CN114337190A - An output voltage compensation circuit and compensation method - Google Patents
An output voltage compensation circuit and compensation method Download PDFInfo
- Publication number
- CN114337190A CN114337190A CN202011027547.2A CN202011027547A CN114337190A CN 114337190 A CN114337190 A CN 114337190A CN 202011027547 A CN202011027547 A CN 202011027547A CN 114337190 A CN114337190 A CN 114337190A
- Authority
- CN
- China
- Prior art keywords
- module
- output
- voltage
- electrically connected
- power conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及电子技术领域,尤其涉及一种输出电压补偿电路及补偿方法。Embodiments of the present invention relate to the field of electronic technology, and in particular, to an output voltage compensation circuit and a compensation method.
背景技术Background technique
开关电源在输出电流的过程中,由于印制电路板(Printed Circuit Board,PCB)走线存在等效电阻,电流从电源输出端传输到负载端的过程中会造成电源的压降,因此,通常会采取反馈的方式补偿压降。In the process of outputting current of the switching power supply, due to the equivalent resistance of the printed circuit board (Printed Circuit Board, PCB) trace, the voltage drop of the power supply will be caused when the current is transmitted from the output end of the power supply to the load end. The voltage drop is compensated by means of feedback.
目前开关电源反馈方式主要有三种,近端反馈、远端单端反馈和远端差分反馈。近端反馈用于对电源不敏感的单元供电,远端反馈用于给电源敏感的单元(例如,中央处理器)供电。远端反馈的作用是开关电源通过采集负载端有压降的电压作为反馈,从而补偿PCB走线引起的压降,其中单端反馈补偿了电源正极走线压降,差分反馈补偿了电源正极和地的走线压降。然而,为了使电源更精确,远端反馈线需要从负载芯片内部连出(芯片出球),对于复杂的多电源系统(例如手机等智能终端),则会增加走线成本和走线复杂度。At present, there are three main ways of switching power supply feedback, near-end feedback, far-end single-end feedback and far-end differential feedback. Proximal feedback is used to power power insensitive units, and far end feedback is used to power power sensitive units (eg, a central processing unit). The function of the remote feedback is that the switching power supply compensates the voltage drop caused by the PCB trace by collecting the voltage with the voltage drop at the load end as feedback. Ground trace voltage drop. However, in order to make the power supply more accurate, the remote feedback line needs to be connected from the load chip (chip out of the ball), and for complex multi-power supply systems (such as smart terminals such as mobile phones), it will increase the wiring cost and wiring complexity. .
发明内容SUMMARY OF THE INVENTION
本发明提供一种输出电压补偿电路及补偿方法,以实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。The invention provides an output voltage compensation circuit and a compensation method, so as to realize the compensation of the voltage drop caused by the impedance of the wiring without remote feedback and without adding a feedback line, thereby reducing the complexity of the wiring and the manufacturing cost.
第一方面,本发明实施例提供了一种输出电压补偿电路,该输出电压补偿电路包括:控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;In a first aspect, an embodiment of the present invention provides an output voltage compensation circuit, the output voltage compensation circuit includes: a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation adjustment module, and a feedback module;
其中,所述控制模块与所述PWM输出模块电连接,所述PWM输出模块与所述功率换模块电连接,所述PWM输出模块用于输出PWM信号至所述功率变换模块,所述功率变换模块用于根据所述PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;The control module is electrically connected to the PWM output module, the PWM output module is electrically connected to the power conversion module, and the PWM output module is used to output a PWM signal to the power conversion module, and the power conversion module The module is used to convert the signal of the voltage input terminal according to the PWM signal output by the PWM output module and output it from the voltage output terminal;
所述电流检测模块分别与所述功率变换模块和所述电压补偿调节模块电连接,所述电压补偿调节模块分别与所述功率变换模块的电压输出端和所述反馈模块电连接,所述反馈模块分别与所述电流检测模块和所述控制模块电连接;其中,所述电流检测模块用于检测流过所述功率变换模块的电流,所述电压补偿调节模块用于根据所述电流检测模块检测的电流和所述功率变换模块输出的电压输出补偿电压至所述反馈模块;The current detection module is respectively electrically connected to the power conversion module and the voltage compensation adjustment module, the voltage compensation adjustment module is respectively electrically connected to the voltage output end of the power conversion module and the feedback module, the feedback The modules are respectively electrically connected with the current detection module and the control module; wherein, the current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for detecting the current according to the current detection module The detected current and the voltage output by the power conversion module output a compensation voltage to the feedback module;
其中,所述控制模块用于根据所述电压补偿调节模块输出的补偿电压调节所述PWM输出模块输出的PWM信号以调节所述功率变换模块的输出电压。Wherein, the control module is configured to adjust the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module to adjust the output voltage of the power conversion module.
第二方面,本发明实施例还提供了一种输出电压补偿电路补偿方法,其特征在于,由输出电压补偿电路执行,所述输出电压补偿电路包括控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,所述控制模块与所述PWM输出模块电连接,所述PWM输出模块与所述功率变换模块电连接,所述PWM输出模块用于输出PWM信号至所述功率变换模块,所述功率变换模块用于根据所述PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;所述电流检测模块分别与所述功率变换模块和所述电压补偿调节模块电连接,所述电压补偿调节模块分别与所述功率变换模块的电压输出端和所述反馈模块电连接,所述反馈模块分别与所述电流检测模块和所述控制模块电连接;其中,所述电流检测模块用于检测流过所述功率变换模块的电流,所述电压补偿调节模块用于根据所述电流检测模块检测的电流和所述功率变换模块输出的电压输出补偿电压至所述反馈模块;In a second aspect, an embodiment of the present invention further provides a compensation method for an output voltage compensation circuit, characterized in that it is performed by an output voltage compensation circuit, and the output voltage compensation circuit includes a control module, a PWM output module, a power conversion module, a current A detection module, a voltage compensation adjustment module and a feedback module; wherein the control module is electrically connected to the PWM output module, the PWM output module is electrically connected to the power conversion module, and the PWM output module is used to output a PWM signal To the power conversion module, the power conversion module is used to convert the signal of the voltage input terminal and output it from the voltage output terminal according to the PWM signal output by the PWM output module; the current detection module is respectively connected with the power conversion module and the power conversion module. The voltage compensation adjustment module is electrically connected, and the voltage compensation adjustment module is respectively electrically connected with the voltage output end of the power conversion module and the feedback module, and the feedback module is respectively connected with the current detection module and the control module Electrical connection; wherein, the current detection module is used to detect the current flowing through the power conversion module, and the voltage compensation adjustment module is used to output according to the current detected by the current detection module and the voltage output by the power conversion module compensating the voltage to the feedback module;
所述补偿方法包括:根据所述电压补偿调节模块输出的补偿电压调节所述PWM输出模块输出的PWM信号调节所述功率变换模块的输出电压。The compensation method includes: adjusting the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module to adjust the output voltage of the power conversion module.
本发明通过提供一种输出电压补偿电路,该电路包括:控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,控制模块与PWM输出模块电连接,PWM输出模块与功率变换模块电连接,PWM输出模块用于输出PWM信号至功率变换模块,功率变换模块用于根据PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;电流检测模块分别与功率变换模块和电压补偿调节模块电连接,电压补偿调节模块分别与功率变换模块的电压输出端和反馈模块电连接,反馈模块分别与电流检测模块和控制模块电连接;其中,电流检测模块用于检测流过功率变换模块的电流,电压补偿调节模块用于根据电流检测模块检测的电流和功率变换模块输出的电压输出补偿电压至反馈模块;其中,控制模块用于根据电压补偿调节模块输出的补偿电压调节PWM输出模块输出的PWM信号以调节功率变换模块的输出电压。由此可知,通过该电路可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。The invention provides an output voltage compensation circuit, which comprises: a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation adjustment module and a feedback module; wherein, the control module is electrically connected with the PWM output module, and the PWM output module is electrically connected to the PWM output module. The output module is electrically connected with the power conversion module, the PWM output module is used for outputting a PWM signal to the power conversion module, and the power conversion module is used for converting the signal of the voltage input terminal according to the PWM signal output by the PWM output module and outputting it from the voltage output terminal; current detection The modules are electrically connected to the power conversion module and the voltage compensation adjustment module respectively, the voltage compensation adjustment module is respectively electrically connected to the voltage output end of the power conversion module and the feedback module, and the feedback module is electrically connected to the current detection module and the control module respectively; The module is used to detect the current flowing through the power conversion module, and the voltage compensation adjustment module is used to output the compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module; wherein, the control module is used to compensate the adjustment module according to the voltage The output compensation voltage adjusts the PWM signal output by the PWM output module to adjust the output voltage of the power conversion module. It can be seen that the circuit can solve the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method, and can compensate the voltage drop caused by the wiring impedance without remote feedback and without adding feedback lines. , thereby reducing the wiring complexity and manufacturing cost.
附图说明Description of drawings
图1是本发明实施例一中的一种输出电压补偿电路的结构示意图;1 is a schematic structural diagram of an output voltage compensation circuit in Embodiment 1 of the present invention;
图2是本发明实施例二中的一种输出电压补偿电路的结构示意图;2 is a schematic structural diagram of an output voltage compensation circuit in Embodiment 2 of the present invention;
图3是本发明实施例三中的一种输出电压补偿电路的结构示意图;3 is a schematic structural diagram of an output voltage compensation circuit in Embodiment 3 of the present invention;
图4是本发明实施例四中的一种输出电压补偿电路补偿方法的流程图。FIG. 4 is a flowchart of a compensation method for an output voltage compensation circuit in Embodiment 4 of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all structures related to the present invention.
实施例一Example 1
图1是本发明实施例一中提供的一种输出电压补偿电路的结构示意图,参考图1,该输出电压补偿电路包括:控制模块10、PWM输出模块20、功率变换模块30、电流检测模块40、电压补偿调节模块50和反馈模块60;1 is a schematic structural diagram of an output voltage compensation circuit provided in Embodiment 1 of the present invention. Referring to FIG. 1 , the output voltage compensation circuit includes: a
其中,控制模块10与PWM输出模块20电连接,PWM输出模块20与功率变换模块30电连接,PWM输出模块20用于输出PWM信号至功率变换模块30,功率变换模块30用于根据PWM输出模块20输出的PWM信号将电压输入端的信号变换后从电压输出端输出;The
电流检测模块40分别与功率变换模块30和电压补偿调节模块50电连接,电压补偿调节模块50分别与功率变换模块30的电压输出端和反馈模块60电连接,反馈模块60分别与电流检测模块40和控制模块10电连接;其中,电流检测模块40用于检测流过功率变换模块30的电流,电压补偿调节模块50用于根据电流检测模块40检测的电流和功率变换模块30输出的电压输出补偿电压至反馈模块60;The
其中,控制模块10用于根据电压补偿调节模块50输出的补偿电压调节PWM输出模块20输出的PWM信号以调节功率变换模块30的输出电压。The
其中,控制模块10可以为具有触发器作用的控制芯片。电流检测模块40可以为电流源检测芯片。The
在本实施例的技术方案中,该输出电压补偿电路的实现过程为:参考图1,控制模块10控制PWM输出模块20输出PWM信号至功率变换模块30,通过PWM信号控制功率变换模块30的输出。由于电源走线存在一定的等效阻抗,使得功率变换模块30输出的电压经过电源走线会产生一定的压降,而导致无法保证负载端的电压需求。因此,本发明实施例通过电流检测模块40检测流过功率变换模块30的电流,并将检测的电流输出到电压补偿调节模块50,经电压补偿调节模块50调节输出补偿电压至反馈模块60,再由反馈模块60输出到控制模块10,控制模块10根据反馈模块60反馈的补偿电压控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压。由此,通过将电压补偿调节模块50输出的补偿电压反馈至控制模块10,由控制模块10根据补偿电压调节PWM输出模块20输出的PWM信号以调节功率变换模块30的电压输出,从而补偿功率变换模块30输出的电压由于电源走线阻抗产生的压降。因此,通过本发明实施例可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。In the technical solution of this embodiment, the implementation process of the output voltage compensation circuit is: referring to FIG. 1 , the
本发明实施例通过提供一种输出电压补偿电路,该电路包括:控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,控制模块与PWM输出模块电连接,PWM输出模块与功率变换模块电连接,PWM输出模块用于输出PWM信号至功率变换模块,功率变换模块用于根据PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;电流检测模块分别与功率变换模块和电压补偿调节模块电连接,电压补偿调节模块分别与功率变换模块的电压输出端和反馈模块电连接,反馈模块分别与电流检测模块和控制模块电连接;其中,电流检测模块用于检测流过功率变换模块的电流,电压补偿调节模块用于根据电流检测模块检测的电流和功率变换模块输出的电压输出补偿电压至反馈模块;其中,控制模块用于根据电压补偿调节模块输出的补偿电压调节PWM输出模块输出的PWM信号以调节功率变换模块的输出电压。由此可知,通过该电路可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和不增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。The embodiment of the present invention provides an output voltage compensation circuit, the circuit includes: a control module, a PWM output module, a power conversion module, a current detection module, a voltage compensation adjustment module and a feedback module; wherein, the control module is electrically connected to the PWM output module , the PWM output module is electrically connected with the power conversion module, the PWM output module is used to output the PWM signal to the power conversion module, and the power conversion module is used to convert the signal of the voltage input terminal according to the PWM signal output by the PWM output module and output from the voltage output terminal; The current detection module is respectively electrically connected with the power conversion module and the voltage compensation adjustment module, the voltage compensation adjustment module is respectively electrically connected with the voltage output end of the power conversion module and the feedback module, and the feedback module is electrically connected with the current detection module and the control module respectively; wherein, The current detection module is used for detecting the current flowing through the power conversion module, and the voltage compensation adjustment module is used for outputting the compensation voltage to the feedback module according to the current detected by the current detection module and the voltage output by the power conversion module; wherein, the control module is used for compensation according to the voltage The compensation voltage output by the adjustment module adjusts the PWM signal output by the PWM output module to adjust the output voltage of the power conversion module. It can be seen that the circuit can solve the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method, and can compensate the voltage drop caused by the wiring impedance without remote feedback and without adding feedback lines. , thereby reducing the wiring complexity and manufacturing cost.
实施例二Embodiment 2
图2是本发明实施例二中提供的一种输出电压补偿电路的结构示意图,在上述实施例一的基础上,参考图2,功率变换模块30包括第一晶体管M1、第二晶体管M2、第三晶体管M3和第一电感L1,第一晶体管M1的控制端和第二晶体管M2的控制端均与PWM输出模块20的第一输出端电连接,第三晶体管M3的控制端与PWM输出模块20的第二输出端电连接,第一晶体管M1的第一端和第二晶体管M2的第一端均与电压输入端Vin电连接,第一晶体管M1的第二端与第三晶体管M3的第一端电连接,第三晶体管M3的第二端接地,第二晶体管M2的第二端分别与第一晶体管M1的第二端和第一电感L1的第一端电连接,第一电感L1的第二端与电压输出端Vout电连接;2 is a schematic structural diagram of an output voltage compensation circuit provided in Embodiment 2 of the present invention. On the basis of Embodiment 1 above, referring to FIG. 2 , the
其中,第二晶体管M2的第一端还与电流检测模块40电连接,电流检测模块40用于检测电压输入端Vin流入第二晶体管M2的电流。The first end of the second transistor M2 is also electrically connected to the
其中,参考图2,控制模块10通过控制PWM输出模块20输出PWM信号可以控制第一晶体管M1、第二晶体管M2和第三晶体管M3的导通或者关断,进而可以控制电压输入端Vin输入的电压从电压输出端Vout输出。其中,第一晶体管M1和第二晶体管M2可以为PMOS管,第三晶体管M3可以为NMOS管。2 , the
其中,参考图2,功率变换模块30还包括阻抗元件R3。电压输入端Vin还包括第一电容元件C1,电压输出端Vout还包括第二电容元件C2。第一电容元件C1的第一端与电压输入端Vin电连接,第二端接地。第二电容元件C2的第一端与电压输出端Vout电连接,第二端接地。第一电容元件C1和第二电容元件C2用于滤波。Wherein, referring to FIG. 2 , the
可选地,继续参考图2,电压补偿调节模块50包括比例控制单元51、加法器52和输出电压调节单元53,比例控制单元51分别与电流检测模块40和加法器52的第一输入端电连接,输出电压调节单元53分别与功率变换模块30的电压输出端Vout和加法器52的第二输入端电连接,加法器52的输出端与反馈模块60电连接;Optionally, continuing to refer to FIG. 2 , the voltage
其中,比例控制单元51用于将电流检测模块40检测的电流按照预设比例放大系数放大预设比例放大系数后输出至加法器52的第一输入端,输出电压调节单元53用于将功率变换模块30的电压输出端Vout输出的电压经电阻调压后输出至加法器52的第二输入端,加法器52用于将其第一输入端和第二输入端输入的电压叠加后输出到反馈模块60。The
其中,加法器52第一输入端和第二输入端输入的电压叠加后输出的电压为补偿电压,补偿电压输出到反馈模块60的第二输入端,并与反馈模块60第一输入端输入的基准电压信号Vref比较后输出到控制模块10,控制模块10根据该反馈的补偿电压控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压,从而补偿因电源走线阻抗产生的压降。The voltage output by the superposition of the voltages input from the first input terminal and the second input terminal of the
其中,比例控制单元51可以为比例放大器。通过调节比例放大器的预设比例放大系数可以补偿功率变换模块30输出的电压。通过调节输出电压调节单元53可以调节功率变换模块30的电压输出端Vout的电压。可选地,可以通过单独的数字控制模块(例如单片机)来配置比例控制单元51的预设比例放大系数。通过数字控制模块还可以调节输出电压调节单元以调节功率变换模块30的电压输出端Vout的输出电压。The
可选地,继续参考图2,输出电压调节单元53包括第一电阻R1和第二电阻R2,第一电阻R1的第一端与电压输出端Vout电连接,第一电阻R1的第二端分别与加法器52的第二输入端和第二电阻R2的第一端电连接,第二电阻R2的第二端接地。Optionally, continuing to refer to FIG. 2 , the output voltage adjusting unit 53 includes a first resistor R1 and a second resistor R2, the first end of the first resistor R1 is electrically connected to the voltage output end Vout, and the second end of the first resistor R1 is respectively It is electrically connected to the second input terminal of the
其中,经第一电阻R1输出的电压输出到加法器52的第二输入端,比例控制单元51输出的电压输出到加法器52的第一输入端。加法器52将其第一输入端和第二输入端输入的电压叠加后输出的电压即为补偿后的反馈电压,补偿后的反馈电压经反馈模块60输出到控制模块10,控制模块10根据该反馈的补偿后电压控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压,从而补偿因电源走线阻抗产生的压降。The voltage output by the first resistor R1 is output to the second input terminal of the
可选地,第一电阻R1为可变电阻。Optionally, the first resistor R1 is a variable resistor.
其中,可以通过单独的数字控制模块(例如单片机)来配置第一电阻的阻值以调节功率变换模块30电压输出端Vout的电压。此外,第一电阻R1还可以为滑动变阻器。The resistance value of the first resistor can be configured by a separate digital control module (eg, a single-chip microcomputer) to adjust the voltage of the voltage output terminal Vout of the
可选地,继续参考图2,电压补偿调节模块50还包括滤波单元54,滤波单元54分别与电流检测模块40和比例控制单元51电连接。Optionally, with continued reference to FIG. 2 , the voltage
其中,滤波单元54可以为低通滤器。The
可选地,继续参考图2,反馈模块60包括运算放大器B1和比较器B2,运算放大器B1的第一输入端接入基准电压信号Vref,运算放大器B1的第二输入端与电压补偿调节模块50电连接,运算放大器B1的输出端与比较器B2的第一输入端电连接,比较器B2的第二输入端与电流检测模块40电连接,比较器B2的输出端与控制模块10电连接。Optionally, continuing to refer to FIG. 2 , the
其中,运算放大器B1可以为误差放大器,用于将加法器52输出端输出的补偿电压与基准电压信号Vref进行误差放大。其中,基准电压信号Vref带隙基准源。比较器B2用于将放大器运算放大器B1输出的补偿后反馈电压输出到控制模块10的反馈端R。此外,反馈模块60还包括斜波补偿模块Vramp,斜波补偿模块Vramp用于将电流检测模块40输出的电流信号与斜波补偿模块Vramp输出的斜坡信号叠加后输出到运算放大器的正极,由此,通过信号的叠加补偿可以提高电流信号的稳定性。The operational amplifier B1 may be an error amplifier, which is used to amplify the error between the compensation voltage output by the output end of the
在本实施例的技术方案中,电压补偿调节模块50和反馈模块60的工作原理为:参考图2,假设功率变换模块30的电压输入端Vin输入的平均电流为Iin,电压输出端Vout输出的电压为Vo,输出平均电流为Io,PCB走线回路的阻抗为R0,负载芯片内部的电源走线回路的阻抗为R1,则需要补偿的电源压降为Io*(R0+R1)。In the technical solution of this embodiment, the working principle of the voltage
由于电流检测模块40输出的电流正比于电压输入端Vin输入的平均电流Iin,设正比的系数为a,则滤波单元54输出的电压V1为:Since the current output by the
V1=a*IinV1=a*Iin
假设电源的效率为η,其中,效率η可以通过测试获得,在输入输出确定的情况下,η跟负载有关,通常取最大值,则可以计算出输出平均电流Io为:Assuming that the efficiency of the power supply is η, where the efficiency η can be obtained by testing, in the case where the input and output are determined, η is related to the load, and usually takes the maximum value, then the average output current Io can be calculated as:
比例控制单元51输出的电压V2为:The voltage V2 output by the
V2=-Io*(R0+R1)*Vref/VoV2=-Io*(R0+R1)*Vref/Vo
其中,Vref为运算放大器B1第一输入端输入的基准电压。Wherein, Vref is the reference voltage input by the first input terminal of the operational amplifier B1.
由此,根据上述V1和V2两个式子,可以得到比例控制单元51的比例放大系数P为:Therefore, according to the above two formulas V1 and V2, the proportional amplification coefficient P of the
其中,R1、η、Vref、a由芯片本身决定,为芯片的固定参数。R0、Vo和Vin由具体产品决定,可根据实际使用情况进行调节。其中,为了保证系统的稳定性,a可以取该芯片工艺下的最小值,电源的效率η取所有负载下的最大值,PCB走线回路的阻抗为R0和负载芯片内部的电源走线回路的阻抗为R1可以通过仿真技术获得,Vo可以通过调节输出电压调节单元53进行调节。Among them, R1, η, Vref, a are determined by the chip itself and are fixed parameters of the chip. R0, Vo and Vin are determined by specific products and can be adjusted according to actual usage. Among them, in order to ensure the stability of the system, a can take the minimum value under the chip technology, the efficiency η of the power supply can take the maximum value under all loads, and the impedance of the PCB trace loop is the difference between R0 and the power trace loop inside the load chip. The impedance R1 can be obtained by simulation technology, and Vo can be adjusted by adjusting the output voltage adjusting unit 53 .
由此,在对输出电压补偿电路进行补偿调节的过程中,可以通过单独的数字控制模块(例如单片机)来调节输出电压调节单元53的输出电压以调节功率变换模块30电压输出端Vout的电压,通过仿真技术获取PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1,根据电压输出端Vout的电压、PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1等参数可以配置比例控制单元51的预设比例放大系数,从而使比例控制单元输出功率变换模块30需要补偿的电压值,并将需补偿的电压值经加法器52、反馈模块60反馈到控制模块10的反馈端R,由控制模块10根据反馈信号控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压。Therefore, in the process of compensating and adjusting the output voltage compensation circuit, the output voltage of the output voltage adjusting unit 53 can be adjusted by a separate digital control module (such as a single-chip microcomputer) to adjust the voltage of the voltage output terminal Vout of the
可选地,还包括过流保护模块70,过流保护模块70分别与电流检测模块40和控制模块10电连接。Optionally, an
其中,过流保护模块70与功率变换模块30电连接,用于将检测到的功率变换模块30的电流输入到控制模块10的过流保护反馈端,以检测功率变换模块30是否发生过流。The
此外,参考图2,该输出电压补偿电路还包括过压保护模块OVP、频率配置模块PFM和信号源S。其中,过压保护模块OVP用于在该电路出现过压时保护该电路,频率配置模块PFM可以配置控制模块10的频率,提供的频率在电源轻载时使用。In addition, referring to FIG. 2 , the output voltage compensation circuit further includes an overvoltage protection module OVP, a frequency configuration module PFM and a signal source S. The overvoltage protection module OVP is used to protect the circuit when overvoltage occurs, and the frequency configuration module PFM can configure the frequency of the
实施例三Embodiment 3
图3是本发明实施例三中提供的一种输出电压补偿电路的结构示意图,在上述实施例的基础上,参考图3,功率变换模块30包括第四晶体管M4、第五晶体管M5和第二电感L2,第四晶体管M4的控制端与PWM输出模块20的第一输出端电连接,第四晶体管M4的第一端与电压输入端Vin电连接,第四晶体管M4的第二端分别与第五晶体管M5的第一端和第二电感L2的第一端电连接,第五晶体管M5的控制端与PWM输出模块20的第二输出端电连接,第五晶体管M5的第二端接地,第二电感L2的第二端与电压输出端Vout电连接;FIG. 3 is a schematic structural diagram of an output voltage compensation circuit provided in Embodiment 3 of the present invention. On the basis of the above embodiment, referring to FIG. 3 , the
其中,第二电感L2的第一端和第二端分别与电流检测模块40电连接,电流检测模块40用于检测流入第二电感L2的电流。The first end and the second end of the second inductor L2 are respectively electrically connected to the
其中,控制模块10通过控制PWM输出模块20输出PWM信号可以控制第四晶体管M4和第五晶体管M5的导通或者关断,进而可以控制电压输入端Vin输入的电压从电压输出端Vout输出。其中,第四晶体管M4可以为P型MOS管,第五晶体管M5可以为N型MOS管。The
在本实施例的技术方案中,电压补偿调节模块50和反馈模块60的工作原理为:参考图2,假设功率变换模块30的电压输出端Vout输出的电压为Vo,输出平均电流为Io,第一电感L1的电阻为RL,PCB走线回路的阻抗为R0,负载芯片内部的电源走线回路的阻抗为R1,则需要补偿的电源压降为Io*(R0+R1)。In the technical solution of the present embodiment, the working principle of the voltage
由于电流检测模块40输出的电流正比于电压输出端的平均电流为Io,设正比的系数为a,则滤波单元54输出的电压V1为:Since the current output by the
V1=a*Io*RLV1=a*Io*RL
比例控制单元51输出的电压V2为:The voltage V2 output by the
V2=-Io*(R0+R1)*Vref/VoV2=-Io*(R0+R1)*Vref/Vo
其中,Vref为运算放大器B1第一输入端输入的基准电压。Wherein, Vref is the reference voltage input by the first input terminal of the operational amplifier B1.
由此,根据上述V1和V2两个式子,可以得到比例控制单元51的比例放大系数P为:Therefore, according to the above two formulas V1 and V2, the proportional amplification coefficient P of the
其中,R1、Vref、a由芯片本身决定,为芯片的固定参数。R0、Vo和RL由具体产品决定,可根据实际使用情况进行调节。其中,为了保证系统的稳定性,a可以取该芯片工艺下的最小值,RL可以取第一电感的最小值,PCB走线回路的阻抗为R0和负载芯片内部的电源走线回路的阻抗为R1可以通过仿真技术获得,Vo可以通过调节输出电压调节单元53进行调节。Among them, R1, Vref, a are determined by the chip itself and are fixed parameters of the chip. R0, Vo and RL are determined by specific products and can be adjusted according to actual usage. Among them, in order to ensure the stability of the system, a can take the minimum value under the chip technology, RL can take the minimum value of the first inductance, the impedance of the PCB trace loop is R0 and the impedance of the power trace loop inside the load chip is R1 can be obtained by simulation technology, and Vo can be adjusted by adjusting the output voltage adjusting unit 53 .
由此,在对输出电压补偿电路进行补偿调节的过程中,可以通过单独的数字控制模块(例如单片机)调节输出电压调节单元53的输出电压以调节功率变换模块30电压输出端Vout的电压,通过仿真技术获取PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1,根据电压输出端Vout的电压、PCB走线回路的阻抗R0和负载芯片内部的电源走线回路的阻抗R1等参数可以配置比例控制单元51的预设比例放大系数,从而使比例控制单元输出功率变换模块30需要补偿的电压值,并将需补偿的电压值经加法器52、反馈模块60反馈到控制模块10的反馈端R,由控制模块10根据反馈信号控制PWM输出模块20输出PWM信号以调节功率变换模块30的输出电压。Therefore, in the process of compensating and adjusting the output voltage compensation circuit, the output voltage of the output voltage adjusting unit 53 can be adjusted by a separate digital control module (such as a single-chip microcomputer) to adjust the voltage of the voltage output terminal Vout of the
实施例四Embodiment 4
图4是本发明实施例四中提供的一种输出电压补偿电路补偿方法的流程图,由输出电压补偿电路执行,输出电压补偿电路包括控制模块、PWM输出模块、功率变换模块、电流检测模块、电压补偿调节模块和反馈模块;其中,控制模块与PWM输出模块电连接,PWM输出模块与功率变换模块电连接,PWM输出模块用于输出PWM信号至功率变换模块,功率变换模块用于根据PWM输出模块输出的PWM信号将电压输入端的信号变换后从电压输出端输出;电流检测模块分别与功率变换模块和电压补偿调节模块电连接,电压补偿调节模块分别与功率变换模块的电压输出端和反馈模块电连接,反馈模块分别与电流检测模块和控制模块电连接;其中,电流检测模块用于检测流过功率变换模块的电流,电压补偿调节模块用于根据电流检测模块检测的电流和功率变换模块输出的电压输出补偿电压至反馈模块;4 is a flowchart of an output voltage compensation circuit compensation method provided in Embodiment 4 of the present invention, which is executed by the output voltage compensation circuit, and the output voltage compensation circuit includes a control module, a PWM output module, a power conversion module, a current detection module, Voltage compensation adjustment module and feedback module; wherein, the control module is electrically connected with the PWM output module, the PWM output module is electrically connected with the power conversion module, the PWM output module is used for outputting PWM signals to the power conversion module, and the power conversion module is used for outputting according to the PWM The PWM signal output by the module converts the signal of the voltage input terminal and outputs it from the voltage output terminal; the current detection module is electrically connected with the power conversion module and the voltage compensation adjustment module respectively, and the voltage compensation adjustment module is respectively connected with the voltage output terminal of the power conversion module and the feedback module. The feedback module is electrically connected to the current detection module and the control module respectively; wherein, the current detection module is used to detect the current flowing through the power conversion module, and the voltage compensation adjustment module is used to output the current detected by the current detection module and the power conversion module The voltage output compensation voltage to the feedback module;
本实施例可适用于输出电压补偿电路的实现过程,该方法可以由本发明任意实施例提供的输出电压补偿电路来执行,参考图4,具体包括如下步骤:This embodiment is applicable to the implementation process of the output voltage compensation circuit, and the method may be performed by the output voltage compensation circuit provided by any embodiment of the present invention. Referring to FIG. 4 , the method specifically includes the following steps:
步骤110、根据电压补偿调节模块输出的补偿电压调节PWM输出模块输出的PWM信号调节功率变换模块的输出电压。Step 110: Adjust the PWM signal output by the PWM output module according to the compensation voltage output by the voltage compensation adjustment module to adjust the output voltage of the power conversion module.
在本实施的技术方案中,通过电流检测模块检测流过功率变换模块的电流,并将检测的电流输出到电压补偿调节模块,经电压补偿调节模块调节输出补偿电压至反馈模块,再由反馈模块输出到控制模块,控制模块根据反馈模块反馈信号控制PWM输出模块输出PWM信号以调节功率变换模块的输出电压。由此,通过将电压补偿调节模块输出的补偿电压反馈至控制模块,由控制模块根据补偿电压调节PWM输出模块输出的PWM信号以调节功率变换模块的电压输出,从而补偿功率变换模块由于PCB走线、负载芯片内部电源走线等阻抗产生的压降。因此,通过本发明实施例可以解决现有的补偿方法存在走线复杂度高、走线制作成本高的问题,实现无需远端反馈和增加反馈线就能补偿因走线阻抗产生的压降,进而降低走线复杂度和制作成本。In the technical solution of this implementation, the current flowing through the power conversion module is detected by the current detection module, the detected current is output to the voltage compensation adjustment module, the output compensation voltage is adjusted by the voltage compensation adjustment module to the feedback module, and then the feedback module It is output to the control module, and the control module controls the PWM output module to output the PWM signal according to the feedback signal of the feedback module to adjust the output voltage of the power conversion module. Therefore, by feeding back the compensation voltage output by the voltage compensation adjustment module to the control module, the control module adjusts the PWM signal output by the PWM output module according to the compensation voltage to adjust the voltage output of the power conversion module, thereby compensating the power conversion module due to the PCB wiring. , the voltage drop caused by the impedance of the internal power supply wiring of the load chip. Therefore, the embodiments of the present invention can solve the problems of high wiring complexity and high wiring manufacturing cost in the existing compensation method, and realize that the voltage drop caused by the wiring impedance can be compensated without remote feedback and adding feedback lines, This further reduces wiring complexity and manufacturing costs.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011027547.2A CN114337190A (en) | 2020-09-25 | 2020-09-25 | An output voltage compensation circuit and compensation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011027547.2A CN114337190A (en) | 2020-09-25 | 2020-09-25 | An output voltage compensation circuit and compensation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114337190A true CN114337190A (en) | 2022-04-12 |
Family
ID=81011752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011027547.2A Pending CN114337190A (en) | 2020-09-25 | 2020-09-25 | An output voltage compensation circuit and compensation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114337190A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120268015A1 (en) * | 2011-04-20 | 2012-10-25 | National Chi Nan University | Light power compensation device, light power compensation circuit, and detecting module |
CN103066851A (en) * | 2012-12-20 | 2013-04-24 | 西安电子科技大学 | Control circuit for primary side flyback type converter |
JP2015119550A (en) * | 2013-12-18 | 2015-06-25 | 株式会社リコー | Slope compensation circuit and switching power supply apparatus |
US20170337890A1 (en) * | 2016-05-18 | 2017-11-23 | Samsung Display Co., Ltd. | Power supply device and display device including the same |
CN108390558A (en) * | 2018-03-21 | 2018-08-10 | 上海贝岭股份有限公司 | A kind of voltage-dropping type current-mode supply convertor |
-
2020
- 2020-09-25 CN CN202011027547.2A patent/CN114337190A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120268015A1 (en) * | 2011-04-20 | 2012-10-25 | National Chi Nan University | Light power compensation device, light power compensation circuit, and detecting module |
CN103066851A (en) * | 2012-12-20 | 2013-04-24 | 西安电子科技大学 | Control circuit for primary side flyback type converter |
JP2015119550A (en) * | 2013-12-18 | 2015-06-25 | 株式会社リコー | Slope compensation circuit and switching power supply apparatus |
US20170337890A1 (en) * | 2016-05-18 | 2017-11-23 | Samsung Display Co., Ltd. | Power supply device and display device including the same |
CN108390558A (en) * | 2018-03-21 | 2018-08-10 | 上海贝岭股份有限公司 | A kind of voltage-dropping type current-mode supply convertor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103094995B (en) | Wireless Power Transmission Device | |
CN101231535B (en) | Method and apparatus for overshoot and undershoot errors correction in analog low pressure difference linear voltage regulator | |
TWI636653B (en) | Current sensing apparatus and system | |
JP2005100296A (en) | Constant voltage circuit | |
CN102141816B (en) | Current-mode current induction circuit externally connected with MOS (metal oxide semiconductor) and method for realizing current mode | |
US9568376B2 (en) | Temperature detecting circuit and method thereof | |
WO2014079129A1 (en) | Fast transient response dc-dc switching converter with high load regulation rate | |
US7352161B2 (en) | Burst-mode switching voltage regulator with ESR compensation | |
CN103299524A (en) | User-configurable, efficiency-optimizing, power/energy conversion switch-mode power supply with a serial communications interface | |
TWI633733B (en) | Power supply and method for operating a power supply | |
CN101247082B (en) | Detection circuit, power supply system and control method | |
CN108270401B (en) | Amplifier device | |
CN104410395A (en) | Overvoltage protection circuit and method for transistor switch | |
CN101789682A (en) | Multiple output power supply time sequence control device and method | |
TW201413411A (en) | DC-DC controller | |
CN116317996B (en) | Error amplifier and power supply conversion device | |
CN103314514A (en) | Efficiency-optimizing, calibrated sensorless power/energy conversion in switch-mode power supply | |
CN106026700B (en) | Controller of power converter and operation method thereof | |
KR20130137659A (en) | User-configurable, efficiency-optimizing, calibrated sensorless power/energy conversion switch-mode power supply with a serial communications interface | |
JP2006180603A (en) | Circuit for correcting voltage drop by line drop | |
US11451141B2 (en) | DC power supply device, current stabilizing circuit for DC power supply device, and method for reducing noise of power-supply line | |
US20130114310A1 (en) | Power Supply Control Circuit and method for sensing voltage in the power supply control circuit | |
CN114337190A (en) | An output voltage compensation circuit and compensation method | |
JP4712453B2 (en) | Voltage regulator feedback protection method and apparatus | |
TWI400592B (en) | Low dropout regulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 201206 Shanghai Pudong New Area free trade pilot area 1258 moon 3 building fourth floor A406 room Applicant after: Chen core technology Co.,Ltd. Applicant after: Chenxin Technology Co.,Ltd. Address before: 201206 Shanghai Pudong New Area free trade pilot area 1258 moon 3 building fourth floor A406 room Applicant before: Chen core technology Co.,Ltd. Applicant before: Chenxin Technology Co.,Ltd. |