 2021-11-26 | Pressure sensor with unidirectional conductive function and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114383761B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114875661A (en) * | 2022-05-27 | 2022-08-09 | 中钢集团南京新材料研究院有限公司 | Flexible magnetoelectric fiber with force-electricity conversion effect, manufacturing method thereof and related product |
CN115590476B (en) * | 2022-11-09 | 2024-08-27 | 安徽通灵仿生科技有限公司 | Preparation method of flexible pressure sensor |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267549A (en) * | 2001-03-14 | 2002-09-18 | Sumitomo Electric Ind Ltd | Optical fiber collision detection sensor and method of forming the same |
CN105865667A (en) * | 2016-05-19 | 2016-08-17 | 北京印刷学院 | Capacitive flexible pressure sensor based on microstructural dielectric layers and preparation method of capacitive flexible pressure sensor |
CN105926277A (en) * | 2016-05-31 | 2016-09-07 | 深圳市微纳集成电路与系统应用研究院 | Conductive fiber and preparation method thereof, and capacitive pressure sensor and preparation method thereof |
CN106017748A (en) * | 2016-05-19 | 2016-10-12 | 北京印刷学院 | Capacitive flexible pressure sensor based on composite material dielectric layer and its preparation method |
CN107014526A (en) * | 2017-04-28 | 2017-08-04 | 青岛大学 | A kind of Zinc oxide-base micro nanometer fiber array flexible pressure sensor and preparation method thereof |
CN107478360A (en) * | 2017-08-18 | 2017-12-15 | 北京纳米能源与系统研究所 | Condenser type pliable pressure sensor and preparation method thereof |
CN109307565A (en) * | 2018-08-21 | 2019-02-05 | 厦门大学 | A flexible electronic skin capable of sensing pressure and preparation method thereof |
CN110455443A (en) * | 2019-08-23 | 2019-11-15 | 北京航空航天大学 | A flexible capacitive sensor prepared by using silver nanowire flexible electrodes and its preparation method |
CN111928978A (en) * | 2020-08-06 | 2020-11-13 | 北京纳米能源与系统研究所 | Pressure sensor |
CN111964813A (en) * | 2020-08-18 | 2020-11-20 | 西安电子科技大学 | A wirelessly driven high-sensitivity flexible pressure sensor and preparation method thereof |
CN112697317A (en) * | 2020-12-15 | 2021-04-23 | 嘉兴学院 | Flexible pressure sensor with high sensitivity and wide range and preparation method thereof |
CN112964283A (en) * | 2021-01-30 | 2021-06-15 | 北京工业大学 | Flexible interdigital capacitive sensor structure and preparation method thereof |
CN113203504A (en) * | 2021-04-01 | 2021-08-03 | 上海交通大学 | Flexible wearable pressure sensor with ultrahigh capacitance and pressure sensor array |
CN113280954A (en) * | 2021-04-15 | 2021-08-20 | 北京纳米能源与系统研究所 | Flexible sensor, preparation method and application thereof and wearable device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8718419B2 (en) * | 2012-08-15 | 2014-05-06 | Siemens Energy, Inc. | Frame foot loading measurement system using fiber optic sensing technique |
IT201700073763A1 (en) * | 2017-07-05 | 2019-01-05 | St Microelectronics Srl | PRESSURE CAPACITIVE SENSOR FOR THE MONITORING OF BUILDING STRUCTURES, IN PARTICULAR OF CONCRETE |
US20200284672A1 (en) * | 2019-03-06 | 2020-09-10 | Shinano Kenshi Kabushiki Kaisha | Magnetostriction type torque detection sensor |
-
2021
- 2021-11-26 CN CN202111424219.0A patent/CN114383761B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267549A (en) * | 2001-03-14 | 2002-09-18 | Sumitomo Electric Ind Ltd | Optical fiber collision detection sensor and method of forming the same |
CN105865667A (en) * | 2016-05-19 | 2016-08-17 | 北京印刷学院 | Capacitive flexible pressure sensor based on microstructural dielectric layers and preparation method of capacitive flexible pressure sensor |
CN106017748A (en) * | 2016-05-19 | 2016-10-12 | 北京印刷学院 | Capacitive flexible pressure sensor based on composite material dielectric layer and its preparation method |
CN105926277A (en) * | 2016-05-31 | 2016-09-07 | 深圳市微纳集成电路与系统应用研究院 | Conductive fiber and preparation method thereof, and capacitive pressure sensor and preparation method thereof |
CN107014526A (en) * | 2017-04-28 | 2017-08-04 | 青岛大学 | A kind of Zinc oxide-base micro nanometer fiber array flexible pressure sensor and preparation method thereof |
CN107478360A (en) * | 2017-08-18 | 2017-12-15 | 北京纳米能源与系统研究所 | Condenser type pliable pressure sensor and preparation method thereof |
CN109307565A (en) * | 2018-08-21 | 2019-02-05 | 厦门大学 | A flexible electronic skin capable of sensing pressure and preparation method thereof |
CN110455443A (en) * | 2019-08-23 | 2019-11-15 | 北京航空航天大学 | A flexible capacitive sensor prepared by using silver nanowire flexible electrodes and its preparation method |
CN111928978A (en) * | 2020-08-06 | 2020-11-13 | 北京纳米能源与系统研究所 | Pressure sensor |
CN111964813A (en) * | 2020-08-18 | 2020-11-20 | 西安电子科技大学 | A wirelessly driven high-sensitivity flexible pressure sensor and preparation method thereof |
CN112697317A (en) * | 2020-12-15 | 2021-04-23 | 嘉兴学院 | Flexible pressure sensor with high sensitivity and wide range and preparation method thereof |
CN112964283A (en) * | 2021-01-30 | 2021-06-15 | 北京工业大学 | Flexible interdigital capacitive sensor structure and preparation method thereof |
CN113203504A (en) * | 2021-04-01 | 2021-08-03 | 上海交通大学 | Flexible wearable pressure sensor with ultrahigh capacitance and pressure sensor array |
CN113280954A (en) * | 2021-04-15 | 2021-08-20 | 北京纳米能源与系统研究所 | Flexible sensor, preparation method and application thereof and wearable device |
Non-Patent Citations (1)
Title |
---|
《半电极含金属芯压电纤维的动态微力传感器》.《传感技术学报》.2011,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN114383761A (en) | 2022-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114383761B (en) | Pressure sensor with unidirectional conductive function and preparation method and application thereof | |
Wei et al. | MXene‐sponge based high‐performance piezoresistive sensor for wearable biomonitoring and real‐time tactile sensing | |
CN101541667A (en) | Construction of planar and three-dimensional microstructures using PMDS-based conductive composites | |
CN109668948B (en) | Low-cost high-precision preparation method of carbon-based and metal-based electrode array | |
CN110595647B (en) | A kind of multifunctional flexible strain-pressure sensor and preparation method | |
CN104865767A (en) | Electrochromic composite material and electrochromic device and preparation method thereof | |
CN108801514A (en) | A kind of elastic stress Distribution sensing array and preparation method thereof | |
CN107708234B (en) | Flexible electric heating plate and preparation method thereof | |
CN113514996B (en) | Electrochromic visualization pressure sensor and its construction method | |
CN110118624A (en) | A kind of pressure sensor and preparation method thereof | |
CN105713348A (en) | Strain sensor made of carbon nanotube/epoxy resin composite material and manufacturing process of strain sensor | |
JP2928303B2 (en) | Equipment for measuring thermal properties of substance samples | |
CN109259891A (en) | A kind of electronic skin and preparation method thereof measuring pressure | |
CN113310395B (en) | Microcrack strain sensing element and preparation method and application thereof | |
CN112781757B (en) | Flexible capacitive pressure sensor based on graphene and preparation method thereof | |
CN102009941A (en) | Micro-nano fluid system and preparation method thereof | |
Zhao et al. | Skin‐Integrated, Stretchable Electronic Skin for Human Motion Capturing and Pressure Mapping | |
CN103439368B (en) | A kind of humidity sensor based on phosphate molecule sieve and preparation method thereof | |
Ozhikandathil et al. | Electrically conducting PDMS nanocomposite using in situ reduction of gold nanostructures and mechanical stimulation of carbon nanotubes and silver nanoparticles | |
Wang et al. | Double-layer stretchable composite conductive graphene-hydrogel with wide-range linear sensing and thermal-humidity management for health monitoring | |
CN109970023A (en) | A kind of manufacturing method of flexible microelectrode | |
CN110338781A (en) | A kind of non-metal flexible dry electrode and preparation method thereof | |
CN110403751B (en) | Flexible thermochromic interactive wearable thermotherapy pad and preparation method | |
CN110501086B (en) | A kind of flexible temperature sensor and preparation method thereof | |
CN209014173U (en) | wearable pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |