CN114334971A - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN114334971A CN114334971A CN202011062708.1A CN202011062708A CN114334971A CN 114334971 A CN114334971 A CN 114334971A CN 202011062708 A CN202011062708 A CN 202011062708A CN 114334971 A CN114334971 A CN 114334971A
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- capacitor
- lower electrode
- layer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体领域,特别是涉及一种半导体器件及其制备方法。The present invention relates to the field of semiconductors, in particular to a semiconductor device and a preparation method thereof.
背景技术Background technique
常规的1T1C(1晶体管1电容)存储器单元需要一个晶体管和一个电容,且电容一般为平面电容。随着集成电路沿着摩尔定律微缩,常规的1T1C存储器单元会遇到无法缩小的问题,这是由于在不断微缩的情况下,特别是到0.13μm标准CMOS制造工艺以下技术节点,随着电容需要不断缩小面积,平面电容的电容值会随着面积缩小而同比例减小,过小的电容能够存储的电荷有限,电容存储电荷的数量大幅减少,使存储单元在实际工作中的性能下降,甚至读取困难。为了保证在单位微缩的情况下保持足够大的电容,需要维持较大的电容结构,这与集成电路不断缩小的发展方向是相违背的。A conventional 1T1C (1 transistor, 1 capacitor) memory cell requires one transistor and one capacitor, and the capacitor is generally a planar capacitor. As integrated circuits shrink along Moore's Law, conventional 1T1C memory cells will encounter the problem of not being able to shrink. This is because in the case of continuous shrinking, especially to the technology nodes below the 0.13μm standard CMOS manufacturing process, with the need for capacitance Continuously shrinking the area, the capacitance value of the planar capacitor will decrease in the same proportion as the area shrinks. The charge that can be stored by the capacitor that is too small is limited, and the amount of charge stored by the capacitor is greatly reduced, which reduces the performance of the memory cell in actual work, and even Difficulty reading. In order to maintain a sufficiently large capacitance in the case of unit scaling, it is necessary to maintain a large capacitance structure, which is contrary to the development direction of the continuous shrinking of integrated circuits.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述问题,提供一种半导体器件及其制备方法,其具有在半导体器件面积减小的情况下仍然保持足够大的电容的优点。Based on this, it is necessary to address the above problems to provide a semiconductor device and a manufacturing method thereof, which have the advantage of maintaining a sufficiently large capacitance even when the area of the semiconductor device is reduced.
一种半导体器件,其特征在于,包括:A semiconductor device, comprising:
基底,所述基底上形成有选择开关晶体管;a substrate, on which a selection switch transistor is formed;
第一介质层,位于所述基底上,且覆盖所述选择开关晶体管;a first dielectric layer, located on the substrate, and covering the selection switch transistor;
电容,位于所述第一介质层的上表面,包括下电极、电容介质层及上电极,所述电容介质层覆盖所述下电极的上表面及侧面,所述上电极覆盖所述电容介质层的上表面和侧面,所述下电极与所述选择开关晶体管的漏极电连接;A capacitor, located on the upper surface of the first dielectric layer, includes a lower electrode, a capacitor dielectric layer and an upper electrode, the capacitor dielectric layer covers the upper surface and side surfaces of the lower electrode, and the upper electrode covers the capacitor dielectric layer The upper surface and the side surface of the lower electrode are electrically connected to the drain of the selection switch transistor;
第二介质层,位于所述第一介质层的上表面,且覆盖所述电容,所述电容位于所述第二介质层内部;The second dielectric layer is located on the upper surface of the first dielectric layer and covers the capacitor, and the capacitor is located inside the second dielectric layer;
金属层,位于所述第二介质层的上表面;所述金属层至少包括板线,所述板线与所述电容电连接。The metal layer is located on the upper surface of the second dielectric layer; the metal layer at least includes a plate wire, and the plate wire is electrically connected to the capacitor.
在其中一个实施例中,所述第一介质层内形成有第一导电插塞,所述第一导电插塞的一端与所述下电极电连接,另一端与所述选择开关晶体管的漏极电连接;In one embodiment, a first conductive plug is formed in the first dielectric layer, one end of the first conductive plug is electrically connected to the lower electrode, and the other end is connected to the drain of the selection switch transistor electrical connection;
所述第二介质层内形成有第二导电插塞,所述第二导电插塞的一端与所述上电极电连接,另一端与所述板线电连接。A second conductive plug is formed in the second dielectric layer, one end of the second conductive plug is electrically connected to the upper electrode, and the other end is electrically connected to the plate wire.
在其中一个实施例中,所述电容自所述漏极的上方延伸至所述选择开关晶体管的栅极的上方。In one embodiment, the capacitance extends from above the drain to above the gate of the select switch transistor.
在其中一个实施例中,所述电容介质层包括锆掺杂氧化铪薄膜层;所述电容介质层中锆、铪及氧的摩尔比为0.3:0.3:0.5~0.7:0.7:2.5。In one embodiment, the capacitor dielectric layer includes a zirconium-doped hafnium oxide thin film layer; the molar ratio of zirconium, hafnium and oxygen in the capacitor dielectric layer is 0.3:0.3:0.5˜0.7:0.7:2.5.
在其中一个实施例中,所述下电极的横截面呈梯形;In one of the embodiments, the cross section of the lower electrode is trapezoidal;
所述电容介质层包括第一部分和第二部分,所述第一部分覆盖所述下电极的上表面及侧面,所述第二部分位于所述上电极与所述第一介质层之间,且所述第二部分与所述第一部分一体设置。The capacitive dielectric layer includes a first part and a second part, the first part covers the upper surface and the side surface of the lower electrode, the second part is located between the upper electrode and the first dielectric layer, and the second part is located between the upper electrode and the first dielectric layer. The second part is integrally arranged with the first part.
本申请还提供一种半导体器件的制备方法,包括:The present application also provides a method for preparing a semiconductor device, comprising:
提供基底,并于所述基底上形成选择开关晶体管;providing a substrate, and forming a selection switch transistor on the substrate;
于所述基底的上表面形成第一介质层,所述第一介质层覆盖所述选择开关晶体管;forming a first dielectric layer on the upper surface of the substrate, the first dielectric layer covering the selection switch transistor;
于所述第一介质层的上表面形成电容,所述电容包括下电极、电容介质层及上电极,所述电容介质层覆盖所述下电极的上表面及侧面,所述上电极覆盖所述电容介质层的上表面和侧面,所述下电极与所述选择开关晶体管的漏极电连接;A capacitor is formed on the upper surface of the first dielectric layer, the capacitor includes a lower electrode, a capacitor dielectric layer and an upper electrode, the capacitor dielectric layer covers the upper surface and side surfaces of the lower electrode, and the upper electrode covers the the upper surface and the side surface of the capacitive dielectric layer, the lower electrode is electrically connected to the drain of the selection switch transistor;
于所述第一介质层的上表面形成第二介质层,所述第二介质层覆盖所述电容,所述电容位于所述第二介质层内部;A second dielectric layer is formed on the upper surface of the first dielectric layer, the second dielectric layer covers the capacitor, and the capacitor is located inside the second dielectric layer;
于所述第二介质层的上表面形成金属层,所述金属层至少包括板线,所述板线与所述电容电连接。A metal layer is formed on the upper surface of the second dielectric layer, the metal layer at least includes a plate line, and the plate line is electrically connected to the capacitor.
在其中一个实施例中,于所述第一介质层的上表面形成电容,包括:In one embodiment, forming a capacitor on the upper surface of the first dielectric layer includes:
于所述第一介质层的上表面形成下电极;forming a lower electrode on the upper surface of the first dielectric layer;
于所述下电极的上表面、所述下电极的侧面及所述第一介质层的上表面形成电容介质材料层;forming a capacitor dielectric material layer on the upper surface of the lower electrode, the side surface of the lower electrode and the upper surface of the first dielectric layer;
于所述电容介质材料层的表面形成上电极材料层;forming an upper electrode material layer on the surface of the capacitor dielectric material layer;
去除位于所述第一介质层上表面的所述上电极材料层及位于所述第一介质层上表面的所述电容介质材料层,保留的位于所述下电极上表面及侧面的所述电容介质材料层即为电容介质层,保留的位于所述电容介质层的上表面及侧面的所述上电极材料层即为所述上电极。removing the upper electrode material layer located on the upper surface of the first dielectric layer and the capacitor dielectric material layer located on the upper surface of the first dielectric layer, and the remaining capacitors located on the upper surface and side surfaces of the lower electrode The dielectric material layer is the capacitor dielectric layer, and the upper electrode material layer remaining on the upper surface and the side surface of the capacitor dielectric layer is the upper electrode.
在其中一个实施例中,于形成电容之后且于形成第二介质层之前,还包括对所得结构进行退火处理的步骤。In one embodiment, after the capacitor is formed and before the second dielectric layer is formed, a step of annealing the obtained structure is further included.
在其中一个实施例中,所述退火处理的温度为450℃~750℃。In one embodiment, the temperature of the annealing treatment ranges from 450°C to 750°C.
在其中一个实施例中,于所述第一质层上表面形成电容之前,还包括:In one embodiment, before the capacitor is formed on the upper surface of the first quality layer, the method further includes:
于所述第一介质层内形成第一互连通孔,所述第一互连通孔暴露出所述选择开关晶体管的漏极;forming a first interconnection through hole in the first dielectric layer, and the first interconnection through hole exposes the drain of the selection switch transistor;
于所述第一互连通孔内形成第一导电插塞。A first conductive plug is formed in the first interconnection via.
在其中一个实施例中,于所述第二介质层的上表面形成金属层之前,还包括:In one embodiment, before forming the metal layer on the upper surface of the second dielectric layer, the method further includes:
于所述第二介质层内形成第二互连通孔,所述第二互连通孔暴露所述上电极;forming a second interconnect via hole in the second dielectric layer, and the second interconnect via hole exposes the upper electrode;
于所述第二互连通孔内形成第二导电插塞。A second conductive plug is formed in the second interconnection via.
本申请的半导体器件及其制备方法具有如下有益效果:The semiconductor device of the present application and its preparation method have the following beneficial effects:
由于电容的面积同时包括了下电极的上表面及侧面所在面,相较于传统的电容多出了下电极侧面所在的电容面积,同时电容形成于第一介质层的上表面而非向下凹陷进入第一介质层内,于工艺控制上更为容易,减少了形成电容的过程中由于沟槽结构拐角位置形貌不易控制而导致生长的电容结构不稳定性较高的可能性。由于电容侧面的面积增大对于半导体器件整体面积的改变是十分微弱的,因此可以通过增加下电极侧面的面积大小在则增大电容面积,从而实现在半导体器件面积减小的情况下仍然保持足够大的电容的优点。Since the area of the capacitor includes both the upper surface and the side surface of the lower electrode, compared with the traditional capacitor, the area of the capacitor where the side surface of the lower electrode is located is larger, and the capacitor is formed on the upper surface of the first dielectric layer instead of being recessed downward. Entering into the first dielectric layer is easier in process control, and reduces the possibility of high instability of the grown capacitor structure due to the difficult control of the corner position and topography of the trench structure during the process of forming the capacitor. Since the increase of the area of the side of the capacitor has very little change in the overall area of the semiconductor device, it is possible to increase the area of the capacitor by increasing the area of the side of the lower electrode, so that the area of the semiconductor device can still be maintained adequately. advantage of large capacitors.
附图说明Description of drawings
图1为本发明一个实施例中半导体器件的制备方法的流程图;1 is a flow chart of a method for manufacturing a semiconductor device according to an embodiment of the present invention;
图2为本发明一个实施例中半导体器件展示基底的截面结构示意图;2 is a schematic cross-sectional structure diagram of a semiconductor device display substrate in an embodiment of the present invention;
图3为本发明一个实施例中半导体器件形成第一介质层后的截面结构示意图;3 is a schematic cross-sectional structure diagram of a semiconductor device after a first dielectric layer is formed in an embodiment of the present invention;
图4为本发明一个实施例中半导体器件形成第一互连通孔后的截面结构示意图;4 is a schematic cross-sectional structure diagram of a semiconductor device after forming a first interconnection via in an embodiment of the present invention;
图5为本发明一个实施例中半导体器件形成第一导电插塞后的截面结构示意图;5 is a schematic cross-sectional structure diagram of a semiconductor device after forming a first conductive plug in an embodiment of the present invention;
图6为本发明一个实施例中半导体器件形成下电极后的截面结构示意图;6 is a schematic cross-sectional structure diagram of a semiconductor device after forming a lower electrode in an embodiment of the present invention;
图7为本发明一个实施例中半导体器件形成电容介质材料层后的截面结构示意图;7 is a schematic cross-sectional structure diagram of a semiconductor device after a capacitor dielectric material layer is formed in an embodiment of the present invention;
图8为本发明一个实施例中半导体器件形成上电极材料层后的截面结构示意图;8 is a schematic cross-sectional structure diagram of a semiconductor device after forming an upper electrode material layer in an embodiment of the present invention;
图9为本发明一个实施例中半导体器件形成电容后的截面结构示意图;9 is a schematic diagram of a cross-sectional structure of a semiconductor device after a capacitor is formed in an embodiment of the present invention;
图10为本发明一个实施例中半导体器件形成第二介质层后的截面结构示意图;10 is a schematic cross-sectional structure diagram of a semiconductor device after forming a second dielectric layer in an embodiment of the present invention;
图11为本发明一个实施例中半导体器件形成金属层后的截面结构示意图。FIG. 11 is a schematic cross-sectional structure diagram of a semiconductor device after a metal layer is formed in an embodiment of the present invention.
附图标记:10、基底;11、选择开关晶体管;111、栅极;112、源极;113、漏极;12、第一介质层;13、第一互连通孔;14、第一导电插塞;15、第一接触孔;16、第一接触插塞;17、第二接触孔;18、第二接触插塞;19、电容;191、下电极;1921、电容介质材料层;192、电容介质层;1931、上电极材料层;193、上电极;20、第二介质层;21、第二导电插塞;22、第三接触插塞;23、第四接触插塞;24、金属层;241、板线;242、第一金属连接层;243、第二金属连接层;25、浅沟槽隔离结构。Reference numerals: 10, substrate; 11, selection switch transistor; 111, gate electrode; 112, source electrode; 113, drain electrode; 12, first dielectric layer; 13, first interconnect via hole; 14, first conductive plug; 15, first contact hole; 16, first contact plug; 17, second contact hole; 18, second contact plug; 19, capacitor; 191, lower electrode; 1921, capacitor dielectric material layer; 192 , capacitor dielectric layer; 1931, upper electrode material layer; 193, upper electrode; 20, second dielectric layer; 21, second conductive plug; 22, third contact plug; 23, fourth contact plug; 24, Metal layer; 241, plate wire; 242, first metal connection layer; 243, second metal connection layer; 25, shallow trench isolation structure.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully hereinafter with reference to the related drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
在本发明的描述中,需要理解的是,术语“上”、“下”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方法或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "vertical", "horizontal", "inner", "outer", etc. is based on the drawings shown in the drawings. The method or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention .
常规的1T1C(1晶体管1电容)存储器单元需要一个晶体管和一个电容,且电容一般为平面电容。随着集成电路沿着摩尔定律微缩,常规的1T1C存储器单元会遇到无法缩小的问题,这是由于在不断微缩的情况下,特别是到0.13μm标准CMOS制造工艺以下技术节点,随着电容需要不断缩小面积,平面电容的电容值会随着面积缩小而同比例减小,过小的电容能够存储的电荷有限,电容存储电荷的数量大幅减少,使存储单元在实际工作中的性能下降,甚至读取困难。为了保证在单位微缩的情况下保持足够大的电容,需要维持较大的电容结构,这与集成电路不断缩小的发展方向是相违背的。A conventional 1T1C (1 transistor, 1 capacitor) memory cell requires one transistor and one capacitor, and the capacitor is generally a planar capacitor. As integrated circuits shrink along Moore's Law, conventional 1T1C memory cells will encounter the problem of not being able to shrink. This is because in the case of continuous shrinking, especially to the technology nodes below the 0.13μm standard CMOS manufacturing process, with the need for capacitance Continuously shrinking the area, the capacitance value of the planar capacitor will decrease in the same proportion as the area shrinks. The charge that can be stored by the capacitor that is too small is limited, and the amount of charge stored by the capacitor is greatly reduced, which reduces the performance of the memory cell in actual work, and even Difficulty reading. In order to maintain a sufficiently large capacitance in the case of unit scaling, it is necessary to maintain a large capacitance structure, which is contrary to the development direction of the continuous shrinking of integrated circuits.
为了解决上述技术问题,本发明提供一种半导体器件的制备方法,包括:In order to solve the above-mentioned technical problems, the present invention provides a preparation method of a semiconductor device, comprising:
步骤S10:提供基底10,并于基底10上形成选择开关晶体管11,如图2所示;Step S10: providing a
步骤S20:于基底10的上表面形成第一介质层12,第一介质层12覆盖选择开关晶体管11,如图3所示;Step S20 : forming a
步骤S30:于第一介质层12的上表面形成电容19,电容19包括下电极191、电容介质层192及上电极193,电容介质层192覆盖下电极191的上表面及侧面,上电极193覆盖电容介质层192的上表面和侧面,下电极191与选择开关晶体管11的漏极113电连接,如图9所示;Step S30 : forming a
步骤S40:于第一介质层12的上表面形成第二介质层20,第二介质层20覆盖电容19,电容19位于第二介质层20内部,如图10所示;Step S40 : forming a
步骤S50:于第二介质层20的上表面形成金属层24,金属层24至少包括板线241,板线241与电容19电连接,如图11所示。Step S50 : forming a
通过上述步骤,由于电容的面积同时包括了下电极191的上表面及侧面所在面,相较于传统的电容多出了下电极191侧面所在的电容19面积,同时电容19形成于第一介质层12的上表面而非向下凹陷进入第一介质层12内,于工艺控制上更为容易,减少了形成电容19的过程中由于沟槽结构拐角位置形貌不易控制而导致生长的电容结构不稳定性较高的可能性。由于下电极191侧面的面积增大对于半导体器件整体面积的改变是十分微弱的,因此可以通过增加下电极191侧面的面积大小在则增大电容19的电容面积,从而实现在半导体器件面积减小的情况下仍然保持足够大的电容的优点。Through the above steps, since the area of the capacitor includes both the upper surface and the side surface of the
在一个可选的实施例中,对于步骤S10,具体的,基底10的材料可以为硅、锗、砷化镓、磷化铟或氮化镓等,即基底10可以为硅基底、锗基底、砷化镓基底、磷化铟基底或氮化镓基底等。在本实施例中,基底10可以为硅基底。基底10上形成有选择开关晶体管11,选择开关晶体管11包括栅极111、源极112及漏极113,源极112和漏极113形成于基底10内,栅极111形成于基底10上表面,且源极112和漏极113位于栅极111的两侧。In an optional embodiment, for step S10, specifically, the material of the
在一个可选的实施例中,基底10内还形成有浅沟槽隔离结构25,用于在基底10内隔离出若干个间隔的有源区,选择开关晶体管11位于有源区内。In an optional embodiment, a shallow
在一个可选的实施例中,对于步骤S20,具体的,通过沉积工艺在基底10上表面沉积第一介质材料层,对第一介质材料层做平坦化处理后获得第一介质层12,第一介质层12的厚度大小大于选择开关晶体管11的栅极111的厚度大小,完全覆盖选择开关晶体管11。In an optional embodiment, for step S20, specifically, a first dielectric material layer is deposited on the upper surface of the
在一个可选的实施例中,于步骤S20之后且于步骤S30之前,还包括于第一介质层12内形成第一导电插塞14的步骤,如图4和图5所示,首先通过干法刻蚀工艺于第一介质层12内形成第一互连通孔13,第一互连通孔13暴露出选择开关晶体管11的漏极113;其次于第一互连通孔13内形成第一导电插塞14,第一导电插塞14与选择开关晶体管11的漏极113直接接触并实现电连接。In an optional embodiment, after step S20 and before step S30, it further includes a step of forming a first
在一个可选的实施例中,于第一介质层12内形成第一互连通孔13的同时还于第一介质层12内形成第一接触孔15和第二接触孔17,第一接触孔15暴露出选择开关晶体管11的源极112,第二接触孔17暴露出基底10;于第一互连通孔13中形成第一导电插塞14的同时,还于第一接触孔15内形成第一接触插塞16,于第二接触孔17内形成第二接触插塞18。第一导电插塞14、第一接触插塞16和第二接触插塞18的材质可以为铜或钨等金属。In an optional embodiment, the first contact holes 15 and the second contact holes 17 are also formed in the
在一个可选的实施例中,对于步骤S30,具体的,包括以下步骤:In an optional embodiment, for step S30, specifically, the following steps are included:
步骤S301:于第一介质层12的上表面形成下电极191,如图6所示;Step S301 : forming a
步骤S302:于下电极191的上表面、下电极191的侧面及第一介质层12的上表面形成电容介质材料层1921,如图7所示;Step S302 : forming a capacitor
步骤S303:于电容介质材料层1921的表面形成上电极材料层1931,如图8所示;Step S303 : forming an upper
步骤S304:去除位于第一介质层12上表面的上电极材料层1931及位于第一介质层12上表面的电容介质材料层1921,保留的位于下电极191上表面及侧面的电容介质材料层1921即为电容介质层192,保留的位于电容介质层192的上表面及侧面的上电极材料层1931即为上电极193,如图9所示。Step S304 : remove the upper
具体的,首先于第一介质层12的上表面形成牺牲层,通过刻蚀牺牲层定义出下电极191的位置和形状,基于被刻蚀的牺牲层形成下电极191,去除牺牲层后保留下电极191,下电极191的材质可以为氮化钛。下电极191与第一导电插塞14直接接触并实现电连接,电容19的下电极191通过第一导电插塞14与选择开关晶体管11的漏极113电连接。下电极191的厚度可以由淀积或刻蚀工艺水平决定,下电极191的厚度越厚,则电容19的电容19面积越大。在一个可选的实施例中,下电极191的横截面呈梯形,在一个其他可选的实施例中,下电极191的横截面呈矩形。通过原子层沉积工艺形成电容介质材料层1921,电容介质层192的材质可以为高K介电常数铁电薄膜掺杂氧化铪。在一个可选的实施例中,电容介质层192中锆、铪及氧的摩尔比为0.3:0.3:0.5~0.7:0.7:2.5。上电极材料层1931同样通过原子层沉积工艺形成,上电极193层的材质可以为氮化钛。Specifically, first, a sacrificial layer is formed on the upper surface of the
电容19的结构呈凸起状,在一个可选的实施例中,下电极191的横截面呈梯形,且下电极191接触第一介质层12的一面的面积大于下电极191远离第一介质层12的一面的面积。电容介质层192包括第一部分和第二部分,第一部分覆盖下电极191的上表面及侧面,第二部分位于下电极191的周向,且第二部分位于上电极193与第一介质层12之间,第二部分与第一部分一体设置。电容19在形成第二介质层20后位于第二介质层20内部,相较于在第一介质层12内部形成电容19,减少了在电容19内形成沟槽的部分,从而避免了形成沟槽时,沟槽拐角形貌不易控制的问题,随着器件的尺寸不断减小,沟槽形貌的不规则会导致局部电场增强从而影响电容结构的击穿稳定性。令电容19为形成于第一介质层19上表面的凸起结构能够有效的减少此类问题的出现。The structure of the
在一个可选的实施例中,与步骤S30之后且于步骤S40之前,还包括对所得结构进行退火处理的步骤,其目的是为了激活掺杂氧化铪的铁电性能。在一个可选的实施例中,退火处理的温度为450℃~750℃,可以为450℃、600℃或750℃。In an optional embodiment, after step S30 and before step S40, a step of annealing the obtained structure is further included, the purpose of which is to activate the ferroelectric properties of the doped hafnium oxide. In an optional embodiment, the temperature of the annealing treatment ranges from 450°C to 750°C, which may be 450°C, 600°C or 750°C.
对于步骤S40,具体的,通过高密度等离子体化学气相淀积氧化物来形成第二介质材料层,第二介质材料层的材质可以为二氧化硅、氮氧化硅、氮化硅等绝缘材料。对第二介质材料层进行平坦化处理从而形成第二介质层20,第二介质层20的厚度大小大于电容19的厚度大小,完全覆盖电容19。For step S40, specifically, the second dielectric material layer is formed by high-density plasma chemical vapor deposition of oxide, and the material of the second dielectric material layer may be insulating materials such as silicon dioxide, silicon oxynitride, and silicon nitride. The second dielectric material layer is planarized to form a
在一个可选的实施例中,于步骤S40之后且于步骤S50之前,还包括于第二介质层20内形成第二导电插塞21的步骤,首先通过刻蚀第二介质层20以于第二介质层20内形成第二互连通孔,第二互连通孔暴露上电极193;于第二互连通孔内形成第二导电插塞21,第二导电插塞21与上电极193直接接触并实现电连接。In an optional embodiment, after the step S40 and before the step S50, it further includes the step of forming the second
在一个其他可选的实施例中,于第二介质层20内形成第二互连通孔的同时,还于第二介质层20内形成第三接触孔和第四接触孔。其中,第三接触孔暴露出第一接触插塞16,第四接触孔暴露出第二接触插塞18。于第二互连通孔内形成第二导电插塞21的同时还于第三接触孔内形成第三接触插塞22,于第四接触孔内形成第四接触插塞23;第三接触插塞22与第一接触插塞16电连接,第四接触插塞23与第二接触插塞18电连接。在一个可选的实施例中,第二导电插塞21、第三接触插塞22与第四接触插塞23的材质均可以为金属钨。In another optional embodiment, while the second interconnect via hole is formed in the
对于步骤S50,于第二介质层20的上表面形成图像化掩膜层,并基于图形化掩膜层在第二介质层20的上表面形成金属层24。金属层24至少包括板线241,板线241与第二导电插塞21直接接触,两者之间形成电连接。由于第二导电插塞21与电容19的上电极193电连接,因此板线241与电容19的上电极193电连接,且电容19的下电极191通过第一导电插塞14与选择开关晶体管11的漏极113电连接。金属层24还包括第一金属连接层242和第二金属连接层243,第一金属连接层242与第三接触插塞22直接接触并实现电连接,第二金属连接层243与第四接触插塞23直接接触并实现电连接。For step S50 , an imaged mask layer is formed on the upper surface of the
如图11所示,本申请还提供一种半导体器件,包括:基底10,基底10上形成有选择开关晶体管11;第一介质层12,位于基底10上,且覆盖选择开关晶体管11;电容19,位于第一介质层12的上表面,包括下电极191、电容介质层192及上电极193,电容介质层192覆盖下电极191的上表面及侧面,上电极193覆盖电容介质层192的上表面和侧面,下电极191与选择开关晶体管11的漏极113电连接;第二介质层20,位于第一介质层12的上表面,且覆盖电容19,电容19位于第二介质层20内部;金属层24,位于第二介质层20的上表面;金属层24至少包括板线241,板线241与电容19电连接。As shown in FIG. 11 , the present application further provides a semiconductor device, comprising: a
具体的,对于基底10,在一个可选的实施例中,基底10的材料可以为硅、锗、砷化镓、磷化铟或氮化镓等,即基底10可以为硅基底10、锗基底10、砷化镓基底10、磷化铟基底10或氮化镓基底10等。在本实施例中,基底10可以为硅基底10。基底10上形成有选择开关晶体管11,选择开关晶体管11包括栅极111、源极112及漏极113,源极112和漏极113形成于基底10内,栅极111形成于基底10上表面,且源极112和漏极113位于栅极111的两侧。Specifically, for the
在一个可选的实施例中,第一介质层12通过沉积工艺形成于基底10的上表面,第一介质层12的厚度大小大于选择开关晶体管11的栅极111的厚度大小,完全覆盖选择开关晶体管11。第一介质层12内包括第一导电插塞14,第一导电插塞14的一端与选择开关晶体管11的漏极113直接接触并实现电连接,另一端电容19的下电极191直接接触并实现电连接。在一个可选的实施例中,第一介质层12内还形成有第一接触插塞16和第二接触插塞18,第一接触插塞16的一端与选择开关晶体管11的源极112电连接,第二接触插塞18的一端与基底10直接接触。第一导电插塞14、第一接触插塞16和第二接触插塞18的材质可以为铜或钨等金属。In an optional embodiment, the
在一个可选的实施例中,下电极191的材质可以为氮化钛。下电极191与第一导电插塞14直接接触并实现电连接,电容19的下电极191通过第一导电插塞14与选择开关晶体管11的漏极113电连接。下电极191的厚度可以由淀积或刻蚀工艺水平决定,下电极191的厚度越厚,则电容19的电容19面积越大。在一个可选的实施例中,下电极191的横截面呈梯形,在一个其他可选的实施例中,下电极191的横截面呈矩形。通过原子层沉积工艺形成电容介质材料层1921,电容介质层192的材质可以为高K介电常数铁电薄膜掺杂氧化铪。在一个可选的实施例中,电容介质层192中锆、铪及氧的摩尔比为0.3:0.3:0.5~0.7:0.7:2.5。上电极材料层1931同样通过原子层沉积工艺形成,上电极193层的材质可以为氮化钛。在一个可选的实施例中,电容19自漏极113的上方延伸至选择开关晶体管11的栅极111的上方。In an optional embodiment, the material of the
电容19的结构呈向上凸起状,在一个可选的实施例中,下电极191的横截面呈梯形,且下电极191接触第一介质层12的一面的面积大于下电极191远离第一介质层12的一面的面积。电容介质层192包括第一部分和第二部分,第一部分覆盖下电极191的上表面及侧面,第二部分位于下电极191的周向,且第二部分位于上电极193与第一介质层12之间,第二部分与第一部分一体设置。电容19在形成第二介质层20后位于第二介质层20内部,相较于在第一介质层12内部形成电容19,减少了在电容19内形成沟槽的部分,从而避免了形成沟槽时,沟槽拐角形貌不易控制的问题,随着器件的尺寸不断减小,沟槽形貌的不规则会导致局部电场增强从而影响电容结构的击穿稳定性。令电容19为形成于第一介质层19上表面的凸起结构能够有效的减少此类问题的出现。The structure of the
在一个可选的实施例中,对于第二介质层20,其材质可以为二氧化硅、氮氧化硅、氮化硅等绝缘材料。第二介质层20的厚度大小大于电容19的厚度大小,完全覆盖电容19。在一个可选的实施例中,第二介质层20内还包括第二导电插塞21,第二导电插塞21的一端与电容19的上电极193直接接触并实现电连接,另一端与金属层24的板线241直接接触并实现电连接。在一个可选的实施例中,第二导电插塞21、第三接触插塞22与第四接触插塞23的材质均可以为金属钨。In an optional embodiment, the material of the
在一个可选的实施例中,金属层24包括板线241、第一金属连接层242和第二金属连接层243。板线241与第二导电插塞21直接接触,两者之间形成电连接。由于第二导电插塞21与电容19的上电极193电连接,因此板线241与电容19的上电极193电连接,且电容19的下电极191通过第一导电插塞14与选择开关晶体管11的漏极113电连接。金属层24还包括第一金属连接层242和第二金属连接层243,第一金属连接层242与第三接触插塞22直接接触并实现电连接,第二金属连接层243与第四接触插塞23直接接触并实现电连接。In an optional embodiment, the
上述的半导体器件,由于电容的面积同时包括了下电极191的上表面及侧面所在面,相较于传统的电容多出了下电极191侧面所在的电容面积,下电极191侧面的面积增大对于半导体器件整体面积的改变是十分微弱的,因此可以通过增加下电极191侧面的面积大小在则增大电容19的电容面积,从而实现在半导体器件面积减小的情况下仍然保持足够大的电容的优点。且其制造工艺与标准CMOS工艺完全兼容,制造过程成熟,大规模生产。In the above-mentioned semiconductor device, since the area of the capacitor includes the upper surface and the side surface of the
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are more specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present invention, several modifications and improvements can be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011062708.1A CN114334971A (en) | 2020-09-30 | 2020-09-30 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011062708.1A CN114334971A (en) | 2020-09-30 | 2020-09-30 | Semiconductor device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114334971A true CN114334971A (en) | 2022-04-12 |
Family
ID=81032524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011062708.1A Pending CN114334971A (en) | 2020-09-30 | 2020-09-30 | Semiconductor device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114334971A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010010959A1 (en) * | 2000-01-27 | 2001-08-02 | Hyundai Electronics Industries Co., Ltd. | Method for fabricating semiconductor capacitor |
US20020102791A1 (en) * | 2001-01-31 | 2002-08-01 | Fujitsu Limited | Capacitor and method for fabricating the same, and semiconductor device and method for fabricating the same |
US20030047764A1 (en) * | 2001-09-13 | 2003-03-13 | Samsung Electronics Co., Ltd. | Ferroelectric memory device and method of forming the same |
CN1449045A (en) * | 2002-03-28 | 2003-10-15 | 松下电器产业株式会社 | Semiconductor device and manufacturing method thereof |
CN103915315A (en) * | 2013-01-08 | 2014-07-09 | 中芯国际集成电路制造(上海)有限公司 | Mim capacitor and forming method thereof |
-
2020
- 2020-09-30 CN CN202011062708.1A patent/CN114334971A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010010959A1 (en) * | 2000-01-27 | 2001-08-02 | Hyundai Electronics Industries Co., Ltd. | Method for fabricating semiconductor capacitor |
US20020102791A1 (en) * | 2001-01-31 | 2002-08-01 | Fujitsu Limited | Capacitor and method for fabricating the same, and semiconductor device and method for fabricating the same |
US20030047764A1 (en) * | 2001-09-13 | 2003-03-13 | Samsung Electronics Co., Ltd. | Ferroelectric memory device and method of forming the same |
CN1449045A (en) * | 2002-03-28 | 2003-10-15 | 松下电器产业株式会社 | Semiconductor device and manufacturing method thereof |
CN103915315A (en) * | 2013-01-08 | 2014-07-09 | 中芯国际集成电路制造(上海)有限公司 | Mim capacitor and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI390665B (en) | Semiconductor device having dual-sti (shallow trench isolation) and manufacturing method thereof | |
US20070296010A1 (en) | Pick-up structure for dram capacitors and dram process | |
JP2001339054A (en) | Semiconductor device and manufacturing method thereof | |
TW201340295A (en) | Semiconductor component and method of manufacturing same | |
CN107403721A (en) | Method for manufacturing power metal oxide semiconductor field effect transistor | |
KR20120048791A (en) | Method of manufacturing a vertical type semiconductor device | |
CN100403523C (en) | Semiconductor element substrate with embedded capacitor | |
CN107808882B (en) | Semiconductor integrated circuit structure and fabrication method thereof | |
CN210668371U (en) | Semiconductor structure | |
KR20020045028A (en) | Method for fabricating pad without void using self-aligned contact etch process in semiconductor device | |
US6211008B1 (en) | Method for forming high-density high-capacity capacitor | |
CN116133431B (en) | Semiconductor structure, preparation method thereof and electronic equipment | |
CN110459507B (en) | A method of forming a semiconductor memory device | |
CN114334971A (en) | Semiconductor device and method for manufacturing the same | |
CN114765177A (en) | Memory cell and method for producing the same | |
CN114765171A (en) | Semiconductor structure and manufacturing method thereof | |
CN114334974A (en) | Semiconductor device and method for manufacturing the same | |
TWI871839B (en) | Semiconductor device and method of forming the same | |
CN112652624A (en) | Semiconductor structure and manufacturing method thereof | |
CN114334970A (en) | Semiconductor structure and preparation method thereof | |
TWI827246B (en) | Method for forming ferroelectric memory device | |
TWI769771B (en) | Semiconductor structure and method of forming the same | |
CN113097137B (en) | Semiconductor structures and methods of forming them | |
CN111435659B (en) | Memory structure | |
CN108987362A (en) | Interconnect structure, method of fabricating the same and semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |