[go: up one dir, main page]

CN114337190A - An output voltage compensation circuit and compensation method - Google Patents

An output voltage compensation circuit and compensation method Download PDF

Info

Publication number
CN114337190A
CN114337190A CN202011027547.2A CN202011027547A CN114337190A CN 114337190 A CN114337190 A CN 114337190A CN 202011027547 A CN202011027547 A CN 202011027547A CN 114337190 A CN114337190 A CN 114337190A
Authority
CN
China
Prior art keywords
module
output
voltage
electrically connected
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011027547.2A
Other languages
Chinese (zh)
Inventor
丁少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chenxin Technology Co ltd
Chen Core Technology Co ltd
Original Assignee
Chenxin Technology Co ltd
Chen Core Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chenxin Technology Co ltd, Chen Core Technology Co ltd filed Critical Chenxin Technology Co ltd
Priority to CN202011027547.2A priority Critical patent/CN114337190A/en
Publication of CN114337190A publication Critical patent/CN114337190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

The embodiment of the invention discloses an output voltage compensation circuit and a compensation method, wherein the circuit comprises: the device comprises a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation regulation module and a feedback module; the power conversion module is used for converting a signal at a voltage input end according to the PWM signal output by the PWM output module and then outputting the converted signal from the voltage output end; the current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for outputting compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module; the control module is used for adjusting the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module so as to adjust the output voltage of the power conversion module. The voltage drop generated by the wiring impedance can be compensated without remote feedback and increase of a feedback line, and the wiring complexity and cost are further reduced.

Description

一种输出电压补偿电路及补偿方法An output voltage compensation circuit and compensation method

技术领域technical field

本发明实施例涉及电子技术领域,尤其涉及一种输出电压补偿电路及补偿方法。Embodiments of the present invention relate to the field of electronic technology, and in particular, to an output voltage compensation circuit and a compensation method.

背景技术Background technique

开关电源在输出电流的过程中,由于印制电路板(Printed Circuit Board,PCB)走线存在等效电阻,电流从电源输出端传输到负载端的过程中会造成电源的压降,因此,通常会采取反馈的方式补偿压降。In the process of outputting current of the switching power supply, due to the equivalent resistance of the printed circuit board (Printed Circuit Board, PCB) trace, the voltage drop of the power supply will be caused when the current is transmitted from the output end of the power supply to the load end. The voltage drop is compensated by means of feedback.

目前开关电源反馈方式主要有三种,近端反馈、远端单端反馈和远端差分反馈。近端反馈用于对电源不敏感的单元供电,远端反馈用于给电源敏感的单元(例如,中央处理器)供电。远端反馈的作用是开关电源通过采集负载端有压降的电压作为反馈,从而补偿PCB走线引起的压降,其中单端反馈补偿了电源正极走线压降,差分反馈补偿了电源正极和地的走线压降。然而,为了使电源更精确,远端反馈线需要从负载芯片内部连出(芯片出球),对于复杂的多电源系统(例如手机等智能终端),则会增加走线成本和走线复杂度。At present, there are three main ways of switching power supply feedback, near-end feedback, far-end single-end feedback and far-end differential feedback. Proximal feedback is used to power power insensitive units, and far end feedback is used to power power sensitive units (eg, a central processing unit). The function of the remote feedback is that the switching power supply compensates the voltage drop caused by the PCB trace by collecting the voltage with the voltage drop at the load end as feedback. Ground trace voltage drop. However, in order to make the power supply more accurate, the remote feedback line needs to be connected from the load chip (chip out of the ball), and for complex multi-power supply systems (such as smart terminals such as mobile phones), it will increase the wiring cost and wiring complexity. .

发明内容SUMMARY OF THE INVENTION

本发明提供一种输出电压补偿电路及补偿方法,以实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。The invention provides an output voltage compensation circuit and a compensation method, so as to realize the compensation of the voltage drop caused by the impedance of the wiring without remote feedback and without adding a feedback line, thereby reducing the complexity of the wiring and the manufacturing cost.

第一方面,本发明实施例提供了一种输出电压补偿电路,该输出电压补偿电路包括:控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;In a first aspect, an embodiment of the present invention provides an output voltage compensation circuit, the output voltage compensation circuit includes: a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation adjustment module, and a feedback module;

其中,所述控制模块与所述PWM输出模块电连接,所述PWM输出模块与所述功率换模块电连接,所述PWM输出模块用于输出PWM信号至所述功率变换模块,所述功率变换模块用于根据所述PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;The control module is electrically connected to the PWM output module, the PWM output module is electrically connected to the power conversion module, and the PWM output module is used to output a PWM signal to the power conversion module, and the power conversion module The module is used to convert the signal of the voltage input terminal according to the PWM signal output by the PWM output module and output it from the voltage output terminal;

所述电流检测模块分别与所述功率变换模块和所述电压补偿调节模块电连接,所述电压补偿调节模块分别与所述功率变换模块的电压输出端和所述反馈模块电连接,所述反馈模块分别与所述电流检测模块和所述控制模块电连接;其中,所述电流检测模块用于检测流过所述功率变换模块的电流,所述电压补偿调节模块用于根据所述电流检测模块检测的电流和所述功率变换模块输出的电压输出补偿电压至所述反馈模块;The current detection module is respectively electrically connected to the power conversion module and the voltage compensation adjustment module, the voltage compensation adjustment module is respectively electrically connected to the voltage output end of the power conversion module and the feedback module, the feedback The modules are respectively electrically connected with the current detection module and the control module; wherein, the current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for detecting the current according to the current detection module The detected current and the voltage output by the power conversion module output a compensation voltage to the feedback module;

其中,所述控制模块用于根据所述电压补偿调节模块输出的补偿电压调节所述PWM输出模块输出的PWM信号以调节所述功率变换模块的输出电压。Wherein, the control module is configured to adjust the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module to adjust the output voltage of the power conversion module.

第二方面,本发明实施例还提供了一种输出电压补偿电路补偿方法,其特征在于,由输出电压补偿电路执行,所述输出电压补偿电路包括控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,所述控制模块与所述PWM输出模块电连接,所述PWM输出模块与所述功率变换模块电连接,所述PWM输出模块用于输出PWM信号至所述功率变换模块,所述功率变换模块用于根据所述PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;所述电流检测模块分别与所述功率变换模块和所述电压补偿调节模块电连接,所述电压补偿调节模块分别与所述功率变换模块的电压输出端和所述反馈模块电连接,所述反馈模块分别与所述电流检测模块和所述控制模块电连接;其中,所述电流检测模块用于检测流过所述功率变换模块的电流,所述电压补偿调节模块用于根据所述电流检测模块检测的电流和所述功率变换模块输出的电压输出补偿电压至所述反馈模块;In a second aspect, an embodiment of the present invention further provides a compensation method for an output voltage compensation circuit, characterized in that it is performed by an output voltage compensation circuit, and the output voltage compensation circuit includes a control module, a PWM output module, a power conversion module, a current A detection module, a voltage compensation adjustment module and a feedback module; wherein the control module is electrically connected to the PWM output module, the PWM output module is electrically connected to the power conversion module, and the PWM output module is used to output a PWM signal To the power conversion module, the power conversion module is used to convert the signal of the voltage input terminal and output it from the voltage output terminal according to the PWM signal output by the PWM output module; the current detection module is respectively connected with the power conversion module and the power conversion module. The voltage compensation adjustment module is electrically connected, and the voltage compensation adjustment module is respectively electrically connected with the voltage output end of the power conversion module and the feedback module, and the feedback module is respectively connected with the current detection module and the control module Electrical connection; wherein, the current detection module is used to detect the current flowing through the power conversion module, and the voltage compensation adjustment module is used to output according to the current detected by the current detection module and the voltage output by the power conversion module compensating the voltage to the feedback module;

所述补偿方法包括:根据所述电压补偿调节模块输出的补偿电压调节所述PWM输出模块输出的PWM信号调节所述功率变换模块的输出电压。The compensation method includes: adjusting the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module to adjust the output voltage of the power conversion module.

本发明通过提供一种输出电压补偿电路,该电路包括:控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,控制模块与PWM输出模块电连接,PWM输出模块与功率变换模块电连接,PWM输出模块用于输出PWM信号至功率变换模块,功率变换模块用于根据PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;电流检测模块分别与功率变换模块和电压补偿调节模块电连接,电压补偿调节模块分别与功率变换模块的电压输出端和反馈模块电连接,反馈模块分别与电流检测模块和控制模块电连接;其中,电流检测模块用于检测流过功率变换模块的电流,电压补偿调节模块用于根据电流检测模块检测的电流和功率变换模块输出的电压输出补偿电压至反馈模块;其中,控制模块用于根据电压补偿调节模块输出的补偿电压调节PWM输出模块输出的PWM信号以调节功率变换模块的输出电压。由此可知,通过该电路可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。The invention provides an output voltage compensation circuit, which comprises: a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation adjustment module and a feedback module; wherein, the control module is electrically connected with the PWM output module, and the PWM output module is electrically connected to the PWM output module. The output module is electrically connected with the power conversion module, the PWM output module is used for outputting a PWM signal to the power conversion module, and the power conversion module is used for converting the signal of the voltage input terminal according to the PWM signal output by the PWM output module and outputting it from the voltage output terminal; current detection The modules are electrically connected to the power conversion module and the voltage compensation adjustment module respectively, the voltage compensation adjustment module is respectively electrically connected to the voltage output end of the power conversion module and the feedback module, and the feedback module is electrically connected to the current detection module and the control module respectively; The module is used to detect the current flowing through the power conversion module, and the voltage compensation adjustment module is used to output the compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module; wherein, the control module is used to compensate the adjustment module according to the voltage The output compensation voltage adjusts the PWM signal output by the PWM output module to adjust the output voltage of the power conversion module. It can be seen that the circuit can solve the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method, and can compensate the voltage drop caused by the wiring impedance without remote feedback and without adding feedback lines. , thereby reducing the wiring complexity and manufacturing cost.

附图说明Description of drawings

图1是本发明实施例一中的一种输出电压补偿电路的结构示意图;1 is a schematic structural diagram of an output voltage compensation circuit in Embodiment 1 of the present invention;

图2是本发明实施例二中的一种输出电压补偿电路的结构示意图;2 is a schematic structural diagram of an output voltage compensation circuit in Embodiment 2 of the present invention;

图3是本发明实施例三中的一种输出电压补偿电路的结构示意图;3 is a schematic structural diagram of an output voltage compensation circuit in Embodiment 3 of the present invention;

图4是本发明实施例四中的一种输出电压补偿电路补偿方法的流程图。FIG. 4 is a flowchart of a compensation method for an output voltage compensation circuit in Embodiment 4 of the present invention.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all structures related to the present invention.

实施例一Example 1

图1是本发明实施例一中提供的一种输出电压补偿电路的结构示意图,参考图1,该输出电压补偿电路包括:控制模块10、PWM输出模块20、功率变换模块30、电流检测模块40、电压补偿调节模块50和反馈模块60;1 is a schematic structural diagram of an output voltage compensation circuit provided in Embodiment 1 of the present invention. Referring to FIG. 1 , the output voltage compensation circuit includes: a control module 10 , a PWM output module 20 , a power conversion module 30 , and a current detection module 40 , a voltage compensation adjustment module 50 and a feedback module 60;

其中,控制模块10与PWM输出模块20电连接,PWM输出模块20与功率变换模块30电连接,PWM输出模块20用于输出PWM信号至功率变换模块30,功率变换模块30用于根据PWM输出模块20输出的PWM信号将电压输入端的信号变换后从电压输出端输出;The control module 10 is electrically connected to the PWM output module 20, the PWM output module 20 is electrically connected to the power conversion module 30, the PWM output module 20 is used for outputting PWM signals to the power conversion module 30, and the power conversion module 30 is used for outputting the module according to the PWM The PWM signal output by 20 converts the signal at the voltage input terminal and outputs it from the voltage output terminal;

电流检测模块40分别与功率变换模块30和电压补偿调节模块50电连接,电压补偿调节模块50分别与功率变换模块30的电压输出端和反馈模块60电连接,反馈模块60分别与电流检测模块40和控制模块10电连接;其中,电流检测模块40用于检测流过功率变换模块30的电流,电压补偿调节模块50用于根据电流检测模块40检测的电流和功率变换模块30输出的电压输出补偿电压至反馈模块60;The current detection module 40 is electrically connected to the power conversion module 30 and the voltage compensation adjustment module 50 respectively, the voltage compensation adjustment module 50 is respectively electrically connected to the voltage output end of the power conversion module 30 and the feedback module 60 , and the feedback module 60 is respectively connected to the current detection module 40 is electrically connected to the control module 10; wherein, the current detection module 40 is used to detect the current flowing through the power conversion module 30, and the voltage compensation adjustment module 50 is used to output compensation according to the current detected by the current detection module 40 and the voltage output by the power conversion module 30 voltage to the feedback module 60;

其中,控制模块10用于根据电压补偿调节模块50输出的补偿电压调节PWM输出模块20输出的PWM信号以调节功率变换模块30的输出电压。The control module 10 is configured to adjust the PWM signal output by the PWM output module 20 according to the compensation voltage output by the voltage compensation adjustment module 50 to adjust the output voltage of the power conversion module 30 .

其中,控制模块10可以为具有触发器作用的控制芯片。电流检测模块40可以为电流源检测芯片。The control module 10 may be a control chip with a trigger function. The current detection module 40 may be a current source detection chip.

在本实施例的技术方案中,该输出电压补偿电路的实现过程为:参考图1,控制模块10控制PWM输出模块20输出PWM信号至功率变换模块30,通过PWM信号控制功率变换模块30的输出。由于电源走线存在一定的等效阻抗,使得功率变换模块30输出的电压经过电源走线会产生一定的压降,而导致无法保证负载端的电压需求。因此,本发明实施例通过电流检测模块40检测流过功率变换模块30的电流,并将检测的电流输出到电压补偿调节模块50,经电压补偿调节模块50调节输出补偿电压至反馈模块60,再由反馈模块60输出到控制模块10,控制模块10根据反馈模块60反馈的补偿电压控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压。由此,通过将电压补偿调节模块50输出的补偿电压反馈至控制模块10,由控制模块10根据补偿电压调节PWM输出模块20输出的PWM信号以调节功率变换模块30的电压输出,从而补偿功率变换模块30输出的电压由于电源走线阻抗产生的压降。因此,通过本发明实施例可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。In the technical solution of this embodiment, the implementation process of the output voltage compensation circuit is: referring to FIG. 1 , the control module 10 controls the PWM output module 20 to output a PWM signal to the power conversion module 30 , and controls the output of the power conversion module 30 through the PWM signal . Since the power supply wiring has a certain equivalent impedance, the voltage output by the power conversion module 30 will generate a certain voltage drop through the power supply wiring, so that the voltage requirement of the load terminal cannot be guaranteed. Therefore, in this embodiment of the present invention, the current flowing through the power conversion module 30 is detected by the current detection module 40 , and the detected current is output to the voltage compensation adjustment module 50 , and the output compensation voltage is adjusted by the voltage compensation adjustment module 50 to the feedback module 60 , and then It is output from the feedback module 60 to the control module 10 , and the control module 10 controls the PWM output module 20 to output the PWM signal according to the compensation voltage fed back by the feedback module 60 to adjust the output voltage of the power conversion module 30 . Therefore, by feeding back the compensation voltage output by the voltage compensation adjustment module 50 to the control module 10, the control module 10 adjusts the PWM signal output by the PWM output module 20 according to the compensation voltage to adjust the voltage output of the power conversion module 30, thereby compensating for the power conversion The voltage output by the module 30 is due to the voltage drop caused by the impedance of the power traces. Therefore, the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method can be solved by the embodiments of the present invention, and the voltage drop caused by the wiring impedance can be compensated without remote feedback and without adding a feedback line. , thereby reducing the wiring complexity and manufacturing cost.

本发明实施例通过提供一种输出电压补偿电路,该电路包括:控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,控制模块与PWM输出模块电连接,PWM输出模块与功率变换模块电连接,PWM输出模块用于输出PWM信号至功率变换模块,功率变换模块用于根据PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;电流检测模块分别与功率变换模块和电压补偿调节模块电连接,电压补偿调节模块分别与功率变换模块的电压输出端和反馈模块电连接,反馈模块分别与电流检测模块和控制模块电连接;其中,电流检测模块用于检测流过功率变换模块的电流,电压补偿调节模块用于根据电流检测模块检测的电流和功率变换模块输出的电压输出补偿电压至反馈模块;其中,控制模块用于根据电压补偿调节模块输出的补偿电压调节PWM输出模块输出的PWM信号以调节功率变换模块的输出电压。由此可知,通过该电路可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。The embodiment of the present invention provides an output voltage compensation circuit, the circuit includes: a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation adjustment module and a feedback module; wherein, the control module is electrically connected to the PWM output module , the PWM output module is electrically connected with the power conversion module, the PWM output module is used to output the PWM signal to the power conversion module, and the power conversion module is used to convert the signal of the voltage input terminal according to the PWM signal output by the PWM output module and output from the voltage output terminal; The current detection module is respectively electrically connected with the power conversion module and the voltage compensation adjustment module, the voltage compensation adjustment module is respectively electrically connected with the voltage output end of the power conversion module and the feedback module, and the feedback module is electrically connected with the current detection module and the control module respectively; wherein, The current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for outputting the compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module; wherein, the control module is used for compensation according to the voltage The compensation voltage output by the adjustment module adjusts the PWM signal output by the PWM output module to adjust the output voltage of the power conversion module. It can be seen that the circuit can solve the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method, and can compensate the voltage drop caused by the wiring impedance without remote feedback and without adding feedback lines. , thereby reducing the wiring complexity and manufacturing cost.

实施例二Embodiment 2

图2是本发明实施例二中提供的一种输出电压补偿电路的结构示意图,在上述实施例一的基础上,参考图2,功率变换模块30包括第一晶体管M1、第二晶体管M2、第三晶体管M3和第一电感L1,第一晶体管M1的控制端和第二晶体管M2的控制端均与PWM输出模块20的第一输出端电连接,第三晶体管M3的控制端与PWM输出模块20的第二输出端电连接,第一晶体管M1的第一端和第二晶体管M2的第一端均与电压输入端Vin电连接,第一晶体管M1的第二端与第三晶体管M3的第一端电连接,第三晶体管M3的第二端接地,第二晶体管M2的第二端分别与第一晶体管M1的第二端和第一电感L1的第一端电连接,第一电感L1的第二端与电压输出端Vout电连接;2 is a schematic structural diagram of an output voltage compensation circuit provided in Embodiment 2 of the present invention. On the basis of Embodiment 1 above, referring to FIG. 2 , the power conversion module 30 includes a first transistor M1, a second transistor M2, a The three transistors M3 and the first inductor L1, the control terminal of the first transistor M1 and the control terminal of the second transistor M2 are both electrically connected to the first output terminal of the PWM output module 20, and the control terminal of the third transistor M3 is electrically connected to the PWM output module 20 The second output terminal of the first transistor M1 and the first terminal of the second transistor M2 are both electrically connected to the voltage input terminal Vin, and the second terminal of the first transistor M1 is electrically connected to the first terminal of the third transistor M3. The terminals are electrically connected, the second terminal of the third transistor M3 is grounded, the second terminal of the second transistor M2 is electrically connected to the second terminal of the first transistor M1 and the first terminal of the first inductor L1 respectively, and the first terminal of the first inductor L1 The two terminals are electrically connected to the voltage output terminal Vout;

其中,第二晶体管M2的第一端还与电流检测模块40电连接,电流检测模块40用于检测电压输入端Vin流入第二晶体管M2的电流。The first end of the second transistor M2 is also electrically connected to the current detection module 40, and the current detection module 40 is used for detecting the current flowing into the second transistor M2 from the voltage input terminal Vin.

其中,参考图2,控制模块10通过控制PWM输出模块20输出PWM信号可以控制第一晶体管M1、第二晶体管M2和第三晶体管M3的导通或者关断,进而可以控制电压输入端Vin输入的电压从电压输出端Vout输出。其中,第一晶体管M1和第二晶体管M2可以为PMOS管,第三晶体管M3可以为NMOS管。2 , the control module 10 can control the turn-on or turn-off of the first transistor M1 , the second transistor M2 and the third transistor M3 by controlling the PWM output module 20 to output a PWM signal, thereby controlling the voltage input at the voltage input terminal Vin The voltage is output from the voltage output terminal Vout. The first transistor M1 and the second transistor M2 may be PMOS transistors, and the third transistor M3 may be an NMOS transistor.

其中,参考图2,功率变换模块30还包括阻抗元件R3。电压输入端Vin还包括第一电容元件C1,电压输出端Vout还包括第二电容元件C2。第一电容元件C1的第一端与电压输入端Vin电连接,第二端接地。第二电容元件C2的第一端与电压输出端Vout电连接,第二端接地。第一电容元件C1和第二电容元件C2用于滤波。Wherein, referring to FIG. 2 , the power conversion module 30 further includes an impedance element R3. The voltage input terminal Vin further includes a first capacitive element C1, and the voltage output terminal Vout further includes a second capacitive element C2. The first end of the first capacitive element C1 is electrically connected to the voltage input end Vin, and the second end is grounded. The first end of the second capacitive element C2 is electrically connected to the voltage output end Vout, and the second end is grounded. The first capacitive element C1 and the second capacitive element C2 are used for filtering.

可选地,继续参考图2,电压补偿调节模块50包括比例控制单元51、加法器52和输出电压调节单元53,比例控制单元51分别与电流检测模块40和加法器52的第一输入端电连接,输出电压调节单元53分别与功率变换模块30的电压输出端Vout和加法器52的第二输入端电连接,加法器52的输出端与反馈模块60电连接;Optionally, continuing to refer to FIG. 2 , the voltage compensation adjustment module 50 includes a proportional control unit 51 , an adder 52 and an output voltage adjustment unit 53 . The proportional control unit 51 is electrically connected to the first input terminals of the current detection module 40 and the adder 52 respectively. connected, the output voltage adjustment unit 53 is respectively electrically connected to the voltage output terminal Vout of the power conversion module 30 and the second input terminal of the adder 52, and the output terminal of the adder 52 is electrically connected to the feedback module 60;

其中,比例控制单元51用于将电流检测模块40检测的电流按照预设比例放大系数放大预设比例放大系数后输出至加法器52的第一输入端,输出电压调节单元53用于将功率变换模块30的电压输出端Vout输出的电压经电阻调压后输出至加法器52的第二输入端,加法器52用于将其第一输入端和第二输入端输入的电压叠加后输出到反馈模块60。The proportional control unit 51 is used to amplify the current detected by the current detection module 40 according to the preset proportional amplification factor and output it to the first input end of the adder 52, and the output voltage adjustment unit 53 is used to convert the power The voltage output by the voltage output terminal Vout of the module 30 is adjusted by the resistor and then output to the second input terminal of the adder 52. The adder 52 is used to superimpose the voltages input from the first input terminal and the second input terminal and output to the feedback module 60.

其中,加法器52第一输入端和第二输入端输入的电压叠加后输出的电压为补偿电压,补偿电压输出到反馈模块60的第二输入端,并与反馈模块60第一输入端输入的基准电压信号Vref比较后输出到控制模块10,控制模块10根据该反馈的补偿电压控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压,从而补偿因电源走线阻抗产生的压降。The voltage output by the superposition of the voltages input from the first input terminal and the second input terminal of the adder 52 is the compensation voltage, and the compensation voltage is output to the second input terminal of the feedback module 60 , and is combined with the voltage input from the first input terminal of the feedback module 60 . The reference voltage signal Vref is compared and output to the control module 10, and the control module 10 controls the PWM output module 20 to output a PWM signal according to the feedback compensation voltage to adjust the output voltage of the power conversion module 30, thereby compensating for the voltage drop caused by the impedance of the power supply wiring .

其中,比例控制单元51可以为比例放大器。通过调节比例放大器的预设比例放大系数可以补偿功率变换模块30输出的电压。通过调节输出电压调节单元53可以调节功率变换模块30的电压输出端Vout的电压。可选地,可以通过单独的数字控制模块(例如单片机)来配置比例控制单元51的预设比例放大系数。通过数字控制模块还可以调节输出电压调节单元以调节功率变换模块30的电压输出端Vout的输出电压。The proportional control unit 51 may be a proportional amplifier. The voltage output by the power conversion module 30 can be compensated by adjusting the preset proportional amplification factor of the proportional amplifier. The voltage of the voltage output terminal Vout of the power conversion module 30 can be adjusted by adjusting the output voltage adjusting unit 53 . Optionally, the preset proportional amplification factor of the proportional control unit 51 may be configured by a separate digital control module (eg, a single-chip microcomputer). The output voltage adjustment unit can also be adjusted by the digital control module to adjust the output voltage of the voltage output terminal Vout of the power conversion module 30 .

可选地,继续参考图2,输出电压调节单元53包括第一电阻R1和第二电阻R2,第一电阻R1的第一端与电压输出端Vout电连接,第一电阻R1的第二端分别与加法器52的第二输入端和第二电阻R2的第一端电连接,第二电阻R2的第二端接地。Optionally, continuing to refer to FIG. 2 , the output voltage adjusting unit 53 includes a first resistor R1 and a second resistor R2, the first end of the first resistor R1 is electrically connected to the voltage output end Vout, and the second end of the first resistor R1 is respectively It is electrically connected to the second input terminal of the adder 52 and the first terminal of the second resistor R2, and the second terminal of the second resistor R2 is grounded.

其中,经第一电阻R1输出的电压输出到加法器52的第二输入端,比例控制单元51输出的电压输出到加法器52的第一输入端。加法器52将其第一输入端和第二输入端输入的电压叠加后输出的电压即为补偿后的反馈电压,补偿后的反馈电压经反馈模块60输出到控制模块10,控制模块10根据该反馈的补偿后电压控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压,从而补偿因电源走线阻抗产生的压降。The voltage output by the first resistor R1 is output to the second input terminal of the adder 52 , and the voltage output by the proportional control unit 51 is output to the first input terminal of the adder 52 . The voltage output by the adder 52 after superimposing the voltages input from the first input terminal and the second input terminal is the compensated feedback voltage, and the compensated feedback voltage is output to the control module 10 through the feedback module 60, and the control module 10 according to this The feedback voltage after compensation controls the PWM output module 20 to output a PWM signal to adjust the output voltage of the power conversion module 30 , thereby compensating for the voltage drop caused by the impedance of the power supply wiring.

可选地,第一电阻R1为可变电阻。Optionally, the first resistor R1 is a variable resistor.

其中,可以通过单独的数字控制模块(例如单片机)来配置第一电阻的阻值以调节功率变换模块30电压输出端Vout的电压。此外,第一电阻R1还可以为滑动变阻器。The resistance value of the first resistor can be configured by a separate digital control module (eg, a single-chip microcomputer) to adjust the voltage of the voltage output terminal Vout of the power conversion module 30 . In addition, the first resistor R1 can also be a sliding varistor.

可选地,继续参考图2,电压补偿调节模块50还包括滤波单元54,滤波单元54分别与电流检测模块40和比例控制单元51电连接。Optionally, with continued reference to FIG. 2 , the voltage compensation adjustment module 50 further includes a filter unit 54 , and the filter unit 54 is electrically connected to the current detection module 40 and the proportional control unit 51 , respectively.

其中,滤波单元54可以为低通滤器。The filtering unit 54 may be a low-pass filter.

可选地,继续参考图2,反馈模块60包括运算放大器B1和比较器B2,运算放大器B1的第一输入端接入基准电压信号Vref,运算放大器B1的第二输入端与电压补偿调节模块50电连接,运算放大器B1的输出端与比较器B2的第一输入端电连接,比较器B2的第二输入端与电流检测模块40电连接,比较器B2的输出端与控制模块10电连接。Optionally, continuing to refer to FIG. 2 , the feedback module 60 includes an operational amplifier B1 and a comparator B2, the first input terminal of the operational amplifier B1 is connected to the reference voltage signal Vref, and the second input terminal of the operational amplifier B1 is connected to the voltage compensation adjustment module 50. Electrically connected, the output terminal of the operational amplifier B1 is electrically connected to the first input terminal of the comparator B2, the second input terminal of the comparator B2 is electrically connected to the current detection module 40, and the output terminal of the comparator B2 is electrically connected to the control module 10.

其中,运算放大器B1可以为误差放大器,用于将加法器52输出端输出的补偿电压与基准电压信号Vref进行误差放大。其中,基准电压信号Vref带隙基准源。比较器B2用于将放大器运算放大器B1输出的补偿后反馈电压输出到控制模块10的反馈端R。此外,反馈模块60还包括斜波补偿模块Vramp,斜波补偿模块Vramp用于将电流检测模块40输出的电流信号与斜波补偿模块Vramp输出的斜坡信号叠加后输出到运算放大器的正极,由此,通过信号的叠加补偿可以提高电流信号的稳定性。The operational amplifier B1 may be an error amplifier, which is used to amplify the error between the compensation voltage output by the output end of the adder 52 and the reference voltage signal Vref. Among them, the reference voltage signal Vref is a bandgap reference source. The comparator B2 is used for outputting the compensated feedback voltage output by the amplifier operational amplifier B1 to the feedback terminal R of the control module 10 . In addition, the feedback module 60 also includes a ramp compensation module Vramp, and the ramp compensation module Vramp is used to superimpose the current signal output by the current detection module 40 and the ramp signal output by the ramp compensation module Vramp and output to the positive pole of the operational amplifier, thereby , the stability of the current signal can be improved by the superposition compensation of the signal.

在本实施例的技术方案中,电压补偿调节模块50和反馈模块60的工作原理为:参考图2,假设功率变换模块30的电压输入端Vin输入的平均电流为Iin,电压输出端Vout输出的电压为Vo,输出平均电流为Io,PCB走线回路的阻抗为R0,负载芯片内部的电源走线回路的阻抗为R1,则需要补偿的电源压降为Io*(R0+R1)。In the technical solution of this embodiment, the working principle of the voltage compensation adjustment module 50 and the feedback module 60 is as follows: with reference to FIG. 2 , it is assumed that the average current input by the voltage input terminal Vin of the power conversion module 30 is Iin, and the voltage output terminal Vout outputs the average current of Iin. If the voltage is Vo, the average output current is Io, the impedance of the PCB trace loop is R0, and the impedance of the power trace loop inside the load chip is R1, the power supply voltage drop that needs to be compensated is Io*(R0+R1).

由于电流检测模块40输出的电流正比于电压输入端Vin输入的平均电流Iin,设正比的系数为a,则滤波单元54输出的电压V1为:Since the current output by the current detection module 40 is proportional to the average current Iin input by the voltage input terminal Vin, and the proportional coefficient is set to be a, the voltage V1 output by the filter unit 54 is:

V1=a*IinV1=a*Iin

假设电源的效率为η,其中,效率η可以通过测试获得,在输入输出确定的情况下,η跟负载有关,通常取最大值,则可以计算出输出平均电流Io为:Assuming that the efficiency of the power supply is η, where the efficiency η can be obtained by testing, in the case where the input and output are determined, η is related to the load, and usually takes the maximum value, then the average output current Io can be calculated as:

Figure BDA0002702570080000101
Figure BDA0002702570080000101

比例控制单元51输出的电压V2为:The voltage V2 output by the proportional control unit 51 is:

V2=-Io*(R0+R1)*Vref/VoV2=-Io*(R0+R1)*Vref/Vo

其中,Vref为运算放大器B1第一输入端输入的基准电压。Wherein, Vref is the reference voltage input by the first input terminal of the operational amplifier B1.

由此,根据上述V1和V2两个式子,可以得到比例控制单元51的比例放大系数P为:Therefore, according to the above two formulas V1 and V2, the proportional amplification coefficient P of the proportional control unit 51 can be obtained as:

Figure BDA0002702570080000102
Figure BDA0002702570080000102

其中,R1、η、Vref、a由芯片本身决定,为芯片的固定参数。R0、Vo和Vin由具体产品决定,可根据实际使用情况进行调节。其中,为了保证系统的稳定性,a可以取该芯片工艺下的最小值,电源的效率η取所有负载下的最大值,PCB走线回路的阻抗为R0和负载芯片内部的电源走线回路的阻抗为R1可以通过仿真技术获得,Vo可以通过调节输出电压调节单元53进行调节。Among them, R1, η, Vref, a are determined by the chip itself and are fixed parameters of the chip. R0, Vo and Vin are determined by specific products and can be adjusted according to actual usage. Among them, in order to ensure the stability of the system, a can take the minimum value under the chip technology, the efficiency η of the power supply can take the maximum value under all loads, and the impedance of the PCB trace loop is the difference between R0 and the power trace loop inside the load chip. The impedance R1 can be obtained by simulation technology, and Vo can be adjusted by adjusting the output voltage adjusting unit 53 .

由此,在对输出电压补偿电路进行补偿调节的过程中,可以通过单独的数字控制模块(例如单片机)来调节输出电压调节单元53的输出电压以调节功率变换模块30电压输出端Vout的电压,通过仿真技术获取PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1,根据电压输出端Vout的电压、PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1等参数可以配置比例控制单元51的预设比例放大系数,从而使比例控制单元输出功率变换模块30需要补偿的电压值,并将需补偿的电压值经加法器52、反馈模块60反馈到控制模块10的反馈端R,由控制模块10根据反馈信号控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压。Therefore, in the process of compensating and adjusting the output voltage compensation circuit, the output voltage of the output voltage adjusting unit 53 can be adjusted by a separate digital control module (such as a single-chip microcomputer) to adjust the voltage of the voltage output terminal Vout of the power conversion module 30, The impedance R0 of the PCB trace loop and the impedance R1 of the power trace loop inside the load chip are obtained through simulation technology. According to the voltage of the voltage output terminal Vout, the impedance R0 of the PCB trace loop and the impedance of the power trace loop inside the load chip Parameters such as R1 can configure the preset proportional amplification factor of the proportional control unit 51, so that the proportional control unit outputs the voltage value that needs to be compensated by the power conversion module 30, and feeds back the voltage value to be compensated to the control unit through the adder 52 and the feedback module 60. At the feedback terminal R of the module 10 , the control module 10 controls the PWM output module 20 to output the PWM signal according to the feedback signal to adjust the output voltage of the power conversion module 30 .

可选地,还包括过流保护模块70,过流保护模块70分别与电流检测模块40和控制模块10电连接。Optionally, an overcurrent protection module 70 is further included, and the overcurrent protection module 70 is electrically connected to the current detection module 40 and the control module 10 respectively.

其中,过流保护模块70与功率变换模块30电连接,用于将检测到的功率变换模块30的电流输入到控制模块10的过流保护反馈端,以检测功率变换模块30是否发生过流。The overcurrent protection module 70 is electrically connected to the power conversion module 30 for inputting the detected current of the power conversion module 30 to the overcurrent protection feedback terminal of the control module 10 to detect whether the power conversion module 30 is overcurrent.

此外,参考图2,该输出电压补偿电路还包括过压保护模块OVP、频率配置模块PFM和信号源S。其中,过压保护模块OVP用于在该电路出现过压时保护该电路,频率配置模块PFM可以配置控制模块10的频率,提供的频率在电源轻载时使用。In addition, referring to FIG. 2 , the output voltage compensation circuit further includes an overvoltage protection module OVP, a frequency configuration module PFM and a signal source S. The overvoltage protection module OVP is used to protect the circuit when overvoltage occurs, and the frequency configuration module PFM can configure the frequency of the control module 10, and the provided frequency is used when the power supply is lightly loaded.

实施例三Embodiment 3

图3是本发明实施例三中提供的一种输出电压补偿电路的结构示意图,在上述实施例的基础上,参考图3,功率变换模块30包括第四晶体管M4、第五晶体管M5和第二电感L2,第四晶体管M4的控制端与PWM输出模块20的第一输出端电连接,第四晶体管M4的第一端与电压输入端Vin电连接,第四晶体管M4的第二端分别与第五晶体管M5的第一端和第二电感L2的第一端电连接,第五晶体管M5的控制端与PWM输出模块20的第二输出端电连接,第五晶体管M5的第二端接地,第二电感L2的第二端与电压输出端Vout电连接;FIG. 3 is a schematic structural diagram of an output voltage compensation circuit provided in Embodiment 3 of the present invention. On the basis of the above embodiment, referring to FIG. 3 , the power conversion module 30 includes a fourth transistor M4, a fifth transistor M5 and a second transistor M4. Inductor L2, the control terminal of the fourth transistor M4 is electrically connected to the first output terminal of the PWM output module 20, the first terminal of the fourth transistor M4 is electrically connected to the voltage input terminal Vin, and the second terminal of the fourth transistor M4 is respectively connected to the first output terminal of the PWM output module 20. The first terminal of the fifth transistor M5 is electrically connected to the first terminal of the second inductor L2, the control terminal of the fifth transistor M5 is electrically connected to the second output terminal of the PWM output module 20, the second terminal of the fifth transistor M5 is grounded, and the first terminal of the fifth transistor M5 is electrically connected to the second output terminal of the PWM output module 20. The second terminal of the two inductors L2 is electrically connected to the voltage output terminal Vout;

其中,第二电感L2的第一端和第二端分别与电流检测模块40电连接,电流检测模块40用于检测流入第二电感L2的电流。The first end and the second end of the second inductor L2 are respectively electrically connected to the current detection module 40, and the current detection module 40 is used for detecting the current flowing into the second inductor L2.

其中,控制模块10通过控制PWM输出模块20输出PWM信号可以控制第四晶体管M4和第五晶体管M5的导通或者关断,进而可以控制电压输入端Vin输入的电压从电压输出端Vout输出。其中,第四晶体管M4可以为P型MOS管,第五晶体管M5可以为N型MOS管。The control module 10 can control the fourth transistor M4 and the fifth transistor M5 to be turned on or off by controlling the PWM output module 20 to output a PWM signal, thereby controlling the voltage input from the voltage input terminal Vin to be output from the voltage output terminal Vout. The fourth transistor M4 may be a P-type MOS transistor, and the fifth transistor M5 may be an N-type MOS transistor.

在本实施例的技术方案中,电压补偿调节模块50和反馈模块60的工作原理为:参考图2,假设功率变换模块30的电压输出端Vout输出的电压为Vo,输出平均电流为Io,第一电感L1的电阻为RL,PCB走线回路的阻抗为R0,负载芯片内部的电源走线回路的阻抗为R1,则需要补偿的电源压降为Io*(R0+R1)。In the technical solution of the present embodiment, the working principle of the voltage compensation adjustment module 50 and the feedback module 60 is as follows: with reference to FIG. 2 , assuming that the voltage output by the voltage output terminal Vout of the power conversion module 30 is Vo and the average output current is Io, the first The resistance of an inductor L1 is RL, the impedance of the PCB trace loop is R0, and the impedance of the power trace loop inside the load chip is R1, so the power supply voltage drop that needs to be compensated is Io*(R0+R1).

由于电流检测模块40输出的电流正比于电压输出端的平均电流为Io,设正比的系数为a,则滤波单元54输出的电压V1为:Since the current output by the current detection module 40 is proportional to the average current of the voltage output terminal as Io, and the proportional coefficient is set as a, the voltage V1 output by the filter unit 54 is:

V1=a*Io*RLV1=a*Io*RL

比例控制单元51输出的电压V2为:The voltage V2 output by the proportional control unit 51 is:

V2=-Io*(R0+R1)*Vref/VoV2=-Io*(R0+R1)*Vref/Vo

其中,Vref为运算放大器B1第一输入端输入的基准电压。Wherein, Vref is the reference voltage input by the first input terminal of the operational amplifier B1.

由此,根据上述V1和V2两个式子,可以得到比例控制单元51的比例放大系数P为:Therefore, according to the above two formulas V1 and V2, the proportional amplification coefficient P of the proportional control unit 51 can be obtained as:

Figure BDA0002702570080000131
Figure BDA0002702570080000131

其中,R1、Vref、a由芯片本身决定,为芯片的固定参数。R0、Vo和RL由具体产品决定,可根据实际使用情况进行调节。其中,为了保证系统的稳定性,a可以取该芯片工艺下的最小值,RL可以取第一电感的最小值,PCB走线回路的阻抗为R0和负载芯片内部的电源走线回路的阻抗为R1可以通过仿真技术获得,Vo可以通过调节输出电压调节单元53进行调节。Among them, R1, Vref, a are determined by the chip itself and are fixed parameters of the chip. R0, Vo and RL are determined by specific products and can be adjusted according to actual usage. Among them, in order to ensure the stability of the system, a can take the minimum value under the chip technology, RL can take the minimum value of the first inductance, the impedance of the PCB trace loop is R0 and the impedance of the power trace loop inside the load chip is R1 can be obtained by simulation technology, and Vo can be adjusted by adjusting the output voltage adjusting unit 53 .

由此,在对输出电压补偿电路进行补偿调节的过程中,可以通过单独的数字控制模块(例如单片机)调节输出电压调节单元53的输出电压以调节功率变换模块30电压输出端Vout的电压,通过仿真技术获取PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1,根据电压输出端Vout的电压、PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1等参数可以配置比例控制单元51的预设比例放大系数,从而使比例控制单元输出功率变换模块30需要补偿的电压值,并将需补偿的电压值经加法器52、反馈模块60反馈到控制模块10的反馈端R,由控制模块10根据反馈信号控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压。Therefore, in the process of compensating and adjusting the output voltage compensation circuit, the output voltage of the output voltage adjusting unit 53 can be adjusted by a separate digital control module (such as a single-chip microcomputer) to adjust the voltage of the voltage output terminal Vout of the power conversion module 30. The simulation technology obtains the impedance R0 of the PCB trace loop and the impedance R1 of the power trace loop inside the load chip. According to the voltage of the voltage output terminal Vout, the impedance R0 of the PCB trace loop and the impedance R1 of the power trace loop inside the load chip and other parameters can configure the preset proportional amplification factor of the proportional control unit 51, so that the proportional control unit outputs the voltage value that needs to be compensated by the power conversion module 30, and feeds back the voltage value to be compensated to the control module through the adder 52 and the feedback module 60 The feedback terminal R of 10 is controlled by the control module 10 according to the feedback signal to control the PWM output module 20 to output the PWM signal to adjust the output voltage of the power conversion module 30 .

实施例四Embodiment 4

图4是本发明实施例四中提供的一种输出电压补偿电路补偿方法的流程图,由输出电压补偿电路执行,输出电压补偿电路包括控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,控制模块与PWM输出模块电连接,PWM输出模块与功率变换模块电连接,PWM输出模块用于输出PWM信号至功率变换模块,功率变换模块用于根据PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;电流检测模块分别与功率变换模块和电压补偿调节模块电连接,电压补偿调节模块分别与功率变换模块的电压输出端和反馈模块电连接,反馈模块分别与电流检测模块和控制模块电连接;其中,电流检测模块用于检测流过功率变换模块的电流,电压补偿调节模块用于根据电流检测模块检测的电流和功率变换模块输出的电压输出补偿电压至反馈模块;4 is a flowchart of an output voltage compensation circuit compensation method provided in Embodiment 4 of the present invention, which is executed by the output voltage compensation circuit, and the output voltage compensation circuit includes a control module, a PWM output module, a power conversion module, a current detection module, Voltage compensation adjustment module and feedback module; wherein, the control module is electrically connected with the PWM output module, the PWM output module is electrically connected with the power conversion module, the PWM output module is used for outputting PWM signals to the power conversion module, and the power conversion module is used for outputting according to the PWM The PWM signal output by the module converts the signal of the voltage input terminal and outputs it from the voltage output terminal; the current detection module is electrically connected with the power conversion module and the voltage compensation adjustment module respectively, and the voltage compensation adjustment module is respectively connected with the voltage output terminal of the power conversion module and the feedback module. The feedback module is electrically connected to the current detection module and the control module respectively; wherein, the current detection module is used to detect the current flowing through the power conversion module, and the voltage compensation adjustment module is used to output the current detected by the current detection module and the power conversion module The voltage output compensation voltage to the feedback module;

本实施例可适用于输出电压补偿电路的实现过程,该方法可以由本发明任意实施例提供的输出电压补偿电路来执行,参考图4,具体包括如下步骤:This embodiment is applicable to the implementation process of the output voltage compensation circuit, and the method may be performed by the output voltage compensation circuit provided by any embodiment of the present invention. Referring to FIG. 4 , the method specifically includes the following steps:

步骤110、根据电压补偿调节模块输出的补偿电压调节PWM输出模块输出的PWM信号调节功率变换模块的输出电压。Step 110: Adjust the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module to adjust the output voltage of the power conversion module.

在本实施的技术方案中,通过电流检测模块检测流过功率变换模块的电流,并将检测的电流输出到电压补偿调节模块,经电压补偿调节模块调节输出补偿电压至反馈模块,再由反馈模块输出到控制模块,控制模块根据反馈模块反馈信号控制PWM输出模块输出PWM信号以调节功率变换模块的输出电压。由此,通过将电压补偿调节模块输出的补偿电压反馈至控制模块,由控制模块根据补偿电压调节PWM输出模块输出的PWM信号以调节功率变换模块的电压输出,从而补偿功率变换模块由于PCB走线、负载芯片内部电源走线等阻抗产生的压降。因此,通过本发明实施例可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。In the technical solution of this implementation, the current flowing through the power conversion module is detected by the current detection module, the detected current is output to the voltage compensation adjustment module, the output compensation voltage is adjusted by the voltage compensation adjustment module to the feedback module, and then the feedback module It is output to the control module, and the control module controls the PWM output module to output the PWM signal according to the feedback signal of the feedback module to adjust the output voltage of the power conversion module. Therefore, by feeding back the compensation voltage output by the voltage compensation adjustment module to the control module, the control module adjusts the PWM signal output by the PWM output module according to the compensation voltage to adjust the voltage output of the power conversion module, thereby compensating the power conversion module due to the PCB wiring. , the voltage drop caused by the impedance of the internal power supply wiring of the load chip. Therefore, the embodiments of the present invention can solve the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method, and realize that the voltage drop caused by the wiring impedance can be compensated without remote feedback and adding feedback lines, This further reduces wiring complexity and manufacturing costs.

注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.

Claims (10)

1. An output voltage compensation circuit, comprising: the device comprises a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation regulation module and a feedback module;
the control module is electrically connected with the PWM output module, the PWM output module is electrically connected with the power conversion module, the PWM output module is used for outputting a PWM signal to the power conversion module, and the power conversion module is used for converting a signal at a voltage input end according to the PWM signal output by the PWM output module and then outputting the converted signal from a voltage output end;
the current detection module is respectively and electrically connected with the power conversion module and the voltage compensation adjustment module, the voltage compensation adjustment module is respectively and electrically connected with the voltage output end of the power conversion module and the feedback module, and the feedback module is respectively and electrically connected with the current detection module and the control module; the current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for outputting compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module;
the control module is used for adjusting the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjusting module so as to adjust the output voltage of the power conversion module.
2. The output voltage compensation circuit of claim 1, wherein the power conversion module comprises a first transistor, a second transistor, a third transistor, and a first inductor, the control end of the first transistor and the control end of the second transistor are both electrically connected with the first output end of the PWM output module, a control terminal of the third transistor is electrically connected with the second output terminal of the PWM output module, a first terminal of the first transistor and a first terminal of the second transistor are both electrically connected to the voltage input terminal, a second terminal of the first transistor is electrically connected to a first terminal of the third transistor, a second terminal of the third transistor is grounded, a second end of the second transistor is electrically connected with a second end of the first transistor and a first end of the first inductor respectively, and a second end of the first inductor is electrically connected with the voltage output end;
the first end of the second transistor is electrically connected to the current detection module, and the current detection module is configured to detect a current flowing into the second transistor from the voltage input end.
3. The output voltage compensation circuit of claim 1, wherein the power conversion module comprises a fourth transistor, a fifth transistor and a second inductor, a control terminal of the fourth transistor is electrically connected to the first output terminal of the PWM output module, a first terminal of the fourth transistor is electrically connected to the voltage input terminal, a second terminal of the fourth transistor is electrically connected to the first terminal of the fifth transistor and the first terminal of the second inductor, respectively, a control terminal of the fifth transistor is electrically connected to the second output terminal of the PWM output module, a second terminal of the fifth transistor is grounded, and a second terminal of the second inductor is electrically connected to the voltage output terminal;
the first end and the second end of the second inductor are respectively electrically connected with the current detection module, and the current detection module is used for detecting current flowing into the second inductor.
4. The output voltage compensation circuit of claim 1, wherein the voltage compensation adjustment module comprises a proportional control unit, an adder and an output voltage adjustment unit, the proportional control unit is electrically connected to the current detection module and a first input terminal of the adder respectively, the output voltage adjustment unit is electrically connected to a voltage output terminal of the power conversion module and a second input terminal of the adder respectively, and an output terminal of the adder is electrically connected to the feedback module;
the proportional control unit is configured to adjust the current detected by the current detection module according to a preset proportional amplification factor and output the current to a first input end of the adder, the output voltage adjustment unit is configured to adjust the voltage output by the voltage output end of the power conversion module and output the voltage to a second input end of the adder, and the adder is configured to superimpose the voltages input by the first input end and the second input end of the adder and output the voltage to the feedback module.
5. The output voltage compensation circuit of claim 4, wherein the output voltage adjustment unit comprises a first resistor and a second resistor, a first end of the first resistor is electrically connected to the voltage output terminal, a second end of the first resistor is electrically connected to the second input terminal of the adder and the first end of the second resistor, respectively, and a second end of the second resistor is grounded.
6. The output voltage compensation circuit of claim 5, wherein the first resistor is a variable resistor.
7. The output voltage compensation circuit of claim 4, wherein the voltage compensation adjustment module further comprises a filtering unit electrically connected to the current detection module and the proportional control unit, respectively.
8. The output voltage compensation circuit of claim 1, wherein the feedback module comprises an operational amplifier and a comparator, a first input terminal of the operational amplifier is connected to a reference voltage signal, a second input terminal of the operational amplifier is electrically connected to the voltage compensation adjustment module, an output terminal of the operational amplifier is electrically connected to a first input terminal of the comparator, a second input terminal of the comparator is electrically connected to the current detection module, and an output terminal of the comparator is electrically connected to the control module.
9. The output voltage compensation circuit of claim 1, further comprising an over-current protection module electrically connected to the current detection module and the control module, respectively.
10. The output voltage compensation circuit compensation method is characterized by being executed by an output voltage compensation circuit, wherein the output voltage compensation circuit comprises a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation regulation module and a feedback module; the control module is electrically connected with the PWM output module, the PWM output module is electrically connected with the power conversion module, the PWM output module is used for outputting a PWM signal to the power conversion module, and the power conversion module is used for converting a signal at a voltage input end according to the PWM signal output by the PWM output module and then outputting the converted signal from a voltage output end; the current detection module is respectively and electrically connected with the power conversion module and the voltage compensation adjustment module, the voltage compensation adjustment module is respectively and electrically connected with the voltage output end of the power conversion module and the feedback module, and the feedback module is respectively and electrically connected with the current detection module and the control module; the current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for outputting compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module;
the compensation method comprises the following steps: and adjusting the output voltage of the power conversion module according to the compensation voltage output by the voltage compensation adjustment module and the PWM signal output by the PWM output module.
CN202011027547.2A 2020-09-25 2020-09-25 An output voltage compensation circuit and compensation method Pending CN114337190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011027547.2A CN114337190A (en) 2020-09-25 2020-09-25 An output voltage compensation circuit and compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011027547.2A CN114337190A (en) 2020-09-25 2020-09-25 An output voltage compensation circuit and compensation method

Publications (1)

Publication Number Publication Date
CN114337190A true CN114337190A (en) 2022-04-12

Family

ID=81011752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011027547.2A Pending CN114337190A (en) 2020-09-25 2020-09-25 An output voltage compensation circuit and compensation method

Country Status (1)

Country Link
CN (1) CN114337190A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120268015A1 (en) * 2011-04-20 2012-10-25 National Chi Nan University Light power compensation device, light power compensation circuit, and detecting module
CN103066851A (en) * 2012-12-20 2013-04-24 西安电子科技大学 Control circuit for primary side flyback type converter
JP2015119550A (en) * 2013-12-18 2015-06-25 株式会社リコー Slope compensation circuit and switching power supply apparatus
US20170337890A1 (en) * 2016-05-18 2017-11-23 Samsung Display Co., Ltd. Power supply device and display device including the same
CN108390558A (en) * 2018-03-21 2018-08-10 上海贝岭股份有限公司 A kind of voltage-dropping type current-mode supply convertor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120268015A1 (en) * 2011-04-20 2012-10-25 National Chi Nan University Light power compensation device, light power compensation circuit, and detecting module
CN103066851A (en) * 2012-12-20 2013-04-24 西安电子科技大学 Control circuit for primary side flyback type converter
JP2015119550A (en) * 2013-12-18 2015-06-25 株式会社リコー Slope compensation circuit and switching power supply apparatus
US20170337890A1 (en) * 2016-05-18 2017-11-23 Samsung Display Co., Ltd. Power supply device and display device including the same
CN108390558A (en) * 2018-03-21 2018-08-10 上海贝岭股份有限公司 A kind of voltage-dropping type current-mode supply convertor

Similar Documents

Publication Publication Date Title
CN103094995B (en) Wireless Power Transmission Device
CN101231535B (en) Method and apparatus for overshoot and undershoot errors correction in analog low pressure difference linear voltage regulator
TWI636653B (en) Current sensing apparatus and system
JP2005100296A (en) Constant voltage circuit
CN102141816B (en) Current-mode current induction circuit externally connected with MOS (metal oxide semiconductor) and method for realizing current mode
US9568376B2 (en) Temperature detecting circuit and method thereof
WO2014079129A1 (en) Fast transient response dc-dc switching converter with high load regulation rate
US7352161B2 (en) Burst-mode switching voltage regulator with ESR compensation
CN103299524A (en) User-configurable, efficiency-optimizing, power/energy conversion switch-mode power supply with a serial communications interface
TWI633733B (en) Power supply and method for operating a power supply
CN101247082B (en) Detection circuit, power supply system and control method
CN108270401B (en) Amplifier device
CN104410395A (en) Overvoltage protection circuit and method for transistor switch
CN101789682A (en) Multiple output power supply time sequence control device and method
TW201413411A (en) DC-DC controller
CN116317996B (en) Error amplifier and power supply conversion device
CN103314514A (en) Efficiency-optimizing, calibrated sensorless power/energy conversion in switch-mode power supply
CN106026700B (en) Controller of power converter and operation method thereof
KR20130137659A (en) User-configurable, efficiency-optimizing, calibrated sensorless power/energy conversion switch-mode power supply with a serial communications interface
JP2006180603A (en) Circuit for correcting voltage drop by line drop
US11451141B2 (en) DC power supply device, current stabilizing circuit for DC power supply device, and method for reducing noise of power-supply line
US20130114310A1 (en) Power Supply Control Circuit and method for sensing voltage in the power supply control circuit
CN114337190A (en) An output voltage compensation circuit and compensation method
JP4712453B2 (en) Voltage regulator feedback protection method and apparatus
TWI400592B (en) Low dropout regulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 201206 Shanghai Pudong New Area free trade pilot area 1258 moon 3 building fourth floor A406 room

Applicant after: Chen core technology Co.,Ltd.

Applicant after: Chenxin Technology Co.,Ltd.

Address before: 201206 Shanghai Pudong New Area free trade pilot area 1258 moon 3 building fourth floor A406 room

Applicant before: Chen core technology Co.,Ltd.

Applicant before: Chenxin Technology Co.,Ltd.